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Abstract

The extension of mathematical morphology operators to multi-valued functions, and in particular to colour images, is neither direct
nor general. In this paper, a generalisation of distance-based and lexicographical-based approaches is proposed, allowing the extension of
morphological operators to colour images for any colour representation (e.g., RGB, LSH and L*a*b*) and for any metric distance to a
reference colour. The performance of the introduced operators is illustrated by means of different applications: colour feature extraction
using openings (closings) by reconstruction, colour gradients for segmenting, colour denoising by the centre operator and colour
enhancement by the contrast mapping. Examples from natural colour images and biomedical microscopic colour images are given.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Colour mathematical morphology; Colour distance; Multivariate ordering; Colour feature extraction; Colour noise removal; Colour contrast
enhancement; LSH; L*a*b*
1. Introduction

Mathematical morphology is the application of lattice
theory to spatial structures. This means that the definition
of morphological operators needs a totally ordered com-
plete lattice structure, i.e., the possibility of defining an
ordering relationship between the points to be processed.
Therefore, the application of mathematical morphology
to colour images is difficult due to the vectorial nature of
the colour data. For a general account on mathematical
morphology the interested reader should refer to [44,21],
whereas vector morphology is extensively discussed in
[46,17,50].

Multivariate data ordering is not straightforward,
because there is no notion of natural ordering in a vector
field, as opposed to one-dimensional (scalar) case [8]. To
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overcome the problem, the following four approaches to
ordering multichannel samples, such as colour data, have
been identified [8,40,31]. In marginal ordering (M-ordering)
the components of the colour vectors are ordered indepen-
dently (pointwise ordering). However, this approach pro-
duces new colour vectors which were not originally
present in the input image, thus often introducing colour
artifacts into the output image [46]. To preserve the input
colour vectors, the conditional ordering (C-ordering)
approach, also known as lexicographic ordering, is fre-
quently used. The C-ordering produces the ordered set of
the colour vectors according to the ordering of one compo-
nent or more generally, some marginal components selected
sequentially according to different conditions. When all the
components are used, the C-ordering is a total ordering.
Note that this approach does not use the full vectorial nat-
ure of the input. The partial ordering or P-ordering is based
on the partition of the vectors into groups, such that the
groups can be distinguished with respect to rank or
extremeness. This is computed by using convex-hull like
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sets. The reduced ordering or R-ordering which performs
the ordering of vectors according to some scalars, comput-
ed from the components of each vector with respect to
different measure criteria, typically distances or projections
onto a reduced space (using for instance the principal
component analysis). The application of P- or R-orderings
also preserves the input colour vectors.

As discussed in the sequel, the above ordering approaches
have been used to support morphological operations on
colour data. For example, in [46], Serra suggested an inter-
mediate ordering between an M-ordering and a C-order-
ing. Weber and Acton [54] introduced an M-ordering in
HSV colour space by using a rotation in the hue band
(shifting the H discontinuity by k-means clustering).

The C-ordering has been also widely studied in the
framework of colour morphology, especially in a lumi-
nance/saturation/hue representation, by Peters [39], by
Talbot et al. [50], by Hanbury and Serra [18], by Ortiz
et al. [37], by Louverdis et al. [28], and by Angulo [5].
The C-ordering has been also applied in the RGB represen-
tation by Iwanowski and Serra [23], and by Angulo and
Serra [4]; or in the Lab representation by Hanbury and
Serra [20]. Vardavoulia et al. [52] defined also vectorial
median filters with C-orderings.

A P-ordering is the starting point, in a fuzzy logic
paradigm, for a method proposed by Köppen et al. [25]
to implement Pareto fuzzy colour morphology. Another
P-ordering has been introduced by Mojsilovic and Soljanin
[35], using a sampling based on the Fibonacci succession.
Gibson et al. [16] used a local convex hull to define the pix-
els of a region as extreme/non-extreme, which is necessary
to build morphological connected operators.

The R-ordering has been widely used in colour denoising
applications (i.e., vector median filters and other statistical
filters) by Astola et al. [7], by Pitas and Tsakalides [40], by
Trahanias et al. [51], and more recently by Lukac et al.
[31,32]. The R-ordering has been also used to build mor-
phological operators by means of Euclidean distances by
Comer and Delp [15] and by Ortiz et al. [36]; or using Maha-
lanobis distances by Goutsias et al. [17], and by Al-Otum
[1]. Sartor and Weeks [55,43] proposed a combination of
an R-ordering and a C-ordering; in fact, our present
approach can be considered as a generalisation of this inter-
esting study. In [27], J. Li and Y. Li proposed an R-ordering
based on fuzzy first principal component in RGB colour
space, and in [56], Wheeler and Zmuda a R-ordering with
vector projections in RGB. And in [59], Zaharescu et al.
explored R-orderings based on a geometrical interpretation
of a triangle representation of colours.

Other alternative total orderings have been studied.
Goutsias et al. [17] used the matrix Wilson theory [57].
Chanussot and Lambert [14] suggested an approach based
on space-filling curves. In [12], Busch and Eberle proposed
a pseudo-morphology for colour-coded (or labeled) images
by introducing the ordering according semantic rules
(a C-ordering). It is also possible to define an ordering on
labels, such as the hue component image, by adding a bottom
element (meaning no hue) and a top element (meaning
hue conflict), see details in the work of Ronse and Agnus [42].

The aim of this paper is to generalise the distance-based
approaches and the lexicographical approaches, in order
to propose a generic framework allowing the extension
of morphological operators to colour images for any col-
our representation and metric distance. The proposed
approach is a combination of R-ordering and C-ordering,
the R-ordering being based on the distance to a reference
colour and a subsequent lexicographical ordering used
to resolve any ambiguities. In fact, we introduce a
generalisation of mathematical morphology to multivariate
functions, according to a distance-to-origin-based interpre-
tation of the notion of total ordering between the points of
a complete lattice. Whilst the use of a combination of sub-
orderings to produce a total ordering is not new, the
approach presented here does have some distinctive fea-
tures, in particular its applicability to different colour spac-
es/distances and the use of any reference colour (including
colours other than black and white).

The rest of the paper is organised as follows. In Section
2 we give a reminder on some notions of colour represen-
tation and colour distances. In Section 3, a discussion of
our framework of total orderings using distances completed
with lexicographical cascades is given. Then, in Section 4,
we introduce the definition on the derived main morpho-
logical colour operators. The performances of these trans-
formations for filtering, noise reduction, enhancement and
feature extraction are illustrated in Section 5. Finally, the
conclusions and perspectives are discussed in Section 6.

2. Colour representations and colour distances

The most direct way to manipulate digital colour images
is to work on the RGB colour space. However, the RGB col-
our representation has some drawbacks: strongly correlated
components, lack of human interpretation, non-uniformity,
etc. A polar representation with the variables luminance,
saturation and hue (lum/sat/hue) allows us to solve these
problems. The HLS system is the most popular lum/sat/
hue triplet. In spite of its popularity, the HLS representation
(and another classical one like HSV) often yields unsatisfac-
tory results, for quantitative processing at least, because its
luminance and saturation expressions are not norms, so
average values or distances, are falsified. The drawbacks of
the HLS system can be overcome by various alternative rep-
resentations, according to different norms used to define the
luminance and the saturation. The reader can find a compre-
hensive analysis of this question by Angulo and Serra [6]. In
particular, we have used in this paper the lum/sat/hue in
norm L1 [47,48,6]. In the present study, we have also worked
with the L*a*b* colour space, the classical representation in
colorimetry, which presents a perceptual uniformity (useful
for segmentation). The transformations between RGB and
L*a*b* are well-known [24,58].

Let f be a grey-level image, f : E!T, in that case
T ¼ ftmin; tmin þ 1; � � � ; tmaxg (in general T � Z or R) is
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an ordered set of grey-levels and typically for the digital 2D
images E � Z2 is the support of the image. We denote by
FðE;TÞ the functions from E onto T. If T is a complete
lattice, then FðE;TÞ is a complete lattice too. The theoret-
ical framework of mathematical morphology is nowadays
phrased in terms of complete lattices and operators defined
on them. Given the three sets of scalar values Tl;Ts;Th,
we denote by FðE; ½Tl �Ts �Th�Þ or FðE;TlshÞ all col-
our images in a luminance/saturation/hue representation
(Tlsh is the product of Tl;Ts;Th, i.e.,
ci 2Tlsh() ci ¼ fðli; si;hiÞ; li 2Tl; si 2Ts;hi 2Thg). We
denote the elements of FðE;TlshÞ by f, where f = (fL,fS,fH)
are the colour component functions. Using this representa-
tion, the value of f at a point x 2 E, which lies in Tlsh, is
denoted by f(x) = (fL(x),fS(x),fH(x)). In a similar way, the
colour images in a RGB representation or in a L*a*b rep-
resentation are respectively elements of the product sets
FðE;TrgbÞ and FðE;TL�a�b� Þ. Note that the sets Tr, Tg,
Tb are complete totally ordered lattices. The sets Tl;Ts

corresponding to the luminance and the saturation are also
totally ordered lattices (likewise the components of L*a*b*

TL� , Ta� and Tb� ). The hue component is an angular func-
tion defined on the unit circle, Th ¼ C, which has no par-
tial ordering. Hence, the hue needs to be processed in a
special way. Let h : E! C be an angular function, the
angular difference [39,19] is defined as

hi � hj ¼
jhi � hjj if jhi � hjj 6 180	

360	 � jhi � hjj if jhi � hjj > 180	

�
ð1Þ

Therefore, it is possible to fix an origin on the hues denoted
by h0, associated to a ‘‘colour of reference’’. We can now
define a h0-centered hue function by computing fH(x) ‚ h0.
The function (fH ‚ h0)(x) is a partially ordered set (i.e., two
hue values can have the same angular distance to the ori-
gin). In order to have a total order we need to impose an
additional priority (absolute distance to the origin h0 in
the sense of the unit circle), see [2]. This totally ordered
complete lattice is denoted by Th�h0 .

Let ck ¼ ðcU
k ; c

V
k ; c

W
k Þ be the colour point k in any generic

colour space UVW (e.g., in LSH ck ¼ ðcL
k ; c

S
k ; c

H
k Þ). We can

now define the colour distance between two colour vectors i

and j as jjci � cjjjUVW
D where D is a particular metric.

The family of Minkowski metric distances dLðci; cjÞ ¼
ð
P3

n¼1jcn
i � cn

j j
LÞ1=L ¼ jjci � cjjjL, is the most commonly

used measure to quantify colour distances. The most pop-
ular members of this class of metrics are obtained when
L = 1 (city-block distance), L = 2 (Euclidean distance)
and L =1 (chessboard distance). The Mahalanobis dis-
tance is a special case of the quadratic-form generalised dis-
tance metric in which the transform matrix is given by the
covariance matrix C obtained from a training set of data
that represents the reliability or scale of the measurement
in each direction. The Mahalanobis distance between two
vectors is given by ||ci � cj||M = (ci � cj)

TC�1(ci � cj).
Any of the above recalled metrics can be applied to col-

our vectors according to the different colour space repre-
sentations, e.g., in RGB using L2 we have jjci � cjjjRGB
2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcR
i � cR

j Þ
2 þ ðcG

i � cG
j Þ

2 þ ðcB
i � cB

j Þ
2

q
. The L2 distance in

L*a*b* is particularly used in image processing, indeed
the perceptual difference between two colours in L*a*b* is
given by their Euclidean distance. Other more sophisticated
colour distances have been proposed in the literature [31].
From the mathematical morphology point of view, some
issues must be taken into account. As pointed out above,
the functions associated with the RGB components, with
the L*a*b* components (although the ordering for
chromatic components a* and b* is hardly meaningful),
and with the luminance and saturation components of the
LSH representation are complete totally ordered lattices,
but not the hue. Therefore, for all the colour metric
distances in LSH, the term associ-ated to the hue must
use the angular difference, e.g., jjci � cjjjLSH

1 ¼ jcL
i � cL

j jþ
jcS

i � cS
j j þ jcH

i � cH
j j.

Nevertheless, due to the instability of the hue
component for the low saturation points (which is an
important issue to build hue-based distances, gradients,
ordering, etc.) this last distance is useless. In order to
cope with this drawback, the different solutions are
generally based on a weighting of the hue by the saturation
[13,18,5]. We propose to use the simplest technique,
multiplying the angular difference by the average satura-

tion, i.e.,
ðcS

i þcS
j Þ

2
jcH

i � cH
j j. As suggested in [13], other

more sophisticated saturation-based weighing functions
can be applied (e.g., sigmoid). Another more interesting
way to compute colour distances in LSH representation
involves working in polar coordinates, i.e., jjci � cjjjLSH

2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcL

i � cL
j Þ

2 þ ðcS
i Þ

2 þ ðcS
j Þ

2 � 2cS
i cS

j cosðcH
i � cH

j Þ
q

. We sug-

gest to use this last colour distance.

Before applying these colour distances to define mor-
phological operators, a relevant analysis of the alternative
distances shall be made. Firstly, the L1 norm distances
could cause serious artefacts in the filtered colour images,
since colour vectors will be ordered according to only
one of the components, which can change for a set of
points. We can suppose that the results according to L1

or L2 will be relatively similar. In fact, the Mahalanobis
distance can be interpreted as their generalisation with
the advantage of setting different weights for the compo-
nents. Moreover, for the sake of simplicity of this paper,
we consider that in the three colour representations the
components are statistically independent and we can
rewrite the Mahalanobis distance as a weighting distance,
i.e., jjci � cjjjUVW

Mðx1;x2;x3Þ ¼ x1ðcU
i � cU

j Þ
2 þ x2ðcV

i � cV
j Þ

2 þ x3

ðcW
i � cW

j Þ
2.
3. Colour total orderings using distances completed with

lexicographical cascades

We have previously studied in depth the extension of
morphological operators to colour images based on lexico-
graphical cascades from a LSH representation [2,5]. Fig. 1



Fig. 1. Comparison of colour erosion for the image f (the structuring element B is a square of size n = 35), eX,nB(f), using different orderings X: three
examples of marginal orderings X0 in the RGB, LSH and L*a*b* colour spaces and four examples of total lexicographic-based orderings Xlex in LSH
giving the priority to the luminance, or to the saturation, or to the h0-centred hue (origins in the red 0� and in the purple 270�). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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shows a comparison of colour erosion for the image f,
using different orderings X. Namely, three examples of
marginal orderings X0 in the RGB, LSH and L*a*b* colour
spaces and four examples of total lexicographic-based
orderings Xlex. We observe the appearance of false colours
when the marginal processing is applied, i.e., starting from
two colours, the erosion gives another one; moreover the
interpretation of results in LSH or L*a*b* becomes tricky.
The original colours are preserved when the lexicographical
cascades in LSH are used. In addition, giving the priority
to the luminance (the background—brightest colour—is
eroded), or to the saturation (the most saturated colours
are eroded), or to the h0-centred hue (origins in the red
0� and in the purple 270�), we can act on the structures
mainly by the first component chosen in the cascade. The
rationale behind the approach developed in this paper is
more ambitious, proposing a generic framework valid for
any colour representation and adding the flexibility of a
‘‘reference colour’’-based morphology.
3.1. Distance-based grey-level morphology

The effect of morphological operators is determined by
the specification of a partial ordering on the underlying
image space, or from an image processing viewpoint, by
the choice of what is foreground and what is background
[22]. Usually, in grey-level images, the foreground corre-
sponds to the bright levels (close to tmax) and the back-
ground to the dark ones (close to tmin). The associated
partial ordering is the usual ordering 6, which can be used
to compute the infimun � and the supremum � between a
set of pixels B (structuring element). Then, the two basic
morphological operators erosion and dilation applied to
a grey-level image f(x) are given by: eB(f(x)) = {f(y):
f(y) = �[f(z)], z 2 Bx} and dB(f(x)) = {f(y):f(y) = �[f(z)],
z 2 Bx}, respectively.

After defining as reference the maximum grey value
g0 = tmax, the classical greyscale morphology can be also
interpreted in terms of distance to this reference:

• the dilation d tends to move toward this reference, i.e., d
at point x is the grey value which has minimal distance
to the reference g0 within the structuring element B cen-
tered at x:

dBðf ðxÞÞ ¼ ff ðyÞ : y ¼ argz infðjf ðzÞ � tmaxjÞ; z 2 Bxg; ð2Þ

• the erosion e tends to move away from g0; i.e., e is the
value with maximal distance to g0,

eBðf ðxÞÞ ¼ ff ðyÞ : y ¼ argz supðjf ðzÞ � tmaxjÞ; z 2 Bxg: ð3Þ

In fact, this is only the convention that we have adopted.
It is also possible to define the dilation (erosion) as the
operation which tends to move away from (toward) the ref-
erence g0, but the reference being the minimum grey value
g0 = tmin. In this case, the dilation is given by

dBðf ðxÞÞ ¼ ff ðyÞ : y ¼ argz supðjf ðzÞ � tminjÞ; z 2 Bxg;

and the dual expression defines the erosion.
Fig. 2 depicts an example of grey-level dilation and ero-

sion in terms of distance to a reference value (R-ordering),
when this reference is tmax. We note the need of a reference
value to fix a partial ordering. Actually, we can define two
operators based on the distance between the grey-levels but
which are independent from the reference. To do that, the
cumulative distance of each point to the other points within
the structuring element, i.e., Dðf ðxÞÞ ¼

P
kdEðf ðxÞ; f ðkÞÞ,

k 2 Bx, is firstly calculated. Then, the distance-based median



Fig. 2. Example of grey-level dilation and erosion in terms of distance to
the reference value (R-ordering): (a) four original scalar points, gi 2T, to
be processed, (b) corresponding values of dilation d and erosion e when the
reference is g0 = tmax. In (c) are given the values of the median le and the
anti-median ld defined in terms of the cumulative distance.
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is defined as le(f(x)) = {f(y):y = argzinf(D(f(z)), z 2 Bx};
and by duality, the distance-based anti-median is defined
as ld(f(x)) = {f(y):y = argzsup(D(f(z)), z 2 Bx}. Fig. 2 gives
also the corresponding example of this ‘‘eccentricity’’-
based operators. A classical generalisation of these defini-
tions to multi-channel images leads to the vector median
filters [7,40]. Several works, see for instance Plaza et al.
[41], propose to use these two filters to define multispectral
morphological operators, however, it is easy to see that the
obtained operators are not an adjunction erosion/dilation.
In particular, le and ld do not commute with the infimum
and supremum, respectively, a property underlying the
definition of erosion and dilation. At the most, we can
consider le and ld as pseudo-morphological operators.
We believe that any generalisation of morphological oper-
ators to multivariate functions (e.g., colour images) must
be compatible with the definitions of these operators for
univariate functions (grey-level images).

3.2. Total orderings associated with a reference colour

The paradigm of distance-to-reference-based grey mor-
phology is directly applicable to colour images, after fixing
the colour representation UVW, the reference colour c0

and the colour distance D, by defining the following order-
ing for two colour points:

ci<c0
cj () kci � c0kUVW

D > kcj � c0kUVW
D : ð4Þ

But this is only a partial ordering or pre-ordering, i.e., two
or more distinct colour vectors within the structuring ele-
ment can be equidistant from the reference. This problem
also arises in the grey-level case if the erosion and dilation
are defined by the distance to a reference g0 which is differ-
ent from the bounds tmax or tmin. For example, fixing
tmax = 255, tmin = 0 and g0 = 100, given two grey pixels
g1 = 50 and g2 = 150, one has |g1 � g0|=|g2 � g0| with
g1 „ g2 and consequently, the supremum/infimum between
both pixels are not defined. An additional condition is
needed to complete the ordering; for instance, fixing the
following ordering: gi<g0

gj () ðjgi � g0j > jgj � g0jÞ or
(|gi-g0| = |gj-g0| and gi > gj). For the previous example, it
is obtained that g1 ¼ 50>g0

g2 ¼ 150. More specifically, in
order to have a total ordering for colour images we
propose to complete the primary R-ordering of relation
(4) with a lexicographical cascade.

The total X-ordering or <X is defined as:

ci<Xcj ()

kci � c0kUVW
D > kcj � c0kUVW

D or

kci � c0kUVW
D ¼ kcj � c0kUVW

D and

cU
i < cU

j or

cU
i ¼ cU

j and cV
i < cV

j or

cU
i ¼ cU

j and cV
i ¼ cV

j and cW
i < cW

j

8>><>>:

8>>>>>>>>><>>>>>>>>>:
ð5Þ
We denote, compactly, this lexicographical cascade by
X 
 fk � kUVW

D ; c0 ¼ ðcU
0 ; c

V
0 ; c

W
0 Þ ‘ ðU ! V ! W Þg. More-

over, in the examples given below, when the Mahalanobis
distance k � kUVW

Mðx1;x2;x3Þ is applied, the component k of the
reference colour c0 can be undefined (or unsignificant),
which is denoted by ‘‘–’’, if the weight k is zero xk = 0;
e.g., k � kUVW

Mð0;1;2Þ, c0 = (–,255,128).
In the ordering (5), after a comparison based on the D

distance to c0, the priority is given to the component U,
then to V and finally to W. Obviously, it is possible to
define other orders for imposing a dominant role to any
other of the vector components. To simplify the number
of alternatives, and based on the best results obtained from
our previous works on lexicographical cascades, we pro-
pose to fix the ordering of the components for the three col-
our spaces representations as follows,

(1) in RGB: J(G fi R fi B),
(2) in LSH: J(L fi S fi �(H ‚ h0)), where the origin of

the hues h0 corresponds to the same as for
cLSH

0 ¼ ðl0; s0; h0Þ; and hi ‚ h0 is obtained by means
of Eq. (1),

(3) in L*a*b*: J(L fi a fi b).

Note that one easily verifies that the family of colour
orderings given by the expression (5) generalises the lexico-
graphical orderings, i.e., using the weighing distance
k � kUVW

M with the weights M(x1, x2, x3) = M(1,0,0) and
the reference equals to the upper bound of axis U,
c0 ¼ ðcU

max; –; –Þ, the relation (5) is equivalent to the order-

ing Xlex
U!V!W :

ci<Xlex cj ()

cU
i < cU

j or

cU
i ¼ cU

j and cV
i < cV

j or

cU
i ¼ cU

j and cV
i ¼ cV

j and cW
i < cW

j

8>><>>:
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3.3. Erosion and dilation on complete lattice Tuvw

Using the total X-ordering <X we have ci = cj or ci <X cj

or cj <X ci for every pair (ci, cj). Therefore, it is defined for
any family of colour points ðckÞk2I 2Tuvw the colour
supremum supX½ck� ¼

Wc0

k2I ck and the colour infimum
infX½ck� ¼

Vc0

k2I ck. Furthermore, the following extremes
exist for the complete lattice Tuvw: the upper bound
(‘‘greatest colour’’) is c0 itself, i.e., >c0 ¼ c0; the lower
bound (‘‘smallest colour’’), ?c0

, is the most distant col-
our point of c0. In fact, ?c0

corresponds to one of the
extremal points of bounded space Tu �Tv �Tw; e.g., in
RGB (each grey-level component 2[0,255]) with c0 =
(10,10,200) the lower bound is the corner of the RGB cube
^ = (255,255,0).

The theory of adjunctions on complete lattices has
played an important role in mathematical morphology
[44,21]. In particular, using the major results, the most
general definition of erosion and dilation is as follows.
The operator e between the complete lattice Tuvw and itself
is an erosion if eð

Vc0

k2IckÞ ¼
Vc0

k2IeðckÞ for every family
(ck)k2I. A similar dual definition holds for dilation d (i.e.,
commutation with the supremum). The pair (e, d) is called
an adjunction between Tuvw !Tuvw if dðcyÞ6Xcx ()
cy6XeðcxÞ. Moreover, to every erosion e corresponds
a unique dilation d given by dðcyÞ ¼

Vc0fcx 2Tuvw :
cy6XeðcxÞg such that (e,d) is an adjunction. These theoreti-
cal definitions are interesting to consider if the proposed
colour ordering verifies the basic properties of erosion/dila-
tion, however, they do not allow computing erosion/dila-
tion in practice. We recall the algorithmic definition of
colour erosion and dilation, and derived operators, in the
next section.

3.4. Complementary colours and quasi-duality

One of the most interesting properties of (binary and
grey-level) morphological operators is the duality by the
complementation. Let f ðxÞ 2FðE;TÞ be a grey-level
image, where T is bounded by [tmin,tmax]. The complement
Fig. 3. Bounded vector space [xmin, xmax] · [ymin,ymax]: (a) family of nine point
references), (b) complemented points ðviÞi2I and same references.
image (or negative image) f ðxÞ is defined as the reflection of
f(x) with respect to (tmin + tmax)/2; i.e., f ðxÞ ¼ tmax � f ðxÞþ
tmin, "x 2 E. Let the pair ðe; dÞ : FðE;TÞ !FðE;TÞ be
an adjunction, that is let e(f) and d(f) be respectively an
erosion and its associated dilation in FðE;TÞ. The proper-
ty of duality holds:

eðf Þ ¼ dðf Þ ) eðf Þ ¼ dðf Þ;

and this is verified for any other pair of dual operators,
such as the opening/closing. In practice, this property al-
lows us to implement exclusively the dilation, and using
the complement, to be able to obtain the corresponding
erosion.

The complement of a colour image, f 2FðE;TuvwÞ, is
defined as the complement of each colour component;
i.e., f ¼ ðf U ; f V ; f W Þ. Moreover for each colour pixel i the
complementary colour is given by ci ¼ ðcU

max � cU
i þ cU

min;
cV

max � cV
i þ cV

min; c
W
max � cW

i þ cW
minÞ, where cU

max and cU
min

are, respectively, the upper and lower bounds of Tu (idem.
for V and W components). We need to study if there exists
an equivalent property of duality for colour operators
according to the family of orderings given by (5). Let us
use for our discussion the example of Fig. 3. For the sake
of simplicity, it deals with a two dimensional case: the
bounded vector space [xmin,xmax] · [ymin,ymax]. The simpli-
fied total ordering is

vi<v0
vj()

kvi� v0k2 > kvj� v0k2 or

kvi� v0k2 ¼ kvj� v0k2 and
xi < xj or

xi ¼ xj and yi < yj

(8><>:
Let (vi)i2I be a family of nine points and v0, v00, v000 and v0000 be
four reference points. Choosing the reference v0 in
Fig. 3(a), we obtain the supremum

Wv0

i2Ivi ¼ v3 and the inf-
imum

Vv0

i2I vi ¼ v8. Working with the complemented points
given in Fig. 3(b), the supremum is

Wv0

i2I vi ¼ v9 and the inf-
imum is

Vv0

i2I vi ¼ v3, and consequently,
Wv0

i2Ivi ¼
Vv0

i2Ivi, but
nevertheless

Vv0

i2I vi 6¼
Wv0

i2Ivi. If the reference is now v00, we
obtain for (vi)i 2 I the supremum v1 and the infimum v5

and for ðviÞi2I , v5 and v1 respectively. Hence, the property
s (vi)i2I and four references v0, v00, v000, v0000 (and corresponding complemented
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of duality is preserved. The same result is obtained for
v000 ¼ ðxmin; yminÞ. We can suppose based on these examples
that the duality is verified when the reference is one
of the extremal points or a point on the main diagonals
of the space. Unfortunately this is not true in general: a
counterexample is obtained by choosing as reference
v0000 ¼ ðxmin; ymaxÞ (the sup and the inf are, respectively, v2

and v8 whereas in the complemented space, the sup is v8

and the infv3).
Note that one easily verifies that the duality is

always valid for the orderings grounded exclusively in
lexicographical cascades, without including the pre-ordering
based on the distance to a reference. Incidentally, we can
observe that the duality is verified for the total orderings
including the reference v0 = (x0,y0) if and only if the
supremum and the infimum associated to the total distance
to v0 are the same as the supremum and the infimum
associated to the separate distances to x0 and to y0. In other
words, a property of separability of both axis x and y in the
computation of the distance to v0 is required to guarantee
the duality.

In conclusion, we have the following property for colour
images. If the reference colour c0 verifies the above
property of separability for any pair of distinct points
ci; cj 2Tuvw, it holds that ðci<Xc0

cjÞ () ðci>Xc0
cjÞ. Conse-

quently, for an erosion/dilation adjunction defined in
FðE;TuvwÞ it follows then that eXc0

ðfÞ ¼ dXc0
ðfÞ. This

property is named quasi-duality of the family of orderings
given by (5).

We can also investigate the effect of computing the com-
plement of the reference colour, or in other words, under
which conditions the property ðci<Xc0

cjÞ () ?ðci>Xc0
cjÞ is

verified. From the example of Fig. 3(a), for v0 we have that
the supremum

Wv0

i2I vi ¼ v7 and the infimum
Vv0

i2I vi ¼ v3

implies that
Vv0

i2Ivi 6¼
Wv0

i2Ivi. Moreover, in the case v00 (or
v000), the supremum is v7 and the infimum v1, and conse-
quently the duality is not verified either. In conclusion,
no property of duality seems to be associated to the
complement of the reference colour.
4. Morphological colour operators

Once the family of total orderings (5) have been
established, the morphological colour operators are defined
in the standard way. We limit here our developments to the
flat operators, i.e., the structuring elements are planar. The
non-planar structuring functions are defined by weighting
values on their support [44]. The implementation and the
use of colour structuring functions will be the object of
future research.

We need to recall a few notions which characterise
the properties of morphological operators. Let w be an
operator on a complete lattice FðE;TuvwÞ. w is increasing
if 8f; g 2FðE;TuvwÞ, f6Xg) w(f)6Xw(f). It is anti-exten-
sive if wX(f)6X f and it is extensive if f 6X wX(f). An
operator is idempotent if it is verified that w(w(f)) = w(f).
4.1. Erosion and dilation

The colour erosion of an image f 2FðE;TuvwÞ at pixel
x 2 E by the structuring element B � E of size n is given by

eX;nBðfÞðxÞ ¼ ffðyÞ : fðyÞ ¼ ^X½fðzÞ�; z 2 nðBxÞg; ð6Þ
where infX is the infimum according to the total ordering X.
The corresponding colour dilation dX,nB is obtained by
replacing the infX by the supX, i.e.,

dX;nBðfÞðxÞ ¼ ffðyÞ : fðyÞ ¼ _X½fðzÞ�; z 2 nðBxÞg: ð7Þ
The erosion and the dilation are increasing operators.
Moreover, the erosion is anti-extensive and the dilation is
extensive. In practice, the colour erosion shrinks the struc-
tures which have a colour close to the reference; ‘‘peaks of
colour’’ thinner than the structuring element disappear by
taking the colour of neighboring structures with a colour
away from the reference. As well, it expands the structures
which have a colour far from the reference. Dilation pro-
duces the dual effects, enlarging the regions having a colour
close to the reference and contracting the others.

4.2. Morphological filters

In general, a morphological filter is an increasing oper-
ator that is also idempotent (the erosion/dilation are not
idempotent).

4.2.1. Opening and closing

A colour opening is an erosion followed by a dilation,
i.e.,

cX;nBðfÞ ¼ dX;nBðeX;nBðfÞÞ; ð8Þ
and a colour closing is a dilation followed by an erosion, i.e.,

uX;nBðfÞ ¼ eX;nBðdX;nBðfÞÞ: ð9Þ
The opening (closing) is an anti-extensive (extensive) oper-
ator. More precisely, the opening removes colour peaks
that are thinner than the structuring element, having a col-
our close to the reference; the closing remove colour peaks
that are thinner than the structuring element, having a col-
our far from the reference.

4.2.2. Alternate sequential filters

Once the colour opening and closing are defined it is
indubitable how to extend other classical operators such
as the colour alternate sequential filters (or ASF), obtained
by concatenation of openings and closings, i.e.,

ASF ðfÞX;nB ¼ uX;nBcX;nB � � �uX;2BcX;2BuX;BcX;BðfÞ: ð10Þ

A dual family of ASF operators is obtained by changing
the order of the openings/closings. The ASF act simulta-
neously on the peaks and the valleys, simplifying (smooth-
ing) them. They are useful when dealing with noisy signals.

4.2.3. Contrast mappings
The contrast mapping is a particular operator from a

more general class of transformations called toggle
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mappings [45]. A contrast mapping is defined, on the one
hand, by two primitives /1 and /2 applied to the initial
function, and on the other hand, by a decision rule which
makes, at each point x the output of this mapping toggles
between the value of /1 at x and the value of /2, according
to which is closer to the input value of the function at x. If
the primitives are an erosion eX,nB(f) and the adjunction
dilation dX,nB(f), the colour contrast mapping for an image
f is given by [26]:

jed
X;nBðfÞðxÞ¼

dX;nBðfÞðxÞ if kfðxÞ�dðfÞðxÞk6 kfðxÞ� eðfÞðxÞk
eX;nBðfÞðxÞ if kfðxÞ�dðfÞðxÞk> kfðxÞ� eðfÞðxÞk

�
ð11Þ

where d(f) and e(f) of the norms correspond to dX,nB(f) and
eX,nB(f) respectively. Usually, the norm used to compute the
distance in the contrast mappings is the same as the norm
applied in the X-ordering associated to the colour erosion/
dilation. This morphological transformation enhances the
local contrast of f by sharpening its colour edges. It is usu-
ally applied more than once, being iterated, and the itera-
tions converge to a limit reached after a finite number of
iterations. Another interesting colour contrast mapping
jcu

X;nBðfÞ is defined by changing in the previous expression
the pair of colour erosion/dilation by a colour opening
cX,nB(f) and the dual closing uX,nB(f) [33]. This second con-
trast operator is idempotent but a decreasing transforma-
tion (it cannot be considered strictly as a morphological
filter). More recently, these sharpening methods are called
shock filters [38].

4.2.4. Morphological centre

The opening/closing are non-linear smoothing filters,
and classically an opening followed by a closing (or a clos-
ing followed by an opening) can be used to suppress
impulse noise, i.e., suppressing positive spikes via the open-
ing and negative spikes via the closing and without blurring
the contours. However, the results are usually not satisfac-
tory. A more interesting operator to suppress colour noise
is the morphological centre, also known as automedian fil-
ter [44,45]. Given an opening cX(f) and the dual closing
uX(f) with a small structuring element (typically square of
size equal to the ‘‘noise size’’), the colour morphological cen-
tre associated to these primitives for an image f is given by
the algorithm:

fXðfÞ ¼ ½f_XðcucðfÞ^XucuðfÞÞ�^XðcucðfÞ_XucuðfÞÞ: ð12Þ
This is an increasing and autodual operator, not idempo-
tent, but the iteration of f presents a point monotonicity
and converges to the idempotence, i.e., bfXðfÞ ¼ ½fXðfÞ�i,
such that [f]i = [f]i+1.

4.2.5. Residue-based operators

Moreover, using a colour distance to calculate the
image distance d, d 2FðE;TÞ (a scalar function), given
by the difference point-by-point of two colour images
d(x) = ||f(x)-g(x)||, we can easily define the morphological

colour gradient, i.e.,
.XðfÞ ¼ jjdX;BðfÞ � eX;BðfÞjj: ð13Þ

This function gives the contours of the image, attributing
more importance to the transitions between regions close/
far to the colour reference. For the sake of coherence, the
norm used for the distance d is the same as the norm ap-
plied in the ordering X associated with the corresponding
colour operator. However, another different colour norm
can also be considered.

The positive colour top-hat transformation is the residue
of a colour opening, i.e.,

qþX;nBðfÞ ¼ jjf � cX;nBðfÞjj: ð14Þ

Dually, the negative colour top-hat transformation is given
by

q�X;nBðfÞ ¼ jjuX;nBðfÞ � fjj: ð15Þ

The top-hat transformation yields grey-level images and is
used to extract contrasted components with respect to the
background, where the background corresponds to the
structures far from the reference. Moreover, top-hats re-
move the slow trends, and thus enhancing the contrast of
objects smaller than the structuring element used for the
opening/closing.

4.3. Geodesic reconstruction, derived operators, leveling

In addition, we also propose the extension of operators
‘‘by reconstruction’’, implemented using the geodesic dila-
tion. The colour geodesic dilation is based on restricting
the iterative dilation of a function marker m by B to a func-
tion reference f [53], i.e.,

dn
Xðm; fÞ ¼ d1

Xdn�1
X ðm; fÞ; ð16Þ

where the unitary conditional dilation is given by
d1

Xðm; fÞ ¼ dX;BðmÞ^Xf. Typically, B is an isotropic structur-
ing element of size 1.

The colour reconstruction by dilation is then defined by

crec
X ðm; fÞ ¼ di

Xðm; fÞ; ð17Þ

such that di
Xðm; fÞ ¼ diþ1

X ðm; fÞ (idempotence). Whereas the
adjunction opening cX,nB(f) (from an erosion/dilation)
modifies the colour contours, the associated opening by
reconstruction crec

X ðm; fÞ (where the marker m = eX,nB(f) or
m = cX,nB(f)) is aimed at efficiently and precisely recon-
structing the contours of the colour objects having a colour
close to the reference and which have not been totally re-
moved by the marker filtering process.

In a similar way, the colour leveling kX (m,f) of a refer-
ence function f and a marker function m is a symmetric
geodesic operator computed by means of an iterative algo-
rithm with geodesic dilations and geodesic erosions until
idempotence [34], i.e.,

kXðm; fÞi ¼ f^Xdi
XðmÞ

� �
_Xei

XðmÞ; ð18Þ

until kX(m,f)i = kX(m,f)i+1. The leveling simplifies the colour
image, removing the objects and textures smaller than the
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structuring element and preserving the contours of the
remaining objects. Moreover, it acts simultaneity on the ‘‘po-
sitive objects’’ (i.e., having a colour close to the reference)
and ‘‘negative objects’’ (i.e., colour far from the reference).

5. Results and discussion

We explore in this section the effects of these morpho-
logical operators when they are applied to colour images
according to the family of orderings introduced in this
paper. We try to illustrate a wide variety of morphological
Fig. 4. Comparison of colour opening by reconstruction crec
X ðfÞ for the image f

B is a square of size n = 20) according to different distance-based total orderi
colour operators with different colour spaces, distances and
colour references. As mentioned, the present approach gen-
eralises other orderings proposed in the literature. Even if
we are conscious of the fact that a further study would need
more extensive comparisons, we consider that the following
comparative examples allow us to draw some interesting
conclusions.

Fig. 4 gives a first comparison of the results obtained for
the image ‘‘Baboon’’, when the same operator, a colour
opening by reconstruction cX(f), is applied using different
orderings. It is observed that the results are absolutely
‘‘Baboon’’ (the marker is an erosion eX, nB(f) where the structuring element
ngs.
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different according to the distance-based total ordering
chosen. We show only examples for the L2 and the Maha-
lanobis distance. As expected, the orderings based on L1
produce very unsatisfactory visual results and the results
for L1 norm distances are almost equal to the results
achieved using L2. Note also the flexibility of the approach:
for instance, in RGB the result of the opening for L2

distance to the origin (255,0,0) (pure red), which suppresses
all the small red objects, is very different from the
Mahalonobis distance with weights (1,0,0) (the R compo-
nent is exclusively considered) to the same origin, which
suppresses the bright objects according only the red com-
ponent. On the other hand, we observe that the orderings
with distances including chromatic components (i.e., h, a*

and b*) produce poor results. Moreover the choice of the
origin is not easily understandable for the a* and b*

components (chromatic axis of opposite colours). Even if
the Euclidean distance in the L*a*b* colour space has
interesting perceptual properties, we remark that for the
implementation of morphological operators the most
important issue is in fact the choice of the origin. Hence,
the use of the L2 distance in LSH or L*a*b* should be
considered for feature extraction operators according to a
specific reference colour. We remark also that in order to
remove all the bright structures of a natural colour
image by means of an opening, the results are more satis-
factory from a visual point of view for k � kRGB

2 ,
c0 = (255,255,255) than for k � kLSH

Mð1;1;0Þ, c0 = (255,255,–).
In order to illustrate the effect of geodesic operators,

Fig. 5 gives an example of colour ‘‘swamping’’ or recon-
struction of a function by imposing markers for the maxi-
ma (to remove the useless maxima). In this case, the one-
point marker is a pixel on the big bear (‘‘mrk 1’’ touches
the dark part of the fur), which value in RGB is approxi-
mately (140,120,100). Working in RGB and using L2 dis-
tance, we observe that, if the reference colour is
(255,255,255), the propagation from the marker imposes
that any other pixel must have a colour whose distance
to the reference (maximal luminance) is longer than the dis-
tance of the marker to the reference. Consequently, there is
not any pixel upper intensities RGB other than the marker.
When the reference colour matches with the marker,
c0 = (140,120,100), the marked object is preserved and
Fig. 5. Example of colour swamping for the image ‘‘Bears’’, where the one
approximately (140,120,100).
moreover, the other regions with the same colour are
removed (only one maxima after this swamping transfor-
mation remains). In this case, the dark part of the fur is
again preserved and the objects which have a colour very
distant from the marker are also preserved (bright part of
the image).

Fig. 6 shows the comparison of different colour levelings
for the simplification of image ‘‘Lenna’’, where the markers
are ASF. We observe that the degree of simplification (i.e.,
which structures are preserved and which structures are
removed) is relatively equivalent for the different orderings;
and the differences between the orderings are associated to
the final colours of simplified structures. We again remark

that the visual results for k � kRGB
2 , c0 = (255,255,255) are

slightly better than for k � kLSH
Mð1;1;0Þ, c0 = (255,255,–). It is

also shown how a part of the image structures can be
harshly leveled (the violet part of the hat) by imposing their
colour as reference, i.e., (100,50,100).

In Fig. 7 the use of colour residue-based operators is
compared for detail extraction. In RGB, a closing is given
for L2 distance and c0 = (255,255,255), and the correspond-
ing residue (i.e., black top-hat) with the same distance,
which extracts the dark details (the letters of panels and
a part of the texture). We observe that, if we fix
c0 = (0,0,0), we obtain by black top-hat the bright details
(the interstices between the letters and the ‘‘positive’’ parts
of textures). Here, we found the usefulness of quasi-duality
property since the residue of a closing with c0 = (0,0,0) is
approximately equivalent to the residue of an opening with
c0 = (255,255,255). Once again, the result for RGB is com-
pared with k � kLSH

Mð1;1;0Þ, c0 = (255,255,–), without observing
substantial differences.

Fig. 8 depicts an example of colour segmentation by
inner/outer markers-driven watershed transformation [9].
In this example the aim is to define the contour of the
horse, and hence the inner marker is a segment going
through the horse and the outer marker is the image bor-
der. The different colour gradients are then used with the
watershed transformation. This example is particularly
interesting to show the importance of the choice of the gra-
dient for colour segmentation. The colour of the horse is
variable with approximately RGB value of (250,110,90)
-point marker is a pixel on the fur (‘‘mrk 1’’), which value in RGB is



Fig. 6. Comparison of colour leveling kX(f) for the image f ‘‘Lenna’’ according to different distance-based total orderings. Upper row, the marker is an
ASF, ASFX,nB(f), where the structuring element B is a square of size n = 15; lower row, the corresponding levelings. At the bottom are zoom-in frames of a
square section cropped from the initial (left) leveled images.

Fig. 7. Colour details extraction of image ‘‘Panels’’. Upper row, square closing of size 5 · 5 pixels; lower row, the associated negative top-hats.
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or LSH value of (180,128,0�). We observe that, even if the
results in RGB or LSH are better when the reference c0

equals the horse colour than the maximal value, the
obtained segmentation is not satisfactory. In fact, the horse
has an homogenous hue (around 10�) but a variable lumi-
nance and saturation (similar to the values of luminance



Fig. 8. Application of colour gradients for watershed-based segmentation of image ‘‘Horse’’. The white contour corresponds to the region obtained using
an inner marker for the horse region (the outer marker is the image border).

Fig. 9. Contrast enhancement of colour image ‘‘FontainebleauDiane’’ using the contrast mapping j. At the bottom are zoom-in frames of a square section
cropped from the initial (left) and three of enhanced images (using jcu

X;9 in RGB, jed
X;1�iter in RGB and jed

X;1�iter in LSH with c0(255,128,–), respectively).
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and saturation of background). Therefore, a gradient
exclusively using the hue component (distance k � kLSH

Mð0;0;1Þ
and reference c0(–,–,10�)) yields the best result.

Fig. 9 shows a comparative example of contrast enhance-
ment of the blurred image ‘‘FontainebleauDiane’’. The blur
involves a Gaussian filter with r = 5. It is well known that, in
order to have significant enhancement, the size of contrast
mapping based on opening/closing jcu must be considerable
and that it can involve visual artefacts. For this example, the
size n = 9 seems to be a trade-off to obtain a perceptible
enhancement. In fact, the effects obtained are in general bet-
ter for the iteration of jed. Concerning the distance-based
total ordering, it seems that for this example the best visual

result is associated with the choice k � kLSH
Mð1;1;0Þ, c0(255,128,–),

which enhances the bright/dark structures, with an interme-
diate saturation (chromatic and achromatic simultaneously)
and independently from the hue.

In Fig. 10 is given an example of morphological centre
to filter colour noise. The image ‘‘CarmenBianca’’ has been
corrupted by adding salt-and-pepper noise on the hue com-
ponent (occurring with probability 0.05) and where the
luminance for noise pixels is maximal and the saturation
Fig. 10. Denoising of colour image ‘‘CarmenBianca’’ using the morphologica
from the initial (left), a marginal median (in RGB of equivalent size) and two
respectively).
is half. As we can observe, for this noise distribution, the
results are better using only the luminance component
(k � kLSH

Mð1;0;0Þ, c0(255,–,–)) than the RGB components

(k � kRGB
2 , c0(255,255,255)). Note also that the result associ-

ated with the opening-closing operator for a size equal to
the centre is worse in terms of noise suppression. We show
in the zoom-in images the results of an equivalent marginal
RGB median which suppresses the noise but rounds off the
colour contours. The result for k � kLSH

Mð1;1;0Þ, c0(255,128,–),
which corresponds to the noise distribution properties, is
relatively satisfactory. In fact, it seems that the flexible
choice of a particular distance and a colour reference can
be interesting in order to obtain optimal filters for a partic-
ular distribution of noise. The challenge lies in estimating
the statistical colour noise properties, so that the Mahalan-
obis distance is naturally well adapted to this problem
(applying an estimated covariance matrix C).

As a matter of fact, we cannot conclude from the qual-
itative analysis of these examples that a specific ordering is
more suitable for one operator or another. In fact, we
believe that it is not possible to assert which ordering is
more appropriate for a given morphological operator.
l centre bf. At the bottom are zoom-in frames of a square section cropped
of centered images (using bfX in LSH with c0(255,255,–) and c0(255,128,–)
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The right choice of a colour distance and a colour reference
depends on the nature of the image, the features of the tar-
get structures, as well as the properties of the operation
applied, and others. For instance, using only one image
we cannot determine the best gradient for colour segmenta-
tion. However, using a database of manually segmented
images we can evaluate the segmentation obtained with
the different gradients and determine the best gradient for
the type of images. In addition, machine learning tech-
niques can be applied to automatically adapt the best
parameters for a specific problem.

5.1. Application to biomedical microscopic colour images

To complement the experimental part of this article, we
propose to illustrate the application of morphological col-
our operators to biomedical microscopic colour images. In
biomedicine, the microscopic samples (tissues, cells, pro-
teins, etc.) are classically fixed and stained by different
chemical components, in order to enhance the interesting
structures with a particular colour [10]. In addition, recent
advances in molecular biology allow to mark specific tar-
gets with fluorochrome probes [49]. The application of col-
our processing to these images is an active field.

Fig. 11 gives the example of colour analysis of an image
with cells marked with dark violet, located on a heteroge-
neous tissue (marked bright yellow and pink). The aim of
this processing is to separate the cells and the tissue to
make easier the later quantification of both elements (count
cells, evaluate cell aggregation, study the distribution of
colour pink/yellow on the tissue, etc.). The dichotomy
dark/bright implies the use of luminance information;
moreover the different colour elements present a similar
Fig. 11. Analysis of the colour image
saturation. Hence, the two ‘‘colour phases’’ are extracted
by closing/opening by reconstruction using the ordering
based on k � kLSH

Mð1;0:2;0Þ, c0(255,128,–). Even if the saturation
has a low contribution, we have observed that the result
is better where the luminance information also includes
the saturation information. For the tissue, the marker is
a dilation of 25, which removes the dark structures and
by dual reconstruction recovers the tissue contours. In
the case of cells, the marker is an erosion of size 75 which
propagates the cell colour followed by the reconstruction
that fills up the background.

Fig. 12 shows the successive steps of an example of
analysis for a Cy3/Cy5 cDNA microarray images [11,3].
From the viewpoint of this paper, a cDNA microarray
image is a two-channel Red–Green image (it can be seen
as an RGB image with zero blue component) consisting
of green, red and yellow spots. The goal of microarray
image analysis is to locate and segment the spots and to
quantify the intensity for each spot. Since microarray imag-
es are usually very noisy, image filtering and enhancement
[29,30] are required in order to increase the accuracy of the
subsequent analysis processes. Our aim in the particular
example of Fig. 12 is to extract the spots marked with
red fluorescence (pure red and yellow spots). Firstly, the
image f is pre-filtered by means of the contrast and centre
operators (to remove the noise and to enhance the spot
contours), followed by an opening by reconstruction of size
3 (to regularise the spots, by removing the intensity
structures of size lower that 3 · 3 pixels). Both transforma-
tions are based on the luminance/saturation processing
(k � kLSH

Mð1;1;0Þ, c0(255,128,–)). Then, the reconstruction using
as marker an erosion of size 15 (rough estimate of spot
diameter) removes the spots which has a pure green colour
‘‘Cells’’. See the text for details.



Fig. 12. Successive steps of the analysis of the colour image ‘‘cDNA-Microarray’’. See the text for details.
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(k � kRGB
2 , c0(0,128,255)). The output image f4 can be used to

specifically segment the red/yellow spots.
Fig. 13 illustrates an example of fluorescence-marked

cell segmentation in high content screening. For this kind
of applications, the touching cells must be separated in
order to be able to individually analyse each cell. To
apply the watershed segmentation a colour gradient is
needed as well as the markers for each cell. A gradient fg

calculated using the red and green component, k � kRGB
Mð2;1;0Þ,

c0(255,255,–), allows defining the main contours of cells
(the blue component introduces an additional contour for
the cell nuclei). An opening by reconstruction of size 20
Fig. 13. Successive steps of the analysis of the co
is then applied on the colour image f to remove the struc-
tures associated to the nuclei. The colour difference in
RGB between the filtered image f2 and the original one f

yields a grey-level image with the nuclei. The markers for
each cell fmrks are then obtained by computing the maxima
of structures having a minimal diameter of 10 (using an iso-
tropic opening). The watershed transformation of fg and
fmrks provides the cell contours.

The last study-case of Fig. 14 gives another example of
colour cell segmentation using the watershed transforma-
tion. Two classes of cells are presented in the image (col-
ours brown and blue). In addition, the image f is very
lour image ‘‘Cells2’’. See the text for details.



Fig. 14. Successive steps of the analysis of the colour image ‘‘Cells2’’. See the text for details.
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textured and it is suggested to simplify the structure before
computing the gradients. In this case, a first simplification
f1 is obtained from an opening by reconstruction working
on the brown structures (k � kRGB

2 , c0(90,20,20)) and a sec-
ond simplified image f2 removing the bright structures
(k � kRGB

2 , c0(255,255,255)). With the same orderings, a mor-
phological gradient is calculated for each image. The gradi-
ent f1 is used to obtain the contours of brown cells and the
gradient of f2 the contours of blue cells. Here, the markers
for each cell are obtained using a similar approach to the
previous example.

6. Conclusions and perspectives

In this study, we have introduced an algorithmic frame-
work to apply, in a reliable and generic way, mathematical
morphology operators to colour images. The methodology
is based on an R-ordering (using the distance to a reference
colour) completed by a C-ordering (using a lexicographical
cascade). This framework could also be valid to develop
other rank-based operators such as colour median filters.

The effects of these operators have been illustrated by
means of different examples: colour image simplification
using levelings, colour feature extraction using openings
(closings) by reconstruction, colour gradients for segment-
ing, colour denoising by the centre operator, colour
enhancement by the contrast mapping, etc. We have shown
the suitability of the approach with examples from natural
colour images and biomedical microscopic colour images.
Exhaustive tests to evaluate quantitatively the performance
of different orderings for the corresponding image process-
ing tasks can be the object of future studies. Nevertheless,
we hope that we have succeeded in giving the reader an
impression of the potential of this approach.
The results of this paper have to be considered as a first
step towards a general methodology of multivariate mor-
phology using total ordering based on distance to referenc-
es completed with a cascade of conditions. In future work
we want to address various other important issues such as:
the study of theoretical properties of operators derived
from these orderings; the investigation of alternatives
orderings based on other measures (correlations, projec-
tions, etc.) between the points and the reference, or based
on a kind of fuzzification; the definition of particular order-
ings for other multivariate data such as hyper-spectral
images, images of temporal series, etc.
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