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Abstract In this paper, the notion of G-algebra is introduced which is a generalization of

QS-algebra and a necessary and sufficient condition for a G-algebra to become QS-algebra is

given. We proved that the class of all medial G-algebras forms a variety and is congruence

permutable. Finally, we shown that every associative G-algebra is a group.

Keywords G-algebra, QS-algebra, 0-commutative, medial.

§1. Introduction and preliminaries

In 1966, Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras

and BCI-algebras. These algebras have been extensively studied since their introduction. In

1983, Hu and Li introduced the notion of a BCH-algebra which is a generalization of the notion

of BCK and BCI-algebras and studied a few properties of these algebras. In 2001, J. Neggers,

S. S. Ahn and H. S. Kim introduced a new notion, called a Q-algebra and generalized some

theorems discussed in BCI/BCK-algebras. In 2002, J. Neggers and H. S. Kim introdued a

new notion, called a B-algebra and obtained several results. In 2007, A. Walendziak introduced

a new notion, called a BF -algebra which is a generalization of B-algebra. We introduce a

new notion, called a G-algebra, which is a generalization of QS-algebra. The concept of 0-

commutative, G-part and medial of a G-algebra are introduced and studied their properties.

First, we recall certain definitions from [1], [7], [8], [9] that are required in the paper.

Definition 1.1.[7] A BCI-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying the fol-

lowing conditions:

(B1) (x ∗ y) ∗ (x ∗ z) ≤ (z ∗ y).

(B2) x ∗ (x ∗ y) ≤ y.

(B3) x ≤ x.

(B4) x ≤ y and y ≤ x imply x = y.

(B5) x ≤ 0 implies x = 0, where x ≤ y is defined by x ∗ y = 0.

If (B5) is replaced by (B6) : 0 ≤ x, then the algebra is called a BCK-algebra [5]. It is

known that every BCK-algebra is a BCI-algebra but not conversely.
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A BCH-algebra [7] is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B4) and (B7) :

(x∗y)∗z = (x∗z)∗y. It is shown that every BCI-algebra is a BCH-algebra but not conversely.

Definition 1.2.[8] A Q-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B7)

and (B8) : x ∗ 0 = x.

A Q-algebra X is said to be a QS-algebra [2] if it satisfies the additional relation:

(B9) : (x ∗ y) ∗ (x ∗ z) = z ∗ y

for any x, y, z ∈ X. It is shown that every BCH-algebra is a Q-algebra but not conversely.

Definition 1.3.[9] A B-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B8)

and (B10) : (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)).
A B-algebra X is said to be 0-commutative if a ∗ (0 ∗ b) = b ∗ (0 ∗ a) for any a, b ∈ X. In

[8], it is shown that Q-algebras and B-algebras are different notions.

Definition 1.4.[1] A BF -algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying (B3), (B8)

and (B11) : 0 ∗ (x ∗ y) = (y ∗ x). Note that every B-algebra is BF -algebra but not conversely.

§2. G-algebras

In this section we define the notion of G-algebra and observe that the axioms in the

definition are independent. Also, we study the properties of G-algebra and we give a necessary

and sufficient condition for a G-algebra to become QS-algebra.

Definition 2.1. AG-algebra is a non-empty set A with a constant 0 and a binary operation

∗ satisfying axioms:

(B3) x ∗ x = 0.

(B12) x ∗ (x ∗ y) = y for all x, y, z ∈ A.

Example 2.1. Let A := R − {−n}, 0 ̸= n ∈ Z+ where R is the set of all real numbers

and Z+ is the set of all positive integers. If we define a binary operation ∗ on A by

x ∗ y =
n(x− y)

n+ y
.

Then (A, ∗, 0) is a G-algebra.

Note that every commutative B-algebra is a G-algebra but converse need not be true and

every QS-algebra is a G-algebra but converse need not be true.

Example 2.2. Let A = {0, 1, 2} in which ∗ is defined by

∗ 0 1 2

0 0 1 2

1 1 0 2

2 2 1 0

Then (A, ∗, 0) is a G-algebra but not a QS-algebra because

(0 ∗ 1) ∗ 2 = 1 ∗ 2 = 2 ̸= 1 = 2 ∗ 1 = (0 ∗ 2) ∗ 1.

Example 2.3. Let A = {0, 1, 2, 3, 4, 5, 6, 7} in which ∗ is defined by
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∗ 0 1 2 3 4 5 6 7

0 0 2 1 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 2 1 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

Then (A, ∗, 0) is a G-algebra which is not a BCK/BCI/BCH/Q/QS/B-algebras.

It is easy to see thatG-algebras andQ-algebras are different notions. For example, Example

2.2 is a G-algebra, but not a Q-algebra. Consider the following example. Let A = {0, 1, 2, 3}
be a set with the following table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 0 0 0

3 3 3 3 0

Then (A, ∗, 0) is a Q-algebra, but not a G-algebra, since 0 ∗ (0 ∗ 2) = 0 ∗ 0 = 0 ̸= 2.

We observe that the two axioms (B3) and (B12) are independent. Let A = {0, 1, 2} be a

set with the following left table.

∗ 0 1 2

0 0 1 2

1 1 1 2

2 2 1 2

∗ 0 1 2

0 0 1 2

1 1 0 1

2 2 1 0

Then the axiom(B12) holds but not (B3), since 2 ∗ 2 ̸= 0.

Similarly, the set A = {0, 1, 2} with the above right table satisfy the axiom (B3) but not

(B12), since 1 ∗ (1 ∗ 2) = 1 ∗ 1 = 0 ̸= 2.

Proposition 2.1. If (A, ∗, 0) is a G-algebra, then the following conditions hold:

(B13) x ∗ 0 = x.

(B14) 0 ∗ (0 ∗ x) = x, for any x, y ∈ A.

Proof. Let (A, ∗, 0) be a G-algebra and x, y ∈ A. Then x ∗ 0 = x ∗ (x ∗ x) = x (by B12).

Put x = 0 and y = x in B12, then we get B14.

Proposition 2.2. Let (A, ∗, 0) be a G-algebra. Then, for any x, y ∈ A, the following

conditions hold:

(i) (x ∗ (x ∗ y)) ∗ y = 0.
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(ii) x ∗ y = 0 implies x = y.

(iii) 0 ∗ x = 0 ∗ y implies x = y.

Proof. (i) (x ∗ (x ∗ y)) ∗ y = y ∗ y = 0.

(ii) Let x ∗ y = 0. Then, by (B12) and (B13), y = x ∗ (x ∗ y) = x ∗ 0 = x.

(iii) Let 0 ∗ x = 0 ∗ y. Then 0 ∗ (0 ∗ x) = 0 ∗ (0 ∗ y) and hence x = y.

Theorem 2.1. If (A, ∗, 0) be a G-algebra satisfying (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ A

then x ∗ z = y ∗ z implies x = y.

Proof. Let (A, ∗, 0) be a G-algebra (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ A. Then

x ∗ z = y ∗ z

⇒ (x ∗ z) ∗ (0 ∗ z) = (y ∗ z) ∗ (0 ∗ z)

⇒ x = y.

We now investigate some relations between G-algebras and BCI/BCH/Q/BF -algebras.

The following theorems can be proved easily.

Theorem 2.2. Every G-algebra satisfying (B9) is a BCI-algebra.

Theorem 2.3. Every G-algebra satisfying (B9) is a BCH-algebra.

Theorem 2.4. Every G-algebra satisfying (B9) is a Q-algebra.

Theorem 2.5. Every G-algebra satisfying (B7) is a BF -algebra.

In the following theorem we show that the conditions (B7) and (B9) are equivalent.

Theorem 2.6. Let (A, ∗, 0) be a G-algebra. Then the following are equivalent:

(i) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ A.

(ii) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ A.

Proof. (i)⇒(ii) Let x, y, z ∈ A and assume (i). Then

(x ∗ y) ∗ z = (x ∗ y) ∗ (x ∗ (x ∗ z)) = (x ∗ z) ∗ y.

(ii)⇒(ii) Let x, y, z ∈ A and assume (ii). Then

(x ∗ y) ∗ (x ∗ z) = (x ∗ (x ∗ z)) ∗ y = z ∗ y.

In the following, we characterize G-algebra interms of Q-algebra. The following proposition

can be proved easily.

Proposition 2.3. Let (A, ∗, 0) be a G-algebra. Then the following are equivalent:

(i) A is a Q-algebra.

(ii) A is a QS-algebra.

(iii) A is a BCH-algebra.

Lemma 2.1. Let (A, ∗, 0) be a G-algebra. Then a ∗ x = a ∗ y implies x = y for any

a, x, y ∈ A.

Proof. Let a, x, y ∈ A. Then a ∗ x = a ∗ y ⇒ a ∗ (a ∗ x) = a ∗ (a ∗ y)⇒ x = y.

Theorem 2.7. Let (A, ∗, 0) be a G-algebra. Then the following are equivalent:

(i) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ A.

(ii) (x ∗ z) ∗ (y ∗ z) = x ∗ y for all x, y, z ∈ A.
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Proof. (i)⇒(ii) Let x, y, z ∈ A and assume (i). Then, by (B12),

(x ∗ y) ∗ (x ∗ z) = z ∗ y

⇒ (x ∗ y) ∗ ((x ∗ y) ∗ (x ∗ z)) = (x ∗ y) ∗ (z ∗ y)

⇒ x ∗ z = (x ∗ y) ∗ (z ∗ y).

(ii)⇒(i) Let x, y, z ∈ A and assume (ii). Then, by (B12) and by Lemma 2.1,

(x ∗ z) ∗ (y ∗ z) = x ∗ y

⇒ (x ∗ z) ∗ (y ∗ z) = (x ∗ z) ∗ ((x ∗ z) ∗ (x ∗ y))

⇒ y ∗ z = (x ∗ z) ∗ (x ∗ y).

§3. G-part of G-algebras

In this section, we define 0-commutative, medial and give a necessary and sufficient condi-

tion for a G-algebra to become a medial G-algebra. Also we investigate the properties of G-part

in G-algebras.

Definition 3.1. A G-algebra (A, ∗, 0) is said to be 0-commutative if x∗ (0∗y) = y ∗ (0∗x)
for any x, y ∈ A. A non-empty subset S of a G-algebras, A is called a subalgebra of A if

x ∗ y ∈ S for any x, y ∈ S.

Example 3.1. Let A = {0, 1, 2} be a set with the following table:

∗ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Then (A, ∗, 0) is a 0-commutative G-algebra.

Theorem 3.1. Let (A, ∗, 0) be a 0-commutative G-algebra. Then (0 ∗ x) ∗ (0 ∗ y) = y ∗ x
for any x, y ∈ A.

Proof. Let x, y ∈ A. Then (0 ∗ x) ∗ (0 ∗ y) = y ∗ (0 ∗ (0 ∗ x)) = y ∗ x.
Theorem 3.2. Let (A, ∗, 0) be a 0-commutative G-algebra satisfying 0 ∗ (x ∗ y) = y ∗ x.

Then (x ∗ y) ∗ (0 ∗ y) = x for any x, y ∈ A.

Proof. Let x, y ∈ A. Then (x ∗ y) ∗ (0 ∗ y) = y ∗ (0 ∗ (x ∗ y)) = y ∗ (y ∗ x) = x.

Definition 3.2. Let A be a G-algebra. For any subset S of A, we define

G(S) = {x ∈ S | 0 ∗ x = x}.

In particular, if S = A then we say that G(A) is the G-part of a G-algebra. For any

G-algebra A, the set B(A) = {x ∈ A | 0 ∗ x = 0} is called a p-radical of A. A G-algebra is said

to be p-semisimple if B(A) = {0}.
The following property is obvious

G(A) ∩B(A) = {0}.
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Proposition 3.1. Let (A, ∗, 0) be a G-algebra. Then x ∈ G(A) if and only if 0∗x ∈ G(A).

Proof. If x ∈ G(A), then 0 ∗ x = x and hence 0 ∗ x ∈ G(A). Conversely, if 0 ∗ x ∈ G(A),

then 0 ∗ (0 ∗ x) = 0 ∗ x, and hence x = 0 ∗ x. Therefore x ∈ G(A).

Theorem 3.3. If S is a subalgebra of a G-algebra (A, ∗, 0), then G(A) ∩ S = G(S).

Proof. Clearly G(A) ∩ S ⊆ G(S). If x ∈ G(S), then 0 ∗ x = x and x ∈ S ⊆ A. Hence

x ∈ G(A). Therefore x ∈ G(A) ∩ S. Thus G(A) ∩ S = G(S).

The following theorem can be proved easily.

Theorem 3.4. Let (A, ∗, 0) be a G-algebra. If G(A) = A then A is p-semisimple.

Definition 3.3. A G-algebra (A, ∗, 0) satisfying (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) for any
x, y, z and u ∈ A, is called a medial G-algebra.

We can observe that Example 2.1 is a medial G-algebra.

Lemma 3.1. If A is a medial G-algebra, then, for any x, y, z ∈ A, the following holds:

(i) (x ∗ y) ∗ x = 0 ∗ y.
(ii) x ∗ (y ∗ z) = (x ∗ y) ∗ (0 ∗ z).
(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
Proof. Let A be a medial G-algebra and x, y, z ∈ A. Then

(i) (x ∗ y) ∗ x = (x ∗ y) ∗ (x ∗ 0) = (x ∗ x) ∗ (y ∗ 0) = 0 ∗ y.
(ii) (x ∗ y) ∗ (0 ∗ z) = (x ∗ 0) ∗ (y ∗ z) = x ∗ (y ∗ z).
(iii) (x ∗ y) ∗ z = (x ∗ y) ∗ (z ∗ 0) = (x ∗ z) ∗ (y ∗ 0) = (x ∗ z) ∗ y.
The following theorem can be proved easily.

Theorem 3.5. Every medial G-algebra is a QS-algebra.

Theorem 3.6. Let A be a medial G-algebra. Then the right cancellation law holds in

G(A).

Proof. Let a, b, x ∈ G(A) with a ∗x = b ∗x. Then, for any y ∈ G(A), x ∗ y = (0 ∗x) ∗ y =

(0 ∗ y) ∗ x = y ∗ x. Therefore

a = x ∗ (x ∗ a) = x ∗ (a ∗ x) = x ∗ (b ∗ x) = x ∗ (x ∗ b) = b.

Now we give a necessary and sufficient condition for a G-algebra to become medial G-

algebra.

Theorem 3.7. A G-algebra A is medial if and only if it satisfies the following conditions:

(i) y ∗ x = 0 ∗ (x ∗ y) for all x, y ∈ A.

(ii) x ∗ (y ∗ z) = z ∗ (y ∗ x) for all x, y, z ∈ A.

Proof. Suppose (A, ∗, 0) is medial. Then

(i) 0 ∗ (x ∗ y) = (y ∗ y) ∗ (x ∗ y) = (y ∗ x) ∗ (y ∗ y) = (y ∗ x) ∗ 0 = y ∗ x.
(ii) x ∗ (y ∗ z) = 0 ∗ ((y ∗ z) ∗ x) = 0 ∗ ((y ∗ z) ∗ (x ∗ 0)) = 0 ∗ ((y ∗ x) ∗ z) = z ∗ (y ∗ x).
Conversely assume that the conditions hold. Then (x ∗ y) ∗ (z ∗ u) = u ∗ (z ∗ (x ∗ y)) =

u ∗ (y ∗ (x ∗ z)) = (x ∗ z) ∗ (y ∗ u).
Corollary 3.1. The class of all of medial G-algebras forms a variety, written ν(MG).

Proposition 3.2.[3] A variety ν is congruence-permutable if and only if there is a term

p(x, y, z) such that

ν |= p(x, x, y) ≈ y and ν |= p(x, y, y) ≈ x.

Corollary 3.2. The variety ν(MG) is congruence-permutable.



Vol. 8 On G-algebras 7

Proof. Let p(x, y, z) = x ∗ (y ∗ z). Then by (B12) and (B8) we have p(x, x, y) = y and

p(x, y, y) = x, and so the variety ν(MG) is congruence permutable.

§4. Conclusion and future research

In this paper, we have introduced the concept of G-algebras and studied their properties.

In addition, we have defined G-part, p-radical and medial of G-algebra and proved that the

variety of medial algebras is congruence permutable. Finally, we proved that every associative

G-algebra is a group.

In our future work, we introduce the concept of fuzzy G-algebra, Interval-valued fuzzy

G-algebra, intuitionistic fuzzy structure of G-algebra, intuitionistic fuzzy ideals of G-algebra

and Intuitionistic (T, S)-normed fuzzy subalgebras of G-algebras, intuitionistic L-fuzzy ideals

of G-algebra. I hope this work would serve as a foundation for further studies on the structure

of G-algebras.
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§1. Introduction

The study of generalized closed sets in a topological space was initiated by Levine [6]. In

1996, Maki, Umehara and Noiri [7] introduced the class of pre-generalized closed sets to ob-

tain properties of pre-T1/2-generalized closed sets and pre-T1/2-spaces. The modified forms of

generalized closed sets and generalized continuity were studied by Balachandran, Sundaram

and Maki [3]. Recently Mohana and Arockiarani [8] developed (1, 2)∗-πg-closed sets in bitopo-

logical spaces. In this paper, we introduce a new classes of sets called (1, 2)∗-Q-closed sets in

bitopological spaces and study some of their properties.

Throughout this paper (X, τ1, τ2), (Y, σ1, σ2) and (Z, η1, η2) (or simply X, Y and Z) will

always denote bitopological spaces on which no separation axioms are assumed, unless otherwise

mentioned.

§2. Preliminaries

Definition 2.1.[9] A subset S of a bitopological space X is said to be τ1,2-open if S = A∪B
where A ∈ τ1 and B ∈ τ2. A subset S of X is said to be

(i) τ1,2-closed if the complement of S is τ1,2-open.

(ii) τ1,2-clopen if S is both τ1,2-open and τ1,2-closed.

Definition 2.2.[9] Let S be a subset of the bitopological space X. Then
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(i) The τ1,2-interior of S, denoted by τ1,2-int(S) is defined by
∪
{G : G ⊆ S and G is

τ1,2-open}.
(ii) The τ1,2-closure of S, denoted by τ1,2-cl(S) is defined by

∩
{F : S ⊆ F and F is

τ1,2-closed}.
Definition 2.3. A subset A of a bitoplogical space X is called

(i) (1, 2)∗-regular open [9] if A = τ1,2-int(τ1,2-cl(A)).

(ii) (1, 2)∗-α-open [9] if A ⊆ τ1,2-int(τ1,2-cl(τ1,2-int(A))).

(iii) (1, 2)∗-pre open [4] if A ⊆ τ1,2-int(τ1,2-cl(A)).

(iv) (1, 2)∗-semi pre open [4] if A ⊆ τ1,2-cl(τ1,2-int(τ1,2-cl(A))).

The complement of the sets mentioned above are called their respective closed sets.

Definition 2.4.[2] Let S be a subset of the bitopological space X. Then

(i) The (1, 2)∗-α-interior of S, denoted by (1, 2)∗-α-int(S) is defined by
∪
{G : G ⊆ S and

G is (1, 2)∗-α-open}.
(ii) The (1, 2)∗-α-closure of S, denoted by (1, 2)∗-α-cl(S) is defined by

∩
{F : S ⊆ F and

F is (1, 2)∗-α-closed}.
Definition 2.5. A subset A of a bitopological space X is said to be

(i) (1, 2)∗-πg-closed [8] in X if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is τ1,2-π-open in X.

(ii) (1, 2)∗-πgα-closed [1] in X if (1, 2)∗-αcl(A) ⊆ U whenever A ⊆ U and U is τ1,2-π-open

in X.

(iii) (1, 2)∗-αg-closed in X [5] if (1, 2)∗-αcl(A) ⊆ U whenever A ⊆ U and U is τ1,2-open in

X.

(iv) (1, 2)∗-gp-closed [4] in X if (1, 2)∗-pcl(A) ⊆ U whenever A ⊆ U and U is τ1,2-open in

X.

(v) (1, 2)∗-gpr-closed [4] in X if (1, 2)∗-pcl(A) ⊆ U whenever A ⊆ U and U is (1, 2)∗-regular

open in X.

(vi) (1, 2)∗-gsp-closed [4] in X if (1, 2)∗-spcl(A) ⊆ U whenever A ⊆ U and U is τ1,2-open

in X.

(vii) (1, 2)∗-g-closed [5] in X if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is τ1,2-open in X.

The complement of the sets mentioned above are called their respective open sets.

§3. (1, 2)∗-Q-closed sets

Definition 3.1. A subset A of a bitopological space X is said to be (1, 2)∗-Q-closed set if

(1, 2)∗-αcl(A) ⊆ τ1,2-int(U) whenever A ⊆ U and U is (1, 2)∗-πg-open in X.

Theorem 3.1. Every τ1,2-open and (1, 2)∗-α-closed subset of X is (1, 2)∗-Q-closed, but

not conversely.

Proof. Let A be τ1,2-open and (1, 2)∗-α-closed subset of X. Let A ⊆ U and U be

(1, 2)∗-πg-open in X. Since A is (1, 2)∗-α-closed, (1, 2)∗-αcl(A) = A. (1, 2)∗-αcl(A) = A = τ1,2-

int(A) ⊆ τ1,2-int(U). Since A is τ1,2-open and A ⊆ U . Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U).

This implies, A is (1, 2)∗-Q-closed.

Remark 3.1. The converse of the above theorem need not be true as seen by the following

Example.
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Example 3.1. (1, 2)∗-Q-closed sets need not be τ1,2-open and (1, 2)∗-α-closed. Let

X = {a, b, c, d},

τ1 = {ϕ,X, {a}, {a, b, d}},

τ2 = {ϕ,X, {b}, {a, b}}.

Here A = {a, c} is (1, 2)∗-Q-closed, but A is not τ1,2-open and (1, 2)∗-α-closed.

Definition 3.2. A subset A of a bitopological space X is said to be (1, 2)∗-w-closed

set if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)∗-semi-open in X. The complement of

(1, 2)∗-w-closed set is called (1, 2)∗-w-open set.

Definition 3.3. A subset A of a bitopological space X is said to be (1, 2)∗-R-closed set if

(1, 2)∗-αcl(A) ⊆ τ1,2-int(U) whenever A ⊆ U and U is (1, 2)∗-w-open in X.

Theorem 3.2. (i) Every (1, 2)∗-Q-closed set is (1, 2)∗-πgα-closed set.

(ii) Every (1, 2)∗-Q-closed set is (1, 2)∗-αg-closed.

(iii) Every (1, 2)∗-Q-closed set is (1, 2)∗-gp-closed.

(iv) Every (1, 2)∗-Q-closed set is (1, 2)∗-gpr-closed.

(v) Every (1, 2)∗-Q-closed set is (1, 2)∗-gsp-closed.

(vi) Every (1, 2)∗-Q-closed set is (1, 2)∗-R-closed.

Proof. (i) Let A be (1, 2)∗-Q-closed set. Let A ⊆ U ,

U is τ1,2-π-open set =⇒ τ1,2-open

=⇒ (1, 2)∗ − πg-open.

i.e., U is (1, 2)∗-πg-open set. Since A is (1, 2)∗-Q-closed set, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U).

Therefore, (1, 2)∗-αcl(A) ⊆ U. Thus, A is (1, 2)∗-πgα-closed.

(ii) Let A be (1, 2)∗-Q-closed set. Let A ⊆ U , U is τ1,2-open =⇒ (1, 2)∗-πg-open. Since A

is (1, 2)∗-Q-closed, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U). This implies, (1, 2)∗-αcl(A) ⊆ U. Therefore, A

is (1, 2)∗-αg-closed.

(iii) Let A be (1, 2)∗-Q-closed. Let A ⊆ U , U is τ1,2-open. Since A is (1, 2)∗-Q-closed,

(1, 2)∗-αcl(A) ⊆ τ1,2-int(U) ⊆ U . This implies, (1, 2)∗-pcl(A) ⊆ U. Therefore, A is (1, 2)∗-gp-

closed.

(iv) Let A be (1, 2)∗-Q-closed. Let A ⊆ U , U is (1, 2)∗-regular open. Therefore, (1, 2)∗-

αcl(A) ⊆ τ1,2-int(U) ⊆ U . This implies, (1, 2)∗-pcl(A) ⊆ U. Therefore, A is (1, 2)∗-gpr-closed.

(v) Every (1, 2)∗-Q-closed set is (1, 2)∗-αg-closed and every (1, 2)∗-αg-closed set is (1, 2)∗-

gsp-closed. This implies, every (1, 2)∗-Q-closed set is (1, 2)∗-gsp-closed.

(vi) Let A ⊆ U , U is (1, 2)∗-ω-open. Since A is (1, 2)∗-Q-closed set, (1, 2)∗-αcl(A) ⊆ τ1,2-

int(U). Thus, A is (1, 2)∗-R-closed set.

However the converses of the above theorem are not true is shown by the following Exam-

ples.

Example 3.2. LetX = {a, b, c}, τ1 = {ϕ,X, {c}}, τ2 = {ϕ,X, {b}}. Here {a}, {a, c}, {a, b}
are (1, 2)∗-πgα-closed sets, but not (1, 2)∗-Q-closed sets.

Example 3.3. Let X = {a, b, c, d}, τ1 = {ϕ,X, {a}, {c}, {a, b}, {a, c}, {a, b, c}}, τ2 =

{ϕ,X, {a, d}, {a, c, d}, {a, b, d}}. Here {b}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d} are (1, 2)∗-αg-

closed sets, but not (1, 2)∗-Q-closed sets.
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Example 3.4. Let X = {a, b, c}, τ1 = {ϕ,X, {a, b}}, τ2 = {ϕ,X}. Here {a} is (1, 2)∗-gp-
closed set, but not (1, 2)∗-Q-closed set.

Example 3.5. In Example 3.3, {b} is (1, 2)∗-gpr-closed set, but not (1, 2)∗-Q-closed set.

Example 3.6. In Example 3.3, {d} is (1, 2)∗-gsp-closed set, but not (1, 2)∗-Q-closed set.

Example 3.7. Let X = {a, b, c}, τ1 = {ϕ,X, {a, b}}, τ2 = {ϕ,X, {a}}. Here {b} is

(1, 2)∗-R-closed set, but not (1, 2)∗-Q-closed set.

Theorem 3.3. If A subset A of a bitopological space X is (1, 2)∗-Q-closed set then (1, 2)∗-

αcl(A)-A contains no non empty (1, 2)∗-πg-closed set.

Proof. Let F be a non empty (1, 2)∗-πg-closed set suchthat F ⊆ (1, 2)∗-αcl(A)−A. Then

F ⊆ (1, 2)∗-αcl(A)− A and A ⊆ X − F is (1, 2)∗-πg-open. Since A is (1, 2)∗-Q-closed, (1, 2)∗-

αcl(A) ⊆ τ1,2-int(X −F ) = X − τ1,2-cl(F ). This implies, τ1,2-cl(F ) ⊆ X − (1, 2)∗-αcl(A). That

is, F ⊆ (1, 2)∗-αcl(A) and F ⊆ X − (1, 2)∗-αcl(A). That is, F ⊆ (1, 2)∗-αcl(A) ∩ (X − (1, 2)∗-

αcl(A)) = ϕ. This implies, (1, 2)∗-αcl(A)−A contains no non empty (1, 2)∗-πg-closed set.

Remark 3.2. The converse of the theorem 3.3 need not be true. If (1, 2)∗-αcl(A)-A

contains no non empty (1, 2)∗-πg-closed set, then A need not be (1, 2)∗-Q-closed. For example

Let X = {a, b, c}, τ1 = {ϕ,X, {b}}, τ2 = {ϕ,X, {a, b}}. Here A = {a, b} is not (1, 2)∗-Q-closed

set, but (1, 2)∗-αcl(A)−A = X − {a, b} = {c}.
Theorem 3.3. If A and B are (1, 2)∗-Q-closed set then A ∪B is (1, 2)∗-Q-closed set.

Proof. Let A and B be (1, 2)∗-Q-closed sets. Let A ∪ B ⊆ U , U be (1, 2)∗-πg-open.

Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U), (1, 2)∗-αcl(B) ⊆ τ1,2-int(U). Since A and B are (1, 2)∗-

α-closed set, (1, 2)∗-αcl(A∪B) = (1, 2)∗-αcl(A)∪(1, 2)∗-αcl(B) ⊆ τ1,2-int(U). This implies A∪B
is (1, 2)∗-Q-closed set.

Remark 3.3. The intersection of two (1, 2)∗-Q-closed sets need not be (1, 2)∗-Q-closed.

Let X = {a, b, c, d}, τ1 = {ϕ,X, {a}, {d}, {a, d}, {c, d}, {a, c, d}}, τ2 = {ϕ,X, {a, c}}. Then

{a, b, c} and {a, b, d} are (1, 2)∗-Q-closed, but {a, b, c}∩{a, b, d} = {a, b} is not (1, 2)∗-Q-closed.

Theorem 3.4. If A is (1, 2)∗-Q-closed and A ⊆ B ⊆ (1, 2)∗-αcl(A) then B is (1, 2)∗-Q-

closed.

Proof. Let U be (1, 2)∗-πg-open set of X, such that B ⊆ U . Let A ⊆ B ⊆ (1, 2)∗-αcl(A).

Therefore A ⊆ U and U is (1, 2)∗-πg-open. This implies (1, 2)∗-αcl(A) ⊆ τ1,2-int(U). Also,

B ⊆ (1, 2)∗-αcl(A) =⇒ (1, 2)∗-αcl(B) ⊆ (1, 2)∗-αcl((1, 2)∗-αcl(A)) = (1, 2)∗-αcl(A) ⊆ τ1,2-

int(U). Therefore, (1, 2)∗-αcl(B) ⊆ τ1,2-int(U). Thus, B is (1, 2)∗-Q-closed.

Theorem 3.5. If a subset A of X is (1, 2)∗-πg-open and (1, 2)∗-Q-closed then A is (1, 2)∗-

α-closed in X.

Proof. Let A be (1, 2)∗-πg-open and (1, 2)∗-Q-closed. Then (1, 2)∗-αcl(A) ⊆ τ1,2-int(A) ⊆
A. Therefore (1, 2)∗-αcl(A) ⊆ A. Therefore, A is (1, 2)∗-α-closed.

Theorem 3.6. Let A be (1, 2)∗-Q-closed in X then A is (1, 2)∗-α-closed in X iff (1, 2)∗-

αcl(A)-A is (1, 2)∗-πg-closed.

Proof. Given A is (1, 2)∗-Q-closed. Let A be (1, 2)∗-α-closed. Therefore, (1, 2)∗-αcl(A) =

A. i.e., (1, 2)∗-αcl(A) − A = ϕ, which is (1, 2)∗-πg-closed. Conversely, if (1, 2)∗-αcl(A) − A is

(1, 2)∗-πg-closed, since A is (1, 2)∗-Q-closed, (1, 2)∗-αcl(A)−A does not contain any non empty

(1, 2)∗-πg-closed set. Therefore, (1, 2)∗-αcl(A)−A = ϕ. This implies (1, 2)∗-αcl(A) ⊆ A. That

is, A is (1, 2)∗-α-closed set.
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Theorem 3.7. An τ1,2-open set A of X is (1, 2)∗-αg-closed iff A is (1, 2)∗-Q-closed.

Proof. Let A be an τ1,2-open set and (1, 2)∗-αg-closed set. Let A ⊆ U , U is (1, 2)∗-πg-

open. Since A ⊆ U , τ1,2-int(A) ⊆ τ1,2-int(U). Therefore, A ⊆ τ1,2-int(U), which is τ1,2-open.

Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U), since A is (1, 2)∗-αg-closed. This implies A is (1, 2)∗-Q-

closed. Conversely, let A be (1, 2)∗-Q-closed and A ⊆ U , U is τ1,2-open =⇒ U is (1, 2)∗-πg-open.

This implies (1, 2)∗-αcl(A) ⊆ τ1,2-int(U) ⊆ U =⇒ (1, 2)∗-αcl(A) ⊆ U =⇒ A is (1, 2)∗-αg-closed.

Theorem 3.8. In a bitopological space X, for each x ∈ X, {x} is (1, 2)∗-πg-closed or its

complement X − {x} is (1, 2)∗-Q-closed in X.

Proof. Let X be a bitopological space. To prove {x} is (1, 2)∗-πg-closed or X − {x} is

(1, 2)∗-Q-closed inX. If {x} is not (1, 2)∗-πg-closed inX, thenX−{x} is not (1, 2)∗-πg-open and

the only (1, 2)∗-πg-open set containingX−{x} isX. Therefore, (1, 2)∗-αcl(X−{x}) ⊆ X = τ1,2-

int(X). Thus, (1, 2)∗-αcl(X − {x}) ⊆ τ1,2-int(X) =⇒ X − {x} is (1, 2)∗-Q-closed.

Remark 3.4. τ1,2-closedness and (1, 2)∗-Q-closedness are independent. In Example 3.2,

A = {a, b} is τ1,2-closed, but not (1, 2)∗-Q-closed. In Remark 3.3, A = {a, b, d} is (1, 2)∗-Q-

closed, but not τ1,2-closed.

Remark 3.5. (1, 2)∗-Q-closedness and (1, 2)∗-pre closed set are independent. In Remark

3.3, A = {a, b, d} is (1, 2)∗-Q-closed, but not (1, 2)∗-pre-closed set. In Example 3.3, A = {b} is
(1, 2)∗-pre closed set, but not (1, 2)∗-Q-closed set.

Remark 3.6. From the above discussions and known results we have the following impli-

cations. A −→ B (A ̸↔ B) represents A implies B but not conversely (A and B are independent

of each other).

(1, 2)∗-αg-closed −→ (1, 2)∗-πgα-closed ←− (1, 2)∗-gp-closed

↖ ↑ ↗
τ1,2-closed ̸←→ (1, 2)∗-Q-closed ̸←→ (1, 2)∗-pre closed

↙ ↓ ↘
(1, 2)∗-gsp-closed (1, 2)∗-gpr-closed (1, 2)∗-R-closed

Definition 3.3. The intersection of all (1, 2)∗-πg-open subsets of X containing A is called

the (1, 2)∗-πg-kernal of A and denoted by (1, 2)∗-πg-ker(A).

Theorem 3.9. If a subset A of X is (1, 2)∗-Q-closed, then (1, 2)∗-αcl(A) ⊆ (1, 2)∗-πg-

ker(A).

Proof. Let A be (1, 2)∗-Q-closed. Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(U), whenever A ⊆
U , U is (1, 2)∗-πg-open. Let x ∈ (1, 2)∗-αcl(A). If x /∈ (1, 2)∗-πg-ker(A), then there exists a

(1, 2)∗-πg-open set containing A subset x /∈ U . Therefore, x /∈ A =⇒ x /∈ (1, 2)∗-αcl(A). Which

is contradiction to x ∈ (1, 2)∗-αcl(A). Thus, (1, 2)∗-αcl(A) ⊆ (1, 2)∗-πg-ker(A).

Definition 3.5. A subset A of a bitopological space X is said to be (1, 2)∗-QS-closed set

in X if (1, 2)∗-αcl(A) ⊆ τ1,2-int(τ1,2-cl((U)) whenever A ⊆ U and U is (1, 2)∗-πg-open in X.

Theorem 3.10. Every (1, 2)∗-Q-closed set is (1, 2)∗-QS-closed.

Proof. Let A be any (1, 2)∗-Q-closed set. Let A ⊆ U , U is (1, 2)∗-πg-open in X =⇒ (1, 2)∗-

αcl(A) ⊆ τ1,2-int(U) ⊆ τ1,2-int(τ1,2-cl((U)). Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(τ1,2-cl((U)).

Thus, A is (1, 2)∗-QS-closed set.
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Definition 3.6. A subset A of X is said to be

(i) (1, 2)∗-Q-open in X if its complement X −A is (1, 2)∗-Q-closed set in X.

(ii) (1, 2)∗-QS-open in X if its complement X −A is (1, 2)∗-QS-closed set in X.

Theorem 3.11. Let X be a bitopological space and A ⊆ X,

(i) A is (1, 2)∗-Q-open set in X iff τ1,2-cl(U) ⊆ (1, 2)∗-αint(A) when ever U ⊆ A and U is

(1, 2)∗-πg-closed.

(ii) A is (1, 2)∗-QS-open set in X iff τ1,2-cl(τ1,2-int(U)) ⊆ (1, 2)∗-αint(A) when ever U ⊆ A

and U is (1, 2)∗-πg-closed.

(iii) If A is (1, 2)∗-Q-open set in X then, A is (1, 2)∗-QS-open.

Proof. Let A be an (1, 2)∗-Q-open set in X. Let U ⊆ A and U is (1, 2)∗-πg-closed.

Then, X −A is (1, 2)∗-Q-closed and X −A ⊆ X −U and X −U is (1, 2)∗-πg-open. Therefore,

(1, 2)∗-αcl(X−A) ⊆ τ1,2-int(X−U). This implies, X−(1, 2)∗-αint(A) ⊆ X−τ1,2-cl(U) =⇒ τ1,2-

cl(U) ⊆ (1, 2)∗-αint(A) whenever U ⊆ A and U is (1, 2)∗-πg-closed then τ1,2-cl(τ1,2-int((U)) ⊆
(1, 2)∗-αint(A).

(i) Let A ⊆ V and V is (1, 2)∗-πg-closed. A ⊆ V =⇒ X − A ⊇ X − V , which is (1, 2)∗-

πg-open. Therefore, τ1,2-cl(X − V ) ⊆ (1, 2)∗-αint(X − A). This implies, X − τ1,2-int(V ) ⊆
X − (1, 2)∗-αcl(A). Therefore, (1, 2)∗-αcl(A) ⊆ τ1,2-int(V ). Thus, A is (1, 2)∗-Q-closed.

(ii) Let A be an (1, 2)∗-QS-open set. Let F ⊆ A and F is (1, 2)∗-πg-closed. Therefore,

X − A is (1, 2)∗-QS-closed and X − F is (1, 2)∗-πg-open subset such that, X − A ⊆ X − F .

Therefore, (1, 2)∗-αcl(X − A) ⊆ τ1,2-int(τ1,2-cl(X − F )). That is, X − (1, 2)∗-αint(A) ⊆ τ1,2-

int(X − τ1,2-int(F )). This implies, X − (1, 2)∗-αint(A) ⊆ X − τ1,2-cl(τ1,2-int(F )). That is

τ1,2-cl(τ1,2-int(F )) ⊆ (1, 2)∗-αint(A).

(iii) Let A be (1, 2)∗-Q-open. To prove, A is (1, 2)∗-QS-open. Let K ⊆ A and K is (1, 2)∗-

πg-closed. This implies, τ1,2-cl(K) ⊆ (1, 2)∗-αint(A). That is, τ1,2-cl(τ1,2-int(K)) ⊆ τ1,2-

cl(K) ⊆ (1, 2)∗-αint(A). Thus, A is (1, 2)∗-QS-open.

§4. (1, 2)∗-Q-Continuity and (1, 2)∗-QS-Continuity

Let f : X −→ Y be a function from a bitopological space X into a bitopological space Y .

Definition 4.1. A function f : X −→ Y is said to be (1, 2)∗-Q-continuous (respectively.

(1, 2)∗-QS-continuous) if f−1(V ) is (1, 2)∗-Q-closed (respectively. (1, 2)∗-QS-closed) in X, for

every σ1,2-closed set V of Y .

Definition 4.2. A function f : X −→ Y is said to be (1, 2)∗-Q-irresolute (respectively.

(1, 2)∗-QS-irresolute) if f−1(V ) is (1, 2)∗-Q-closed (respectively. (1, 2)∗-QS-closed) in X, for

every (1, 2)∗-Q-closed ((1, 2)∗-QS-closed) set V of Y .

Example 4.1. Let X = {a, b, c, d} = Y, τ1 = {X,ϕ, {a}, {d}, {a, d}, {a, c}, {a, c, d}},
τ2 = {X,ϕ, {c, d}}, σ1 = {Y, ϕ, {a}, {a, b, d}}, σ2 = {Y, ϕ, {b}, {a, b}}. Let f : X −→ Y be

defined by f(a) = b, f(b) = c, f(c) = d, f(d) = a. Then f is (1, 2)∗-Q-irresolute.

Example 4.2. Let X = {a, b, c} = Y , τ1 = {X,ϕ, {a}, {a, c}}, τ2 = {X,ϕ, {b}}, σ1 =

{Y, ϕ, {b}}, σ2 = {Y, ϕ, {b, c}}. Let f : X −→ Y be defined by f(a) = c, f(b) = b, f(c) = a.

Then f is (1, 2)∗-Q-continuous.

Theorem 4.1. Let f : X −→ Y and g : Y −→ Z be two functions. Then
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(i) gof is (1, 2)∗-Q-continous if g is (1, 2)∗-continuous and f is (1, 2)∗-Q-continuous.

(ii) gof is (1, 2)∗-Q-irresolute if g is (1, 2)∗-Q-irresolute and f is (1, 2)∗-Q-irresolute.

(iii) gof is (1, 2)∗-Q-continous if g is (1, 2)∗-Q-continuous and f is (1, 2)∗-Q-irresolute.

Proof. The proof is obvious.

Definition 4.3. A space X is called an (1, 2)∗-απg-space if the intersection of (1, 2)∗-α-

closed set with a (1, 2)∗-πg-closed set is (1, 2)∗-πg-closed.

Theorem 4.2. For a subset A of an (1, 2)∗-απg-space X, the following are equivalent:

(i) A is (1, 2)∗-Q-closed.

(ii) τ1,2-cl{x} ∩A ̸= ϕ, for each x ∈ (1, 2)∗-αcl(A).

(iii) (1, 2)∗-αcl(A)−A contains no non-empty (1, 2)∗-πg-closed set.

Proof. (i) Let A be (1, 2)∗-Q-closed. Let x ∈ (1, 2)∗-αcl(A). If τ1,2-cl{x} ∩ A = ϕ then

A ⊆ X − τ1,2-cl{x} is τ1,2-open and hence X − τ1,2-cl{x} is (1, 2)∗-πg-open. Let U = X − τ1,2-

cl{x}. That is, A ⊆ U , U is (1, 2)∗-πg-open =⇒ (1, 2)∗-αcl(A) ⊆ τ1,2-int(U). i.e., (1, 2)∗-

αcl(A) ⊆ τ1,2-int(X − τ1,2-cl{x}) = X − τ1,2-cl(τ1,2-cl{x}) = X − τ1,2-cl{x}. This implies,

(1, 2)∗-αcl(A) ⊆ X − τ1,2-cl{x}. Since x ∈ (1, 2)∗-αcl(A), x ∈ X − τ1,2-cl{x}, which is not

possible. Therefore, τ1,2-cl{x} ∩A ̸= ϕ.

(ii) If τ1,2-cl{x}∩A ̸= ϕ for x ∈ (1, 2)∗-αcl(A), to prove (1, 2)∗-αcl(A)−A contains no non

empty (1, 2)∗-πg-closed set. Let K ⊆ (1, 2)∗-αcl(A) − A is a non empty (1, 2)∗-πg-closed set.

Then K ⊆ (1, 2)∗-αcl(A) and A ⊆ X −K. Let x ∈ K, then x ∈ (1, 2)∗-αcl(A). Then by (ii),

τ1,2-cl{x} ∩A ̸= ϕ. This implies, τ1,2-cl{x} ∩A ⊆ K ∩A ⊆ ((1, 2)∗-αcl(A)−A) ∩A. Which is

a contradiction. Hence, (1, 2)∗-αcl(A)−A contains no non empty (1, 2)∗-πg-closed set.

(iii) If (1, 2)∗-αcl(A) − A contains no non empty (1, 2)∗-πg-closed set. Let A ⊆ U , U is

(1, 2)∗-πg-open. If (1, 2)∗-αcl(A) ̸⊆ τ1,2-int(U), then (1, 2)∗-αcl(A)∩ (τ1,2-int(U))C = ϕ. Since,

the space is a (1, 2)∗-απg-space, (1, 2)∗-αcl(A)∩ (τ1,2-int(U))C is a non empty (1, 2)∗-πg-closed

subset of (1, 2)∗-αcl(A)−A which is a contradiction. Therefore, A is (1, 2)∗-Q-closed set.
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§1. Introduction

Fuzzy set (FS) as proposed by Zadeh [16] in 1965 is a framework to encounter uncertainty,

vagueness and partial truth and it represents a degree of membership for each member of the

universe of discourse to a subset of it. After the introduction of fuzzy topology by Chang [2]

in 1968, there have been several generalizations of notions of fuzzy sets and fuzzy topology.

By adding the degree of non-membership to FS, Atanassov [1] proposed intuitionistic fuzzy

set (IFS) in 1986 which appeals more accurate to uncertainty quantification and provides the

opportunity to precisely model the problem based on the existing knowledge and observations.

In 1997, Coker [3] introduced the concept of intuitionistic fuzzy topological space. This paper

aspires to overtly enunciate the notion of intuitionistic fuzzy quasi weakly generalized continu-

ous mappings in intuitionistic fuzzy topological space and study some of their properties. We

provide some characterizations of intuitionistic fuzzy quasi weakly generalized continuous map-

pings and establish the relationships with other classes of early defined forms of intuitionistic

mappings.
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§2. Preliminaries

Definition 2.1.[1] Let X be a non empty fixed set. An intuitionistic fuzzy set ((IFS)

in short) A in X is an object having the form A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} where the

functions µA(x) : X → [0, 1] and νA(x) : X → [0, 1] denote the degree of membership (namely

µA(x)) and the degree of non-membership (namely νA(x)) of each element x ∈ X to the set A,

respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Definition 2.2.[1] Let A and B be IFSs of the forms A = {⟨x, µA(x), νA(x)⟩ : x ∈ X}
and B = {⟨x, µB(x), νB(x)⟩ : x ∈ X}. Then

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X.

(ii) A = B if and only if A ⊆ B and B ⊆ A.

(iii) Ac = {⟨x, νA(x), µA(x)⟩ : x ∈ X}.
(iv) A ∩ B = {⟨x, µA(x)

∧
µB(x), νA(x)

∨
νB(x)⟩ : x ∈ X}.

(v) A ∪ B = {⟨x, µA(x)
∨
µB(x), νA(x)

∧
νB(x)⟩ : x ∈ X}.

For the sake of simplicity, the notation A = ⟨x, µA, νA⟩ shall be used instead of A =

{⟨x, µA(x), νA(x)⟩ : x ∈ X}. Also for the sake of simplicity, we shall use the notation A =

⟨x, (µA, µB) , (νA, νB)⟩ instead of A = ⟨x, (A/µA, B/µB) , (A/νA, B/νB)⟩ .
The intuitionistic fuzzy sets 0∼ = {⟨x, 0, 1⟩ : x ∈ X} and 1∼ = {⟨x, 1, 0⟩ : x ∈ X} are the

empty set and the whole set of X, respectively.

Definition 2.3.[3] An intuitionistic fuzzy topology ((IFT ) in short) on a non empty set

X is a family τ of IFSs in X satisfying the following axioms:

(i) 0∼, 1∼ ∈ τ .

(ii) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ .

(iii) ∪Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ .

In this case, the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in

short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy

closed set (IFCS in short) in X.

Definition 2.4.[3] Let (X, τ) be an IFTS and A = ⟨x, µA, νA⟩ be an IFS in X. Then the

intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

int(A) = ∪{G/G is an IFOS in X and G ⊆ A},
cl(A) = ∩{K/K is an IFCS in X and A ⊆ K}.

Note that for any IFS A in (X, τ), we have cl(Ac) = (int(A))c and int(Ac) = (cl(A))c.

Definition 2.5. An IFS A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} in an IFTS (X, τ) is said to be

(i) Intuitionistic fuzzy semi closed set [6] (IFSCS in short) if int(cl(A)) ⊆ A.

(ii) Intuitionistic fuzzy α-closed set [6] (IFαCS in short) if cl(int(cl(A))) ⊆ A.

(iii) Intuitionistic fuzzy pre-closed set [6] (IFPCS in short) if cl(int(A)) ⊆ A.

(iv) Intuitionistic fuzzy regular closed set [6] (IFRCS in short) if cl(int(A)) = A.

(v) Intuitionistic fuzzy generalized closed set [14] (IFGCS in short) if cl(A) ⊆ U whenever

A ⊆ U and U is an IFOS.

(vi) Intuitionistic fuzzy generalized semi closed set [13] (IFGSCS in short) if scl(A) ⊆ U

whenever A ⊆ U and U is an IFOS.
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(vii) Intuitionistic fuzzy α generalized closed set [11] (IFαGCS in short) if αcl(A) ⊆ U

whenever A ⊆ U and U is an IFOS.

(viii) Intuitionistic fuzzy γ closed set [5] (IFγCS in short) if int(cl(A)) ∩ cl(int(A)) ⊆ A.

An IFS A is called intuitionistic fuzzy semi open set, intuitionistic fuzzy α-open set,

intuitionistic fuzzy pre-open set, intuitionistic fuzzy regular open set, intuitionistic fuzzy gener-

alized open set, intuitionistic fuzzy generalized semi open set, intuitionistic fuzzy α generalized

open set and intuitionistic fuzzy γ open set (IFSOS, IFαOS, IFPOS, IFROS, IFGOS,

IFGSOS, IFαGOS and IFγOS) if the complement Ac is an IFSCS, IFαCS, IFPCS,

IFRCS, IFGCS, IFGSCS, IFαGCS and IFγCS respectively.

Definition 2.6.[7] An IFS A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} in an IFTS (X, τ) is said to

be an intuitionistic fuzzy weakly generalized closed set (IFWGCS in short) if cl(int(A)) ⊆ U

whenever A ⊆ U and U is an IFOS in X.

The family of all IFWGCSs of an IFTS (X, τ) is denoted by IFWGC(X).

Definition 2.7.[7] An IFS A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} in an IFTS (X, τ) is said to

be an intuitionistic fuzzy weakly generalized open set (IFWGOS in short) if the complement

Ac is an IFWGCS in X.

The family of all IFWGOSs of an IFTS (X, τ) is denoted by IFWGO(X).

Result 2.1.[7] Every IFCS, IFαCS, IFGCS, IFRCS, IFPCS, IFαGCS is an IFWGCS

but the converses need not be true in general.

Definition 2.8.[8] Let (X, τ) be an IFTS and A = ⟨x, µA, νA⟩ be an IFS in X. Then the

intuitionistic fuzzy weakly generalized interior and an intuitionistic fuzzy weakly generalized

closure are defined by

wgint(A) = ∪{G/G is an IFWGOS in X and G ⊆ A},
wgcl(A) = ∩{K/K is an IFWGCS in X and A ⊆ K}.
Definition 2.9.[3] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). If

B = {⟨y, µB(y), νB(y)⟩ : y ∈ Y } is an IFS in Y , then the pre-image of B under f denoted by

f−1(B), is the IFS in X defined by f−1(B) = {⟨x, f−1(µB(x)), f
−1(νB(x))⟩ : x ∈ X}, where

f−1(µB(x)) = µB(f(x)).

If A = {⟨x, µA(x), νA(x)⟩ : x ∈ X} is an IFS in X, then the image of A under f denoted

by f(A) is the IFS in Y defined by f(A) = {⟨y, f(µA(y)), f−(νA(y))⟩ : y ∈ Y } where f−(νA) =
1− f(1− νA).

Definition 2.10. Let f be a mapping from an IFTS (X, τ) into an IFTS (y, σ). Then

f is said to be

(i) Intuitionistic fuzzy continuous [4] (IF continuous in short) if f−1(B) is an IFOS in X

for every IFOS B in Y .

(ii) Intuitionistic fuzzy α continuous [6] (IFα continuous in short) if f−1(B) is an IFαOS

in X for every IFOS B in Y .

(iii) Intuitionistic fuzzy pre continuous [6] (IFP continuous in short) if f−1(B) is an

IFPOS in X for every IFOS B in Y .

(iv) Intuitionistic fuzzy generalized continuous [14] (IFG continuous in short) if f−1(B) is

an IFGOS in X for every IFOS B in Y .

(v) Intuitionistic fuzzy α generalized continuous [12] (IFαG continuous in short) if f−1(B)
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is an IFαGOS in X for every IFOS B in Y .

(vi) Intuitionistic fuzzy weakly generalized continuous [9] (IFWG continuous in short) if

f−1(B) is an IFWGOS in X for every IFOS B in Y .

(vii) Intuitionistic fuzzy almost continuous [15] (IFA continuous in short) if f−1(B) is an

IFOS in X for every IFROS B in Y .

(viii) Intuitionistic fuzzy almost weakly generalized continuous [10] (IFAWG continuous

in short) if f−1(B) is an IFWGOS in X for every IFROS B in Y .

Definition 2.11. An IFTS (X, τ) is said to be an intuitionistic fuzzy wT1/2 space [7]

(IFwT1/2 space in short) if every IFWGCS in X is an IFCS in X.

Definition 2.12. An IFTS (X, τ) is said to be an intuitionistic fuzzy wgTq space [7]

(IFwgTq space in short) if every IFWGCS in X is an IFPCS in X.

§3. Intuitionistic fuzzy quasi weakly generalized continuous

mappings

In this section, we introduce intuitionistic fuzzy quasi weakly generalized continuous map-

pings and study some of their properties.

Definition 3.1. A mapping f : (X, τ) → (Y, σ) is said to be an intuitionistic fuzzy quasi

weakly generalized continuous mapping if f−1(B) is an IFCS in (X, τ) for every IFWGCS B

of (Y, σ).

Theorem 3.1. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy continuous mapping but not conversely.

Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Hence f is an intuitionistic fuzzy continuous

mapping.

Example 3.1. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.3, 0.4) , (0.4, 0.5)⟩, T2 =

⟨y, (0.3, 0.4) , (0.4, 0.5)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This

f is an intuitionistic fuzzy continuous mapping but not an intuitionistic fuzzy quasi weakly

generalized continuous mapping, since the IFS B = ⟨y, (0.6, 0.7) , (0.2, 0.1)⟩ is an IFWGCS in

Y but f−1(B)= ⟨x, (0.6, 0.7) , (0.2, 0.1)⟩ is not an IFCS in X.

Theorem 3.2. Let f : (X, τ)→ (Y, σ) be a mapping from an IFTS (X, τ) into an IFTS

(Y, σ) and (Y, σ) an IFwT1/2 space. Then the following statements are equivalent.

(i) f is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

(ii) f is an intuitionistic fuzzy continuous mapping.

Proof. (i)⇒(ii) Is obviously true from the Theorem 3.1.

(ii)⇒(i) Let A be an IFWGCS in Y . Since (Y, σ) is an IFwT1/2 space, A is an IFCS in

Y . By hypothesis, f−1(A) is an IFCS in X. Hence f is an intuitionistic fuzzy quasi weakly

generalized continuous mappings.

Theorem 3.3. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy α continuous mapping but not conversely.
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Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFαCS, f−1(A) is an

IFαCS in X. Hence f is an intuitionistic fuzzy α continuous mapping.

Example 3.2. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.2, 0.4) , (0.4, 0.6)⟩, T2 =

⟨y, (0.2, 0.4) , (0.4, 0.6)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This

f is an intuitionistic fuzzy α continuous mapping but not an intuitionistic fuzzy quasi weakly

generalized continuous mapping, since the IFS B = ⟨y, (0.5, 0.6) , (0.2, 0.1)⟩ is an IFWGCS in

Y but f−1(B)= ⟨x, (0.5, 0.6) , (0.2, 0.1)⟩ is not an IFCS in X.

Theorem 3.4. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy pre continuous mapping but not conversely.

Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFPCS, f−1(A) is

an IFPCS in X. Hence f is an intuitionistic fuzzy pre continuous mapping.

Example 3.3. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.2, 0.3) , (0.3, 0.6)⟩, T2 =

⟨y, (0.2, 0.3) , (0.3, 0.6)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This

f is an intuitionistic fuzzy pre continuous mapping but not an intuitionistic fuzzy quasi weakly

generalized continuous mapping , since the IFS B = ⟨y, (0.6, 0.4) , (0.2, 0.1)⟩ is an IFWGCS

in Y but f−1(B)= ⟨x, (0.6, 0.4) , (0.2, 0.1)⟩ is not an IFCS in X.

Theorem 3.5. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy generalized continuous mapping but not conversely.

Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFGCS, f−1(A) is

an IFGCS in X. Hence f is an intuitionistic fuzzy generalized continuous mapping.

Example 3.4. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.2, 0.2) , (0.3, 0.4)⟩, T2 =

⟨y, (0.2, 0.2) , (0.3, 0.4)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ) → (Y, σ) defined as f(a) = u and f(b) = v.

This f is an intuitionistic fuzzy generalized continuous mapping but not an intuitionistic fuzzy

quasi weakly generalized continuous mapping, since the IFS B = ⟨y, (0.4, 0.5) , (0.2, 0)⟩ is an

IFWGCS in Y but f−1(B)= ⟨x, (0.4, 0.5) , (0.2, 0)⟩ is not an IFCS in X.

Theorem 3.6. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy α generalized continuous mapping but not conversely.

Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFαGCS, f−1(A) is

an IFαGCS in X. Hence f is an intuitionistic fuzzy α generalized continuous mapping.

Example 3.5. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.2, 0.3) , (0.4, 0.5)⟩, T2 =

⟨y, (0.2, 0.3) , (0.4, 0.5)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and
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Y respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This

f is an intuitionistic fuzzy α generalized continuous mapping but not an intuitionistic fuzzy

quasi weakly generalized continuous mapping, since the IFS B = ⟨y, (0.3, 0.4) , (0.2, 0)⟩ is an

IFWGCS in Y but f−1(B)= ⟨x, (0.3, 0.4) , (0.2, 0)⟩ is not an IFCS in X.

Theorem 3.7. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy almost weakly generalized continuous mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an intuitionistic fuzzy quasi weakly generalized con-

tinuous mapping. Let A be an IFRCS in Y . Since every IFRCS is an IFWGCS, A is an

IFWGCS in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFWGCS,

f−1(A) is an IFWGCS in X. Hence f is an intuitionistic fuzzy almost weakly generalized

continuous mapping.

Example 3.6. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.4, 0.5) , (0.5, 0.5)⟩, T2 =

⟨y, (0.4, 0.5) , (0.5, 0.5)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and Y

respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This f

is an intuitionistic fuzzy almost weakly generalized continuous mapping but not an intuitionistic

fuzzy quasi weakly generalized continuous mapping , since the IFS B = ⟨y, (0.6, 0.7) , (0.3, 0.2)⟩
is an IFWGCS in Y but f−1(B)= ⟨x, (0.6, 0.7) , (0.3, 0.2)⟩ is not an IFCS in X.

Theorem 3.8. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy almost continuous mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an intuitionistic fuzzy quasi weakly generalized con-

tinuous mapping. Let A be an IFRCS in Y . Since every IFRCS is an IFWGCS, A is an

IFWGCS in Y . By hypothesis, f−1(A) is an IFCS in X. Hence f is an intuitionistic fuzzy

almost continuous mapping.

Example 3.7. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.3, 0.5) , (0.4, 0.5)⟩, T2 =

⟨y, (0.3, 0.5) , (0.4, 0.5)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ) → (Y, σ) defined as f(a) = u and f(b) = v.

This f is an intuitionistic fuzzy almost continuous mapping but not an intuitionistic fuzzy

quasi weakly generalized continuous mapping, since the IFS B = ⟨y, (0.5, 0.6) , (0.4, 0.2)⟩ is an
IFWGCS in Y but f−1(B)= ⟨x, (0.5, 0.6) , (0.4, 0.2)⟩ is not an IFCS in X.

Theorem 3.9. Every intuitionistic fuzzy quasi weakly generalized continuous mapping is

an intuitionistic fuzzy weakly generalized continuous mapping but not conversely.

Proof. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping. Let A be an IFCS in Y . Since every IFCS is an IFWGCS, A is an IFWGCS

in Y . By hypothesis, f−1(A) is an IFCS in X. Since every IFCS is an IFWGCS, f−1(A) is

an IFWGCS in X. Hence f is an intuitionistic fuzzy weakly generalized continuous mapping.

Example 3.8. Let X = {a, b}, Y = {u, v} and T1 = ⟨x, (0.2, 0.1) , (0.4, 0.5)⟩, T2 =

⟨y, (0.2, 0.1) , (0.4, 0.5)⟩. Then τ = {0∼, T1, 1∼} and σ = {0∼, T2, 1∼} are IFTs on X and

Y respectively. Consider a mapping f : (X, τ)→ (Y, σ) defined as f(a) = u and f(b) = v. This

f is an intuitionistic fuzzy weakly generalized continuous mapping but not an intuitionistic

fuzzy quasi weakly generalized continuous mapping, since the IFS B = ⟨y, (0.6, 0.7) , (0.2, 0.2)⟩
is an IFWGCS in Y but f−1(B)= ⟨x, (0.6, 0.7) , (0.2, 0.2)⟩ is not an IFCS in X.

Theorem 3.10. Let f : (X, τ)→ (Y, σ) be a mapping from an IFTS (X, τ) into an IFTS
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(Y, σ). Then the following statements are equivalent:

(i) f is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

(ii) f−1(B) is an IFOS in X for every IFWGOS B in Y .

Proof. (i)⇒(ii) Let B be an IFWGOS in Y . Then Bc is an IFWGCS in Y . By

hypothesis, f−1(Bc) = (f−1(B))c is an IFCS in X. Hence f−1(B) is an IFOS in X.

(ii)⇒(i) Let B be an IFWGCS in Y . Then Bc is an IFWGOS in Y . By (ii), f−1(Bc)

=(f−1(B))c is an IFOS in X. Hence f−1(B) is an IFCS in X. Therefore f is an intuitionistic

fuzzy quasi weakly generalized continuous mapping.

Theorem 3.11. Let f : (X, τ)→ (Y, σ) be a mapping from an IFTS (X, τ) into an IFTS

(Y, σ) and let f−1(A) be an IFRCS in X for every IFWGCS in Y . Then f is an intuitionistic

fuzzy quasi weakly generalized continuous mapping.

Proof. Let A be an IFWGCS in Y . By hypothesis, f−1(A) is an IFRCS in X. Since

every IFRCS is an IFCS, f−1(A) is an IFCS in X. Hence f is an intuitionistic fuzzy quasi

weakly generalized continuous mapping.

Theorem 3.12. Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized

continuous mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f(cl(A)) ⊆ wgcl(f(A))

for every IFS A in X.

Proof. Let A be an IFS in X. Then wgcl(f(A)) is an IFWGCS in Y . Since f is an intu-

itionistic fuzzy quasi weakly generalized continuous mapping, f−1(wgcl(f(A))) is an IFCS in

X. Clearly A ⊆ f−1(wgcl(f(A))). Therefore cl(A) ⊆ cl(f−1(wgcl(f(A)))) = f−1(wgcl(f(A))).

Hence f(cl(A)) ⊆ wgcl(f(A)) for every IFS A in X.

Theorem 3.13. Let f : (X, τ)→ (Y, σ) be a mapping from an IFTS (X, τ) into an IFTS

(Y, σ). Then the following statements are equivalent:

(i) f is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

(ii) f−1(B) is an IFOS in X for every IFWGOS B in Y .

(iii) f−1(wgint(B)) ⊆ int(f−1(B)) for every IFS B in Y .

(iv) cl(f−1(B)) ⊆ f−1(wgcl(B)) for every IFS B in Y .

Proof. (i)⇒(ii) Is obviously true from the Theorem 3.10.

(ii)⇒(iii) Let B be an IFS in Y . Then wgint(B) is an IFWGOS in Y . By (ii),

f−1(wgint(B)) is an IFOS in X. Therefore f−1(wgint(B)) = int(f−1(wgint(B))). Clearly

wgint(B) ⊆ B. This implies f−1(wgint(B)) ⊆ f−1(B). Therefore f−1(wgint(B)) = int(f−1(

wgint(B))) ⊆ int(f−1(B)). Hence f−1(wgint(B)) ⊆ int(f−1(B)) for every IFS B in Y .

(iii)⇒(iv) It can be proved by taking the complement.

(iv)⇒(i) Let B be an IFWGCS in Y . Then wgcl(B) = B. Therefore f−1(B) =

f−1(wgcl(B)) ⊇ cl(f−1(B)). Hence cl(f−1(B)) = f−1(B). This implies f−1(B) is an IFCS

in Y . Hence f is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

Theorem 3.14. The composition of two intuitionistic fuzzy quasi weakly generalized

continuous mapping is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

Proof. Let A be an IFWGCS in Z. By hypothesis, g−1(A) is an IFCS in Y . Since

every IFCS is an IFWGCS, g−1(A) is an IFWGCS in Y . Then f−1(g−1(A)) = (gof)−1(A)

is an IFCS in X, by hypothesis. Hence gof is an intuitionistic fuzzy quasi weakly generalized

continuous mapping.
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Theorem 3.15. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, δ) be any two mappings.

Then the following statements hold

(i) Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy continuous mapping and g : (Y, σ)→
(Z, δ) an intuitionistic fuzzy quasi weakly generalized continuous mapping. Then their com-

position gof : (X, τ) → (Z, δ) is an intuitionistic fuzzy quasi weakly generalized continuous

mapping.

(ii) Let f : (X, τ) → (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continu-

ous mapping and g : (Y, σ) → (Z, δ) an intuitionistic fuzzy continuous mapping [respectively

intuitionistic fuzzy α continuous mapping, intuitionistic fuzzy pre continuous mapping, intu-

itionistic fuzzy α generalized continuous mapping and intuitionistic fuzzy generalized continuous

mapping]. Then their composition gof : (X, τ) → (Z, δ) is an intuitionistic fuzzy continuous

mapping.

(iii) Let f : (X, τ)→ (Y, σ) be an intuitionistic fuzzy quasi weakly generalized continuous

mapping and g : (Y, σ)→ (Z, δ) an intuitionistic fuzzy weakly generalized continuous mapping.

Then their composition gof : (X, τ)→ (Z, δ) is an intuitionistic fuzzy continuous mapping.

Proof. (i) Let A be an IFWGCS in Z. By hypothesis, g−1(A) is an IFCS in Y . Since

f is an intuitionistic fuzzy continuous mapping, f−1(g−1(A)) = (gof)−1(A) is an IFCS in X.

Hence gof is an intuitionistic fuzzy quasi weakly generalized continuous mapping.

(ii) Let A be an IFCS in Z. By hypothesis, g−1(A) is an IFCS [respectively IFαCS,

IFPCS, IFαGCS and IFGCS] in Y . Since every IFCS [respectively IFαCS, IFPCS,

IFαGCS and IFGCS] is an IFWGCS, g−1(A) is an IFWGCS in Y . Then f−1(g−1(A)) =

(gof)−1(A) is an IFCS in X, by hypothesis. Hence gof is an intuitionistic fuzzy continuous

mapping.

(iii) Let A be an IFCS in Z. By hypothesis, g−1(A) is an IFWGCS in Y . Since f is an

intuitionistic fuzzy quasi weakly generalized continuous mapping, f−1(g−1(A)) = (gof)−1(A)

is an IFCS in X. Hence gof is an intuitionistic fuzzy continuous mapping.
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Abstract In this paper we shall establish a short interval result for the Smarandache ceil

function and the Dirichlet divisor function by the convolution method.
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§1. Introduction

For a fixed positive integer k and any positive integer n, the Smarandache ceil function

Sk(n) is defined as

{Sk(n) = minm ∈ N : n | mk}.

This function was introduced by professor Smarandache. About this function, many scholars

studied its properties. Ibstedt [2] presented the following property: (∀a, b ∈ N)(a, b) = 1 ⇒
Sk(ab) = Sk(a)Sk(b). It is easy to see that if (a, b) = 1, then (Sk(a), Sk(b)) = 1. In her thesis,

Ren Dongmei [4] proved the asymptotic formula∑
n≤x

d(Sk(n)) = c1x log x+ c2x+O(x
1
2+ϵ), (1)

where c1 and c2 are computable constants, and ϵ is any fixed positive number.

The aim of this paper is to prove the following:

Theorem 1.1. Let d(n) denote the Dirichlet divisor function, Sk(n) denote the Smaran-

dache ceil function, then for 1
4 < θ < 1

3 , x
θ+2ϵ ≤ y ≤ x, we have∑

x<n≤x+y

d(Sk(n)) = H(x+ y)−H(x) +O(yx− ϵ
2 + xθ+ϵ), (2)

where H(x) = t1x log x+ t2x.

Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant.

1This work is supported by Natural Science Foundation of China (Grant No: 11001154), and Natural Science

Foundation of Shandong Province (Nos: BS2009SF018, ZR2010AQ009).
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§2. Proof of the Theorem

In order to prove our theorem, we need the following lemmas.

Lemma 2.1. ∑
n≤x

d(n) = x log x+ (2r − 1)x+O(xθ+ϵ). (3)

The asymptotic formula (3) is the well-known Dirichlet divisor problem. The latest value of θ

is θ = 131
416 proved by Huxley [6].

Lemma 2.2. ∑
n≤x

|g(n)| ≪ x1−α+ϵ.

Proof. It follows from |g(n)| ≪ n−α+ϵ.

Lemma 2.3. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers and

B(x, y; k, ϵ) :=
∑

x < nmk ≤ x + y

m > xϵ

1.

Then we have

B(x, y; k, ϵ)≪ yx−ϵ + x
1
4 .

Proof. This is Lemma 2.3 of Zhai [5].

Now we prove our theorem, which is closely related to the Dirichlet divisor problem.

Proof. Let F (s) =
∑∞

n=1
d(Sk(n))

ns (σ > 1), here d(Sk(n) is multiplicative and by Euler

product formula we have for σ > 1 that,

∞∑
n=1

d(Sk(n))

ns
=
∏
p

(
1 +

d(Sk(p)

ps
+

d(Sk(p
2)

p2s
+

d(Sk(p
3)

p3s
+ · · ·

)
=
∏
p

(
1 +

2

ps
+

2

p2s
+

2

p3s
+ · · ·

)
= ζ(s)

∏
p

(
1 +

1

ps
+ · · ·

)
= ζ2(s)

∏
p

(
1− 1

p2s
+ · · ·

)

=
ζ2(s)

ζ(2s)
G(s).

So we get G(s) =
∑∞

n=1
g(n)
ns and by the properties of Dirichlet series, it is absolutely convergent

for ℜs > 1
3 .

By the convolution method, we have d(Sk(n)) =
∑

n=n1n2n2
3
d(n1)g(n2)u(n3), where d(n)

is the divisor function. Then∑
x<n≤x+y

d(Sk(n)) =
∑

x<n1n2n2
3≤x+y

d(n1)g(n2)u(n3) =
∑
1

+O(
∑
2

+
∑
3

), (4)
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where ∑
1

=
∑

n2 ≤ xϵ

n3 ≤ xϵ

g(n2)u(n3)
∑

x
n2n2

3

< n1 ≤ x+y

n2n2
3

d(n1),

∑
2

=
∑

x < n1n2n2
3 ≤ x + y

n2 > xϵ

|d(n1)g(n2)u(n3)|,

∑
3

=
∑

x < n1n2n2
3 ≤ x + y

n3 > xϵ

|d(n1)g(n2)u(n3)|.

In view of Lemma 2.1, the inner sum in
∑

1 is

x+ y

n2n2
3

log
x+ y

n2n2
3

− x

n2n2
3

log
x

n2n2
3

+ (2r − 1)
y

n2n2
3

+O(
xθ

nθ
2n

2θ
3

)

=
(x+ y) log(x+ y)− x log x

n2n2
3

− y
log(n2n

2
3)

n2n2
3

+ (2r − 1)
y

n2n2
3

+O(
xθ

nθ
2n

2θ
3

).

Inserting the above expression into
∑

1 and after some easy calculations, we get∑
1

= H(x+ y)−H(x) +O(yx−ϵ + yx− 2
3 ϵ+ϵ2 + xθ+ϵ). (5)

For
∑

2, we have

|g(n2)| ≪ n
− 2

3+ϵ
2 ≪ x− 2

3 ϵ+ϵ2 ,

if we notice that n2 > xϵ, and hence∑
2

≪ x− 2
3 ϵ+ϵ2

∑
x<n1n2n2

3≤x+y

d(n1) = x− 2
3 ϵ+ϵ2

∑
x<n≤x+y

d∗(n),

where

d∗(n) =
∑

n=n1n2n2
3

d(n1)≪ nϵ2 .

Therefore we have ∑
2

≪ x− 2
3 ϵ+ϵ2

∑
x<n≤x+y

nϵ2 ≪ yx− 2
3 ϵ+ϵ2 . (6)

Since d(n)≪ nϵ2 , g(n2)≪ 1, by lemma 2.3 we have∑
3

≪ xϵ2
∑

x < n1n2n2
3 ≤ x + y

n3 > xϵ

1

≪ xϵ2
∑

x < nn2
3 ≤ x + y

n3 > xϵ

d(n)

≪ x2ϵ2
∑

x < nn2
3 ≤ x + y

n3 > xϵ

1 = x2ϵ2B(x, y; 2, ϵ)

≪ yx−ϵ+2ϵ2 + x
1
4+ϵ2 . (7)

Now our theorem follows from (4) and (7).
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§1. Introduction

Let A be the class of functions f which are analytic in the open unit disk E = {z : |z| < 1}
and are normalized by the conditions f(0) = f ′(0) − 1 = 0. Denote by S∗(α), the class of

starlike functions of order α which is analytically defined as follows:

S∗(α) =
{
f(z) ∈ A : ℜzf

′(z)

f(z)
> α, z ∈ E

}
,

where α is a real number such that 0 ≤ α < 1. We shall use S∗ to denote S∗(0), the class of

univalent starlike functions (w.r.t. the origin).

A function f ∈ A is said to be close-to-convex in E if

ℜ
(
zf ′(z)

g(z)

)
> 0, z ∈ E, (1)

for a starlike function g (not necessarily normalized). The class of close-to-convex functions

is denoted by C. It is well-known that every close-to-convex function is univalent. In case

g(z) ≡ z, the condition (1) reduces to

ℜ f ′(z) > 0, z ∈ E ⇒ f ∈ C.

This simple but elegant result was independently proved by Noshiro [5] and Warchawski [8] in

1934/35.

Let ϕ be analytic in a domain containing f(E), ϕ(0) = 0 and ℜ ϕ′(0) > 0, then, the function

f ∈ A is said to be ϕ-like in E if

ℜ zf ′(z)

ϕ(f(z))
> 0, z ∈ E.



30 Sukhwinder Singh Billing No. 3

This concept was introduced by L. Brickman [3]. He proved that an analytic function f ∈ A is

univalent if and only if f is ϕ-like for some ϕ. Later, Ruscheweyh [7] investigated the following

general class of ϕ-like functions:

Let ϕ be analytic in a domain containing f(E), ϕ(0) = 0, ϕ′(0) = 1 and ϕ(w) ̸= 0 for

w ∈ f(E) \ {0}, then the function f ∈ A is called ϕ-like with respect to a univalent function

q, q(0) = 1, if

zf ′(z)

ϕ(f(z))
≺ q(z), z ∈ E.

For two analytic functions f and g in the open unit disk E, we say that f is subordinate

to g in E and write as f ≺ g if there exists a Schwarz function w analytic in E with w(0) = 0

and |w(z)| < 1, z ∈ E such that f(z) = g(w(z)), z ∈ E. In case the function g is univalent, the

above subordination is equivalent to: f(0) = g(0) and f(E) ⊂ g(E).
Let Φ : C2 × E → C be an analytic function, p be an analytic function in E such that

(p(z), zp′(z); z) ∈ C2 × E for all z ∈ E and h be univalent in E. Then the function p is said to

satisfy first order differential subordination if

Φ(p(z), zp′(z); z) ≺ h(z), Φ(p(0), 0; 0) = h(0). (2)

A univalent function q is called a dominant of the differential subordination (2) if p(0) = q(0)

and p ≺ q for all p satisfying (2). A dominant q̃ that satisfies q̃ ≺ q for each dominant q of (2),

is said to be the best dominant of (2).

The main objective of this paper is to derive some sufficient conditions for ϕ-like, starlike,

close-to-convex functions.

§2. Preliminaries

We shall need following definition and lemmas to prove our results.

Definition 2.1. A function L(z, t), z ∈ E and t ≥ 0 is said to be a subordination chain if

L(., t) is analytic and univalent in E for all t ≥ 0, L(z, .) is continuously differentiable on [0,∞)

for all z ∈ E and L(z, t1) ≺ L(z, t2) for all 0 ≤ t1 ≤ t2.

Lemma 2.1.[6] The function L(z, t) : E× [0,∞)→ C, (C is the set of complex numbers),

of the form L(z, t) = a1(t)z + · · · with a1(t) ̸= 0 for all t ≥ 0, and lim
t→∞ |a1(t)| = ∞, is said to

be a subordination chain if and only if Re
[
z∂L/∂z
∂L/∂t

]
> 0 for all z ∈ E and t ≥ 0.

Lemma 2.2.[4] Let F be analytic in E and let G be analytic and univalent in E except

for points ζ0 such that lim
z→ζ0

G(z) = ∞, with F (0) = G(0). If F /≺ G in E, then there is a

point z0 ∈ E and ζ0 ∈ ∂E (boundary of E) such that F (|z| < |z0|) ⊂ G(E), F (z0) = G(ζ0) and

z0F
′(z0) = mζ0G

′(ζ0) for some m ≥ 1.

§3. Main results

Throughout this paper, value of a complex power taken, is the principal one.
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Theorem 3.1. Let α be a complex number and let q be a univalent function such that
zq′(z)

(q(z))α
is starlike in E. If an analytic function p, satisfies the differential subordination

zp′(z)

(p(z))α
≺ zq′(z)

(q(z))α
, p(0) = q(0) = 1, z ∈ E, (3)

then p(z) ≺ q(z) and q(z) is the best dominant.

Proof. Define the function h as follows:

h(z) =
zq′(z)

(q(z))α
, z ∈ E. (4)

For the subordination (3) to be well-defined in E, we, first, prove that h(z) is univalent in E.
Differentiating (4) and simplifying a little, we get

zh′(z)

Q(z)
=

zQ′(z)

Q(z)
,

where Q(z) =
zq′(z)

(q(z))α
. In view of the given conditions, we obtain

ℜ zh′(z)

Q(z)
> 0.

Thus, h(z) is close-to-convex and hence univalent in E. We need to show that p ≺ q. Suppose

to the contrary that p /≺ q in E. Then by Lemma 2.2, there exist points z0 ∈ E and ζ0 ∈ ∂E
such that p(z0) = q(ζ0) and z0p

′(z0) = mζq′(ζ0), m ≥ 1. Then

z0p
′(z0)

(p(z0))α
=

mζ0q
′(ζ0)

(q(ζ0))α
. (5)

Consider a function

L(z, t) = (1 + t)
zq′(z)

(q(z))α
, z ∈ E. (6)

The function L(z, t) is analytic in E for all t ≥ 0 and is continuously differentiable on [0,∞) for

all z ∈ E. Now

a1(t) =

(
∂L(z, t)

∂z

)
(0,t)

= (1 + t)q′(0).

Since q is univalent in E, so q′(0) ̸= 0 and therefore, it follows that a1(t) ̸= 0 and lim
t→∞ |a1(t)| =

∞. A simple calculation yields

z
∂L/∂z

∂L/∂t
= (1 + t)

zQ′(z)

Q(z)
.

Clearly

ℜ z
∂L/∂z

∂L/∂t
> 0,

in view of given conditions. Hence, L(z, t) is a subordination chain. Therefore, L(z, t1) ≺
L(z, t2) for 0 ≤ t1 ≤ t2. From (6), we have L(z, 0) = h(z), thus we deduce that L(ζ0, t) /∈ h(E)
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for |ζ0| = 1 and t ≥ 0. In view of (5) and (6), we can write

z0p
′(z0)

(p(z0))α
= L(ζ0,m− 1) /∈ h(E),

where z0 ∈ E, |ζ0| = 1 and m ≥ 1 which is a contradiction to (3). Hence, p ≺ q. This completes

the proof of the theorem.

On writing p(z) =
zf ′(z)

ϕ(f(z))
in Theorem 3.1, we obtain the best dominant for

zf ′(z)

ϕ(f(z))
.

Theorem 3.2. Let α be a complex number and let q be a univalent function such that
zq′(z)

(q(z))α
is starlike in E. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

(
zf ′(z)

ϕ(f(z))

)1−α(
1 +

zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))

)
≺ zq′(z)

(q(z))α
, z ∈ E,

for some ϕ, analytic in a domain containing f(E), ϕ(0) = 0, ϕ′(0) = 1 and ϕ(w) ̸= 0 for

w ∈ f(E) \ {0}, then zf ′(z)

ϕ(f(z))
≺ q(z) and q(z) is the best dominant.

Taking p(z) =
zf ′(z)

f(z)
in Theorem 3.1, we have the best dominant for

zf ′(z)

f(z)
.

Theorem 3.3. Let α be a complex number and let q be a univalent function such that
zq′(z)

(q(z))α
is starlike in E. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

(
zf ′(z)

f(z)

)1−α(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ zq′(z)

(q(z))α
, z ∈ E,

then
zf ′(z)

f(z)
≺ q(z) and q(z) is the best dominant.

Selecting p(z) = f ′(z) in Theorem 3.1, we obtain the best dominant for f ′(z).

Theorem 3.4. Suppose α is a complex number and q is a univalent function such that
zq′(z)

(q(z))α
is starlike in E. If f ∈ A, f ′(z) ̸= 0, satisfies

zf ′′(z)

(f ′(z))α
≺ zq′(z)

(q(z))α
, z ∈ E,

then f ′(z) ≺ q(z) and q(z) is the best dominant.

§4. Deductions

(i) When dominant is q(z) =
1 + (1− 2β)z

1− z
, 0 ≤ β < 1 :

By selecting the dominant q(z) =
1 + (1− 2β)z

1− z
, 0 ≤ β < 1 in Theorem 3.2, Theorem

3.3 and Theorem 3.4. We see that this dominant satisfies the conditions of above theorems in

following particular cases and consequently, we get the following results for ϕ-like, starlike and

close-to-convex functions. For α = 0 in Theorem 3.2, we obtain:
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Corollary 4.1. Suppose f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

zf ′(z)

ϕ(f(z))

(
1 +

zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))

)
≺ 2(1− β)z

(1− z)2
, z ∈ E,

where ϕ is same as in Theorem 3.2, then

zf ′(z)

ϕ(f(z))
≺ 1 + (1− 2β)z

1− z
, 0 ≤ β < 1.

Take α = 1 in Theorem 3.2, we get:

Corollary 4.2. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))
≺ 2(1− β)z

(1− z)[1 + (1− 2β)z]
, z ∈ E,

where ϕ is same as in Theorem 3.2, then

zf ′(z)

ϕ(f(z))
≺ 1 + (1− 2β)z

1− z
, 0 ≤ β < 1.

Select α = 2 in Theorem 3.2, we derive the following result:

Corollary 4.3. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 + zf ′′(z)
f ′(z) −

z[ϕ(f(z))]′

ϕ(f(z))

zf ′(z)
ϕ(f(z))

≺ 2(1− β)z

[1 + (1− 2β)z]2
, z ∈ E,

where ϕ is same as in Theorem 3.2, then

zf ′(z)

ϕ(f(z))
≺ 1 + (1− 2β)z

1− z
, 0 ≤ β < 1.

Select α = 0 in Theorem 3.3, we obtain:

Corollary 4.4. Let f ∈ A, zf ′(z)

f(z)
̸= 0, satisfy

zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 2(1− β)z

(1− z)2
, z ∈ E,

then
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, i.e., f ∈ S∗(β), 0 ≤ β < 1.

For α = 1 in Theorem 3.3, we get the following result of Billing [1,2]:

Corollary 4.5. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
≺ 2(1− β)z

(1− z)[1 + (1− 2β)z]
, z ∈ E,

then
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, i.e., f ∈ S∗(β), 0 ≤ β < 1.
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Take α = 2 in Theorem 3.3, we get:

Corollary 4.6. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

≺ 1 +
2(1− β)z

[1 + (1− 2β)z]2
, z ∈ E,

then
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, i.e., f ∈ S∗(β), 0 ≤ β < 1.

For α = 0 in Theorem 3.4, we obtain:

Corollary 4.7. Let f ∈ A, f ′(z) ̸= 0, satisfy

zf ′′(z) ≺ 2(1− β)z

(1− z)2
, z ∈ E,

then

f ′(z) ≺ 1 + (1− 2β)z

1− z
, i.e., ℜ f ′(z) > β, 0 ≤ β < 1.

Put α = 1 in Theorem 3.4, we obtain:

Corollary 4.8. If f ∈ A, f ′(z) ̸= 0, satisfies

zf ′′(z)

f ′(z)
≺ 2(1− β)z

(1− z)[1 + (1− 2β)z]
, z ∈ E,

then

f ′(z) ≺ 1 + (1− 2β)z

1− z
, i.e., ℜ f ′(z) > β, 0 ≤ β < 1.

(ii) When dominant is q(z) = 1 + λz, 0 < λ ≤ 1 :

Take the dominant q(z) = 1 + λz, 0 < λ ≤ 1 in Theorem 3.2, Theorem 3.3 and Theorem

3.4. It is easy to check that this dominant satisfies the conditions of above theorems in following

particular cases and consequently, we derive the following results.

Select α = 0 in Theorem 3.2, we get:

Corollary 4.9. Let f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfy

∣∣∣∣ zf ′(z)

ϕ(f(z))

(
1 +

zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))

)∣∣∣∣ < λ, 0 < λ ≤ 1,

where ϕ is same as in Theorem 3.2, then∣∣∣∣ zf ′(z)

ϕ(f(z))
− 1

∣∣∣∣ < λ, z ∈ E.

write α = 1 in Theorem 3.2, we obtain:

Corollary 4.10. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))
≺ λz

1 + λz
, 0 < λ ≤ 1,
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where ϕ is same as in Theorem 3.2, then∣∣∣∣ zf ′(z)

ϕ(f(z))
− 1

∣∣∣∣ < λ, z ∈ E.

Taking α = 2 in Theorem 3.2, we derive the following result:

Corollary 4.11. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 + zf ′′(z)
f ′(z) −

z[ϕ(f(z))]′

ϕ(f(z))

zf ′(z)
ϕ(f(z))

≺ λz

(1 + λz)2
, 0 < λ ≤ 1,

where ϕ is same as in Theorem 3.2,∣∣∣∣ zf ′(z)

ϕ(f(z))
− 1

∣∣∣∣ < λ, z ∈ E.

Select α = 0 in Theorem 3.3, we get:

Corollary 4.12. Let f ∈ A, zf ′(z)

f(z)
̸= 0, satisfy

∣∣∣∣zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < λ, 0 < λ ≤ 1,

then ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < λ, z ∈ E.

Writing α = 1 in Theorem 3.3, we obtain the following result of Billing [1]:

Corollary 4.13. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
≺ λz

1 + λz
, 0 < λ ≤ 1,

then ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < λ, z ∈ E.

Put α = 2 in Theorem 3.3, we have the following result:

Corollary 4.14. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

≺ 1 +
λz

(1 + λz)2
, 0 < λ ≤ 1,

then ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < λ, z ∈ E.

For α = 0 in Theorem 3.4, we obtain:

Corollary 4.15. Let f ∈ A, f ′(z) ̸= 0, satisfy

|zf ′′(z)| < λ, 0 < λ ≤ 1,
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then

|f ′(z)− 1| < λ, z ∈ E.

Take α = 1 in Theorem 3.4, we have the following result:

Corollary 4.16. If f ∈ A, f ′(z) ̸= 0, satisfies

zf ′′(z)

f ′(z)
≺ λz

1 + λz
, 0 < λ ≤ 1,

then

|f ′(z)− 1| < λ, z ∈ E.

(iii) When dominant is q(z) =
γ(1− z)

γ − z
, γ > 1 :

Select the dominant q(z) =
γ(1− z)

γ − z
, γ > 1 in Theorem 3.2, Theorem 3.3 and Theorem

3.4. It is easy to check that this dominant satisfies the conditions of above theorems in following

particular cases and consequently, we obtain the following results.

Write α = 1 in Theorem 3.2, we get:

Corollary 4.17. Suppose f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− z[ϕ(f(z))]′

ϕ(f(z))
≺ (1− γ)z

(1− z)(γ − z)
, γ > 1,

where ϕ is same as in Theorem 3.2, then

zf ′(z)

ϕ(f(z))
≺ γ(1− z)

γ − z
, z ∈ E.

Take α = 2 in Theorem 3.2, we obtain:

Corollary 4.18. If f ∈ A, zf ′(z)

ϕ(f(z))
̸= 0, satisfies

1 + zf ′′(z)
f ′(z) −

z[ϕ(f(z))]′

ϕ(f(z))

zf ′(z)
ϕ(f(z))

≺ (1− γ)z

γ(1− z)2
, γ > 1,

where ϕ is same as in Theorem 3.2, then

zf ′(z)

ϕ(f(z))
≺ γ(1− z)

γ − z
, z ∈ E.

Writing α = 1 in Theorem 3.3, we obtain the following result of Billing [1]:

Corollary 4.19. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
≺ (1− γ)z

(1− z)(γ − z)
, γ > 1,

then
zf ′(z)

f(z)
≺ γ(1− z)

γ − z
, z ∈ E.
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Select α = 2 in Theorem 3.3, we get:

Corollary 4.20. If f ∈ A, zf ′(z)

f(z)
̸= 0, satisfies

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

≺ 1 +
(1− γ)z

γ(1− z)2
, γ > 1,

then
zf ′(z)

f(z)
≺ γ(1− z)

γ − z
, z ∈ E.

For α = 1 in Theorem 3.4, we obtain:

Corollary 4.21. If f ∈ A, f ′(z) ̸= 0, satisfies

zf ′′(z)

f ′(z)
≺ (1− γ)z

(1− z)(γ − z)
, γ > 1,

then

f ′(z) ≺ γ(1− z)

γ − z
, z ∈ E.
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§1. Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by :

AFB


a1, a2, · · · , aA ;

z

b1, b2, · · · , bB ;

 =
∞∑
k=0

(a1)k(a2)k · · · (aA)kzk

(b1)k(b2)k · · · (bB)kk!
(1)

or

AFB


(aA) ;

z

(bB) ;

 ≡ AFB


(aj)

A
j=1 ;

z

(bj)
B
j=1 ;

 =
∞∑
k=0

((aA))kz
k

((bB))kk!
. (2)

where the parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B are

non-negative integers. The series converges for all finite z if A ≤ B, converges for | z |< 1 if

A = B + 1, diverges for all z, z ̸= 0 if A > B + 1.

Contiguous Relation is defined by :

[Abramowitz p.558(15.2.19)]

(a− b) (1− z) 2F1

 a, b ;

c ;
z


= (c− b) 2F1

 a, b− 1 ;

c ;
z

+ (a− c) 2F1

 a− 1, b ;

c ;
z

 . (3)

Recurrence relation is defined by :
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Γ(z + 1) = z Γ(z). (4)

Legendre’s duplication formula is defined by:

√
π Γ(2z) = 2(2z−1) Γ(z) Γ

(
z +

1

2

)
(5)

Γ

(
1

2

)
=
√
π =

2(b−1) Γ( b2 ) Γ(
b+1
2 )

Γ(b)

=
2(a−1) Γ(a2 ) Γ(

a+1
2 )

Γ(a)
. (6)

In the monograph of Prudnikov et al., a summation formula is given in the form [Prudnikov,

491, equation(7.3.7.8)].

2F1

 a, b ;

a+b−1
2 ;

1

2

 =
√
π

[
Γ(a+b+1

2 )

Γ(a+1
2 )Γ( b+1

2 )
+

2 Γ(a+b−1
2 )

Γ(a)Γ(b)

]
. (7)

Now using Legendre’s duplication formula and Recurrence relation for Gamma function,

the above formula can be written in the form

2F1

 a, b ;

a+b−1
2 ;

1

2

 =
2(b−1) Γ(a+b−1

2 )

Γ(b)

[
Γ( b2 )

Γ(a−1
2 )

+
2(a−b+1) Γ(a2 ) Γ(

a+1
2 )

{Γ(a)}2
+

Γ( b+2
2 )

Γ(a+1
2 )

]
. (8)

It is noted that the above formula [Prudnikov, 491, equation(7.3.7.8)], i.e., equation (7) or

(8) is not correct. The correct form of equation (7) or (8) is obtained by [Asish et. al(2008),

p.337(10)]

2F1

 a, b ;

a+b−1
2 ;

1

2

 =
2(b−1) Γ(a+b−1

2 )

Γ(b)

[
Γ( b2 )

Γ(a−1
2 )

{
(b+ a− 1)

(a− 1)

}
+

2 Γ( b+1
2 )

Γ(a2 )

]
. (9)

Involving the formula obtained by [Asish et. al(2008), p.337(10)], the main formula is developed.

§2. Main summation formula

For the main formula a ̸= b,

2F1

 a, b ;

a+b−27
2 ;

1

2


=

2(b−1) Γ(a+b−27
2 )

(a− b)Γ(b)

[
Γ( b2 )

Γ(a−27
2 )

{
(213458046676875a− 491250187505700a2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(435512515705695a3 − 209814739262856a4 + 63324503917311a5 − 12906154537276a6)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(1854829867891a7 − 192666441968a8 + 14632679633a9 − 812840028a10 + 32645613a11)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−922376a12 + 17381a13 − 196a14 + a15 − 213458046676875b+ 703059560256555a2b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−764206606631664a3b+ 424783145160213a4b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−123961558508816a5b+ 28028453942867a6b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−3633191343712a7b+ 425612752519a8b− 27340124448a9b+ 1778577801a10b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−54933424a11b+ 1944943a12b− 22736a13b+ 377a14b+ 491250187505700b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−703059560256555ab2 + 410654159060166a3b2 − 252495431002668a4b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(98834442709527a5b2 − 18037624016160a6b2 + 3187069911108a7b2 − 256860290484a8b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(24819343731a9b2 − 905704800a10b2 + 50019606a11b2 − 665028a12b2 + 20097a13b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−435512515705695b3 + 764206606631664ab3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−410654159060166a2b3 + 75757901167095a4b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−27839681691360a5b3 + 8189570751180a6b3 − 914370528960a7b3 + 130095417375a8b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−5944083600a9b3 + 479849370a10b3 − 7600320a11b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(356265a12b3 + 209814739262856b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−424783145160213ab4 + 252495431002668a2b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(−75757901167095a3b4 + 5499323707710a5b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1198578429720a6b4 + 276636429090a7b4 − 17287439400a8b4 + 2025762375a9b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−40060020a10b4 + 2731365a11b4 − 63324503917311b5 + 123961558508816ab5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−98834442709527a2b5 + 27839681691360a3b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−5499323707710a4b5 + 170755274970a6b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−20378504160a7b5 + 3806472285a8b5 − 101970960a9b5 + 10015005a10b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(12906154537276b6 − 28028453942867ab6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(18037624016160a2b6 − 8189570751180a3b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(1198578429720a4b6 − 170755274970a5b6 + 2219549220a7b6 − 111775860a8b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(17298645a9b6 − 1854829867891b7 + 3633191343712ab7 − 3187069911108a2b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(914370528960a3b7 − 276636429090a4b7 + 20378504160a5b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−2219549220a6b7 + 9694845a8b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(192666441968b8 − 425612752519ab8 + 256860290484a2b8 − 130095417375a3b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(17287439400a4b8 − 3806472285a5b8 + 111775860a6b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−9694845a7b8 − 14632679633b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(27340124448ab9 − 24819343731a2b9 + 5944083600a3b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−2025762375a4b9 + 101970960a5b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−17298645a6b9 + 812840028b10 − 1778577801ab10 + 905704800a2b10 − 479849370a3b10)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(40060020a4b10 − 10015005a5b10 − 32645613b11 + 54933424ab11 − 50019606a2b11)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(7600320a3b11 − 2731365a4b11 + 922376b12 − 1944943ab12 + 665028a2b12 − 356265a3b12)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−17381b13 + 22736ab13 − 20097a2b13 + 196b14 − 377ab14 − b15)

14∏
Λ=1

{
a− (2Λ− 1)

}
}

+
Γ( b+1

2 )

Γ(a−26
2 )

{
(−327685276755900a+ 556774391637180a2 − 352109148087096a3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(150650472413496a4 − 33670631171300a5 + 6664432280548a6 − 695586859408a7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(75024207248a8 − 3912675780a9 + 240770244a10 − 5959096a11 + 201656a12 − 1820a13)

13∏
Ξ=1

{
a− 2Ξ

}
+
(28a14 + 327685276755900b− 468705291631704a2b+ 466260662646672a3b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−172939780772236a4b+ 53680058062448a5b− 7631694182672a6b+ 1191972696736a7b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−78351365148a8b+ 6951650784a9b− 208643864a10b+ 10742992a11b− 116116a12b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(3248a13b− 556774391637180b2 + 468705291631704ab2 − 149918371031784a3b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(100819750068084a4b2 − 22806421978320a5b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(5419326852576a6b2 − 476374180752a7b2)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(60318126252a8b2 − 2265212040a9b2 + 167605152a10b2 − 2198664a11b2 + 95004a12b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(352109148087096b3 − 466260662646672ab3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(149918371031784a2b3 − 16250835339600a4b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(8006146283040a5b3 − 1088289382320a6b3 + 205431554880a7b3 − 10180305000a8b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(1066306800a9b3 − 17417400a10b3 + 1085760a11b3 − 150650472413496b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(172939780772236ab4 − 100819750068084a2b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(16250835339600a3b4 − 692464059000a5b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(263201054760a6b4 − 19769079600a7b4 + 3045922200a8b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−65032500a9b4 + 5722860a10b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(33670631171300b5 − 53680058062448ab5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(22806421978320a2b5 − 8006146283040a3b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(692464059000a4b5 − 11695284720a6b5 + 3556657440a7b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−113456700a8b5 + 14567280a9b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−6664432280548b6 + 7631694182672ab6 − 5419326852576a2b6 + 1088289382320a3b6)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(−263201054760a4b6 + 11695284720a5b6 − 63871920a7b6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(15967980a8b6 + 695586859408b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1191972696736ab7 + 476374180752a2b7 − 205431554880a3b7 + 19769079600a4b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−3556657440a5b7 + 63871920a6b7 − 75024207248b8)

13∏
Ξ=1

{
a− 2Ξ

}
+
(78351365148ab8 − 60318126252a2b8)

13∏
Ξ=1

{
a− 2Ξ

}
+
(10180305000a3b8 − 3045922200a4b8 + 113456700a5b8 − 15967980a6b8 + 3912675780b9)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−6951650784ab9 + 2265212040a2b9 − 1066306800a3b9 + 65032500a4b9 − 14567280a5b9)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−240770244b10 + 208643864ab10 − 167605152a2b10 + 17417400a3b10 − 5722860a4b10)

13∏
Ξ=1

{
a− 2Ξ

}
+
(5959096b11 − 10742992ab11 + 2198664a2b11 − 1085760a3b11 − 201656b12 + 116116ab12)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−95004a2b12 + 1820b13 − 3248ab13 − 28b14)

13∏
Ξ=1

{
a− 2Ξ

}
}]

(10)

§3. Derivation of summation formula

Substituting c = a+b−27
2 and z = 1

2 in equation (3), we get

(a− b) 2F1

 a, b ;

a+b−27
2 ;

1

2


= (a− b− 27) 2F1

 a, b− 1 ;

a+b−27
2 ;

1

2

+ (a− b+ 27) 2F1

 a− 1, b ;

a+b−27
2 ;

1

2

 .
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Now involving (9), we get

L.H.S

=
2(b−1) Γ(a+b−27

2 )

Γ(b)

[
(a− b− 27)(b− 1)

(a− b+ 1)

Γ( b2 )

Γ(a−27
2 )

{
(−213458046676875)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(269886287248200a+ 65733460216605a2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−223263203842224a3 + 138221227795833a4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−45299044646856a5 + 9373582275057a6 − 1314993712032a7 + 129330291519a8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−9029828808a9 + 445756311a10 − 15213744a11 + 341523a12 − 4536a13 + 27a14)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(491250187505700b− 830156182620750ab)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(328340483265960a2b+ 96134123718324a3b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−118937687443812a4b+ 45891929444238a5b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−9895540551120a6b+ 1424016147672a7b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−136339704036a8b+ 9405623214a9b− 427953240a10b+ 13924404a11b− 252252a12b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(2898a13b− 435512515705695b2 + 819657938551680ab2 − 478607127705810a2b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(83560532622240a3b2 + 28156349135595a4b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−16884008933760a5b2 + 4303580247540a6b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−605753547840a7b2 + 61026213735a8b2 − 3711302400a9b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(173929470a10b2 − 4099680a11b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(77805a12b2 + 209814739262856b3 − 415325620994652ab3 + 277758623059272a2b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−80019646553100a3b3 + 6701096653200a4b3 + 2705571036360a5b3 − 860921031600a6b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(149712360840a7b3 − 12822283800a8b3 + 893860500a9b3 − 27232920a10b3 + 807300a11b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−63324503917311b4 + 128105658877704ab4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−91327401815049a2b4 + 30673432773600a3b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−4930737871350a4b4 + 187346078640a5b4 + 100930660110a6b4 − 16610176800a7b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(1997482725a8b4 − 81627000a9b4 + 3798795a10b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(12906154537276b5 − 26573613236450ab5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(19022311763280a2b5 − 6930110869080a3b5 + 1305574560360a4b5 − 120750589260a5b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(1557153360a6b5 + 1483370280a7b5 − 100763460a8b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(8351070a9b5 − 1854829867891b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(3764670584640ab6 − 2815452865260a2b6 + 976958962560a3b6 − 207520925850a4b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(21782295360a5b6 − 1106195580a6b6 + 7020405a8b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(192666441968b7 − 397852161736ab7)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(273134198736a2b7 − 104886323640a3b7 + 18640515600a4b7 − 2434957560a5b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(116731440a6b7 − 2674440a7b7 − 14632679633b8 + 28551488472ab8 − 21460692357a2b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(6458821200a3b8 − 1454821875a4b8 + 110761560a5b8 − 8947575a6b8 + 812840028b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1648153650ab9 + 977450760a2b9 − 377991900a3b9 + 44401500a4b9 − 6216210a5b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−32645613b10 + 57794880ab10 − 42767010a2b10 + 8442720a3b10 − 1924065a4b10)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(922376b11 − 1795612ab11 + 727272a2b11 − 278460a3b11 − 17381b12 + 24024ab12)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−17199a2b12 + 196b13 − 350ab13 − b14)

14∏
Λ=1

{
a− (2Λ− 1)

}
}

+
(a− b− 27)

(a− b+ 1)

Γ( b+1
2 )

Γ(a−26
2 )

{
(−335591130336525 + 190559508787980a+ 177398458571439a2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−218789371836456a3 + 98760262908247a4 − 26171769096172a5 + 4452817513683a6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−531476681648a7 + 43749464681a8 − 2623611276a9 + 106326077a10 − 3062696a11)

13∏
Ξ=1

{
a− 2Ξ

}
+
(51597a12 − 532a13 + a14 + 874463879976480b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−829169202307410ab+ 56391646262544a2b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(215998698359292a3b− 124722423077872a4b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(35004566087330a5b− 6191872009568a6b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(726212553736a7b− 60054910656a8b+ 3394286610a9b)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(−135168176a10b+ 3411772a11b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−53872a12b+ 350a13b− 906448967123661b2 + 1042318056685464ab2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−347811359059998a2b2 − 29649579132744a3b2 + 54918061714089a4b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−18173122364880a5b2 + 3378803927436a6b2 − 398114860752a7b2 + 32182394517a8b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1725764040a9b2 + 63585522a10b2 − 1356264a11b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(17199a12b2 + 511028628050304b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−642114557715732ab3 + 287766279345840a2b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−42785053168500a3b3 − 7242740577600a4b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(4698245189400a5b3 − 934192637280a6b3 + 118103363640a7b3 − 8685144000a8b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(471685500a9b3 − 13075920a10b3 + 278460a11b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−179201798851617b4 + 236171571722196ab4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−117758430558795a2b4 + 27376521006000a3b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1756255126650a4b4 − 452341922760a5b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(157977877050a6b4 − 18003618000a7b4 + 1550083275a8b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−56241900a9b4 + 1924065a10b4)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(42012805846176b5 − 57073865773518ab5 + 29703933609120a2b5 − 7827388198920a3b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(1031971540320a4b5 − 17314303860a5b5 − 9768114720a6b5 + 2099716920a7b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−108501120a8b5 + 6216210a9b5 − 7012849426065b6 + 9352627138512ab6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−5105678113620a2b6 + 1363410120240a3b6 − 209509446510a4b6 + 15463612080a5b6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(211988700a6b6 − 63871920a7b6 + 8947575a8b6 + 819314537472b7 − 1142446945176ab7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(576748533600a2b7 − 168750399240a3b7 + 23969937600a4b7 − 2196973800a5b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(74884320a6b7 + 2674440a7b7 − 74146872231b8 + 92637235188ab8 − 52057083735a2b8)

13∏
Ξ=1

{
a− 2Ξ

}
+
(12232251000a3b8 − 2128762125a4b8 + 133800660a5b8 − 7020405a6b8 + 4487884128b9)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−6317241294ab9 + 2695602000a2b9 − 815642100a3b9 + 77859600a4b9 − 8351070a5b9)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−230219847b10 + 243421464ab10 − 138614190a2b10 + 20918040a3b10 − 3798795a4b10)

13∏
Ξ=1

{
a− 2Ξ

}
+
(6724224b11 − 9532692ab11 + 2611440a2b11 − 807300a3b11 − 190827b12 + 134316ab12)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−77805a2b12 + 2016b13 − 2898ab13 − 27b14)

13∏
Ξ=1

{
a− 2Ξ

}
}]

+
2(b−1) Γ(a+b−27

2 )

Γ(b)

[
(a− b+ 27)

(a− b− 1)

×
Γ( b+1

2 )

Γ(a−26
2 )

{
(335591130336525− 874463879976480a+ 906448967123661a2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−819314537472a7 + 74146872231a8 − 4487884128a9 + 230219847a10 − 6724224a11)

13∏
Ξ=1

{
a− 2Ξ

}
+
(190827a12 − 2016a13 + 27a14 − 190559508787980b+ 829169202307410ab)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(−1042318056685464a2b+ 642114557715732a3b− 236171571722196a4b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(57073865773518a5b− 9352627138512a6b+ 1142446945176a7b− 92637235188a8b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(6317241294a9b− 243421464a10b+ 9532692a11b− 134316a12b+ 2898a13b)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−177398458571439b2 − 56391646262544ab2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(347811359059998a2b2 − 287766279345840a3b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(117758430558795a4b2 − 29703933609120a5b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(5105678113620a6b2 − 576748533600a7b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(52057083735a8b2 − 2695602000a9b2 + 138614190a10b2 − 2611440a11b2 + 77805a12b2)

13∏
Ξ=1

{
a− 2Ξ

}
+
(218789371836456b3 − 215998698359292ab3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(29649579132744a2b3 + 42785053168500a3b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−27376521006000a4b3 + 7827388198920a5b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1363410120240a6b3 + 168750399240a7b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−12232251000a8b3 + 815642100a9b3 − 20918040a10b3)

13∏
Ξ=1

{
a− 2Ξ

}
+
(807300a11b3 − 98760262908247b4)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(124722423077872ab4 − 54918061714089a2b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(7242740577600a3b4 + 1756255126650a4b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1031971540320a5b4 + 209509446510a6b4 − 23969937600a7b4 + 2128762125a8b4)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−77859600a9b4 + 3798795a10b4 + 26171769096172b5 − 35004566087330ab5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(18173122364880a2b5 − 4698245189400a3b5 + 452341922760a4b5 + 17314303860a5b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−15463612080a6b5 + 2196973800a7b5 − 133800660a8b5)

13∏
Ξ=1

{
a− 2Ξ

}
+
(8351070a9b5 − 4452817513683b6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(6191872009568ab6 − 3378803927436a2b6 + 934192637280a3b6 − 157977877050a4b6)

13∏
Ξ=1

{
a− 2Ξ

}
+
(9768114720a5b6 − 211988700a6b6 − 74884320a7b6 + 7020405a8b6 + 531476681648b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−726212553736ab7 + 398114860752a2b7 − 118103363640a3b7 + 18003618000a4b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−2099716920a5b7 + 63871920a6b7 − 2674440a7b7)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−43749464681b8 + 60054910656ab8)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−32182394517a2b8 + 8685144000a3b8 − 1550083275a4b8)

13∏
Ξ=1

{
a− 2Ξ

}
+
(108501120a5b8 − 8947575a6b8)

13∏
Ξ=1

{
a− 2Ξ

}
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+
(2623611276b9 − 3394286610ab9 + 1725764040a2b9 − 471685500a3b9 + 56241900a4b9)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−6216210a5b9 − 106326077b10 + 135168176ab10 − 63585522a2b10 + 13075920a3b10)

13∏
Ξ=1

{
a− 2Ξ

}
+
(−1924065a4b10 + 3062696b11 − 3411772ab11 + 1356264a2b11 − 278460a3b11 − 51597b12)

13∏
Ξ=1

{
a− 2Ξ

}
+
(53872ab12 − 17199a2b12 + 532b13 − 350ab13 − b14)

13∏
Ξ=1

{
a− 2Ξ

}
}
+

(a− b+ 27)

(a− b− 1)

Γ( b2 )

Γ(a−27
2 )

×
{
(213458046676875− 491250187505700a+ 435512515705695a2 − 209814739262856a3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(63324503917311a4 − 12906154537276a5 + 1854829867891a6 − 192666441968a7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(14632679633a8 − 812840028a9 + 32645613a10 − 922376a11 + 17381a12 − 196a13 + a14)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−269886287248200b+ 830156182620750ab)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(819657938551680a2b+ 415325620994652a3b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−128105658877704a4b+ 26573613236450a5b− 3764670584640a6b+ 397852161736a7b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−28551488472a8b+ 1648153650a9b− 57794880a10b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(1795612a11b− 24024a12b+ 350a13b)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−65733460216605b2 − 328340483265960ab2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(478607127705810a2b2 − 277758623059272a3b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(91327401815049a4b2 − 19022311763280a5b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(2815452865260a6b2 − 273134198736a7b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(21460692357a8b2 − 977450760a9b2 + 42767010a10b2 − 727272a11b2 + 17199a12b2)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(223263203842224b3 − 96134123718324ab3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−83560532622240a2b3 + 80019646553100a3b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−30673432773600a4b3 + 6930110869080a5b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−976958962560a6b3 + 104886323640a7b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−6458821200a8b3 + 377991900a9b3 − 8442720a10b3)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(278460a11b3 − 138221227795833b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(118937687443812ab4 − 28156349135595a2b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−6701096653200a3b4 + 4930737871350a4b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1305574560360a5b4 + 207520925850a6b4 − 18640515600a7b4 + 1454821875a8b4)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−44401500a9b4 + 1924065a10b4 + 45299044646856b5 − 45891929444238ab5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(16884008933760a2b5 − 2705571036360a3b5 − 187346078640a4b5 + 120750589260a5b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
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+
(−21782295360a6b5 + 2434957560a7b5 − 110761560a8b5)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(6216210a9b5 − 9373582275057b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(9895540551120ab6 − 4303580247540a2b6 + 860921031600a3b6 − 100930660110a4b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1557153360a5b6 + 1106195580a6b6 − 116731440a7b6)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(8947575a8b6 + 1314993712032b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1424016147672ab7 + 605753547840a2b7 − 149712360840a3b7 + 16610176800a4b7)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−1483370280a5b7 + 2674440a7b7 − 129330291519b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(136339704036ab8 − 61026213735a2b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(12822283800a3b8 − 1997482725a4b8 + 100763460a5b8)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−7020405a6b8 + 9029828808b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−9405623214ab9 + 3711302400a2b9 − 893860500a3b9 + 81627000a4b9 − 8351070a5b9)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−445756311b10 + 427953240ab10 − 173929470a2b10 + 27232920a3b10 − 3798795a4b10)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(15213744b11 − 13924404ab11 + 4099680a2b11 − 807300a3b11 − 341523b12 + 252252ab12)

14∏
Λ=1

{
a− (2Λ− 1)

}
+
(−77805a2b12 + 4536b13 − 2898ab13 − 27b14)

14∏
Λ=1

{
a− (2Λ− 1)

}
}]

.

On simplification, we get the main result.
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§4. Conclusion

In this paper we have created a summation formula with the help of contiguous relation

and hypergeometric function. However, the formula presented herein may be further developed

to extend this result. Thus we can only hope that the development presented in this work will

stimulate further interest and research in this important area of classical special functions. Just

as the mathematical properties of the Gauss hypergeometric function are already of immense

and significant utility in mathematical sciences and numerous other areas of pure and applied

mathematics, the elucidation and discovery of the formula of hypergeometric functions consid-

ered herein should certainly eventually prove useful to further developments in the broad areas

alluded to above.
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Abstract let n > 1 be an integer, gcd(a, b) denote the greatest commom divisor of a and b.

A(n) denotes the arithmetic mean of gcd(1, n), · · · , gcd(n, n). In this paper, we shall establish

a short interval result for the function A(n).

Keywords Gcd-Sum function, short interval, convolution method.

§1. Introduction

The gcd-sum function (pillai’s function) is defined by

P (n) =
n∑

k=1

gcd(k, n), (1)

where gcd(a, b) denotes the greatest commom divisor of a and b. Pillai [2] proved that

P (n) =
∑
d|n

dφ(
n

d
)

and ∑
d|n

P (d) = nd(n) =
∑
d|n

σ(d)φ(
n

d
),

where φ is Euler’s function, d(n) and φ(n) denote the number of divisors of n and the sum of

the divisors of n respectively. This function is multiplicative and P (pa) = (a+1)pa−apa−1 for

every prime power pa(a ≥ 1).

Chidambaraswamy and Sitaramachandrarao [4] showed that, given an arbitrary ϵ > 0,∑
n≤x

P (n) = C1x
2 log x+ C2x

2 +O(x1+θ+ϵ), (2)

where C1, C2 are computable constant and 0 < θ < 1
2 is some exponent contained in∑

n≤x

d(n) = x log x+ (2γ − 1)x+O(xθ+ϵ). (3)

1This work is supported by Natural Science Foundation of China (Grant No:11001154), and Natural Science

Foundation of Shandong Province(Nos:BS2009SF018, ZR2010AQ009).
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The asymptotic formula (3) is the well-known Dirichlet divisor problem. The latest value of θ

is θ = 131
416 proved by Huxley [5].

The arithmetic mean of gcd(1, n), · · · , gcd(n, n) is given by

A(n) =
P (n)

n
=
∑
d|n

φ(d)

d
. (4)

The harmonic mean of gcd(1, n), · · · , gcd(n, n) is

H(n) = n

(
n∑

k=1

1

gcd(k, n)

)−1

= n2

∑
d|n

dφ(d)

−1

. (5)

In this paper, we shall prove the following short interval result.

Theorem 1.1. If x
131
416+ϵ ≤ y ≤ x, then∑

x<n≤x+y

A(n) = C1y log x+ C2y +O(yx− ϵ
2 + x

131
416+

ϵ
2 ), (6)

where C1 = 1
ζ(2) , C2 = 2γ

ζ(2) −
ζ′(2)
ζ2(2) .

Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant.

§2. Proof of the Theorem

Lemma 2.1. Suppose s is a complex number (Rs > 1), then

∞∑
n=1

A(n)

ns
=

ζ2(s)

ζ(s+ 1)
. (7)

Proof. Here A(n) is multiplicative and by Euler product formula we have for σ > 1 that,

∞∑
n=1

A(n)

ns
=
∏
p

(
1 +

A(p)

ps
+

A(p2)

p2s
+

A(p3)

p3s
+

A(p4)

p4s
+ · · ·

)

=
∏
p

(
1 +

2p−1
p

ps
+

3p2−2p
p2

p2s
+

4p3−3p2

p3

p3s
+ · · ·

)
=
∏
p

(
1 +

2

ps
+

3

p2s
+

4

p3s
+ · · · − 1

ps+1
− 2

p2s+1
− 3

p3s+1
− · · ·

)
= ζ2(s)

∏
p

(
1− 1

ps+1

)

=
ζ2(s)

ζ(s+ 1)
.

Lemma 2.2. Let 1 < y ≤ x be real number and

B(x, y; k, ϵ) :=
∑

x < mn ≤ x + y

m > xϵ

1

m
,
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Then we have

B(x, y; k, ϵ)≪ yx−ϵ. (8)

Proof.

B(x, y; k, ϵ) =
∑

xϵ<m≤x+y

1

m

∑
x
m<n≤ x+y

m

1

≪
∑

xϵ<m≤x+y

y

m2

≪ yx−ϵ.

Next we prove our Theorem 1.1. From Lemma 2.1, we get

A(n) =
∑

n=mk

µ(m)

m
d(k).

So we have ∑
x<n≤x+y

A(n) =
∑

x<mk≤x+y

µ(m)

m
d(k)

=
∑
1

+O(
∑
2

), (9)

where ∑
1

=
∑

m≤xε

µ(m)

m

∑
x
m<k≤ x+y

m

d(k),

∑
2

=
∑

x < km ≤ x + y

m > xϵ

∣∣∣∣µ(m)d(k)

m

∣∣∣∣.

In view of ∑
n≤x

d(n) = x log x+ (2γ − 1)x+O
(
x

131
416+

ϵ
2

)
,

then∑
1

=
∑

m≤xϵ

µ(m)

m

(
x+ y

m
log(

x+ y

m
)− x

m
log

x

m
+ (2γ − 1)

y

m
+O

(
(
x

m
)

131
416+

ϵ
2

))
, (10)

Let

x0 =
x

m
, y0 =

y

m
,

then

(x0 + y0) log(x0 + y0)− x0 log x0 = (x0 + y0)

(
log x0 + log(1 +

y0
x0

)

)
− x0 log x0

= (x0 + y0)

(
log x0 +

y0
x0

+O((
y0
x0

)2
)
− x0 log x0

= y0 log x0 + y0 +O

(
y20
x0

)
.
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Then we have∑
1

=
∑

m≤xϵ

µ(m)y log x

m2
−
∑

m≤xϵ

µ(m)y logm

m2
+ 2γ

∑
m≤xϵ

µ(m)

m2
+O(x

131
416+

ϵ
2 + yx− ϵ

2 ), (11)

Now we evaluate
∑

m≤xϵ
µ(m)
m2 ,

∑
m≤xϵ

µ(m) logm
m2 ,

∑
m≤xϵ

µ(m)

m2
=

∞∑
m=1

µ(m)

m2
−
∑

m>xϵ

µ(m)

m2
=

1

ζ(2)
+O(x−ϵ), (12)

∑
m≤xϵ

µ(m) logm

m2
=

∞∑
m=1

µ(m) logm

m2
−
∑
m≥xϵ

µ(m) logm

m2
=

ζ ′(2)

ζ2(2)
+O(x− ϵ

2 ). (13)

Then we obtain ∑
1

=
y log x

ζ(2)
− ζ ′(2)

ζ2(2)
y + 2γ

y

ζ(2)
+O(yx− ϵ

2 + x
131
416+

ϵ
2 ). (14)

In view of Lemma 2.2, ∑
2

≪
∑

xϵ<m≤x+y

1

m

∑
x
m<n≤ x+y

m

d(n)

≪ x
ϵ
2

∑
xϵ<m≤x+y

1

m

∑
x
m<n≤ x+y

m

1

≪ yx− ϵ
2 . (15)

Now our theorem follows from (14) and (15).
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§1. Introduction

It is well known that in Pythagorean school on the basis of proportions the ten Greek

means are defined of which six means are named and four means are unnamed. The definitions

and some distinguished results were discussed in [4]. The six named Greek means studied in

terms of contra harmonic mean and it has some interesting properties and studied by several

researchers. Further, it is generalized, the generalized version is called Lehmer mean. The

power mean is the mean includes arithmetic mean, geometric, harmonic mean and etc. Some

remarkable results on these means were found in [1-3,5].

For a, b > 0, then

C(a, b) =
a2 + b2

a+ b
(1)

Pn(a, b) =


(
an+bn

2

) 1
n , n ̸= 0

√
ab, n = 0

(2)

and

Cn(a, b) =
an + bn

an−1 + bn−1
(3)

are respectively called contra-harmonic mean, power mean and generalized contra-harmonic

mean (or Lehmer mean).

The sequence gn is said to be log convex (See [1, 2]), if

g2n ≤ gn+1cn−1 (4)
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and the sequence gn is said to be log concave, if

g2n ≥ gn+1cn−1. (5)

§2. Results

In this section, the monotonicity and log convexity results for power mean and generalized

contra-harmonic mean were discussed.

Lemma 2.1. For a, b > 0, then the sequence

gn =
∞∑

n=0

(an + bn) (6)

is log convex.

Proof. Let gn = (an + bn), consider

g2n − gn+1gn−1 = (an + bn)2 − (an+1 + bn+1)(an−1 + bn−1)

= an−1bn−1[2ab− a2 − b2]

= −an−1bn−1(a− b)2 ≤ 0.

This proves that g2n ≤ gn+1gn−1.

Lemma 2.2. For a, b > 0, then the generalized contra-harmonic mean

Cn(a, b) =
an + bn

an−1 + bn−1
(7)

is increasing with respect to the parameter n, that is Cn+1(a, b) > Cn(a, b) for all real n.

Proof. The proof is explored in [4].

Theorem 2.1. The generalized contra-harmonic mean is monotonically increasing with

respect to the parameter n if and only if the sequence gn of Lemma 2.1 is log-convex.

Proof. Consider, g2n ≤ gn+1gn−1. Substitute gn = a2 + b2. Then,

an + bn

an−1 + bn−1
≤ an+1 + bn+1

an + bn
.

This implies that,

Cn+1(a, b) > Cn(a, b). (8)

Again consider,

Cn+1(a, b)− Cn(a, b) =
an + bn

an−1 + bn−1
− an+1 + bn+1

an + bn

on simplifying gives,

=
1

(an + bn)(an−1 + bn−1)
[gn+1gn−1 − g2n],

the eqn (8) is holds, if gn+1gn−1 − g2n ≥ 0. This implies that,

g2n ≤ gn+1gn−1. (9)
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The proof is follows from eqs (8) and (9).

Remark 2.1. Theorem 2.3 can also be proved by considering the decreasing sequence

gn =
∑∞

n=0
1

(an+bn) .

Theorem 2.2. For a, b > 0, then the generalized contra-harmonic mean Cn(a, b) is log

convex.

Proof. Consider,

C2
n+1(a, b)− Cn+1(a, b)Cn−1(a, b) =

(
an + bn

an−1 + bn−1

)2

−
(
an+1 + bn+1

an + bn

)(
an−1 + bn−1

an−2 + bn−2

)
on simplifying this,

=
1

(an + bn)(an−1 + bn−1)2(an−2 + bn−2)
[∆],

where

∆ = (an−2 + bn−2)(an + bn)3 − (an+1 + bn+1)(an−1 + bn−1)3

∆ = an−2b3n−3[b3 − a3] + a3n−3bn−2[a3 − b3] + 3[a3n−2bn−1(b− a) + an−1b3n−2(a− b)]

is equivalently,

∆ = (an−2bn−2)(a2n−1 − b2n−1)(a− b)3 > 0.

Theorem 2.3. For a, b > 0, then the power mean Pn(a, b) satisfies the inequality

[Pn
n (a, b)]

2 ≤ Pn+1
n+1 (a, b)P

n−1
n−1 (a, b).

Proof. From the definition of power mean Pn(a, b) =
(
an+bn

2

) 1
n , for n ̸= 0, which is

equivalently written as;

Pn
n (a, b) =

(
an + bn

2

)
,

consider,

[Pn
n (a, b)]

2 − Pn+1
n+1 (a, b)P

n−1
n−1 (a, b) =

(
an + bn

2

)2

−
(
an+1 + bn+1

2

)(
an−1 + bn−1

2

)
=

1

4

[
−(a− b)2an−1bn−1

]
≤ 0.
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§1. Introduction and preliminaries

Let n > 1 be an integer of canonical from n =
∏s

i=1 p
ai
i . The integer d =

∏s
i=1 p

bi
i is called

an exponential divisor of n if bi|ai for every i ∈ {1, 2, · · · , s}, notation: d|en. By convention

1|e1.
The integer n > 1 is called e-squarefree, if all exponents a1, · · · , as are squarefree. The

integer 1 is also considered to be e-squarefree. Consider now the exponential squarefree expo-

nential divisor (e-squarefree e-divisor) of n. Here d =
∏s

i=1 p
bi
i is called an e-squarefree e-divisor

of n =
∏s

i=1 p
ai
i > 1, if b1|a1, · · · , bs|as, b1, · · · , bs are squarefree. Note that the integer 1 is

e-squarefree but is not an e-divisor of n > 1.

Let t(e)(n) denote the number of e-squarefree e-divisor of n. The function t(e)(n) is called

the e-squarefree e-divisor function, which is multiplicative and if n =
∏s

i=1 p
αi
i > 1, then (see

[1])

t(e)(n) = 2ω(α1) · · · 2ω(αs),

where ω(α) = s denotes the number of distinct prime factors of α. The properties of the

function t(e)(n) were investigated by many authors; see example [6]. Let

A(x) :=
∑
n≤x

(t(e)(n))r,

1This work is supported by Natural Science Foundation of China (Grant Nos. 11001154), and Natural Science

Foundation of Shandong Province (Nos. BS2009SF018, ZR2010AQ009).
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Recently László Tóth proved that the estimate

∑
n≤x

t(e)(n) = c1x+ c2x
1
2 +O(x

1
4+ϵ)

holds for every ε > 0, where

c1 :=
∏
p

(
1 +

∞∑
α=6

2ω(α) − 2ω(α−1)

pα

)
, (∗)

c2 := ζ(
1

2
)
∏
p

(
1 +

∞∑
α=4

2ω(α) − 2ω(α−1) − 2ω(α−2) + 2ω(α−4)

p
α
2

)
.

The aim of this paper is to study the short interval case of (t(e)(n))r and prove the following

Theorem 1.1. If x
1
5+2ε < y ≤ x, then

∑
x<n≤x+y

(t(e)(n))r = c1y +O(yx− ϵ
2 + x

1
5+

3
2 ϵ),

where c1 is given by (∗).

Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant. We assume that 1 ≤ a ≤ b are fixed integers, and we denote by d(a, b; k) the

number of representations of k as k = na
1n

b
2, where n1, n2 are natural numbers, that is,

d(a, b; k) =
∑

k=na
1n

b
2

1,

and d(a, b; k)≪ nϵ2 will be used freely.

§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas.

Lemma 2.1. Suppose s is a complex number (ℜs > 1), then

F (s) :=
∞∑

n=1

(te(n))r

ns
=

ζ(s)ζ2
r−1(2s)

ζCr (4s)
G(s),

where the Dirichlet series G(s) :=
∑∞

n=1
g(n)
ns is absolutely convergent for ℜs > 1

6 , and

Cr = 22r−1 − 2r−1.
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Proof. Here (t(e)(n))r is multiplicative and by Euler product formula we have for σ > 1

that,

∞∑
n=1

(t(e)(n))r

ns
=

∏
p

(
1 +

(t(e)(p))r

ps
+

(t(e)(p2))r

p2s
+

(t(e)(p3))r

p3s
+ · · ·

)
=

∏
p

(
1 +

1

ps
+

2r

p2s
+

2r

p3s
+

2r

p4s
+

2r

p5s
+

4r

p6s
+ · · ·

)
=

∏
p

(
1− 1

ps
)−1∏

p

(
1− 1

ps
)(

1 +
1

ps
+

2r

p2s
+

2r

p3s
+ · · ·

)
= ζ(s)ζ2

r−1(2s)
∏
p

(
1− 1

p2s
)2r−1

(
1 +

2r − 1

p2s
+

4r − 2r

p6s
+ · · ·

)

=
ζ(s)ζ2

r−1(2s)

ζCr (4s)
G(s). (1)

Now we write Cr = 22r−1 − 2r−1 and G(s) :=
∑∞

n=1
g(n)
ns . It is easily seen the Dirichlet

series is absolutely convergent for ℜs > 1
6 .

Lemma 2.2. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers and

B(x, y; k, ϵ) :=
∑

x < nmk ≤ x + y

m > xϵ

1.

Then we have

B(x, y; k, ϵ)≪ yx−ϵ + x
1

2k+1 log x. (2)

Proof. This lemma is very important when studying the short interval distribution of

1-free number; see for example, [4].

Let a(n)，b(n) and c(n) be arithmetic functions defined by the following Dirichlet series

(for ℜs > 1):

∞∑
n=1

a(n)

ns
= ζ(s)G(s). (3)

∞∑
n=1

b(n)

ns
= ζ2

r−1(2s). (4)

∞∑
n=1

c(n)

ns
= ζ−Cr (4s). (5)

Lemma 2.3. Let a(n) be an arithmetic function defined by (3), then we have∑
n≤x

a(n) = Cx+O(x
1
6+ϵ), (6)

where C = Ress=1ζ(s)G(s).

Proof. Using Lemma 2.1, it is easy to see that∑
n≤x

|g(n)| ≪ x
1
6+ϵ.
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Therefore from the definition of g(n) and (3), it follows that∑
n≤x

a(n) =
∑

mn≤x

g(n)

=
∑
n≤x

g(n)
∑
m≤ x

n

1

=
∑
n≤x

g(n)(
x

n
+O(1))

= Cx+O(x
1
6+ϵ),

and C = Ress=1ζ(s)G(s).

Next we prove our Theorem 1.1. From Lemma 2.3 and the definition of a(n), b(n)and c(n),

we get

(t(e)(n))r =
∑

n=n1n2
2n

4
3

a(n1)b(n2)c(n3),

and

a(n)≪ nϵ2 , b(n)≪ nϵ2 , c(n)≪ nϵ2 . (7)

So we have

A(x+ y)−A(x) =
∑

x<n1n2
2n

4
3≤x+y

a(n1)b(n2)c(n3)

=
∑
1

+O(
∑
2

+
∑
3

), (8)

where ∑
1

=
∑

n2 ≤ xϵ

n3 ≤ xϵ

b(n2)c(n3)
∑

x

n2
2n4

3
<n1≤ x+y

n2
2n4

3

a(n1),

∑
2

=
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xϵ

|a(n1)b(n2)c(n3)|,

∑
3

=
∑

x < n1n2
2n4

3 ≤ x + y

n3 > xϵ

|a(n1)b(n2)c(n3)|. (9)

In view of Lemma 2.3,

∑
1

=
∑

n2 ≤ xϵ

n3 ≤ xϵ

b(n2)c(n3)

(
Cy

n2
2n

4
3

+O
(
(

x

n2
2n

4
3

)
1
6+ϵ
))

= c1y +O(yx− ϵ
2 + x

1
6+

3
2 ϵ), (10)

where c1 = Ress=1F (s).
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∑
2

≪
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xϵ

(n1)
ϵ2

≪ xϵ2
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xϵ

1

≪ x2ϵ2(yx−ϵ + x
1
5+ϵ)

≪ yx2ϵ2−ϵ + x
1
5+

3
2 ϵ log x

≪ yx− ϵ
2 + x

1
5+

3
2 ϵ. (11)

Similarly we have ∑
3

≪ yx− ϵ
2 + x

1
5+

3
2 ϵ. (12)

Now our theorem follows from (8)-(12).
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[2] László Tóth, On certain arithmetic function involving exponential divisors, II. Annales

Univ. Sci. Budapest. Sect. Comp., 27(2007), 155-156.

[3] M. Berkani, On a class of quasiFredholm operators, Integral Equations Operator Theory,

34(1999), 244-249.

[4] W. G. Zhai, Square-free numbers as sums of two squares, Number Theory: Tradition

and modernization, Spring, NewYork, 2006, 219-227.

[5] M. Filaseta, O. Trifonov, The distribution of square full numbers in short intervals,

Acta Arith., 67(1994), No.4, 323-333.

[6] Heng Liu and Yanru Dong, On the mean value of the e-squarefree e-divisor function,

Scientia Magna, 5(2009), No. 4, 46-50.



Scientia Magna

Vol. 8 (2012), No. 3, 68-70

On the modifications of the
Pell-Jacobsthal numbers

Yilun Shang

Institute for Cyber Security University of Texas at San Antonio

San Antonio, Texas 78249, USA

E-mail: shylmath@hotmail.com

Abstract In this brief note, we formulate some modifications of the Pell-Jacobsthal numbers,

which belong to a more general class, the Lucas sequences.

Keywords integer sequence, Lucas number, Pell-Jacobsthal number.

2000 AMS Subject Classification: 11B39, 97F60.

§1. Introduction

Pell-Jacobsthal sequences have been used extensively in the field of enumerative combina-

torics and cryptography. For n ∈ N, the nth Pell-Jacobsthal number (see e.g.[1,2,3,4]) is defined

by

jn = 2n + (−1)n.

The first ten members of the sequence {jn} are given in Tab. 1.

j0 j1 j2 j3 j4 j5 j6 j7 j8 j9

2 1 5 7 17 31 65 127 257 511

Table 1: The first ten members of {jn}.

We first consider the following modification of jn:

jsn = sn + (−1)n,

where n ∈ N and s ≥ 0 is a real number. When s = 2 we recover the standard Pell-Jacobsthal

numbers.

The first five members of the sequence {jsn} with respect to n are given in Tab. 2.

js0 js1 js2 js3 js4

2 s− 1 s2 + 1 s3 − 1 s4 + 1

Table 2: The first five members of {jsn} for s ≥ 0.
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In the case s = 0 we have

j0n = (−1)n.

In the case s = 1 we have

j1n = 1 + (−1)n.

In the case s = 2 we have

j2n = 2n + (−1)n.

In Tab. 3 we show the first fifty members of {jsn} with respect to n and s.

jsn n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

s = 0 1 −1 1 −1 1 −1 1 −1 1 −1

s = 1 2 0 2 0 2 0 2 0 2 0

s = 2 2 1 5 7 17 31 65 127 257 511

s = 3 2 2 10 26 82 242 730 2186 6562 19682

s = 4 2 3 17 63 257 1023 4097 16383 65537 262143

Table 3: The first fifty members of sequence {jsn}.

§2. Theorems

Theorem 2.1. For every n ∈ N and s ≥ 0,

jsn+1 = sjsn − (s+ 1)(−1)n.

Proof. The justification is straightforward. We have

jsn+1 = sn+1 + (−1)n+1

= ssn − (−1)n

= s(sn + (−1)n)− s(−1)n − (−1)n

= sjsn − (s+ 1)(−1)n.

Next, we further extend the Pell-Jacobsthal numbers to the following form

js,tn = sn + (−t)n,

where n ∈ N, s and t are arbitrary real numbers. When s = 2 and t = 1 we recover the original

Pell-Jacobsthal numbers.

Likewise, we have the following recursive equation.

Theorem 2.2. For every n ∈ N and real numbers s, t,

js,tn+1 = sjs,tn − (s+ t)(−t)n.
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Proof. For every n ≥ 0, we have

js,tn+1 = sn+1 + (−t)n+1

= ssn − t(−t)n

= s(sn + (−t)n)− s(−t)n − t(−t)n

= sjs,tn − (s+ t)(−t)n.

Finally, we mention the following equations regarding js,tn :

• j0,0n = 0,

• js,0n = sn,

• j0,tn = (−t)n,

• j−t,t
n = 2(−t)n,

• js,sn = sn(1 + (−1)n).
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§1. Introduction

A complex sequence, whose kth term is xk, is denoted by {xk} or simply x. Let φ be the

set of all finite sequences. A sequence x = {xk} is said to be analytic rate if supk

∣∣∣xk

πk

∣∣∣ 1k < ∞.

The vector space of all analytic sequences will be denoted by Λπ. A sequence x is called

entire rate sequence if lim
k→∞

∣∣∣xk

πk

∣∣∣ 1k = 0. The vector space of all entire rate sequences will be

denoted by Γπ. Let σ be a one-one mapping of the set of positive integers into itself such that

σm(n) = σ(σm−1(n)), m = 1, 2, 3, · · · .
A continuous linear functional φ on Λπ is said to be an invariant mean or a σ-mean if and

only if

(1) φ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n.

(2) φ(e) = 1 where e = (1, 1, 1, · · · ) and
(3) φ({xσ(n)}) = φ({xn}) for all x ∈ Λπ.

For certain kinds of mappings σ, every invariant mean φ extends the limit functional on the

space C of all real convergent sequences in the sense that φ(x) = limx for all x ∈ C. Conse-

quently C ⊂ Vσ, where Vσ is the set of analytic sequences all of those σ-means are equal.

If x = (xn), set Tx = (Tx)1/n = (xσ(n)). It can be shown that

Vσ = {x = (xn) : lim
m→∞

tmn(xn)
1/n = L uniformly in n, L = σ − lim

n→∞
(xn)

1/n},
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where

tmn(x) =
(xn + Txn + · · ·+ Tmxn)

1/n

m+ 1
. (1)

Given a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, · · · , xn, 0, 0, · · · },
δ(n) = (0, 0, · · · , 1, 0, 0, · · · ), 1 in the nth place and zeros elsewhere. An FK-space (Frechet

coordinate space) is a Frechet space which is made up of numerical sequences and has the

property that the coordinate functionals pk(x) = xk (k = 1, 2, · · · ) are continuous.

§2. Definitions and preliminaries

Definition 2.1. The space consisting of all those sequences x in w such that

(∣∣∣xk

πk

∣∣∣1/k)→
0 as k → ∞ is denoted by Γπ. In other words

(∣∣∣xk

πk

∣∣∣1/k) is a null sequence. Γπ is called the

space of entire rate sequences. The space Γπ is a metric space with the metric

d(x, y) =

{
sup
k

(∣∣∣∣xk − yk
πk

∣∣∣∣1/k
)

: k = 1, 2, 3, · · ·

}

for all x = {xk} and y = {yk} in Γπ.

Definition 2.2. The space consisting of all those sequences x in w such that{
sup
k

(∣∣∣∣xk

πk

∣∣∣∣1/k
)}

<∞

is denoted by Λπ. In other words

{
sup
k

(∣∣∣xk

πk

∣∣∣1/k)} is a bounded sequence.

Definition 2.3. Let p, q be semi norms on a vector space X. Then p is said to be stronger

than q if whenever (xn) is a sequence such that p(xn) → 0, then also q(xn) → 0. If each is

stronger than the other, then p and q are said to be equivalent.

Lemma 2.1. Let p and q be semi norms on a linear space X. Then p is stronger than q

if and only if there exists a constant M such that q(x) ≤Mp(x) for all x ∈ X.

Definition 2.4. A sequence space E is said to be solid or normal if (αkxk) ∈ E whenever

(xk) ∈ E and for all sequences of scalars (αk) with |αk| ≤ 1, for all k ∈ N .

Definition 2.5. A sequence space E is said to be monotone if it contains the canonical

pre-images of all its step spaces.

Remark 2.1. From the above two definitions, it is clear that a sequence space E is solid

implies that E is monotone.

Definition 2.6. A sequence E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E

and xk = 0 implies that yk = 0.

Let p = (pk) be a sequence of positive real numbers with 0 < pk < sup
k

pk = G. Let

D = max(1, 2G−1). Then for ak, bk ∈ C, the set of complex numbers for all k ∈ N we have

|ak + bk|1/k ≤ D{|ak|1/k + |bk|1/k}. (2)
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Let (X, q) be a semi normed space over the field C of complex numbers with the semi norm q.

The symbol Λ(X) denotes the space of all analytic sequences defined over X. We define the

following sequence spaces:

Λπ(p, σ, q, s) =
{
x ∈ Λ(X) : sup

n,k
k−s

(
q

∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
)pk

<∞

uniformly in n ≥ 0, s ≥ 0
}
,

Γπ(p, σ, q, s) =
{
x ∈ Γπ(X) : k−s

(
q

∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
)pk

→ 0, as k →∞

uniformly in n ≥ 0, s ≥ 0
}
.

§3. Main results

Theorem 3.1. Γπ(p, σ, q, s) is a linear space over the set of complex numbers.

Proof. The proof is easy, so omitted.

Theorem 3.2. Γπ(p, σ, q, s) is a paranormed space with

g(x) =

{
sup
k≥1

k−s

(
q

∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
)
, uniformly in n > 0

}
,

where H = max

(
1, sup

k
pk

)
.

Proof. Clearly g(x) = g(−x) and g(θ) = 0, where θ is the zero sequence. It can be easily

verified that g(x+ y) ≤ g(x) + g(y). Next x→ θ, λ fixed implies g(λx)→ 0. Also x→ θ and

λ→ 0 implies g(λx)→ 0. The case λ→ 0 and x fixed implies that g(λx)→ 0 follows from the

following expressions.

g(λx) =

{
sup
k≥1

k−sq

(∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
)
, uniformly in n, m ∈ N

}
,

g(λx) =

{
(|λ| r)pm/H : sup

k≥1
k−sq

(∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
)
r > 0, uniformly in n, m ∈ N

}
,

where r = 1/|λ|. Hence Γπ(p, σ, q, s) is a paranormed space. This completes the proof.

Theorem 3.3. Γπ(p, σ, q, s) ∩ Λπ(p, σ, q, s) ⊆ Γπ(p, σ, q, s).

Proof. The proof is easy, so omitted.

Theorem 3.4. Γπ(p, σ, q, s) ⊂ Λπ(p, σ, q, s).

Proof. The proof is easy, so omitted.

Remark 3.1. Let q1 and q2 be two semi norms on X, we have

(i) Γπ(p, σ, q1, s) ∩ Γπ(p, σ, q2, s) ⊆ Γπ(p, σ, q1 + q2, s).

(ii) If q1 is stronger than q2, then Γπ(p, σ, q1, s) ⊆ Γπ(p, σ, q2, s).

(iii) If q1 is equivalent to q2, then Γπ(p, σ, q1, s) = Γπ(p, σ, q2, s).

Theorem 3.5. (i) Let 0 ≤ pk ≤ rk and
{

rk
pk

}
be bounded. Then Γπ(r, σ, q, s) ⊂

Γπ(p, σ, q, s).
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(ii) s1 ≤ s2 implies Γπ(p, σ, q, s1) ⊂ Γπ(p, σ, q, s2).

Proof. (i)

Let x ∈ Γπ(r, σ, q, s), (3)

k−s

{
q

∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
}rk

→ 0 as k →∞. (4)

Let tk = k−s

{
q
∣∣∣xσk(n)

π
σk(n)

∣∣∣1/k}rk

and λk = pk

rk
. Since pk ≤ rk, we have 0 ≤ λk ≤ 1. Take

0 < λ > λk. Define uk = tk (tk ≥ 1); uk = 0 (tk < 1) and vk = 0 (tk ≥ 1); vk = tk (tk < 1);

tk = uk + vk, t
λk

k = uλk

k + vλk

k . Now it follows that

uλk

k ≤ tk and vλk

k ≤ vλk . (5)

(i.e.) tλk

k ≤ tk + vλk by (5),

k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
}rk)λk

≤ k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})rk

k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
}rk)pk/rk

≤ k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})rk

k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})pk

≤ k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})rk

.

But k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})rk

→ 0 as k →∞ by (4)

k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})pk

→ 0 as k →∞.

Hence x ∈ Γπ(p, σ, q, s) (6)

From (3) and (6) we get Γπ(r, σ, q, s) ⊂ Γπ(p, σ, q, s). This completes the proof.

(ii) The proof is easy, so omitted.

Theorem 3.6. The space Γπ(p, σ, q, s) is solid and as such is monotone.

Proof. Let
(

xk

πk

)
∈ Γπ(p, σ, q, s) and (αk) be a sequence of scalars such that |αk| ≤ 1 for

all k ∈ N . Then

k−s

(
q

{∣∣∣∣αkxσk(n)

πσk(n)

∣∣∣∣1/k
})pk

≤ k−s

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})pk

for all k ∈ N.(
q

{∣∣∣∣αkxσk(n)

πσk(n)

∣∣∣∣1/k
})pk

≤

(
q

{∣∣∣∣xσk(n)

πσk(n)

∣∣∣∣1/k
})pk

for all k ∈ N.

This completes the proof.

Theorem 3.7. The space Γπ(p, σ, q, s) are not convergence free in general.

Proof. The proof follows from the following example.
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Example 3.1. Let s = 0; pk = 1 for k even and pk = 2 for k odd. Let X = C, q(x) = |x|
and σ(n) = n+1 for all n ∈ N . Then we have σ2(n) = σ(σ(n)) = σ(n+1) = (n+1)+1 = n+2

and σ3(n) = σ(σ2(n)) = σ(n + 2) = (n + 2) + 1 = n + 3. Therefore, σk(n) = (n + k) for all

n, k ∈ N . Consider the sequences (xk) and (yk) defined as xk = (1/k)kπk and yk = kkπk for

all k ∈ N . (i.e.)
∣∣∣xk

πk

∣∣∣1/k = 1/k and
∣∣∣ yk

πk

∣∣∣1/k = k, for all k ∈ N .

Hence,

∣∣∣∣( 1
n+k

)n+k
∣∣∣∣pk

→ 0 as k →∞. Therefore
(

xk

πk

)
∈ Γπ(p, σ). But

∣∣∣∣( 1
n+k

)n+k
∣∣∣∣pk

r ̸→

0 as k →∞. Hence
(

yk

πk

)
/∈ Γπ(p, σ). Hence the space Γπ(p, σ, q, s) are not convergence free in

general. This completes the proof.
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Abstract In this paper, we shall study the mean value of |µ(e)(n)| by the convolution method,

where n is square-full number.

Keywords Square-full number, mean value, convolution method.

§1. Introduction

Let n > 1 be an integer of canonical form n = pa1
1 pa2

2 · · · par
r . The integer n is called a

square-full number if n = pa1
1 pa2

2 · · · par
r , where a1 ≥ 2, a2 ≥ 2, · · · , ar ≥ 2. Let f2(n) is the

characteristic function of square-full integers.

The integer d is called an exponential divisor (e-divisor) of n if d = pb11 pb22 · · · pbrr , where

b1|a1, b2|a2, · · · , br|ar, notion: d|en. By convention 1|e1. The integer n > 1 is called exponen-

tially square-full (e-square-full) if all the exponents a1, a2, · · · , ar are square-full.

The exponential convolution (e-convolution) of arithmetic functions is defined by

(f
⊙

g)(n) =
∑

b1c1=a1

∑
b2c2=a2

· · ·
∑

brcr=ar

f(pb11 pb22 · · · pbrr )g(pc11 pc22 · · · pcrr ),

where n = pa1
1 pa2

2 · · · par
r .

These notions were introduced by M. V. Subbarao [1]. The e-convolution
⊙

is commuta-

tive, associative and has the identity element µ2, where µ is the Möbius function.

The inverse with respect to
⊙

of the constant 1 function is called the exponential analogue

of the Möbius function and it is denoted by µ(e). Hence for every n > 1,∑
d|en

µ(e)(d) = µ2(n).

1This work is supported by Natural Science Foundation of China (Grant Nos. 11001154), and Natural Science

Foundation of Shandong Province (Nos. BS2009SF018, ZR2010AQ009).
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Here µ(e)(1) = 1 and for n = pa1
1 pa2

2 · · · par
r > 1,

µ(e)(n) = µ(a1)µ(a2) · · ·µ(ar).

The function µ(e) is multiplicative and µ(e)(pa) = µ(a) for every prime power pa. Hence

µ(e)(n) ∈ {−1, 0, 1} for every n > 1 and for every prime p, µ(e)(p) = 1, µ(e)(p2) = −1,
µ(e)(p3) = −1, µ(e)(p4) = 0, . . .

Let

S(x) :=
∑
n≤x

n is square-full

|µ(e)(n)| =
∑
n≤x

|µ(e)(n)|f2(n),

where f2(n) =

 1, n is square-full;

0, otherwise.

In this paper, we shall prove a result about the mean value of |µ(e)(n)| over square-full

integers. Our main result is the following:

Theorem 1.1. For some D > 0,∑
n≤x

n is square-full

|µ(e)(n)| =
ζ( 32 )G( 12 )

ζ(2)
x1/2+

ζ( 23 )G( 13 )

ζ( 43 )
x1/3+O(x1/4 exp(−D(log x)3/5(log log x)−1/5)).

§2. Proof of the theorem

In order to prove our theorem, we need the following two lemmas.

Lemma 2.1. For 1 ≤ a < b, then

△(a, b;x)≪


x

2
3a+3b , if b < 2a;

x
2
9a log x, if b = 2a;

x
2

5a+2b , if b > 2a.

Proof. For the proof of Lemma 2.1, see the Theorem 14.4 of Ivić [2].

Lemma 2.2. Let f(n) be an arithmetical function for which

∑
n≤x

f(n) =

l∑
j=1

xajPj(log x) +O(xa),
∑
n≤x

|f(n)| = O(xa1 logr x),

where a1 ≥ a2 ≥ · · · ≥ al > 1/c > a ≥ 0, r ≥ 0, P1(t), · · · , Pl(t) are polynomials in t of degrees

not exceeding r, and c ≥ 1 and b ≥ 1 are fixed integers. Suppose for ℜs > 1 that

∞∑
n=1

µb(n)

ns
=

1

ζb(s)
.

If h(n) =
∑
dc|n

µb(d)f(n/d
c), then

∑
n≤x

h(n) =
l∑

j=1

xajRj(log x) + Ec(x),
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where R1(t), · · · , Rl(t) are polynomials in t of degrees not exceeding r, and for some D > 0

Ec(x)≪ x1/c exp(−D(log x)3/5(log log x)−1/5)).

Proof. If b = 1, Lemma 2.2 is Theorem 14.2 of Ivić [2]. When b ≥ 2, Lemma 2.2 can be

proved by the same approach.

Next we prove our Theorem. Let

F (s) :=
∞∑

n=1
n is square-full

|µ(e)(n)|
ns

=
∞∑

n=1

|µ(e)(n)|f2(n)
ns

, (ℜs > 1)

where f2(n) =

 1, n is square-full;

0, otherwise.

By the Euler product formula and µ(e)(pa1
1 pa2

2 · · · par
r ) = µ(a1)µ(a2) · · ·µ(ar), we get for

ℜs > 1 that

F (s) =
ζ(2s)ζ(3s)

ζ(4s)
G(s),

It is easy to prove that the Dirichlet series G(s) :=
∞∑

n=1

g(n)
ns is absolutely convergent for ℜs > 1

7 .

Let

ζ(2s)ζ(3s)G(s) =
∞∑

n=1

∑
n=ml

d(2, 3;m)g(l)

ns
:=

∞∑
n=1

h(n)

ns
, (ℜs > 1)

where h(n) =
∑

n=ml

d(2, 3;m)g(l).

By the Residue theorem and Lemma 2.1 we can get∑
n≤x

d(2, 3;n) = ζ(
3

2
)x1/2 + ζ(

2

3
)x1/3 +∆(2, 3;x)

= ζ(
3

2
)x1/2 + ζ(

2

3
)x1/3 +O(x2/15), (1)

Then from (1) and Abel integration formula we have the relation∑
n≤x

h(n) =
∑
ml≤x

d(2, 3;m)g(l)

=
∑
l≤x

g(l)
∑

m≤x/l

d(2, 3;m)

=
∑
l≤x

g(l)
[
ζ(

3

2
)(
x

l
)1/2 + ζ(

2

3
)(
x

l
)1/3 +O((

x

l
)2/15)

]
= ζ(

3

2
)x1/2

∑
l≤x

g(l)

l1/2
+ ζ(

2

3
)x1/3

∑
l≤x

g(l)

l1/3
+O(x2/15

∑
l≤x

|g(l)|
l2/15

)

= ζ(
3

2
)x1/2

∞∑
n=1

g(l)

l1/2
+ ζ(

2

3
)x1/3

∞∑
n=1

g(l)

l1/3
+O(x1/2

∑
l>x

|g(l)|
l1/2

)

+O(x1/3
∑
l>x

|g(l)|
l1/3

) +O(x2/15
∑
l≤x

|g(l)|
l2/15

)

= ζ(
3

2
)G(

1

2
)x1/2 + ζ(

2

3
)G(

1

3
)x1/3 +O(x1/7).
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By Lemma 2.2 and Perron’s formula we can get

∑
n≤x

n is square-full

|µ(e)(n)| =
ζ( 32 )G( 12 )

ζ(2)
x1/2+

ζ( 23 )G( 13 )

ζ( 43 )
x1/3+O(x1/4 exp(−D(log x)3/5(log log x)−1/5)),

where D > 0.

This completes the proof of Theorem 1.1.
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§1. Introduction

Let n > 1 be an integer of canonical form n =
∏r

i=1 p
ai
i . The integer d is called an

exponential divisor of n if d =
∏r

i=1 p
ci
i , where ci|ai for every 1 ≤ i ≤ r, notation: d|en. By

convention 1e1. This notion was introduced by M. V. Subbarao [2]. Note that 1 is not an

exponential divisor of n > 1, the smallest exponential divisor of n > 1 is its squarefree kernel

κ(n) =
∏r

i=1 pi.

Let τ (e)(n) =
∑

d|en 1 and σ(e)(n) =
∑

d|en d denote the number and the sum of exponential

divisors of n, respectively. The integer n =
∏r

i=1 p
ai
i is called exponentially squarefree if all

the exponents ai (1 ≤ i ≤ r) are squarefree. Let q(e) denote the characterietic function of

exponentially squarefree integers. Properties of these functions were investigated by several

authors.

Two integers n, m > 1 have common exponential divisors if they have the same prime

factors and in this case, i.e., for n =
∏r

i=1 p
ai
i , m =

∏r
i=1 p

bi
i , ai, bi ≥ 1(1 ≤ i ≤ r), the greatest

common exponential divisor of n and m is

(n,m)e :=
∏r

i=1 p
(ai,bi)
i ,

here (1, 1)e = 1 by convention and (1,m)e does not exist for m > 1.

The integers n, m > 1 are called exponentially coprime, if they have the same prime factors

and (ai, bi) = 1 for every 1 ≤ i ≤ r, with the notation of above. In this case (n,m)e = κ(n) =

κ(m). 1 and 1 are considered to be exponentially coprime. 1 and m > 1 are not exponentially

coprime.

For n =
∏r

i=1 p
ai
i , ai ≥ 1 (1 ≤ i ≤ r), denote by ϕ(e)(n) the number of integers

∏r
i=1 p

ci
i

such that 1 ≤ ci ≤ ai and (ci, ai) = 1 for 1 ≤ i ≤ r, and let ϕ(e)(1) = 1. Thus ϕ(e)(n) counts

the number of divisors d of n such that d and n are exponentially coprime .

1This work is supported by Natural Science Foundation of China (Grant Nos.11001154), and Natural Science

Foundation of Shandong Province(Nos.BS2009SF018, ZR2010AQ009).
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It is immediately , that ϕ(e) is a prime independent multiplicative function and for n > 1,

ϕ(e)(n) =
∏r

i=1 ϕ(ai),

where ϕ is the Euler-function.

László Tóth [1] proved the following result:∑
n≤x

ϕe(n) = C1x+ C2x
1
3 +O(x

1
5+ϵ)

for every ϵ > 0, where C1, C2 are constants given by

C1 =
∏
p

(1 +

∞∑
a=3

ϕ(a)− ϕ(a− 1)

pa
),

C2 = ζ(
1

3
)
∏
p

(1 +

∞∑
a=5

ϕ(a)− ϕ(a− 1)− ϕ(a− 3)− ϕ(a− 4)

p
a
3

),

In this paper, we shall prove the following short interval result.

Theorem 1.1. If n > 1 be an integer,∑
x<n≤x+y

ϕ(e)(n) = Cy +O(yx
−ϵ
3 + x2ϵ+ 1

7 ), (1)

where C = G(1)ζ(3)ζ2(5) is a constant.

Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant.

We assume that 1 ≤ a ≤ b are fixed integers, and we denote by d(a, b; k) the number of

representations of k as k = na
1n

b
2, where n1, n2 are natural numbers, that is,

d(a, b; k) =
∑

k=na
1n

b
2

1,

and d(a, b; k)≪ nϵ2 will be used freely.

§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas.

Lemma 2.1. The Dirichlet series of ϕ(e)(n) is absolutely convergent for ℜs > 1 ,

∞∑
n=1

ϕ(e)(n)

ns
= ζ(s)ζ(3s)ζ2(5s)G(s), (2)

where the Dirichlet series

G(s) =
∞∑

n=1

g(n)

ns

is absolutely convergent for ℜs > 1
7 .
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Proof. Here ϕ(e)(n) is multiplicative and by Euler product formula we have for ℜs > 1

that,

∞∑
n=1

ϕ(e)(n)

ns
=
∏
p

(1 +
ϕ(e)(p)

ps
+

ϕ(e)(p2)

p2s
+ . . .+

ϕ(e)(pm)

pms
+ . . .)

=
∏
p

(1 +
1

ps
+

φ(2)

p2s
+

φ(3)

p3s
+ . . .+

φ(m)

pms
+ . . .)

=
∏
p

1

1− p−s
(1− p−s)(1 +

1

ps
+

1

p2s
+

2

p3s
+

2

p4s
+ . . .+

φ(m)

pms
+ . . .)

= ζ(s)
∏
p

(1 +
1

p3s
+

2

p5s
+ . . .)

= ζ(s)
∏
p

1

1− p−3s
(1− p−3s)(1 +

1

p3s
+

2

p5s
+ . . .)

= ζ(s)ζ(3s)
∏
p

(1 +
2

p5s
+ . . .)

= ζ(s)ζ(3s)
∏
p

1

1− p−5s
(1− p−5s)(1 +

2

p5s
+ . . .)

= ζ(s)ζ(3s)ζ(5s)
∏
p

(1 +
1

p5s
+ . . .)

= ζ(s)ζ(3s)ζ(5s)
∏
p

1

1− p−5s
(1− p−5s)(1 +

1

p5s
+ . . .)

= ζ(s)ζ(3s)ζ2(5s)G(s)

So we get

G(s) :=

∞∑
n=1

g(n)

ns

and by the properties of Dirichlet series, it is absolutely convergent for ℜs > 1
7 .

Lemma 2.2. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers and

B(x, y; k, ϵ) :=
∑

x < nmk ≤ x + y

m > xϵ

1,

Then we have

B(x, y; k, ϵ)≪ yx−ϵ + x
1

2k+1 log x. (3)

Proof. This Lemma is very important when studying the short interval distribution of

l-free numbers.

Next we prove our Theorem.

From Lemma 2.1, we have∑∞
n=1

ϕ(e)(n)
ns = ζ(s)ζ(3s)ζ2(5s)G(s).

Define
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G0(s) = ζ(s)G(S), G0(s) =
∑∞

n=1
f0(n)
ns ,

Then ∑
n≤x

f0(n) = G(1)x+O(x
1
7+ϵ), (4)

So

ϕ(e)(n) =
∑

n=n0n3
3n

5
5

f0(n0)d1(n3)d2(n5), (5)

Therefore ∑
x<n≤x+y

ϕ(e)(n) =
∑

x<n0n3
3n

5
5≤x+y

f0(n)d1(n)d2(n)

=
∑

x < n0n3
3n5

5 ≤ x + y

nj ≤ xϵ

f0(n0)d1(n3)d2(n5)

+O(
5∑

j=2

∑
x<n0n3

3n
5
5≤x+y

|f0(n0)d1(n3)d2(n5)|). (6)

Let ∑
1

=
∑

x < n0n3
3n5

5 ≤ x + y

nj ≤ xϵ

f0(n0)d1(n3)d2(n5). (7)

∑
2

= O(
5∑

j=2

∑
x<n0n3

3n
5
5≤x+y

|f0(n0)d1(n3)d2(n5)|). (8)

From (4), we can get∑
1

= G(1)ζ(3)ζ2(5) + o(yx−ϵ) +O(x
1
7+ϵ), (9)

For
∑

2, we have

∑
2

≪
5∑

j=2

∑
x<n0n3

3n
5
5≤x+y

|f0(n0)d1(n3)d2(n5)| ≪ xϵ2
5∑

j=2

∑
x < n0n3

3n5
5 ≤ x + y

nj > x7ϵ

1,

By Lemma 2.2, we get ∑
2

≪ yx
−ϵ
2 +2ϵ2 + x

1
7+ϵ+2ϵ2 , (10)

So ∑
x<n≤x+y

ϕ(e)(n) =
∑
1

+O(
∑
2

) = Cy +O(yx
−ϵ
3 + x

1
7+2ϵ). (11)

Where C = G(1)ζ(3)ζ2(5).

Now our theorem follows from (6) and (11).
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Abstract We introduce some classes of analytic-univalent functions and for any real µ,

determine the sharp upper bounds of the functional |a2a4 − a2
3| for the functions of the
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§1. Introduction and preliminaries

Let A be the class of analytic functions of the form

f(z) = z +
∞∑
k=2

akz
k (1)

in the unit disc E = {z :| z |< 1}. Let S be the class of functions f(z) ∈ A and univalent in E.

Let Mα(0 ≤ α ≤ 1) be the class of functions which satisfy the condition

Re

[(
zf ′(z)

f(z)

)1−α
(
(zf ′(z))

′

f ′(z)

)α]
> 0. (2)

This class was studied by Darus and Thomas [1] and functions of this class are called α-

logarithmically convex functions. Obviously M0 ≡ S∗, the class of starlike functions and

M1 ≡ K, the class of convex functions.

In the sequel, we assume that (0 ≤ α ≤ 1) and z ∈ E.

C
∗(α)
s denote the subclass of functions f(z) ∈ A and satisfying the condition

Re

[(
2zf ′(z)

f(z)− f(−z)

)1−α
(

2(zf ′(z))
′

(f(z)− f(−z))′

)α]
> 0. (3)

The following observations are obvious:
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(i) C
∗(0)
s ≡ S∗

s , the class of starlike functions with respect to symmetric points introduced

by Sakaguchi [14].

(ii) C
∗(1)
s ≡ Ks, the class of convex functions with respect to symmetric points introduced

by Das and Singh [2].

Cα
s be the subclass of functions f(z) ∈ A and satisfying the condition

Re

[(
2zf ′(z)

g(z)− g(−z)

)1−α
(

2(zf ′(z))
′

(g(z)− g(−z))′

)α]
> 0, (4)

where

g(z) = z +

∞∑
k=2

bkz
k ∈ S∗

s . (5)

In particular

(i) C0
s ≡ Cs, the class of close-to-convex functions with respect to symmetric points intro-

duced by Das and Singh [2].

(ii) C1
s ≡ C

′

s.

Let Cα
1(s) be the subclass of functions f(z) ∈ A and satisfying the condition

Re

[(
2zf ′(z)

h(z)− h(−z)

)1−α
(

2(zf ′(z))
′

(h(z)− h(−z))′

)α]
> 0, (6)

where

h(z) = z +
∞∑
k=2

dkz
k ∈ Ks. (7)

We have the following observations:

(i) C0
1(s) ≡ C1(s).

(ii) C1
1(s) ≡ C

′

1(s).

In 1976, Noonan and Thomas [11] stated the qth Hankel determinant for q ≥ 1 and n ≥ 1

as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1 ... an+q−1

an+1 ... ... ...

... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣
.

This determinant has also been considered by several authors. For example, Noor [12] deter-

mined the rate of growth of Hq(n) as n → ∞ for functions given by Eq. (1) with bounded

boundary. Ehrenborg [3] studied the Hankel determinant of exponential polynomials and the

Hankel transform of an integer sequence is defined and some of its properties discussed by Lay-

man [8]. Also Hankel determinant was studied by various authors including Hayman [5] and

Pommerenke [13]. Easily, one can observe that the Fekete-Szegö functional is H2(1). Fekete

and Szegö [4] then further generalised the estimate of |a3−µa22| where µ is real and f ∈ S. For

our discussion in this paper, we consider the Hankel determinant in the case of q = 2 and n = 2,∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ .
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In this paper, we seek upper bound of the functional |a2a4 − a23| for functions belonging to the

above defined classes.

§2. Main result

Let P be the family of all functions p analytic in E for which Re(p(z)) > 0 and

p(z) = 1 + p1z + p2z
2 + · · · (8)

for z ∈ E.

Lemma 2.1. If p ∈ P , then |pk| ≤ 2 (k = 1, 2, 3, ...).

This result is due to Pommerenke [13].

Lemma 2.2. If p ∈ P , then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z,

for some x and z satisfying |x| ≤ 1, |z| ≤ 1 and p1 ∈ [0, 2].

This result was proved by Libera and Zlotkiewiez [9,10].

Theorem 2.1. If f ∈Mα, then

|a2a4 − a23| ≤
1

(1 + 2α)2

[
α(11 + 36α+ 38α2 + 12α3 − α4)

(1 + 3α)(−4 + 263α+ 603α2 + 253α3 + 37α4)(1 + α)4
+ 1

]
. (9)

Proof. As f ∈Mα, so from (2)

(
zf ′(z)

f(z)

)1−α
(
(zf ′(z))

′

f ′(z)

)α

= p(z). (10)

On taking logarithm on both sides of (10), we get,

(1− α) log

(
zf ′(z)

f(z)

)
+ α log

(
(zf ′(z))

′

f ′(z)

)
= log p(z). (11)

An easy calculation yields,

log

(
zf ′(z)

f(z)

)
= a2z +

(
2a3 −

3

2
a22

)
z2 +

(
3a4 − 5a2a3 +

7

3
a32

)
z3 + · · · , (12)

log

(
(zf ′(z))

′

f ′(z)

)
= 2a2z +

(
6a3 − 6a22

)
z2 +

(
12a4 − 30a2a3 +

56

3
a32

)
z3 + · · · (13)

and

log p(z) = p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
3

)
z3 + · · · . (14)
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On substituting (12), (13) and (14) in (11), we get

(1− α)

[
a2z +

(
2a3 −

3

2
a22

)
z2 +

(
3a4 − 5a2a3 +

7

3
a32

)
z3 + · · ·

]
+α

[
2a2z +

(
6a3 − 6a22

)
z2 +

(
12a4 − 30a2a3 +

56

3
a32

)
z3 + · · ·

]
= p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
3

)
z3 + · · · . (15)

On equating the coefficients of z, z2 and z3 in (15), we obtain

a2 =
p1

1 + α
, (16)

a3 =
p2

2(1 + 2α)
+

(2 + 7α− α2)p21
4(1 + 2α)(1 + α)2

(17)

and

a4 =
p3

3(1 + 3α)
+

(3 + 19α− 4α2)p1p2
6(1 + α)(1 + 2α)(1 + 3α)

+
(6 + 23α+ 154α2 − 47α3 + 8α4)p31

36(1 + 2α)(1 + 3α)(1 + α)3
. (18)

Using (16), (17) and (18), it yields

a2a4 − a23 =
1

C(α)


48(1 + 2α)2(1 + α)3p1p3

+(24(1 + 2α)(1 + α)2 − 36(1 + 3α)(1 + α)2(2 + 7α− α2))p21p2

+(4(1 + 2α)(6 + 23α+ 154α2 − 47α3 + 8α4)

−9(1 + 3α)(2 + 7α− α2)2)p41 − 36(1 + 3α)(1 + α)4p22

 , (19)

where C(α) = 144(1 + 3α)(1 + 2α)2(1 + α)4.

Using Lemma 2.1 and Lemma 2.2 in (19), we obtain

|a2a4−a23| =
1

C(α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−[81(1 + 3α)3 − 12(1 + 2α)2(1 + α)3 − 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−4(1 + 2α)(6 + 23α+ 154α2 − 47α3 + 8α4)]p41

+[24(1 + 2α)2(1 + α)3 + 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−54(1 + α)2(1 + 3α)2)]p21(4− p21)x

−3(1 + α)3[(1 + 4α+ 7α2)p21 + 12(1 + 4α+ 3α2)](4− p21)x
2

+24(1 + α)3(1 + 2α)2p1(4− p21)(1− |x|2)z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Assume that p1 = p and p ∈ [0, 2], using triangular inequality and |z| ≤ 1, we have

|a2a4−a23| ≤
1

C(α)



[81(1 + 3α)3 − 12(1 + 2α)2(1 + α)3 − 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−4(1 + 2α)(6 + 23α+ 154α2 − 47α3 + 8α4)]p4

+[24(1 + 2α)2(1 + α)3 + 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−54(1 + α)2(1 + 3α)2]p2(4− p2)|x|

+3(1 + α)3[(1 + 4α+ 7α2)p2 + 12(1 + 4α+ 3α2)](4− p2)|x|2

+24(1 + α)3(1 + 2α)2p(4− p2)(1− |x|2)


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or

|a2a4−a23| ≤
1

C(α)



[81(1 + 3α)3 − 12(1 + 2α)2(1 + α)3 − 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−4(1 + 2α)(6 + 23α+ 154α2 − 47α3 + 8α4)]p4

+24(1 + α)3(1 + 2α)2p(4− p2)

+[24(1 + 2α)2(1 + α)3 + 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−54(1 + α)2(1 + 3α)2]p2(4− p2)δ

+3(1 + α)3[(1 + 4α+ 7α2)p2 − 8(1 + 2α)2p+ 12(1 + 4α+ 3α2)](4− p2)δ2


.

Therefore

|a2a4 − a23| ≤
1

C(α)
F (δ),

where δ = |x| ≤ 1 and

F (δ) = [81(1 + 3α)3 − 12(1 + 2α)2(1 + α)3 − 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−4(1 + 2α)(6 + 23α+ 154α2 − 47α3 + 8α4)]p4

+24(1 + α)3(1 + 2α)2p(4− p2)

+[24(1 + 2α)2(1 + α)3 + 12(3 + 19α− 4α2)(1 + 2α)(1 + α)2

−54(1 + α)2(1 + 3α)2]p2(4− p2)δ

+3(1 + α)3[(1 + 4α+ 7α2)p2 − 8(1 + 2α)2p+ 12(1 + 4α+ 3α2)](4− p2)δ2

is an increasing function. Therefore MaxF (δ) = F (1).

Consequently

|a2a4 − a23| ≤
1

C(α)
G(p), (20)

where G(p) = F (1).

So

G(p) = −A(α)p4 +B(α)p2 + 144(1 + 3α)(1 + α)4,

where

A(α) = α(−4 + 263α+ 603α2 + 253α3 + 37α4)

and

B(α) = 24α(11 + 36α+ 38α2 + 12α3 − α4).

Now

G
′
(p) = −4A(α)p3 + 2B(α)p

and

G
′′
(p) = −12A(α)p2 + 2B(α).

G
′
(p) = 0 gives

p[2A(α)p2 −B(α)] = 0.

G
′′
(p) is negative at p =

√
12(11+36α+38α2+12α3−α4)

(−4+263α+603α2+253α3+37α4) = p
′
.

So MaxG(p) = G(p
′
). Hence from (20), we obtain (9).
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The result is sharp for p1 = p
′
, p2 = p21 − 2 and p3 = p1(p

2
1 − 3).

For α = 0 and α = 1 respectively, we obtain the following results due to Janteng et al. [6].

Corollary 2.1. If f(z) ∈ S∗, then

|a2a4 − a23| ≤ 1.

Corollary 2.2. If f(z) ∈ K, then

|a2a4 − a23| ≤
1

8
.

Theorem 2.2. If f ∈ C
∗(α)
s , then

|a2a4 − a23| ≤
1

(1 + 2α)2
. (21)

Proof. Since f ∈ C
∗(α)
s , so from (3)(

2zf ′(z)

f(z)− f(−z)

)1−α
(

2(zf ′(z))
′

(f(z)− f(−z))′

)α

= p(z). (22)

On taking logarithm on both sides of (22), we get,

(1− α) log

(
2zf ′(z)

f(z)− f(−z)

)
+ α log

(
2(zf ′(z))

′

(f(z)− f(−z))′

)
= log p(z). (23)

After an easy calculation, we obtain,

log

(
2zf ′(z)

f(z)− f(−z)

)
= 2a2z + 2(a3 − a22)z

2 + 2

(
2a4 − 3a2a3 +

4

3
a32

)
z3 + · · · , (24)

log

(
2(zf ′(z))

′

(f(z)− f(−z))′

)
= 4a2z + 2

(
3a3 − 4a22

)
z2 + 4

(
4a4 − 9a2a3 +

16

3
a32

)
z3 + · · · . (25)

On substituting (24), (25) and (14) in (23), we get

(1− α)

[
2a2z + 2(a3 − a22)z

2 +

(
2a4 − 3a2a3 +

4

3
a32

)
z3 + ...

]
+α

[
4a2z + 2

(
3a3 − 4a22

)
z2 + 4

(
4a4 − 9a2a3 +

16

3
a32

)
z3 + ...

]
(26)

= p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
3

)
z3 + · · · .

On equating coefficients of z, z2 and z3 in (26), we obtain

a2 =
p1

2(1 + α)
, (27)

a3 =
p2

2(1 + 2α)
+

α(1− α)p21
4(1 + 2α)(1 + α)2

(28)

and

a4 =
p3

4(1 + 3α)
+

(1 + 9α− 4α2)p1p2
8(1 + α)(1 + 2α)(1 + 3α)

+
(−7α+ 16α2 − 17α3 + 8α4)p31
48(1 + 2α)(1 + 3α)(1 + α)3

. (29)
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Using (27), (28) and (29), it yields

a2a4 − a23 =
1

C(α)


12(1 + 2α)2(1 + α)3p1p3

+(6(1 + 2α)(1 + α)2 − 24(1 + 3α)(1 + α)2(α− α2))p21p2

+((1 + 2α)(−7α+ 16α2 − 17α3 + 8α4)

−6(1 + 3α)(α− α2)2)p41 − 24(1 + 3α)(1 + α)4p22

 , (30)

where C(α) = 96(1 + 3α)(1 + 2α)2(1 + α)4.

Using Lemma 2.1 and Lemma 2.2 in (30), we obtain

|a2a4 − a23| =
1

C(α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[3(1 + 2α)2(1 + α)3 + 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+(1 + 2α)(−7α+ 16α2 − 17α3 + 8α4)− 6(α− α2)2(1 + 3α)

−12(α− α2)(1 + 3α)(1 + α)2 − 6(1 + 3α)(1 + α)4]p41

−[−6(1 + 2α)2(1 + α)3 − 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+12(α− α2)(1 + α)2(1 + 3α) + 12(1 + 3α)(1 + α)4]p21(4− p21)x

−3(1 + α)3[(1 + 2α)2p21 + 2(1 + 3α)(1 + α)(4− p21)](4− p21)x
2

+6(1 + α)3(1 + 2α)2p1(4− p21)(1− |x|2)z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Assume that p1 = p and p ∈ [0, 2], using triangular inequality and |z| ≤ 1, we have

|a2a4 − a23| ≤
1

C(α)



[3(1 + 2α)2(1 + α)3 + 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+(1 + 2α)(−7α+ 16α2 − 17α3 + 8α4)− 6(α− α2)2(1 + 3α)

−12(α− α2)(1 + 3α)(1 + α)2 − 6(1 + 3α)(1 + α)4]p4

+[−6(1 + 2α)2(1 + α)3 − 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+12(α− α2)(1 + α)2(1 + 3α) + 12(1 + 3α)(1 + α)4]p2(4− p2)|x|

+3(1 + α)3[(1 + 2α)2p2 + 2(1 + 3α)(1 + α)(4− p2)](4− p2)|x|2

+6(1 + α)3(1 + 2α)2p(4− p2)(1− |x|2)


or

|a2a4−a23| ≤
1

C(α)



[3(1 + 2α)2(1 + α)3 + 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+(1 + 2α)(−7α+ 16α2 − 17α3 + 8α4)− 6(α− α2)2(1 + 3α)

−12(α− α2)(1 + 3α)(1 + α)2 − 6(1 + 3α)(1 + α)4]p4

+6(1 + α)3(1 + 2α)2p(4− p2)

+[−6(1 + 2α)2(1 + α)3 − 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+12(α− α2)(1 + α)2(1 + 3α) + 12(1 + 3α)(1 + α)4]p2(4− p2)δ

+3(1 + α)3[8(1 + 3α)(1 + α)− 2(1 + 2α)2p− (1 + 4α+ 2α2)p2](4− p2)δ2


.

Therefore

|a2a4 − a23| ≤
1

C(α)
F (δ),
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where δ = |x| ≤ 1 and

F (δ) = [3(1 + 2α)2(1 + α)3 + 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+(1 + 2α)(−7α+ 16α2 − 17α3 + 8α4)− 6(α− α2)2(1 + 3α)

−12(α− α2)(1 + 3α)(1 + α)2 − 6(1 + 3α)(1 + α)4]p4

+6(1 + α)3(1 + 2α)2p(4− p2)

+[−6(1 + 2α)2(1 + α)3 − 3(1 + 9α− 4α2)(1 + 2α)(1 + α)2

+12(α− α2)(1 + α)2(1 + 3α) + 12(1 + 3α)(1 + α)4]p2(4− p2)δ

+3(1 + α)3[8(1 + 3α)(1 + α)− 2(1 + 2α)2p− (1 + 4α+ 2α2)p2](4− p2)δ2

is an increasing function. Therefore MaxF (δ) = F (1).

Consequently

|a2a4 − a23| ≤
1

C(α)
G(p), (31)

where G(p) = F (1).

So

G(p) = A(α)p4 −B(α)p2 + 96(1 + 3α)(1 + α)4,

where

A(α) = α(5 + 20α+ 33α2 + 28α3 + 10α4)

and

B(α) = 24(1 + α)2(1 + 6α+ 7α2 + 4α3).

Now

G
′
(p) = 4A(α)p3 − 2B(α)p

and

G
′′
(p) = 12A(α)p2 − 2B(α).

G
′
(p) = 0 gives

2p[2A(α)p2 −B(α)] = 0.

Clearly G(p) attains its maximum value at p = 0. So MaxG(p) = G(0) = 96(1 + 3α)(1 + α)4.

Hence from (31), we obtain (21).

The result is sharp for p1 = 0, p2 = −2 and p3 = 0.

For α = 0 and α = 1 respectively, we obtain the following results due to Janteng et al. [7].

Corollary 2.3. If f(z) ∈ S∗
s , then

|a2a4 − a23| ≤ 1.

Corollary 2.4. If f(z) ∈ Ks, then

|a2a4 − a23| ≤
1

9
.

On the same lines, we can easily prove the following theorems:
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Theorem 2.3. If f ∈ Cα
s , then

|a2a4 − a23| ≤
(3 + 2α)2

9(1 + 2α)2
.

The result is sharp for p1 = 0, p2 = −2 and p3 = 0.

For α = 0 and α = 1 respectively, we obtain the following results:

Corollary 2.5. If f(z) ∈ Cs, then

|a2a4 − a23| ≤ 1.

Corollary 2.6. If f(z) ∈ C
′

s, then

|a2a4 − a23| ≤
25

81
.

Theorem 2.4. If f ∈ Cα
1(s), then

|a2a4 − a23| ≤
(7 + 2α)2

81(1 + 2α)2
.

The result is sharp for p1 = 0, p2 = −2 and p3 = 0. For α = 0 and α = 1 respectively, we

obtain the following results:

Corollary 2.7. If f(z) ∈ C1(s), then

|a2a4 − a23| ≤
49

81
.

Corollary 2.8. If f(z) ∈ C
′

1(s), then

|a2a4 − a23| ≤
1

9
.
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Abstract Let a(n) denote the number of nonisomorphic Abelian groups with n elements. In

this paper, we shall establish a short internal result of a2(n).

Keywords Nonisomorphic Abelian groups, convolution method, short interval.

§1. Introduction

We define a(n) to be the number of nonisomorphic Abelian groups with n elements. The

properties of a(n) were investigated by many authors.

P. Erdös and G. Szekeres [1] first proved that∑
n≤x

a(n) = c1x+O(x
1
2 ), (1)

Kendall and Rankin [2] proved that∑
n≤x

a(n) = c1x+ c2x
1
2 +O(x

1
3 log x), (2)

H. -E. Richert [3] proved∑
n≤x

a(n) = c1x+ c2x
1
2 + c3x

1
3 +O(x

3
10 log

9
10 x), (3)

Suppose A(x) :=
∑

n≤x a
2(n). Recently Lulu Zhang [4] proved that

A(x) = c4x+ c5x
1
2 log2 x+ c6x

1
2 log x+ c7x

1
2 +O(x

96
245+ϵ), (4)

where cj(j = 4, 5, 6, 7) are computable constants.

In this short paper, we shall prove the following short interval result.

Theorem 1.1. If x
1
5+2ϵ ≤ y ≤ x, then∑
x<n≤x+y

a2(n) = Cy +O(yx− ϵ
2 + x

1
5+

3ϵ
2 ), (5)

1This work is supported by Natural Science Foundation of China (Grant No:11001154), and Natural Science

Foundation of Shandong Province(Nos:BS2009SF018, ZR2010AQ009).
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Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant. If 1 ≤ a ≤ b ≤ c are fixed integers, we define

d(a, b, c;n) =
∑

n=na
1n

b
2n

c
3

1.

§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas.

Lemma 2.1. Suppose s is a complex number (ℜs > 1), then

F (s) :=
∞∑

n=1

a2(n)

ns
= ζ(s)ζ3(2s)ζ5(3s)ζ10(4s)G(4s), (6)

whereG(s) can be written as a Dirichlet seriesG(s) =
∑∞

n=1
g(n)
ns , which is absolutely convergent

for ℜs ≥ 1
5 .

Proof. The function a2(n) is multiplicative, So by Euler product formula, we have

F (s) =
∏
P

(1 +
∞∑

α=1

a2(pα)

pαs
) =

∏
p

(1 +
1

ps
+

4

p2s
+

9

p3s
+ . . .)

=
∏
p

(1− 1

ps
)−1

∏
p

(1− 1

ps
)(1 +

1

ps
+

4

p2s
+

9

p3s
+ . . .)

= ζ(s)ζ3(2s)
∏
p

(1− 1

p2s
)3(1 +

3

p2s
+

5

p3s
+

16

p4s
+ · · · )

= ζ(s)ζ3(2s)ζ5(3s)
∏
p

(1− 1

p3s
)5(1 +

5

p3s
+

10

p4s
+ · · · )

= ζ(s)ζ3(2s)ζ5(3s)ζ10(4s)G(s).

Now we write G(s) =
∑∞

n=1
g(n)
ns . It is easily seen the Dirichlet series is absolutely convergent

for ℜs ≥ 1
5 .

Lemma 2.2. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers. Then∑
x<nmk≤x+y

1≪ yx−ϵ + x
1

2k+1 log x.

Proof. This lemma is often used when studying the short internal distribution of 1-free

numbers; see for example, [5].

Lemma 2.3. Let G0(s) = ζ(s)G(s), f0(n) be the arithmetic function defined by

∞∑
n=1

f0(n)

ns
= ζ(s)G(s),

then we have ∑
n≤x

f0(n) = Ax+O(x
1
5+ϵ), (7)

where A = Ress=1ζ(s)G(s).
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Proof. From Lemma 2.1 the infinite series
∑∞

n=1
g(n)
ns converges absolutely for σ > 1

5 , it

follows that ∑
n≤x

|g(n)| ≪ x
1
5+ϵ.

Therefore from the definition of g(n) and f0(n), it follows that∑
n≤x

f0(n) =
∑

mn≤x

g(n) =
∑
n≤x

g(n)[
x

n
] = Ax+O(x

1
5+ϵ),

where A = Ress=1ζ(s)G(s).

Now we prove our theorem. From Lemma 2.3 and convolution method, we obtain

a2(n) =
∑

n=kl2u3m4

f0(k)d3(l)d5(u)d10(m)

and

f0(n)≪ nϵ2 , d3(n)≪ nϵ2 , d5(n)≪ nϵ2 , d10(n)≪ nϵ2 .

So we have

A(x+ y)−A(x) =
∑

x<kl2u3m4≤x+y

f0(k)d3(l)d5(u)d10(m)

=
∑
1

+O(
∑
2

+
∑
3

+
∑
4

), (8)

where ∑
1

=
∑

l,u,m≤xε

d3(l)d5(u)d10(m)
∑

x
l2u3m4 <k≤ x+y

l2u3m4

f0(k),

∑
2

=
∑

x < kl2u3m4 ≤ x + y

l > xϵ

|f0(k)d3(l)d5(u)d10(m)|,

∑
3

=
∑

x < kl2u3m4 ≤ x + y

u > xϵ

|f0(k)d3(l)d5(u)d10(m)|,

∑
4

=
∑

x < kl2u3m4 ≤ x + y

m > xϵ

|f0(k)d3(l)d5(u)d10(m)|.

In view of Lemma 2.3,∑
1

=
∑

l,u,m≤xε

d3(l)d5(u)d10(m)
∑

x
l2u3m4 <k≤ x+y

l2u3m4

f0(k)

=
∑

l,u,m≤xε

d3(l)d5(u)d10(m)[
Ay

l2u3m4
+O((

x

l2u3m4
)

1
5+ε)]

= Cy +O(yx− ϵ
2 +O(x

1
5+4ϵ), (9)

where C = Ress=1F (s).
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By Lemma 2.2 with k = 2 we have∑
2

≪ xϵ2
∑

x < kl2u3m4 ≤ x + y

l > xϵ

1

≪ xϵ2
∑

x < kl2 ≤ x + y

l > xϵ

1

≪ xϵ2(yx−ϵ + x
1
5+ϵ)

≪ yx− ϵ
2 + x

1
5+

3
2 ϵ, (10)

Similarly we have ∑
3

≪ yx− ϵ
2 + x

1
5+

3
2 ϵ,∑

4

≪ yx− ϵ
2 + x

1
5+

3
2 ϵ. (11)

Now our theorem follows from (8)-(11).
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E-mail: myildirim@firat.edu.tr mbektas@firat.edu.tr

Abstract A Riemannian manifold with flat affine connection D and a non-degenerate metric

expressed as the Hessian matrix of a function with respect to an affine coordinate system

is called a Hessian manifold. Geometry of Hessian manifold is deeply related to Kaehlerian

geometry. Taking into account of this fact we use second Kozsul form of a Hessian manifold

as a Ricci tensor of a Kaehlerian manifold and obtain new results on Einstein-Hessian and

Einstein-Kaehlerian manifolds in terms of it. Furthermore we define Einstein curvature tensor

for Hessian manifolds and obtain Ricci-flatness condition for manifolds mentioned above. Also

using a special type of a Hessian manifold we investigate new conditions for Euclidean space

and affine homogeneous convex cones.
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§1. Introduction

In differential geometry, the Einstein curvature tensor, named after Albert Einstein, is

used to express the curvature of a Riemannian manifold. Also in general relativity, the Einstein

tensor oocurs in the Einstein field equation for gravitation describing space time curvature in

a manner consistent with energy consideration [1].

According to George Hammond “Scientific evidence that God is a curvature in psychom-

etry space”. In his interesting and work he has discovered that God is caused by the Einstein

curvature tensor and that Einstein’s celebrated field equation is actually the mathematical

equation of God. To him, Einstein’s theory in other words is the explicit mathematical proof

of God [2].

Passing from the personal to the mathematical, the Einstein curvature tensor is a trace-

reversed version of the well-known Ricci tensor and is physically identified with the physical

stress energy tensor.

On the other hand the pseudo-Riemannian Hessian manifold is the most suitable to define

the fundamental properties of thermo dynamics systems based on function f and the metric

g since it re-inforces the information obtained from (U ⊂ Rn;h = Hessδf) and build the first

order nonconstant state potentials hij as components of a nonconstant metric. This new metric

determines a space which is more appropriate for the thermodynamics theories [3].
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From the mathematical point of view, Hessian manifolds structure have various applica-

tions. Let M be a flat affine manifold with flat affine connection D. Among Riemannian metrics

on M there exists an important class of Riemannian metrics compatible with the flat affine con-

nection D. A Riemannian metric g on M is said to be Hessian metric if g is locally expressed by

g = D2u where u is a local smooth function. We call such a pair (D , g) a Hessian structure on

M and a triple (M , D , g) a Hessian manifold [5−9]. Geometry of Hessian manifolds is deeply

related to the following geometries:

i) Kaehlerian geometry and symplectic geometry. It will be suggested by the facts that

the tangent bundle of a Hessian manifold naturally admits a Kaehlerian structure and that a

Hessian structure is formally analogous to a Kaehlerian structure because a Kaehlerian metric

is locally expressed as a complex Hessian.

ii) Affine differential geometry. Level surfaces of u are non-degenerate in the sense of affine

differential geometry. For the study of the level surfaces affine differential geometric methods

are quite useful.

iii) Information geometry. It is well known that many important smooth families of proba-

bility distributions (e.g. exponential families) admit Hessian structures. Thus on Hessian man-

ifolds many interesting geometric areas intersect [6].

Ricci-flat manifolds are special Riemannian manifolds whose Ricci tensor vanishes. In

physics, they represent vacuum solutions to analogous of Einstein’s equations for Riemannian

manifold of any dimension with vanishing cosmological constant. Ricci-flat manifolds are special

type manifolds where the cosmological constant need not vanish. They are also related to

holonomy groups. Physicians use this term with a different point of view. It is surely related

to brane studies and also black holes. As is well-known Ricci-flat Kaehlerian manifolds have

nice applications in superstring theory in appropriate dimensions [10].

Geometry of Hessian manifold finds connection with pure mathematical fields such as

affine differential geometry, homogeneous spaces, cohomology on one hand, physics and applied

science on the other. However inspite of it is importance there is not any work on Einstein

curvature and Ricci-flatness of it.

The motivation of creating the article based on this fact. In this paper firstly we give

basic concepts of Hessian manifolds and Einstein curvature tensor. Encouraged by the infor-

mation above, we introduce Einstein curvature tensor of a Hessian manifold in terms of Hessian

curvatures. Then using second Kozsul form β, we imply the relation between Kaehlerian and

Hessian manifold. According to the sign of β we prove the Ricci-flatness of a Hessian manifold

and obtain Einstein-Hessian manifolds with positive Einstein curvature. Due to these fact we

prove that a Hessian manifold is Ricci-flat if and only if its universal covering Ex = TxM and it

is a Euclidean space with respect to the induced metric. Also we show that a Hessian manifold

is a Einstein-Hessian manifold with positive Einstein curvature if and only if Ex is an affine

homogeneous convex domain not containing any full straight line.
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§2. Preliminaries

LetM m be a Hessian manifold with Hessian structure (D , g ). We express various geomet-

ric concepts for the Hessian structure (D , g) interms of affine coordinate system
{
x1 , . . . , xm

}
with respect to D , i.e D, dxi = 0.

i) The Hessian metric:

gij =
∂2u

∂xi∂xj
,

where u is a local smooth function.

ii) Let γ be a tensor field of type (1, 2) defined by

γ (X,Y ) = ▽XY −DXY,

where ∇ is the Riemannian connection for g. Then we have

γi
jk = Γi

jk =
1

2
gir

∂grj
∂xk

,

γijk =
1

2

∂gij
∂xk

=
1

2

∂3u

∂xi∂xj∂xk
,

γijk = γjik = γkji,

where Γi
jk are the Christoffel’s symbols of ∇ [6].

Definition 1.1. A Hermitian metric g on a complex manifold (M,J) is said to be a

Kaehlerian metric if g can be locally expressed by the complex Hessian of a function φ,

gij =
∂2φ

∂zi∂zj
,

where {z1, ..., zn} is a holomorphic coordinate system. The pair (J, g) is called a Kaehlerian

structure on M. A complex manifold M with a Kaehlerian structure on M. A complex manifold

M with a Kaehlerian structure (J, g) is said to be a Kaehlerian manifold and is denoted by

(M,J, g) [9].

For a Hermitian metric g we set

ρ (X,Y ) = g (JX, Y ) .

Then the skew symmetric bilinear form ρ is called a Kaehlerian form for (J, g), and using a

holomorphic coordinate system, we have

ρ =
√
−1
∑
i,j

gijdzi ∧ dzj
[9].

Proposition 1.1. Let g be a Hermitian metric on a complex manifold M. Then the

following conditions are equivalent.

(1) g is a Kaehlerian metric.

(2) The Kaehlerian form ρ is closed; dρ = 0.

Let (M,D) be a flat manifold and let TM be the tangent bundle over M with projection

π : TM →M. For an affine coordinate system
{
x1, ..., xn

}
on M, we set

zj = ξj +
√
−1ξn+j ,
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where ξi = xi ◦ π and ξn+i = dxi. Then n-tuples of functions given by {z1, ..., zn} yield

holomorphic coordinate systems on TM. We denote by JD the complex structure tensor of the

complex manifold TM. For a Riemannian metric g on M we put

gT =

n∑
(gij ◦ π) dzidzj .

i,j=1

Then gT is a Hermitian metric on the complex manifold (TM, JD) [9].

Proposition 1.2. Let (M,D) be a flat manifold and g a Riemannian metric on M. Then

the following conditions are equivalent.

(1) g is a Hessian metric on (M,D) .

(2) gT is a Kaehlerian metric on (TM, JD) [9].

§3. Einstein Curvature and Hessian manifolds

Definition 2.1. Let (M, g) be a Riemannian manifold of dimension n ≥ 3 and let R and

Ric denote its Riemannian curvature (0, 4)− tensor and Ricci (0, 2)− tensor, respectively .

Einstein tensor denoted by E is a combination of the metric tensor g and the Ricci tensor

as follows

E =
1

2
sg −Ric,

where s denotes the scalar curvature function [4].

Recall that the Ricci curvature r is the function defined on the unit tangent bundle UM

of (M, g) by

r (v) = Ric (v, v) .

Similarly we define the Einstein curvature e to be the function defined on UM by

e (v) = 2E (v, v) = s− 2r (v) ,

where we multiplied by the constant 2 to make it equal p−curvature with p = 1, that is, the

Einstein curvature precisely coincide with the average of the sectional curvature in the directions

orthogonal to v

e (v) =
∑
i,j∈I

R (ei, ej , ei, ej) ,

where {ei, i ∈ I} is any orthonormal basis for the orthogonal supplement (ℜv)⊥ of the vector v

in the tangent space TmM at m [3].

In order to show the relationship of Hessian and Riemannian structure we need the following

definition and theorems.

Definition 2.2. Let (D, g) be a Hessian structure and let γ = ∇ − D be the difference

tensor between the Levi-Civita connection ∇ for g and D. A tensor field Q of type (1, 3) defined

by the covariant differential

Q = Dγ
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of γ is said to be the Hessian curvature tensor for (D, g) . The components Qi
jkl of Q with

respect to an affine coordinate system
{
x1, ..., xn

}
are given by

Qi
jkl =

∂γi
jl

∂xk
.

Proposition 2.1. Let gij =
∂2φ

∂xi∂xj . Then we have

(1) Qijkl =
1

2

∂4φ

∂xi∂xj∂xk∂xl
− 1

2
grs

∂3φ

∂xi∂xk∂xr

∂3φ

∂xj∂xl∂xs

(2)Qijkl = Qkjil = Qklij = Qilkj = Qjilk.

Proposition 2.2. Let R be the Riemannian curvature tensor for g. Then

Rijkl =
1

2
(Qijkl −Qjikl) .

According to above Propositions we conclude that the Hessian curvature tensor Q carries

more detailed information than the Riemannian curvature tensor R.

In [11] the authors obtained scalar and Ricci tensor for Hessian manifolds. In order to

calculate Einstein tensor of Hessian manifolds we need following results. For the proof of

theorems we refer to [11].

Theorem 2.1. Let (M,D, g) be a Hessian manifold with Hessian structure (D, g) . The

Ricci curvature tensor of (M,D, g) is∑
i

Qijli = RH
jl =

∑
Qjjli − 2Rjl,

where Qjili and Rjl are the components of Hessian curvature tensor and Ricci curvature tensor,

respectively.

Theorem 2.2. Let (M,D, g) be a Hessian manifold with Hessian structure (D, g). The

scalar curvature of (M,D, g) is∑
jk

Qkjjk = rH =
∑
jk

Qjkjk − 2r,

where r is the scalar curvature of Riemannian manifold (M, g) .

In the light of the theorems above we define Einstein tensor of (M,D, g) as follows.

Definition 2.3. Let (M,D, g) be a Hessian manifold with Hessian structure (D, g) . Ein-

stein tensor of M denoted by EH expressed as follows

EH =
1

2

∑
jk

Qkjjk −
∑
i

Qijli

=
1

2

∑
jk

Qjkjk − 2
∑
i

Qjili

− 2Rjl − r,

where r is the scalar curvature and Rjl is the Ricci curvature of Riemannian manifold (M, g) ,

respectively.
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The Ricci curvature r is the function defined on the unit tangent bundle UM of (M, g)

by r (v) = Ric (v, v) . Considering Proposition 1.2, a Hessian structure (D, g) on M induces a

Kaehlerian structure
(
J, gT

)
on the tangent bundle TM so r (v) = Ric (v, v) corresponds Ricci

curvature tensor on the Kaehlerian manifold.

Similarly we define the Einstein curvature to be the functions on TM by

e (v) = 2E (v, v) = RT
ijli
− 2RT

kjjk

=
1

2
Qijli ◦ π −Qkjjk ◦ π.

The Einstein curvature tensor precisely coincides with the average of the holomorphic

sectional curvature in the direction orthogonal to v

e (v) =
∑
i,j

RT (ei, ej , ei, ej) =
∑ 1

2
Qijij ◦ π,

where {ei, i ∈ I} is any orthonormal basis for the orthogonal supplement (ℜv)⊥ of a vector v

in the tangent space TmM at m.

Now let us comment on the Ricci tensor inequality in terms of Einstein-Hessian tensor.

Theorem 2.3. SupposeM is a complete, connected Hessian n-manifold whose Ricci tensor

satisfies the following inequality for all V ∈ TM :

EH

2
+

r

2
+

1

2

∑
Qjjli −

1

4

(∑
Qjkjk − 2

∑
Qjili

)
≥ n− 1

R2
|V |2 .

Then M is compact, with a finite fundamental group, and diameter at most πR.

Proof. We use Myers’s Theorem [12] for the proof. As is well known for a complete,

connected Riemannian n-manifold whose Ricci tensor satisfies

Rjl (V, V ) ≥ n− 1

R2
|V |2 .

Taking into account Theorem 2.1 we may write∑
i

Qijli = RH
jl =

∑
Qjjli − 2Rjl

for the Hessian type Ricci tensor. On the other hand it is not difficult to compute The Einstein

tensor by using Definition 2.3. Considering these two facts together we obtain the Ricci tensor

inequality for a Hessian manifold as follows

1

2

∑
Qjjli −

1

4

(∑
Qjkjk − 2

∑
Qjili

)
+

r

2
+

EH

2
= RH

jl .

Then using Myers’s Theorem we complete the proof.

§4. Einstein-Hessian manifolds and Ricci-flatness

In this part of the study we define Einstein manifolds in general type on one hand and

introduce Einstein-Hessian manifolds by a correspondence with Kaehlerian structure on the

other.
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As is well-known a Riemannian manifold (M, g) is an Einstein manifold if and only if there

exists a real number λ such that E = λg. This is also equivalent to say that the Einstein

curvature e is a constant function on UM.

Kozsul forms are playing great important role in Hessian manifolds studies. The following

definitions and its relation with curvature tensors are given by H. Shima [9].

Definition 3.1. Let w be the volume element of g we define a closed 1-form α and a

symmetric bilinear form β by

DXw = α (X)w

β = Dα.

The forms α and β are called the first Kozsul form and the second Kozsul form for a Hessian

structure (D, g) respectively.

Proposition 3.1.

βij =
∂αi

∂xj
=

1

2

∂2 log det [gkl]

∂xi∂xj
= Qr

rij = Qr
ijr, [9] .

Proposition 3.2. Let RT
ij

be the Ricci tensor on the Kaehlerian manifold
(
TM, J, gT

)
.

Then we have

RT
ij
=

1

2
βij ◦ π.

Definition 3.2. If a Hessian structure (D, g) satisfies the condition

β = λg, λ =
βi
i

n
,

then the Hessian structure is said to be Einstein-Hessian [9].

Theorem 3.1. Let (D, g) be a Hessian structure on M and let
(
J, gT

)
the Kaehlerian

structure on the tangent bundle TM induced by (D, g) . Then the following conditions (1) and

(2) are equivalent:

(1) (D, g) is Einstein-Hessian.

(2)
(
J, gT

)
is Einstein-Kaehlerian [9].

Also accoding to these explanations one may also conclude that the second Kozsul form β

plays a similar role to that of the Ricci tensor in Kaehlerian geometry.

Due to M. L. Labbi [4] a Kaehlerian manifold with positive Ricci curvature has positive

Einstein curvature because for a Kaehlerian manifold each eigenvalue of Ricci has multiplicity

at least 2.

Let us comment on the positivity of a Kaehlerian manifold by using second Kozsul form

of the Hessian manifold.

Theorem 3.2. Let (M,D, g) be a compact oriented Hessian manifold. The second Kozsul

form βw for any volume element w can not be negative definite [9].

According to the theorem above we may express the following results.

Corollary 3.1. Let (M,D, g) be a compact oriented Hessian manifold and let
(
J, gT

)
the

Kaehlerian structure on the tangent bundle TM induced by (D, g) then the Ricci curvature of

a Kaehlerian manifold can not be negative definite.
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Corollary 3.2. Let (M,D, g) be a compact oriented Hessian manifold and let
(
J, gT

)
the Kaehlerian structure on the tangent bundle TM induced by (D, g) then the Kaehlerian

manifold satisfies one of the following conditions

(1) Kaehlerian manifold is Ricci-flat.

(2) Kaehlerian manifold has positive Einstein curvature.

Theorem 3.3. Let (M,D, g) be a compact oriented Hessian manifold. Then one of the

following condition is satisfied

(1) M is Ricci-flat.

(2) M is a Einstein-Hessian manifold with positive Einstein curvature.

Proof. From the Corollary 3.1 it may be seen that the second Kozsul form of a compact

oriented Hessian manifold can not be negative. This means that β = 0 or β > 0.

Suppose that β = 0. β fills the role of Ricci tensor of Hessian manifoldM hence we conclude

that M is also Ricci flat. On the other hand taking into account of β > 0 we conclude from [6]

that M has positive Einstein curvature.

From the theorem above we may conclude the following corollary.

Corollary 3.3. Let (M,D, g) be a compact oriented Hessian manifold then it is divergence

free.

Proof. As is well-known if M is compact, the Einstein tensor is gradient of the total scalar

curvature Riemannian functional
∫
M

s (g) dvol defined on the space of all Riemannian metrics

on M. Since a Hessian metric is a special type of a Riemannian metric, it is clear that (M,D, g)

also admits this condition. Consequently it is divergence free.

From now on we focus on the positivity of Hessian sectional curvature and its relation with

Einstein curvature.

According to the definition of Einstein curvature we also have the following nice property

positive sectional curvature ⇒ positive Einstein curvature

⇒ positive scalar curvature.

On the other hand Shima [9] obtained the following proposition for Hessian manifolds with

constant positive Hessian sectional curvature.

Proposition 3.2. Let c be positive real number and let

Ω =

{
(x1, ..., xn) ∈ Rn

∣∣∣∣∣xn >
c

2

n−1∑
i=1

(
xi
)2}

,

and let φ be a smooth function on Ω defined by

φ = −1

c
log

{
xn − 1

2

n−1∑
i=1

(
xi
)2}

.

Then
(
Ω, D, g = D2φ

)
is a simply connected Hessian manifold of positive constant Hessian

sectional curvature c.

Hence the following theorem can be proved as a consequence of the properties above.
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Theorem 3.4. Let c be a positive real number and let

Ω =

{(
x1, ..., xn

)
∈ Rn

∣∣∣∣∣xn >
c

2

n−1∑
i=1

(
xi
)2}

,

and let φ be a smooth function on Ω defined by

φ = −1

c
log

{
xn − 1

2

n−1∑
i=1

(
xi
)2}

.

Then
(
Ω, D, g = D2φ

)
is a simply connected Hessian manifold with positive Einstein cur-

vature.

It is really surprising that (Ω, g) is isometric to hyperbolic space form
(
H
(
− c

4

)
, g
)
of

constant sectional curvature −c/4;

H =
{(

ξ1, ..., ξn−1, ξn
)
∈ Rn |ξn > 0

}
,

g =
1

(ξn)
2

{
n∑

i=1

(
dξi
)2

+
4

c
(dξn)

2

}
.

For detailed information we refer to [9] .

In [7] Shima introduced the homogeneous Hessian manifold concept by a close analogy

with Kaehlerian structures. From now and sequel we deal with this type of Hessian manifold

and second Kozsul form on it.

Definition 3.3. Let M be a Hessian manifold. A diffeomorphism of M on to itself is called

an automorphism of M if it preserves both the flat affine structure and the Hessian metric. The

set of all automorphisms of M , denoted by Aut (M) , forms a Lie group. A Hessian manifold

M is said to be homogeneous if the group Aut (M) acts transitively on M [7].

Theorem 3.5. Let M be a connected homogeneous Hessian manifold. Then we have

1) The domain of definition Ex for the exponential mapping expx at x ∈ M given by the

flat affine structure is a convex domain. Moreover Ex is the universal covering manifold of M

with affine projection expx : Ex →M.

2) The universal covering manifold Ex of M has a decomposition Ex = E0
x + E+

x where

E0
x is a uniquely determined vector subspace of the tangent space TxM of M at x and E+

x is

an affine homogeneous convex domain not containing any full straight line. Thus Ex admits a

unique fibering with the following properties:

i) The base space is E+
x .

ii) The projection p : Ex → E+
x is given by the canonical projection from Ex = E0

x + E+
x

onto E+
x .

iii) The fiber E0
x + v through v ∈ Ex is characterized as the set of all points which can be

joined with v by full straight lines contained in Ex. Moreover each fiber is an affine subspace

of TxM and is a Euclidean space with respect to the induced metric.

iv) Every automorphism of Ex is fiber preserving.

v) The group of automorphism of Ex which preserve every fiber, acts transitively on the

fibers [7].
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Corollary 3.4. Let β denote the canonical bilinear form on a connected homogeneous

Hessian manifold M ,

βij =
∂2 logF

∂xi∂xj
,

where F=
√
det [gij ] .

Then we have

i) β is positive semi-definite.

ii) The null space of β at x ∈M coincides with E0
x. In particular,

iii) β = 0 if and only if Ex = TxM and its a Euclidean space with respect to the induced

metric.

iv) β is positive definite if and only if Ex is an affine homogeneous convex domain not

containing any full straight line [7].

Using this property we may prove the following theorem.

Theorem 3.6. Let (M,D, g) be a compact oriented homogeneous Hessian manifold. Then

one of the following condition is satisfied.

1) M is Ricci-flat if and only if Ex = TxM and it is a Euclidean space with respect to the

induced metric.

2) M is a Einstein-Hessian manifold with positive Einstein curvature if and only if Ex is

an affine homogeneous convex domain not containing any full straight line.

Proof. By Theorem 3.3 compact oriented homogeneous Hessian manifold (M,D, g) is

either Ricci-flat or Einstein-Hessian manifold with positive Einstein curvature. In virtue of

Corollary 3.4 if M is Ricci-flat, the second Kozsul form β vanishes hence Ex = TxM and it is

a Euclidean space with respect to the induced metric.

On the other hand if M is a Einstein-Hessian manifold with positive Einstein curvature we

conclude that β is positive definite. Then as a consequence of Corollary 3.4 iv), the theorem is

proved.

§5. Conclusion

Of the general theory of relativity you will be convinced, once you have studied it. Therefore

I am not going to define it with a single word. Albert Einstein, In a postcard to A. Sommefeld.

The practicality of Einstein’s obsevation is difficult to argue against. In honour of him,

we have reinterpreted Einstein curvature in terms of Hessian curvatures. Upon examination of

Kozsul form β, we prove the Ricci-flatness of a Hessian manifold and obtain Einstein-Hessian

manifolds with positive Einstein curvature. Next we prove that a Hessian manifold is Ricci-flat

if and only if its universal covering Ex = TxM and it is a Euclidean space with respect to the

induced metric.

As mentioned in introduction, Einstein curvature and Hessian manifold theory have nu-

merous applications from affine geometry to general relativity. In addition, Einstein manifolds

usually relates to vacuum solutions to General relativity equations with a non-zero cosmological

constant. We have clearly touched upon a new field for researchers working different area of
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science. We hope that the concepts in this paper draw new possible directions to the well-known

facts of physics and mathematics.
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Abstract Let n > 1 be an integer, n =
∏

pai
i , ai ≥ 2, i = 1, · · · , r. t(e)(n) denote the number

of e-squarefree e-divisor of n, δ2(n)denote the characteristic function of square-full numbers.

In this paper, we shall establish mean value for the function δ2(n)t
(e)(n).

Keywords Square-full numbers, convolution method, mean value.

§1. Introduction

Let n > 1 be an integer, n =
∏

pai
i , d =

∏
pbii , if bi|ai, i = 1, 2, · · · , r, such that d is the

e-divisor of n, notation: d|e(n). By convention 1|e(n). The integer n > 1 is called e-squarefree

if all exponents a1, · · · , ar are squarefree. Consider now the exponential squarefree exponential

divisor of n, here d =
∏

pbii is an e-squarefree e-divisor of n =
∏

pai
i > 1, if bi|ai, i = 1, 2, · · · , r

and b1, · · · , br are squarefree. Note that the integer 1 is e-squarefree but is not an e-divisor of

n > 1.

Let t(e)(n)denote the number of e-squarefree e-divisor of n, which is multiplicative and if

n =
∏

pai
i > 1, i = 1, · · · , r, then

t(e)(n) = 2ω(a1) · · · 2ω(ar),

ω(n) denote the number of distinct prime factors of n, ω(1) = 0; ω(n) = s, n =
∏

pαi
i ,

i = 1, · · · , s. Specially, for every prime p,

t(e)(p) = 1, t(e)(p2) = t(e)(p3) = t(e)(p4) = t(e)(p5) = 2, t(e)(p6) = 4, · · ·

The Dirichlet series of t(e)(n) is of form

∞∑
n=1

t(e)(n)

ns
= ζ(s)ζ(2s)V (s), ℜs > 1,

1This work is supported by Natural Science Foundation of China (Grant Nos. 11001154), and Natural Science

Foundation of Shandong Province (Nos. BS2009SF018, ZR2010AQ009).
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where V (s) =
∑∞

n=1
v(n)
ns is absolutely convergent for ℜs > 1/4. László Tóth [1] proved that

the estimate ∑
n≤x

t(e)(n) = C1x+ C2x
1/2 +R(x),

where R(x) = O(x1/4+ϵ), holds for every ϵ > 0, where

C1 :=
∏
p

(1 +
∞∑

α=6

2ω(α) − 2ω(α−1)

pα
),

C2 := ζ(1/2)
∏
p

(1 +
∞∑

α=4

2ω(α) − 2ω(α−1) − 2ω(α−2) + 2ω(α−4)

pα/2
).

Suppose RH is true, this was improved into R(x) = O(x7/29+ϵ) in [2].

In this paper, we shall prove a result about the mean value of δ2(n)t
(e)(n), δ2(n)denote the

characteristic function of square-full numbers, δ2(n) = 1, if n is squarefull numbers; otherwise,

δ2(n) = 0. Our main result is the following:

Theorem 1.1. We have the asymptotic formula∑
n≤x

δ2(n)t
(e)(n) = x1/2R1,1(log x) + x1/3R1,2(log x) +O(x1/4exp(−D(log x)3/5(log log x)−1/5)),

where R1,k(log x), k = 1, 2 are polynomials of degree 1 in log x, D > 0 is an absolute constant.

Notations 1.1. Throughout this paper, ϵ always denotes a fixed but sufficiently small

positive constant.

§2. Proof of the theorem

To prove the theorem, the following lemmas are needed.

Lemma 2.1. Let

d(2, 2, 3, 3; k) :=
∑

k=n2m3

d(n)d(m),

D(2, 2, 3, 3;x) :=
∑

1≤k≤x

d(2, 2, 3, 3; k),

such that

D(2, 2, 3, 3;x) = x1/2P1,1(log x) + x1/3P1,2(log x) +O(x19/80+ϵ),

P1,1(t), P1,2(t) are polynomials of degree 1 in t.

Proof. This is lemma 6 of Deyu Zhang [4].

Lemma 2.2. Let f(m), g(n) are arithmetical functions such that

∑
m≤x

f(m) =

J∑
j=1

xαjPj(log x) +O(xα),

∑
n≤x

|g(n)| = O(xβ),
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where α1 ≥ α2 ≥ · · · ≥ αJ > α > β > 0, wherePj(t) are polynomials in t. If h(n) =∑
n=md f(m)g(d) then ∑

n≤x

h(n) =

J∑
j=1

xαjQj(log x) +O(xα),

where Qj(t) are polynomials in t, (j = 1, · · · , J).
Proof. This is theorem 14.1 of Ivić [3].

Lemma 2.3. Let f(n) be an arithmetical function for which

∑
n≤x

f(n) =
l∑

j=1

xajPj(log x) +O(xa),

∑
n≤x

|f(n)| = O(xa1(log x)r),

where a1 ≥ a2 ≥ · · · ≥ al > 1/c > a ≥ 0, r ≥ 0, Pj(t) are polynomials in t of degrees not

exceeding r, (j = 1, · · · , l), and c ≥ 1 and b ≥ 1 are fixed integers. Suppose for ℜs > 1 that∑∞
n=1

µb(n)
ns = 1

ζb(s)
, if h(n) =

∑
dc|n µb(d)f(n/d

c), then

∑
n≤x

h(n) =

l∑
j=1

xajRj(log x) + Ec(x),

where Rj(t) are polynomials in t of degrees not exceeding r, (j = 1, · · · , l), and for some D > 0,

Ec(x)≪ x1/cexp(−D(log x)3/5(log log x)−1/5).

Proof. If b = 1, this is theorem 14.2 of Ivić [3]. When b ≥ 2, Lemma 2.3 can be proved by

the same approach.

Now we prove the Theorem. Let δ2(n) = 1, if n is squarefull numbers; otherwise, δ2(n) = 0.

Let
∑∞

n=1
δ2(n)t

(e)(n)
ns = F (s), (ℜs > 1). By the Euler product formula we get for ℜs > 1 that

F (s) =
∏
p

(1 +
δ2(p)t

(e)(p)

ps
+

δ2(p
2)t(e)(p2)

p2s
+ · · · )

=
∏
p

(1 +
2

p2s
+

2

p3s
+

2

p4s
+

2

p5s
+

4

p6s
+ · · · )

= ζ(2s)
∏
p

(1 +
1

p2s
+

2

p3s
+

2

p6s
+ · · · )

= ζ2(2s)ζ(3s)
∏
p

(1 +
1

p3s
− 1

p4s
− 2

p5s
+ · · · )

= ζ2(2s)ζ2(3s)
∏
p

1− 1

p4s
− 2

p5s
− 1

p6s
+ · · · )

=
ζ2(2s)ζ2(3s)

ζ(4s)

∏
p

(1− 2

p5s
− 2

p9s
− 1

p12s
· · · )

=
ζ2(2s)ζ2(3s)G(s)

ζ(4s)
, (1)
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where G(s) =
∑∞

n=1
g(n)
ns , G(s) is absolutely convergent for ℜs > 1/5, and∑

n≤x

|g(n)| ≪ x1/5+ϵ.

Let

ζ2(2s)ζ2(3s)G(s) =
∞∑

n=1

f(n)

ns
, ℜs > 1/2,

ζ2(2s)ζ2(3s) =

∞∑
n=1

d(2, 2, 3, 3;n)

ns
,

such that

f(n) =
∑

n=md

d(2, 2, 3, 3;m)g(d). (2)

From Lemma 2.1 and the definition of d(2, 2, 3, 3;m) we get∑
m≤x

d(2, 2, 3, 3;m) = x1/2P1,1(log x) + x1/3P1,2(log x) +O(x19/80+ϵ), (3)

where P1,k(log x) are polynomials of degrees 1 in log x, k = 1, 2.

In addition we have ∑
n≤x

|g(n)| = O(x1/5+ϵ). (4)

From (2), (3) and (4), in view of Lemma 2.2,∑
n≤x

f(n) = x1/2Q1,1(log x) + x1/3Q1,2(log x) +O(x19/80+ϵ), (5)

where Q1,1(t), Q1,2(t) are polynomials of degrees 1 in t, then we can get∑
n≤x

|f(n)| ≪ x1/2 log x. (6)

In view of 1
ζ(4s) =

∑∞
n=1

µ(n)
n4s , ℜs > 1/4, from (1) and (2) we have the relation

δ(n)t(e)(n) =
∑

n=md4

f(n)µ(d). (7)

From (5), (6) and (7), in view of Lemma 2.3, we can get∑
n≤x

δ2(n)t
(e)(n) = x1/2R1,1(log x) + x1/3R1,2(log x) +O(x1/4exp(−D(log x)3/5(log log x)−1/5)).

(8)

Finally, the theorem is completely proved.
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Abstract In this paper we introduce the concept of left duo seminear-rings and discuss the

properties of a seminear-ring R in which every left ideal is a right ideal. We also obtain some

equivalent conditions for this seminear-ring.
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§1. Introduction and preliminaries

Seminear-rings are a common generalization of near-rings and semi rings. A seminear-ring

is an algebraic system (R,+, ·), such that

(i) (R,+) is a semigroup,

(ii) (R, ·) is a semigroup, and

(iii)(a+ b)c = ac+ bc for all a, b, c ∈ R.

If we replace (iii) by (iii)’ a · (b+ c) = a · b+ a · c for all a, b, c ∈ R, then R is called a left

seminear-ring. We write xy for x · y for all x, y in R. Throughout this paper, R stands for a

right seminear-ring (R,+, ·) with an absorbing zero [2].

A non-empty subset I of a seminear-ring R is called a left ideal (right ideal) if,

(i) for all x, y ∈ I, x+ y ∈ I, and

(ii) for all x ∈ I and r ∈ R, rx (xr) ∈ I.

I is said to be an ideal of R, it is both a left ideal and a right ideal.

An ideal I of R is called a completely semiprime ideal if x ∈ I whenever x2 ∈ I. A

seminear-ring R is said to have the

(i) Insertion of Factors Property-IFP for short, if for x, y in R, xy = 0⇒ xry = 0 for all

r in R, if in addition, xy = 0⇒ yx = 0 for x, y in R we say R has (∗, IFP ).

(ii) strong IFP if and only if for all ideals I of R, xy ∈ I ⇒ xry ∈ I for all r in R and

(iii) property P4 if for all ideals I of R xy ∈ I ⇒ yx ∈ I.

A left ideal B of a seminear-ring R is called essential, if B ∩K = {0}, where K is any left

ideal of R, implies K = {0}. A seminear-ring R is said to be an integral if R has no non-zero

zero-divisors.
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A map f : R → R is called a mate function if x = xf(x)x for all x in R. f(x) is called

a mate of x. This concept has been introduced in [2] with a view to handling the regularity

structure in a seminear-ring with considerable ease and to discuss in detail the properties of

the exact “mate”of each element.

Notations 1.1. We furnish below the notations that we make use of throughout this

paper.

(1) E = {e ∈ R/e2 = e} - set of all idempotents of R.

(2) L = {x ∈ R/xk = 0 for some positive integer k} - set of all nilpotent elements of R.

(3) C(R) = {r ∈ R/rx = xr for all x ∈ R} - centre of R.

(4) l(S) = {x ∈ R/xs = 0 for all s ∈ S} - left annihilator of a non-empty subset S in R.

2. Preliminary results

We freely make use of the following results from [2], [3] and [4] and designate them as (K1),

(K2) etc.

(K1) A seminear-ring R has no non-zero nilpotent elements if and only if x2 = 0⇒ x = 0

for all x in R.

(K2) If R has a mate function f , then R is a left (right) normal seminear-ring.

(K3) Let f be a mate function for R. Then every left ideal A of R is idempotent.

(K4) If R has a mate function f, then for every x in R, xf(x), f(x)x ∈ E, Rx = Rf(x)x

and xR = xf(x)R.

(K5) Let r, m be two positive integers. We say that R is a P (r,m) seminear-ring if

xrR = Rxm for all x in R .

(K6) A seminear-ring R is called a Pk seminear-ring (P ′
k seminear-ring) if there exists a

positive integer “k”such that xkR = xRx (Rxk = xRx) for all x in R.

(K7) A seminear-ring R is called left (right) normal if a ∈ Ra (aR) for each a ∈ R. R is

normal if it is both left normal and right normal.

(K8) Let “r”be a positive integer. We say that R is a left-r-normal (right-r-normal)

seminear-ring if a ∈ Rar (arR) for each a ∈ R.

§3. Left Duo Seminear-rings

In this section we define the concept of left duo seminear-rings, furnish a few examples and

prove some of its properties.

Definition 3.1. We say that a seminear-ring R is a left duo seminear-ring if every left

ideal of R is a right ideal.

Example 3.1.

(i) A natural example of a left duo seminear-ring is the direct product of any two seminear-

fields.

(ii) Let R = {0, a, b, c, d}. We define the semigroup operations “+”and “·”in R as

follows:
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+ 0 a b c d

0 0 a b c d

a a a a a a

b b a b b b

c c a b c c

d d a b c d

. 0 a b c d

0 0 0 0 0 0

a 0 a a a a

b 0 a b b b

c 0 a b c c

d 0 a b c d

Obviously (R,+, ·) is a left duo seminear-ring.

(iii) We consider the seminear-ring (R,+, ·) where R = {0, a, b, c} and the semigroup op-

erations “+”and “·”are defined as follows:

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b c

0 0 0 0 0

a 0 a b a

b 0 0 0 0

c 0 a a a

This is not a left duo seminear-ring. Since the left ideal {0, a} is not a right ideal of R. It is

worth noting that this is, in fact a near-ring. Thus, even in near-ring theory, a left ideal need

not be a right ideal.

Proposition 3.1. Any P (1,m) seminear-ring is an left duo seminear-ring.

Proof. Since R is a P (1,m) seminear-ring. We have for all “x”in R, xR = Rxm.

Let “A”be any left ideal of R. Therefore RA ⊆ A. Let a ∈ A. For any r ∈ R, since

ar ∈ aR = Ram there exists b ∈ R such that ar = bam ∈ RA ⊆ A. Thus AR ⊆ A and the

desired result now follows.

Proposition 3.2. Let R be a seminear-ring with a mate function f . If E ⊆ C(R), then

R is left duo seminear-ring.

Proof. Let A be any left ideal of R. Clearly then RA ⊆ A. For any “x”in A and

“r”in R, xr = xf(x)xr = xrf(x)x (since f(x)x ∈ E) = xyx where y = rf(x). Thus

xr = xyx = (xy)x ∈ RA ⊆ A. This guarantees that AR ⊆ A and hence R is left duo

seminear-ring.

We furnish below a necessary and sufficient condition for a left duo seminear-ring to admit

a mate function.

Theorem 3.1. Let R be a left duo right cancellative seminear-ring. Then R has a mate

function if and only if every left ideal of R is idempotent and R is a left normal seminear-ring.

Proof. For the only if part, let us assume that R has a mate function f . For x ∈ R, x =

xf(x)x ∈ Rx and hence R is left normal seminear-ring. Also (K3) demands that, every left

ideal of R is idempotent.

For the if part, let x ∈ R. We observe that R is a left normal seminear-ring x ∈ Rx for

every x ∈ R. Since R is a left duo seminear-ring and Rx is a left ideal of R, it is idempotent.
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Clearly then Rx = (Rx)2 = (Rx)(Rx) = (RxR)x ⊆ (Rx)x = Rx2. Therefore x ∈ Rx ⊆ Rx2.

Hence there exists y ∈ R such that x = yx2. Now x2 = x(yx2) = xyx⇒ x = xyx (as R is right

cancellative). By setting y = g(x) we see that x = xg(x)x. Hence “g”is a mate function for

R.

We shall obtain a complete characterisation of left duo seminear-rings in the following

Theorem:

Theorem 3.2. Let R admit a mate function f . Then R is a left duo seminear-ring if and

only if R is a P1 seminear-ring.

Proof. Suppose R is a left duo seminear-ring. Clearly Rx being a left ideal for every

“x”in R, is a right ideal of R. Therefore (Rx)R ⊆ Rx. Hence for any r ∈ R there exists some

r′ ∈ R such that xr = (xf(x)x)r = x(f(x)xr) = xr′x ∈ xRx. Thus xR ⊆ xRx. Obviously the

reverse inclusion xRx ⊆ xR always holds. Consequently we have xR = xRx for all “x”in R.

Thus R is P1 seminear-ring.

For the converse, let A be any left ideal of R. Clearly then RA ⊆ A. For every a ∈ R, we

have aR = aRa = (aR)a ⊆ RA ⊆ A. Consequently AR ⊆ A and the result follows.

Theorem 3.3. Every left ideal of a left duo seminear-ring with mate functions is a left

duo seminear-ring in its own right.

Proof. Let f be a mate function for R and let M be any left ideal of R. We observe that

for all “x”in M , f(x)xf(x) ∈ RMR ⊆ M (since R is left duo seminear-ring). We therefore

define a map g : M →M such that, g(x) = f(x)xf(x) for all “x”in R.

As xg(x)x = x(f(x)xf(x))x = xf(x)(xf(x)x) = xf(x)x = x, it is clear that g serves

as a mate function for M . Now for all “x”in M , Rx ⊆ M . Also it is clear that xM ⊆
xR = xRx = x(Rx) ⊆ xM (using Theorem left duo [1]) and therefore xM = xR = xRx and

xRx = (xR)x = xMx. Hence xM = xMx for all “x”in M and Theorem 3.2 demands that

M is also a left duo seminear-ring.

Remark 3.1. It is worth noting that the existence of a mate function and the property

xR = xRx for all x in R (P1 seminear-ring) are preserved under homomorphisms. Consequently,

if R admits mate functions and has the left duo property, any homomorphic image of R also

does so.

In the following Theorem we prove some important properties of a left duo seminear-ring.

Theorem 3.4. Let R be a left duo seminear-ring admit a mate function “f”. Then we

have the following:

(i) For all ideals M1 and M2 of R, M1 ∩M2 = M1M2.

(ii) Rx ∩Ry = Rxy for all x, y in R.

(iii) R has no non-zero nilpotent elements.

(iv) R has (∗, IFP ).

(v) Every ideal of R is a completely semi prime ideal.

(vi) R has property P4.

(vii) R has strong IFP .

(viii) Every left ideal of R is essential if R is integral.

Proof. Since R has a mate function f , then (K2) demands that R is left normal seminear-

ring.
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(i) Let x ∈ M1 ∩M2. Since f is a mate function, x = xf(x)x = x(f(x)x) ∈ M1M2. This

implies

M1 ∩M2 ⊆M1M2. (1)

Let r = yz ∈ M1M2 with y ∈ M1 and z ∈ M2. Clearly r ∈ M1, since R is left duo we have

r = yz ∈ RM2 ⊆M2 and so r ∈M2. Thus

M1M2 ⊆M1 ∩M2. (2)

From (1) and (2), we get M1 ∩M2 = M1M2.

(ii) For x, y in R, Rx ∩ Ry = RxRy-taking M1 = Rx and M2 = Ry in (i). We have,

obviously, Rx = Rx ∩R = RxR and this yields that Rxy = RxRy and the result follows.

(iii) Since R is left normal seminear-ring, a ∈ R ⇒ a ∈ Ra = Ra ∩ Ra = Raa = Ra2 and

therefore “a2 = 0 ⇒ a = 0”. Then (K1) demands that L = {0}. Hence R has no non-zero

nilpotent elements.

(iv) Let a, b ∈ R. Suppose ab = 0. Then a ∈ l(b). Clearly l(b) is a left ideal of R. Since

R is left duo seminear-ring, l(b) is a right ideal of R. Hence ar ∈ l(b) for any r ∈ R. Therefore

arb = 0. Hence R is IFP seminear-ring.

Also, if ab = 0, then (ba)2 = ba(ba) = b(ab)a = b0a = b0 = 0. Now by (iii) ba = 0 and (iv)

follows.

(v) Let x2 ∈M where M is any ideal of R. Since R is left normal seminear-ring. Therefore

x ∈ Rx = Rx ∩Rx = Rx2 = RM ⊆M and (v) follows.

(vi) Let xy ∈ I where I is any ideal of R. Now (yx)2 = yxyx = y(xy)x ∈ RIR ⊆ I and

(v) implies yx ∈ I. Hence the result follows.

(vii) Let I be any ideal of R and let xy ∈ I. Now (vi) implies yx ∈ I and therefore,

yxr ∈ IR ⊆ I for all “r”in R. Thus we have y(xr) ∈ I and again (vi) guarantees that

(xr)y = xry ∈ I. Hence R has strong IFP .

(viii) Let P be a non-zero left ideal of R. Suppose there exists a left ideal Q of R such that

P ∩Q = {0}. Then by (i), PQ = {0} and since R is an integral seminear-ring, Q = {0}. This

completes the proof of (viii).

We conclude our discussion with the following characterisation of left duo seminear-rings.

Theorem 3.5. Let R be a seminear-ring admit a mate function“f”. Then the following

statements are equivalent:

(i) R is left duo seminear-ring.

(ii) R is P1 seminear-ring.

(iii) For all left ideals L1 and L2 of R, L1 ∩ L2 = L1L2.

Proof. (i)⇒(ii) follows from Theorem 3.2.

(ii)⇒(iii) Let x ∈ L1 ∩ L2. Clearly then x = xf(x)x = x(f(x)x) ∈ L1L2. Thus L1 ∩ L2 ⊆
L1L2. Now let r = yz ∈ L1L2 with y ∈ L1 and z ∈ L2. We have r = yz ∈ yR = yRy and

therefore r = ysy (for some s in R) = y(sy) ∈ yL1. Since yL1 ⊆ L1 we have r ∈ L1. This

guarantees that L1L2 ⊆ L1. Again as r = yz ∈ RL2 ⊆ L2 we see that L1L2 ⊆ L2. Collecting

all these pieces we get L1L2 ⊆ L1 ∩ L2 and (iii) follows.

(iii)⇒(i) Let L1 be any left ideal of R, and let L2 = R. Then the assumption of (iii) implies

that L1R = L1 ∩R = L1, that is, L1 is a right ideal of R and (i) follows.
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