
48 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Chapter III

Service Composition:
Concepts, Techniques,

Tools and Trends

Boualem Benatallah, University of New South Wales, Australia

Remco M. Dijkman, University of Twente, The Netherlands

Marlon Dumas, Queensland University of Technology, Australia

Zakaria Maamar, Zayed University, United Arab Emirates

Abstract

This chapter provides an overview of the area of service composition. It does so by

introducing a generic architecture for service composition and using this architecture

to discuss some salient concepts and techniques. The architecture is also used as a

framework for providing a critical view into a number of languages, standardization

efforts, and tools related to service composition emanating both from academia and

industry and to classify them in terms of the concepts and techniques that they

incorporate or support (for example, orchestration and dynamic service selection).

Finally, the chapter discusses some trends in service-oriented software systems

engineering pertaining to service composition.

Service Composition 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Introduction

The last decade has seen organizations worldwide expose their operations on the Web

to take advantage of the commoditized infrastructure and the potential for global

visibility and increased business process automation that Web technologies offer. An

overwhelming number of organizations have reaped the benefits of the Web by making

their applications available to their customers and partners through interactive interfaces

combining Web forms and dynamically generated Web pages. This has seen the Web

evolve from a vehicle for information dissemination to a vehicle for conducting business

transactions, albeit in a manual way.

The next step in the evolution of Web technologies is the emergence of Web services

(Alonso, Casati, Kuno & Machiraju, 2003). Web services bring together ideas from Web

applications on the one hand (for example, communication via document exchange) and

distributed computing on the other hand (for example, remote procedure calls and

communication middleware). The outcome of this convergence is a technology that

enables applications to communicate with each other in a programmatic way through

standardized message exchanges. This is expected to trigger a move from a Web of mostly

manual interactions to a Web of both manual and programmatic interactions.

There are several definitions of Web services, most of which agree on saying that a Web

service is a software application available on the Web (through a URI) whose capabilities

and modus operandi are described in XML and is able to communicate through XML

messages over an Internet transport protocol. At present, a widely accepted core

infrastructure for Web services is the so-called Web Services Stack which is essentially

structured around three XML-based standards: SOAP, WSDL, and UDDI (Curbera,

Duftler, Khalaf, Nagy, Mukhi & Weerawarana, 2002). These three standards are intended

to support the tasks of service description, discovery, and communication.

This basic core infrastructure is currently being used to build simple Web services such

as those providing information search capabilities to an open audience (for example,

stock quotes, search engine queries, auction monitoring). However, it has rapidly

become clear that this core infrastructure is not sufficient to meet the requirements of

complex applications (especially in the area of B2B integration) since it lacks abstractions

for dealing with key requirements, such as security, reliability, transactions, composi-

tion, service level agreements, and quality of service, among others (Medjahed, Benatallah,

Bouguettaya, Ngu & Elmagarmid, 2003). In light of this, several efforts are underway to

design a standard comprehensive infrastructure for Web services.

In particular, the development of new services through the composition of existing ones

has gained considerable momentum as a means to integrate heterogeneous enterprise

applications and to realize B2B e-commerce collaborations. Unfortunately, given that

individual services are developed using manifold approaches and technologies, con-

necting and coordinating them in order to build integrated services is delicate, time-

consuming, and error-prone, requiring a considerable amount of low-level programming

and system administration efforts. This observation has sparked a wave of R&D efforts

in an area often known as “service composition.”

50 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Stated in simple terms, service composition aims at providing effective and efficient

means for creating, running, adapting, and maintaining services that rely on other

services in some way. In order for service composition to deliver on its promises, there

is a need for development tools incorporating high-level abstractions for facilitating, or

even automating, the tasks associated with service composition. Hence, these tools

should provide the infrastructure for enabling the design and execution of composite

services.

This chapter provides an overview of the benefits and pitfalls of service composition,

the functionalities that the supporting platforms are required to provide, and the extent

to which these requirements are addressed by the current state of the art. However, the

chapter will not address in detail system issues such as reliability, transactions, and

security. We present the main concepts for service composition by presenting a generic

tool architecture for service composition, covering aspects such as design of composite

services and composite service execution. Based on these concepts, we provide a survey

of service composition models, methods, and supporting technologies.

The chapter is structured as follows. The Generic Architecture section discusses the

foundation concepts in Web services composition by introducing a generic tool

architecture for service composition. The Languages for Service Composition section

overviews language support for Web services description and composition, covering

the design module of the generic architecture. The Platforms for Composite Service

Execution section reviews research efforts and commercial platforms for web services

composition by covering the runtime module of the generic architecture. The Trends

Relevant to (Web) Service Composition section reviews some trends in Web services

technologies, and the last section provides concluding remarks.

Generic Architecture

From an architectural point of view, a tool environment for service composition should

provide at least the following modules:

• Design module. This module offers a graphical user interface for specifying

composite services. The module may also support translation of a composite

service design into a description language. More advanced design tools may

support the automated verification and/or simulation of composite service designs

on the basis of a formal language.

• Runtime environment. This module is responsible for executing a composite

service and routing messages between its components. It is also responsible for

monitoring and fault and exception handling. The runtime environment may

additionally support dynamic service selection and binding as discussed below.

Service Composition 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Figure 1 represents the generic architecture in more detail. This section explains the

generic architecture further.

Composite Service Design

A tool for composite service design supports a composite service design methodology.

A methodology consists of design languages, formalisms that are coupled with these

design languages, and design approaches. Design languages are graphical notations

that can be used by stakeholders in a design process to represent a design from their

perspective. They focus on representing a service composition in a way that is easy to

understand for the stakeholders. Formalisms are mathematical languages that can be

used to represent a particular aspect of a design. As a mathematical language, a formalism

provides a mathematical basis for verification and simulation of a design. In a composite

service, for example, a formalism provides techniques that allow designers to analyze if

two services can be composed. An overview of formalisms that are used in model-driven

service composition is given in the Languages for Service Composition section. A design

approach prescribes a series of steps that have to be taken to construct a design. In this

way, a design approach provides a structured way to construct a design by gradually

introducing more detail into user requirements and current business operations until a

Figure 1. Generic architecture for a service composition tool

Service design

(WSDL, BPEL, ...)
Service description

Monitoring Module Backend Application
Integration

Synamic Service
Selection Module

Design Tool

Simulation Module
Formal Verification/ Translation Module

Skeletons
SOAP Stubs and

Enactment Module
Composite Service

Module
Internet Transport

Architecture module

Deliverable

Deliverable Transfer

Runtime interaction
(statechart, ...)

52 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

level of detail is reached at which a design can be directly implemented. For an approach

to service composition, this is the level of detail at which a design in a one-to-one fashion

corresponds to a description that can be executed by a runtime environment. Such a

description is a textual (typically XML-based) representation of the functional and

nonfunctional properties of a service or service composition. The Languages for Service

Composition section, Description Languages subsection explains some existing tech-

niques for describing service compositions.

From existing description techniques in the area of service composition, we can derive

that there are currently two ways to design a service composition, namely choreography

or orchestration. A choreography differs from an orchestration with respect to where the

logic that controls the interactions between the services involved should reside.

A choreography describes a collaboration between some enterprise services to achieve

a common goal. Hence, it does not focus on a particular service but rather on a goal.

Therefore, the control logic is distributed over the involved services and the choreog-

raphy emerges as the services interact with each other. To design a choreography, we

first describe the interactions that enterprise services have with each other to achieve

their goal and then the relations that exist between these interactions. A choreography

does not describe the actions that are performed internally by the service providers to

realize their enterprise services. Figure 2 shows a typical example of a choreography. This

example shows a collaboration that relates to buying an item.

An orchestration describes the behavior that a service provider implements to realize a

service. Hence, it focuses on a particular service, and the control logic is centralized on

the service provider of which we implement the behavior. To design an orchestration, we

describe the interactions that the service provider has with other parties and the actions

that the service provider performs internally to realize the service. An orchestration is

meant to be executed by an orchestration engine, as will be explained in the Composite

Service Execution subsection. Therefore, it is also called an executable process.

From these observations we can derive a set of basic concepts that are important in the

design of service composition, regardless of whether a choreography — or an orches-

tration-oriented approach is chosen and of the description or design language that is

Figure 2. An example of a choreography

shipping notice

interaction

ordering

service
Buyer

delivery

ShipperSeller

order

Service Composition 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

used. Figure 3 shows a meta-model in which our basic concepts are represented. The

figure shows that a service composition consists of a number of services that are

provided by service providers. The same service can be provided more than once by

different service providers (for example, a flight booking service can be provided by

different airlines). A service consists of (internal) actions and events that are part of an

interaction with other services. We claim that interactions are based on message passing

because this is the basic mechanism for interaction that is used in the mainstream service

description languages as they are presented in the Description Languages subsection.

Hence, interactions consist of a send event and a receive event. Relations relate actions

and interactions to each other. The kind of relation that is used (for example, flow relation,

causal relation, state-based relation, and so forth) depends on the language that is used.

Composite Service Execution

The composite service execution engine is the runtime component of a service compo-

sition tool. It takes as input a composite service description and coordinates the

execution of the composite service according to that description. At least two different

execution models can be distinguished:

Figure 3. Basic design concepts for service composition design

{complete, disjoint}

Receive Event

Interaction

Send EventProvider

EventService

RelationAction

0..1 0..1

of

1

*

*
provides

of1

*

*
relates_a

*

*

*

relates_e

11

*

54 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• Centralized (see, for example, Schuster, Georgakopoulos, Cichocki & Baker, 2000

and Casati & Shan, 2001). In this model, the responsibility for coordinating the

execution of a composite service relies on a single “scheduler.” This scheduler

interacts with each of the component services by processing and dispatching

messages. The internal architecture of the central scheduler is similar to that of a

traditional workflow management system (van der Aalst & van Hee, 2002), except

that the resources are all services rather than human actors, and there is no shared

database through which information can be implicitly passed from one stakeholder

to another. Instead, information must be explicitly passed through message

exchanges.

• Peer-to-Peer (see, for example, Mecella, Parisi-Presicce & Pernici, 2002 and

Benatallah, Sheng & Dumas, 2003). In this model, the responsibility for coordinat-

ing the executions of a composite service is distributed across the providers of the

component services, which interact in a peer-to-peer way without routing mes-

sages through a central scheduler. The composite service execution environment

therefore manifests itself in the form of a collection of inter-connected modules,

which communicate through an agreed protocol. This execution model bears some

similarities with distributed workflow execution models, such as those described

in Muth, Wodtke, Weissenfels, Dittrich, and Weikum (1998) and Chen and Hsu

(2002).

It is crucial that a mechanism is provided for monitoring the executions of a composite

service. Indeed, being able to trace the execution of a composite service is crucial for

metering, accounting, customer feedback, adaptation, and service improvement. The

monitoring mechanism varies depending on the execution model. In the case of central-

ized execution, the central scheduler can maintain a database of execution traces. In the

case of peer-to-peer execution, however, the information about composite service

executions is disseminated across a number of distributed data sources hosted by the

providers of the component services. Accordingly, it is necessary either to consolidate

these distributed data sources periodically or to be able to answer queries on demand

(Fauvet, Dumas & Benatallah, 2002).

A composite service can be linked to its component services either in a static or a dynamic

manner. A link between a composite service and a component service is static when it

is established at design time and cannot be changed without modifying the design of the

composite service. A link with a component service is dynamic when a mechanism

selects, at runtime, the actual service that will be invoked to perform a given step in the

composite service execution. We call this approach dynamic service selection.

The pool of candidate services over which the dynamic selection occurs may be: (i)

determined at design time; (ii) obtained by evaluating a given query over a registry (for

example, UDDI registry); or (iii) obtained from an invocation to a brokering service. The

selection itself is then performed based on a set of requirements and using a set of

preferences expressed in the composite service description. These constraints and

preferences may involve both functional attributes (that is, attributes describing the

Service Composition 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

capabilities of the services) and nonfunctional attributes (for example, time, location,

price, reliability, trust).

Once a service within the pool of candidate services is selected, it has to be invoked by

the composite service. This implies that either all the candidate services for a given task

of a composite service offer exactly the same interface (that is, the same set of operations

and common constraints on their use) or that some late binding mechanism is used to

“homogenize” the interfaces provided by all services so that at the end, the composite

service can invoke any of these candidate services.

The CORBA Dynamic Invocation Interface (DII) is an example of a late binding mecha-

nism. Another example from the area of inter-organizational workflow is provided by the

CrossFlow system (Grefen, Aberer, Hoffner & Ludwig, 2000). In this system, a task in a

workflow can be linked to a contract. When the task needs to be executed, a matchmaking

facility attempts to find another workflow that complies with that contract. In the area of

Web services, the Web Services Invocation Framework (WSIF) (Apache Web Services

Project, 2003) has been developed for the purpose of enabling late binding of Web

services.

Figure 4 represents the concepts that are described in this subsection in a meta-model.

Figure 4. Basic execution concepts for service composition design

*

Composite ServiceElementary Service

Service Service Link

Static Link Dynamic Link

Pool of Services

1

*

1

1 binds to

*

refers to

1

*

56 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Languages for Service Composition

The Generic Architecture section explained the need for different types of languages for

describing service compositions from different viewpoints. In this section, we present

some of these languages. We limit the discussion to description languages and formal-

isms, leaving aside design languages because there is not yet a widely accepted standard

for such languages.

Description Languages

• BPEL4WS. The Business Process Execution Language for Web Services (BEA

Systems, Microsoft, IBM & SAP, 2003) is a language with an XML-based syntax,

supporting the specification of processes that involve operations provided by one

or several Web services.

BPEL4WS is intended to support the description of two types of processes:

abstract and executable. An abstract process is a partially ordered set of message

exchanges between a service and a client of this service. It describes the behavioral

interface of a service without revealing its internal behavior. Using the terminology

introduced in the previous section, an abstract process is a two-party choreogra-

phy involving a service provider and a service requestor, described from the

perspective of the provider.

An executable process on the other hand, captures the internal behavior of a

service in terms of the messages that it will exchange with other services and a set

of internal data manipulation steps. An executable process is composed of a

number of constituent activities, the partners involved in these activities, a set of

internal variables, and a set of activities for handling faults and transactional

rollbacks. Using the terminology of the previous section, a BPEL4WS executable

process corresponds to an orchestration specification.

BPEL4WS draws upon concepts developed in the area of workflow management.

When compared to languages supported by existing workflow systems and to

related standards (for example, XPDL, WSCI, and ebXML BPSS), it appears that

BPEL4WS is relatively expressive (Wohed, van der Aalst, Dumas & ter Hofstede,

2003). In particular, the pick construct is not supported in many existing workflow

languages. On the negative side, it can be said that BPEL4WS lacks orthogonality,

in the sense that it has many constructs with overlapping scope (for example, the

switch and sequence constructs overlap with the control link construct).

• WSCI and BPML. The Business Process Management initiative (BPMi) is an

industry consortium aiming at contributing to the development of (service-

oriented) process description standards. The consortium has published a speci-

fication for a service-oriented process description language called BPML (Busi-

ness Process Modeling Language), similar in many ways to BPEL4WS. BPML

draws on a previous standard called WSCI (Web Service Conversation Interface)

developed by the stakeholders behind BPMi. WSCI integrates many of the

Service Composition 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

constructs found in BPML and BPEL4WS (for example, sequence, choice, parallel

execution, send/receive primitives, and so forth). However, it differs from them in

its intent: while BPML is mainly intended for describing orchestrations, WSCI is

intended for describing choreographies (see Composite Service Design subsec-

tion in the previous section for a discussion on this dichotomy). The strong

commonalities between these languages suggest that orchestration and choreog-

raphy correspond to two different (and complementary) viewpoints over the same

class of models (that is, composite service models). As discussed earlier, BPEL4WS

has been designed with the goal of capturing both orchestrations and two-party

choreographies. Peltz (2003) discusses the relationships between WSCI, BPML,

and BPEL4WS in more detail.

• ebXML BPSS. Electronic Business XML (ebXML) is a series of standards intended

to provide an implementation platform for business-to-business collaborations.

ebXML adopts a choreography-based approach to service composition. Specifi-

cally, a business collaboration is described as a set of Collaboration Protocol

Profiles (CPP) (UN/CEFACT & OASIS, 2001a). A CPP describes, among other

things, which part of a given business process a given partner is able to provide

by referring to a role in a process specified using the Business Process Specifica-

tion Schema (BPSS) (UN/CEFACT & OASIS, 2001b). A BPSS document specifies

a number of transactions, the roles associated with these transactions, the flow of

control and flow of documents between these transactions, and the document

access rights for the involved documents. Control-flow relationships are described

using guarded transitions (like in state machines) and fork/join operators.

• WS-CDL. The W3C Web Service Choreography Description Languages (WS-

CDL) (W3C World Wide Web Consortium, 2002) is another ongoing standardiza-

tion effort in the area of service composition. Like WSCI and ebXML, the intent of

WS-CDL is to define a language for describing multiparty interaction scenarios (or

choreographies), not necessarily for the purpose of executing them using a central

scheduler but rather with the purpose of monitoring them and being able to detect

deviations with respect to a given specification.

• RosettaNet. RosettaNet (RosettaNet, 2004) is an industry consortium, which has

developed a series of standards for Business-to-Business (B2B) integration with

an emphasis on supply chain management. Among others, RosettaNet defines a

notion of Partner Interface Protocols (PIP), which enables the description of

interactions between business processes deployed by multiple partners. The

notion of PIP is related to the notion of service choreography and has influenced

efforts in this area. For details about RosettaNet and its relationship to Web service

standards, readers are referred to Bussler (2003).

Formalisms

In an attempt to provide a rigorous foundation to service composition and to enable the

use of formal verification and simulation techniques, a number of formalisms for

describing composite services have been proposed. One of the earliest proposals in this

58 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

area is that of Cardelli and Davies (1999), who present an algebra for programming

applications that access multiple Web resources (also called services). This algebra

brings together operators inspired by process algebras (sequential execution, concur-

rent execution, and repetition) with operators capturing the unreliable nature of the Web

(timeout, time limit, rate limit, stall, and fail). Basic services are described using the

operator url, which attempts to fetch the resource associated with a given URL. Although

the algebra is intended for manipulating Web pages, it could conceivably be extended

to take into account the richer structural and behavioral descriptions of Web services.

Various authors have advocated the use of Petri nets as a formal foundation for modeling

composite services or for defining formal semantics for service composition languages.

The VISPO project (Mecella et al., 2002) has advocated the use of Petri nets to model the

control flow aspects of composite services. Van der Aalst (2003) examines a number of

proposed standards for service composition in terms of a collection of workflow patterns

and notes that these proposed standards would benefit from having a formal semantics

defined in terms of established formalisms such as Petri nets. Finally, Narayanan and

McIlraith (2002) present DAML-S, a language that supports the description of composite

services, and defines a mapping from the process-oriented subset of DAML-S to Petri

nets.

More recently, Bultan, Fu, Hull, and Su (2003) adopt Mealy machines (a category of

communicating automata with queues) to describe the interactions (also called conver-

sations) between aggregated services. Each service participating in an aggregation is

described as a Mealy machine, which consumes events from a queue and dispatches

events to the queues of the other services in the aggregation. The authors study the

expressive power of the resulting formalism, measured in terms of the set of traces (that

is, sequences of events) that can be recognized by an aggregation of Mealy machines.

There is not yet a widely accepted formal foundation for service composition. It appears

that Petri nets, process algebras, and state machines are suitable for capturing at least

certain aspects of service composition. Ultimately, however, for a given formalism to be

adopted in this area, it is necessary that its benefits are tangible (for example, availability

of analysis and simulation tools) and that full mappings between this formalism and

concrete modeling and description languages are provided.

Platforms for

Composite Service Execution

The previous section explained the structure of an execution environment for composite

services. In this section, we review existing implementations that serve as execution

environments. We first provide an overview of some research prototypes before looking

more closely at the implementations provided by major vendors: IBM, BEA, and

Microsoft.

Service Composition 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Research Prototypes

CMI (Collaboration Management Infrastructure) (Schuster et al., 2000) provides an

architecture for interenterprise services. It uses state machines to describe the behavior

of composite services. The concept of placeholder is used to enable the dynamic

selection of services. A placeholder is a set of services (identified at runtime) and a

method for selecting a service given a set of parameters.

eFlow (Casati & Shan, 2001) is a platform that supports the specification, enactment, and

management of composite services. eFlow uses graph-based model in which the nodes

denote invocations to service operations, and the edges denote control-flow dependen-

cies. A composite service is modeled by a graph that defines the order of execution among

the nodes in the process. The definition of a service node contains a search recipe

represented in a query language. When a service node is invoked, a search recipe is

executed to select a reference to a specific service. Once a service is selected by the search

recipe, the eFlow execution engine is responsible for performing the dynamic binding

using metadata that it stores in the service repository.

CrossFlow (Grefen et al., 2000) features the concept of contracts for services coopera-

tion. When a partner wants to publish a collaboration, it uses its contract manager to send

a contract template to matchmaking engine. When a consumer wants to outsource a

service, it uses a contract template to search for relevant services. Based on the

specifications in the contract, a service enactment structure is set up.

SELF-SERV (compoSing wEb accessibLe inFormation and buSiness services) (Benatallah,

Dumas, Sheng & Ngu, 2002) specifies composite services using statecharts. Further-

more, SELF-SERV proposes a peer-to-peer model for orchestrating a composite service

execution in which the control and data-flow dependencies encoded in a composite

service definition are enforced through software components located in the sites of the

providers participating in a composition. SELF-SERV refines the concepts of search

recipe and placeholder introduced by e-Flow and CMI by proposing the concept of

community. A community is an abstract definition of a service capability with a set of

policies for (i) managing membership in the community and (ii) selecting at runtime the

service that will execute a given service invocation on behalf of the community. Policies

for runtime selection of services are formulated using multiattribute value functions. A

community is also responsible for performing the dynamic binding of the selected Web

service, thereby acting as a dynamic service selector.

DySCo (Piccinelli, Finkelstein & Lane Williams, 2003) is another service-oriented workflow

infrastructure, which supports the definition and enactment of dynamic service interac-

tions. DySCo adopts a traditional workflow approach, except with respect to the

definition of a task. Instead of corresponding to an activity involving a number of

resources, a task in DySCo corresponds to an interaction step between services. In

addition, DySCo supports the dynamic reconfiguration of service interactions by

allowing a task to be decomposed at runtime into a more complicated structure. For

example, a document mailing task in a service-based workflow can be decomposed into

two tasks: a document printing task and a document posting task, which can then be

assigned to different providers.

60 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Commercial Tools

Typically, a tool claiming to support the Web services stack would minimally provide an

API in one or more programming languages (for example, Java) for generating and/or

processing SOAP messages. Some tools would go further by supporting tasks such as:

(i) generating WSDL descriptions from modules, packages, or classes (for example, from

a Java class file); (ii) editing WSDL descriptions through a graphical interface; and/or

(iii) extracting information contained in WSDL files in order to dynamically generate

stubs and skeletons that provide transparent communication between Web service

requesters and providers.

Most tools also provide support for UDDI (both for setting up a registry and for

connecting to an existing registry). Few tools currently support composite service

description languages, and when they do, they typically only support a subset of these

languages.

• IBM WebSphere. WebSphere is a family of IBM products for enabling B2B

interactions. The application server is the cornerstone of WebSphere. It aims at

providing database and backend integration as well as security and performance

capability (for example, workload management). The WebSphere application server

Advanced Edition adds support for J2EE and CORBA. The advanced edition

integrates support for key Web service standards such as SOAP, UDDI, and

WSDL. Additionally, it provides distributed transaction support for major data-

base systems. Other products make up the WebSphere platform. These include

WebSphere Business Components, WebSphere Commerce, and WebSphere MQ

Family. The WebSphere Business Components provides prebuilt and tested

components. WebSphere Commerce provides mechanisms for building B2B sites.

WebSphere MQ Family is a family of message-oriented middleware products.

• BEA WebLogic Integrator. BEA WebLogic Integrator is one of the cornerstones

of the BEA WebLogic e-Business Platform. It is built on top of a J2EE compliant

application server and J2EE connector architecture and supports current Web

service standards such as SOAP, UDDI, and WSDL. It is composed of four major

modules:

• The Application Server, which provides the infrastructure and functionalities

for developing and deploying multitier distributed applications as EJB com-

ponents.

• The Application Integration Server, which leverages the J2EE connector

architecture to simplify integration with existing enterprise applications, such

as SAP R/3 and PeopleSoft.

• The Business Process Management System, which provides a design tool and

execution engine for business processes in BPEL4WS.

• The B2B integration manages interactions with external business processes.

Service Composition 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

• Microsoft Web Services Support. Support for Web services is one of the key

aspects of the .Net product series. In particular, ASP.Net provides a programming

model for exposing applications as Web services. Briefly, the skeleton of a Web

service is encoded as an ASMX file (proprietary Microsoft format), which can be

interpreted by the Internet Information Server (IIS) in order to process incoming

SOAP calls for the service and generate SOAP responses and faults. A WSDL

description and a test page are also automatically generated from the ASMX file.

Another Microsoft product, which provides support for Web services, is BizTalk:

a middleware platform for Enterprise Application and B2B Integration. Applica-

tions in BizTalk are integrated based on an XML message-oriented paradigm. Part

of the BizTalk suite is the BizTalk Orchestration Engine, which implements XLANG,

a precursor of BPEL4WS. Developers can define processes using a graphical

interface and export them as XLANG descriptions, which are then fed into the

runtime engine.

Trends Relevant to

(Web) Service Composition

While much of the work to date has focused on standards for announcing, discovering,

and invoking Web services, there are other significant developments happening in Web

services. In this section, we overview some of the developments related to conversation-

driven composition, semantic Web services, and wireless Web services (also known as

M-services), focusing on those aspects relevant to service composition.

Conversation-Driven Composition

A conversation is a consistent exchange of messages between participants involved in

joint operations. A conversation succeeds when what was expected from that conver-

sation in terms of outcome has been achieved. Further, a conversation fails when the

conversation faced difficulties (for example, communication-medium disconnected) or

did not achieve what was expected.

The use of conversations helps in defining composite services at runtime instead of

design time. When a Web service is being executed, it has at the same time to initiate

conversations with the Web services that are due for execution. The purpose of these

conversations is twofold (Maamar, Benatallah & Mansoor, 2003): invite the Web

services to join the composition process and ensure that the Web services are ready for

execution in case they accept the invitation. Furthermore, conversations between Web

services allow addressing of the composability problem. Medjahed, Rezgui, Bouguettaya,

and Ouzzani (2003) note that an issue when defining a composite service is to check if

the Web services can actually work together at the information level. Mapping opera-

tions of the parameters exchanged between Web services may be required. Ensuring the

62 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

composability of Web services can be completed using ontologies and conversations.

Web services engage in conversations to agree on which ontology to use, what/how/

when to exchange, and what to expect from an exchange.

The Web Services Conversation Language is an initiative on the integration of conver-

sations into Web services. This language describes the structure of documents that a

Web service is supposed to receive and produce and the order in which the exchange

of these documents will occur. The conversation component to embed a Web service is

mainly a means for describing the operations that a Web service supports (for example,

clients have to log in first before they can check the catalogue).

Ardissono, Goy, and Petrone (2003) observed that current Web services communication

standards support simple interactions and are mostly structured as question-answer

pairs. These limitations hinder the possibility of expressing complex situations that

require more that two turns of interactions (for example, propose/counter-propose/

accept-reject). In addition, Ardissono et al. (2003) worked on a conversational model that

aims at supporting complex interactions between clients and Web services, where

several messages are exchanged before a Web service is completed.

It is stated that the full capacity of Web services as an integration platform will be reached

only when applications and business processes integrate their complex interactions by

using a standard process integration model such as BPEL4WS. While the orchestration

of Web services is a core component to any Web services integration effort, the use of

conversations gives more “freedom” to Web services to decide if they will take part in

this orchestration. Conversations are more than just combining components; they

promote the autonomy of components that act and react according to their environment

(Hanson, Nandi & Levine, 2002).

Semantic Web Services

Another major trend is the integration of semantics into Web services. Heflin and Huhns

(2003) argue that the goal driving the semantic Web is to automate Web-document

processing. The semantic Web aims at improving the technology that organizes,

searches, integrates, and evolves Web-accessible resources (for example, documents,

data). This requires the use of rich and machine-understandable abstractions to repre-

sent the resource semantics.

One of the core components to the widespread acceptance of the semantic Web is the

development of ontologies that specify standard terms and machine-readable defini-

tions. Although there is no consensus yet on what an ontology is, most researchers in

the field of knowledge representation consider a taxonomy of terms and the mechanisms

for expressing the terms and their relationships. Samples of markup language for

publishing and sharing ontologies on the 3W include RDF (Resource Description

Framework), DAML+OIL (DARPA Agent Markup Language + Ontology Inference

Layer), and OWL (Web Ontology Language) (W3C World Wide Web Consortium, 2001).

By combining efforts of Web services and semantic Web communities, it is expected that

new foundations and mechanisms for enabling automated discovery, access, combina-

tion, and management for the benefit of semantic Web services will be developed.

Service Composition 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Paolucci and Sycara (2003) note that the semantic Web provides tools for explicit markup

of Web content, whereas Web services could create a network of programs (that is,

software agents) that produce and consume information, enabling automated business

interactions. There exist various initiatives in the field of semantic Web services such

as DAML-S (DARPA Agent Markup Language for Services) (DAML-S Consortium,

2004), WSMF (Web Services Modeling Framework) (Fensel & Bussler, 2002), and

METEOR-S (Managing End-To-End OpeRations-Semantic Web Services and Processes)

(Sivashanmugam, Verma, Sheth & Miller, 2003).

Wireless Web Services

Besides the Web expansion, a development occurring in the field of wireless and mobile

technologies is witnessed (Wieland, 2003). Telecom companies are offering new services

and opportunities to customers over mobile devices. The next stage (if we are not already

in it), is to allow users to remotely enact Web services from mobile devices (Maamar &

Mansoor, 2003).

While Web services provisioning is an active area of research and development

(Benatallah & Casati, 2002), little has been done to date regarding their provisioning in

wireless environments. This is due to different obstacles including throughput and

connectivity of wireless networks, limited computing resources of mobile devices, and

risks of communication channel disconnections. In addition, businesses that are eager

to engage in wireless Web services activities are facing technical, legal, and organiza-

tional challenges. To optimize Web services provisioning in wireless environments,

important issues need to be tackled first:

Context-sensitive Web services selection. In addition to traditional criteria such as

monetary cost and execution time, the selection of services should consider, on the one

hand, the location of requesters and, on the other hand, the capabilities of the computing

resources on which these services will be deployed (for example, processing capacity,

bandwidth). This calls for context-aware service selection policies that enable a system

to adapt itself to computing and user requirements.

Handling disconnections during Web services execution. In a wireless environment,

disconnections are frequent. It is noted that to cope with disconnection issues during

a service delivery, software agent-based service composition middleware architectures

are deemed appropriate as proposed in Maamar, Sheng, and Benatallah (2004).

Conclusion

Web services promise to revolutionize the way in which applications interact over the

Web. However, the underlying technology is still in a relatively early stage of develop-

ment and adoption. While the core standards such as XML, SOAP, and WSDL are

relatively stable and are supported in various ways by a number of tools, standardization

efforts in key areas such as security, reliability, policy description, and composition are

64 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

still underway, and the tools supporting these emerging standards are still evolving. In

addition (or perhaps as a result of this), relatively few production-level Web services

have been deployed and are being used in practice. To some extent, these difficulties can

be explained by the fact that businesses have spent considerable resources in the last

few years to expose their functionality as interactive Web applications. As a result, they

are reluctant to invest more to move this functionality into Web services until the benefits

of this move are clear. It will probably take another two years before the technology

reaches the level of maturity necessary to trigger a widespread adoption. In the meantime,

it is important that middleware platform developers integrate the numerous facets of Web

services into their products (for example, facilitating the use of message-oriented

middleware for Web service development), while researchers advance the state of the art

in challenging issues such as Web service delivery in mobile environments, QoS-driven

selection of services, and manipulation of semantic-level service descriptions.

References

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web services: Concepts,

architectures and applications. Berlin: Springer-Verlag.

Apache Web Services Project. (2003). Web services invocation framework (WSIF).

Retrieved August 6, 2004: http://ws.apache.org/wsif/

Ardissono, L., Goy, A., & Petrone, G. (2003, July 14-18). Enabling conversations with

web services. Proceedings of the Second International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS), Melbourne, Australia.

BEA Systems, Microsoft, IBM & SAP. (2003). Business process execution language for

Web services (BPEL4WS). Retrieved August 6, 2004: f tp:/ /

www6.software.ibm.com/software/developer/library/ws-bpel.pdf

Benatallah, B., & Casati, F. (2002). Introduction to special issue on Web services.

Distributed and Parallel Databases: An International Journal, 12(2-3).

Benatallah, B., Dumas, M., Sheng, Q., & Ngu, A. (2002, February 26-March 1). Declara-

tive composition and peer-to-peer provisioning of dynamic Web services. Pro-

ceedings of the 18th IEEE International Conference on Data Engineering (ICDE),

San Jose, CA.

Benatallah, B., Sheng, Q., & Dumas, M. (2003). The SELF-SERV environment for Web

services composition. IEEE Internet Computing, 7(1), 40-48.

Bultan, T., Fu, X., Hull, R., & Su, J. (2003, May 20-24). Conversation specification: A new

approach to design and analysis of e-service composition. Proceedings of the 12th

International Conference on the World Wide Web (WWW’03) (pp. 403-410),

Budapest, Hungary.

Bussler, C. (2003). B2B integration: Concepts and architecture. Berlin: Springer-Verlag.

Cardelli, L., & Davies, R. (1999). Service combinators for Web computing. IEEE Trans-

actions on Software Engineering, 25(3), 309-316.

Service Composition 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Casati, F., & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.

Information Systems, 26(3), 143-162.

Chen, Q., & Hsu, M. (2002, October 28-November 1). CPM revisited – An architecture

comparison. Proceedings of the Confederated International Conferences CoopIS,

DOA, and ODBASE (pp. 72-90), Irvine, CA.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).

Unraveling the Web services web: An introduction to SOAP, WSDL, and UDDI.

IEEE Internet Computing, 6(2), 86-93.

DAML-S Consortium. (2004). DAML services. Retrieved August 6, 2004: http://

www.daml.org/services

Fauvet, M.-C., Dumas, M., & Benatallah, B. (2002, October 28-November 1). Collecting

and querying distributed traces of composite service executions. Proceedings of

the Confederated International Conferences CoopIS, DOA, and ODBASE (pp. 373-

390), Irvine, CA.

Fensel, D., & Bussler, C. (2002). The Web services modeling framework WSMF. Elec-

tronic Commerce Research and Applications, 1(2), 113-137.

Grefen, P., Aberer, K., Hoffner, Y., & Ludwig, H. (2000). CrossFlow: Cross-organizational

workflow management in dynamic virtual enterprises. International Journal of

Computer Systems Science & Engineering, 15(5), 277-290.

Hanson, J. E., Nandi, P., & Levine, D. W. (2002, June 24-27). Conversation-enabled Web

services for agents and e-business. Proceedings of the International Conference

on Internet Computing (IC), Las Vegas.

Heflin, J., & Huhns, M. (2003). The Zen of the Web. IEEE Internet Computing, 7(5).

Maamar, Z., Benatallah, B., & Mansoor, W. (2003, May 20-24). Service chart diagrams:

Description and application. Proceedings of the 12th International Conference on

the World Wide Web (WWW’03), Budapest, Hungary.

Maamar, Z., & Mansoor, W. (2003). Design and development of a software agent-based

and mobile service-oriented environment. e-Service Journal, 2(3).

Maamar, Z., Sheng, Q.Z., & Benatallah, B. (2004). On composite web services provision-

ing in an environment of fixed and mobile computing resources. Information

Technology and Management Journal, 5(3).

Mecella, M., Parisi-Presicce, F., & Pernici, B. (2002, August 23-24). Modeling e-service

orchestration through Petri nets. Proceedings of the 3rd International Workshop

on Technologies for E-Services (TES) (pp. 38-47), Hong Kong.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., & Elmagarmid, A. (2003).

Business-to-business interactions: Issues and enabling technologies. The VLDB

Journal, 12(1), 59-85.

Medjahed, B., Rezgui, A., Bouguettaya, A., & Ouzzani, M. (2003). Infrastructure for e-

government Web services. IEEE Internet Computing, 7(1).

Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., & Weikum, G. (1998). From centralized

workflow specification to distributed workflow execution. Journal of Intelligent

Information Systems, 10(2).

66 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Narayanan, S., & McIlraith, S. (2002, May 7-11). Simulation, verification and automated

composition of Web services. Proceedings of the 11th International Conference on

the World Wide Web (pp. 77-88), Honolulu.

Paolucci, M., & Sycara, K. (2003). Autonomous semantic Web services. IEEE Internet

Computing, 7(5).

Peltz, C. (2003). Web services orchestration and choreography. IEEE Computer, 36(8),

46-52.

Piccinelli, G., Finkelstein, A., & Lane Williams, S. (2003, September 1-6). Service-oriented

workflow: The DySCo framework. Proceedings of the 29th EUROMICRO Confer-

ence (pp. 291-297), Belek-Antalya, Turkey.

RosettaNet (2004). RosettaNet home page. Retrieved August 6, 2004: http://

www.rosettanet.org

Schuster, H., Georgakopoulos, D., Cichocki, A., & Baker, D. (2000, June 5-9). Modeling

and composing service-based and reference process-based multi-enterprise

processes. Proceedings of the 12th International Conference on Advanced Infor-

mation Systems Engineering (CAiSE) (pp. 247–263), Stockholm, Sweden.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003, October 20-23). Adding

semantics to web services standards. Proceedings of the 2nd International Seman-

tic Web Conference (ISWC), Sanibel Island, FL.

UN/CEFACT, & OASIS (2001a). Collaboration-protocol profile and agreement specifi-

cation. Retrieved August 6, 2004: http://www.ebxml.org/specs/ebCCP.pdf

UN/CEFACT, & OASIS (2001b). ebXML business process specification schema. Re-

trieved August 6, 3004: http://www.ebxml.org/specs/ebBPSS.pdf

van der Aalst, W. (2003). Don’t go with the flow: Web services composition standards

exposed. IEEE Intelligent Systems, 18(1).

van der Aalst, W., & van Hee, K. (2002). Workflow management: Models, methods, and

systems. Cambridge, MA: MIT Press.

W3C World Wide Web Consortium. (2001). Semantic Web activity. Retrieved August

6, 2004: http://www.w3.org/2001/sw

W3C World Wide Web Consortium. (2002). Web services choreography working group.

Retrieved August 6, 2004: http://www.w3.org/2002/ws/chor

Wieland, K. (2003). The long road to 3G. International Telecommunications Magazine,

37(2).

Wohed, P., van der Aalst, W., Dumas, M., & ter Hofstede, A. (2003, October 13-16).

Analysis of Web services composition languages: The case of BPEL4WS. Proceed-

ings of the 22nd International Conference on Conceptual Modeling (ER). Chicago.

