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Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative Stress: An
Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol Rev
94: 329–354, 2014; doi:10.1152/physrev.00040.2012.—Reactive oxygen spe-
cies (ROS) are generated as by-products of normal cellular metabolic activities. Super-
oxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in

protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet
radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion
injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by
redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are
produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease
pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa,
ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory re-
sponses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI
diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in
part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative
free radicals as well as the physiological responses to such stress is important to better under-
stand disease pathogenesis and to develop new therapies to manage a variety of conditions for
which current therapies are not always sufficient.
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I. INTRODUCTION

Reactive oxygen species (ROS), also referred to as reactive
oxygen intermediates (ROI), are byproducts of normal cel-
lular metabolism. Low and moderate amounts of ROS have
beneficial effects on several physiological processes includ-
ing killing of invading pathogens, wound healing, and tissue
repair processes. As discussed in section IV, ROS act as
essential signaling molecules. Cancer treatment by chemo-
therapeutic agents and radiotherapies depend largely on
ROS generation to destroy malignant cells by inducing ap-
optosis. However, disproportionate generation of ROS
poses a serious problem to bodily homeostasis and causes
oxidative tissue damage. While natural antioxidant path-
ways can limit the adverse effects of ROS, their levels can be
stimulated by many oxidative stressors and maintained

such that they contribute to tissue damage. ROS are pro-
duced in response to ultraviolet (UV) radiation, cigarette
smoking, alcohol consumption, ingestion of nonsteroidal
anti-inflammatory drugs (NSAIDs), and many other exog-
enous agents. Infections, ischemia-reperfusion (I/R) injury,
and various inflammatory processes also result in elevated
levels of ROS. Disruption of normal cellular homeostasis by
redox signaling contributes to disease in virtually every or-
gan including the development of cancer (FIGURE 1).

The gastrointestinal (GI) tract is a key source of ROS. De-
spite the protective barrier provided by the epithelial layer,
ingested materials and pathogens can cause inflammation
by activating the epithelium, polymorphonuclear neutro-
phils (PMNs), and macrophages to produce inflammatory
cytokines and other mediators that contribute further to
oxidative stress. Various GI pathological conditions includ-
ing gastroduodenal ulcers, GI malignancies, and inflamma-
tory bowel disease (IBD) arise in part from oxidative stress.
Understanding the signaling events initiated by free radicals
as well as the physiological response to such processes is key
to furthering our understanding of ROS-mediated GI dis-
eases with the potential to develop novel therapeutic inter-
ventions.
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II. REACTIVE SPECIES AND THEIR
FORMATION

A. ROS and Reactive Nitrogen Species

Molecular oxygen (O2) is not only essential for the survival
of aerobic organisms, its reduction to H2O via mitochon-
drial respiration complexes provides ATP, but paradoxi-
cally contributes to cell death (164). Partially reduced O2,
collectively named ROS, are highly reactive and continu-
ously produced as by-products of cellular respiration. ROS
are also generated during enzymatic reactions. ROS include
radical compounds such as superoxide (O2

·�), hydroxyl

radicals (HO·), lipid hydroperoxides, and reactive non-
radical compounds including singlet oxygen (1O2), hy-
drogen peroxide (H2O2), hypochlorous acid (HOCl),
chloramines (RNHCl), and ozone (O3) (22). These oxy-
gen-centered small molecules containing unpaired va-
lence-shell electrons are unstable and highly reactive with
proteins, lipids, carbohydrates, and nucleic acids inside
the cells. These interactions can irreversibly inactivate
target molecules. The redox state of major cellular anti-
oxidants such as glutathione and thioredoxin are affected
by the level of intracellular ROS accumulation. Altera-
tions of the balance between ROS production and the
capacity to rapidly detoxify reactive intermediates lead
to oxidative stress.
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FIGURE 1. Schematic dia-
gram showing the induction of
oxidative stress and its patho-
physiological effects. Oxidative
stress damages internal organs
by causing mucosal injury.
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Reactive radical compounds such as nitric oxide (·NO),
nitrogen dioxide (·NO2), and nonradical compounds, e.g.,
peroxynitrite (ONOO�) and dinitrogen trioxide (N2O3),
are collectively called reactive nitrogen species (RNS).
These free radicals are unstable because of the presence of
unpaired electrons in their outer electron orbit. RNS is often
linked to ROS, e.g., in the formation of peroxynitrite caus-
ing nitrosative stress. Oxidative and nitrosative stress have
been etiologically implicated in a wide variety of disease
processes and states: aging, I/R injury, hypertension, ath-
erosclerosis, diabetic neuropathies, renal diseases, neuro-
logical diseases including Alzheimer’s disease and other
forms of dementia, as well as cancers (20, 44, 92, 93, 110,
227). Oxidative stress also contributes to various GI dis-
eases including gastroduodenal ulcers (226), inflammatory
bowel disease (105, 223), and GI malignancies such as gas-
tric (146) and colorectal cancer (130).

B. Mechanisms of ROS Generation

1. Endogenous sources

Intracellular compartments including mitochondria, the en-
doplasmic reticulum, peroxisomes, nuclei, the cytosol,
plasma membranes, and even extracellular spaces are capable
of ROS generation (13, 238). The mitochondrial electron
transport chain is the major site of ROS production in most
mammalian cells (237). Enzymes that catalyze ROS-generat-
ing chemical reactions are peroxidases, NADPH oxidase,
NADPH oxidase isoforms (NOX), xanthine oxidase (XO),
lipoxygenases (LOXs), glucose oxidase, myeloperoxidase
(MPO), nitric oxide synthase, and cyclooxygenases (COXs)
(164, 276).

A) MITOCHONDRIAL RESPIRATORY CHAIN. O2
·� is the most cru-

cial ROS as it can give rise to several other forms of reactive
oxygen intermediates. The inner mitochondrial membrane
(IM) contains a series of enzyme complexes referred to as
the mitochondrial respiratory chain (MRC). These include
complexes I-IV (NADH-ubiquinone oxidoreductase, succi-
nate dehydrogenase, ubiquinol-cytochrome c oxidoreduc-
tase, and cytochrome c oxidase) along with coenzyme Q
(CoQ) and a peripheral protein on the outer surface of the
inner mitochondrial membrane, cytochrome c, which con-
stitute the MRC. Electron leakage from MRC complexes I
and III results in reduction of molecular oxygen, thus form-
ing O2

·� (157). Cytochrome c oxidase (complex IV) is the
last enzyme component of the MRC which reduces O2 to
two molecules of H2O via a four-electron reduction (59).
Complex IV is not considered to be a biologically relevant
source of ROS (17). Rather, studies indicate that cyto-
chrome c may act as a mitochondrial antioxidant, oxidizing
O2

·� to O2 (268). At high cellular O2 concentration, cyto-
chrome c oxidase is in an oxidized state and consumes ·NO.
However, at low oxygen concentration, ·NO is not used by
cytochrome c oxidase, leading to ·NO accumulation in the
cell (280).

B) RESPIRATORY BURST AND NADPH OXIDASE. Respiratory burst is
the process by which phagocytic cells consume large
amounts of oxygen during phagocytosis, mainly via activa-
tion of NADPH oxidase and release O2

·� into the extracel-
lular space or phagosomes. NADPH oxidase is a multicom-
ponent enzyme present in the plasma membrane and phago-
somes of phagocytes such as monocytes, macrophages,
neutrophils, and eosinophils (FIGURE 2, Eq. 1) (12). Phago-
cytic NADPH oxidase consists of six subunits: membrane-
attached gp91PHOX and p22PHOX (PHOX � phagocytic
oxidase), cytosolic p67PHOX, p47PHOX and p40PHOX, and
Rho GTPases, Rac1 or 2 (258). Activation of NADPH ox-
idase is caused by relocation of the cytosolic components to
the cell membrane. The complex is normally latent in
phagocytes but is activated and assembled in the membrane
before respiratory burst. p47PHOX, p67PHOX, and either
Rac1 or Rac2 can activate the membrane-bound, catalytic
core of NADPH oxidase, flavocytochrome b (a heterodimer
of gp91PHOX and p22PHOX) (140). p40PHOX also regulates
NADPH oxidase activity (66).

Six homologs of NADPH oxidase, namely, NOX1,
NOX3–5, and DUOX1 and 2 (22, 101) have been identified
with diverse intracellular localization. Phagocytic NADPH
oxidase (NOX2/gp91phox) and its homologs are collectively
called the NOX family of NADPH oxidases. NOX1 and
DUOX2 have important roles in GI pathology, especially in
Helicobacter pylori-induced gastric inflammation, IBD, and
tumor development.

C) XANTHINE OXIDASE. Xanthine oxidase (XO), found on the
outer surface of the plasma membrane and also in the cyto-
plasm, is mainly expressed in the liver and small intestinal
mucosa within the GI tract (298). It catalyzes oxidation of
hypoxanthine (HX) to xanthine and then, to uric acid dur-
ing purine catabolism (FIGURE 2, Eqs. 2a and 2b) (114).
XDH can be converted to XO by utilizing NAD�. O2

·� is
generated during oxidation of hypoxanthine to xanthine as
well as xanthine to uric acid. Both of these reactions are
catalyzed by XO. O2

·� is not a highly reactive free radical
due to its short half-life and is eventually reduced to H2O2.
The charged moiety makes it impermeable to lipid mem-
branes which keeps it restricted to its site of origin.

During ischemia, the production of xanthine and XO is
greatly enhanced along with the loss of antioxidant en-
zymes. O2 is an electron acceptor and cofactor for XO, thus
generating O2

·� and H2O2. The intestinal mucosa has a
tremendous capacity to oxidize hypoxanthine by XO (98).
Therefore, it is not unexpected that I/R in the gut produces
O2

·� and H2O2, the major ROS contributing to GI injury
(256).

D) LIPOOXYGENASES. Lipooxygenases (LOX) are nonheme
iron enzymes catalyzing dioxygenation of polyenoic fatty
acids yielding hydroperoxyl derivatives including hydroper-
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FIGURE 2. Major endogenous oxidative
enzymatic reactions.
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oxyeicosatetraenoic acids (HPETEs) (255). Corresponding
hydroxyl derivatives hydroxyeicosatetraenoic acid (HETE),
leukotrienes (LT), and lipoxins are produced from HPETEs
upon reduction (262). ROS can be generated by oxidation of
arachidonic acid (AA) by LOX (87, 208) (FIGURE 2, Eq. 3).

AA is the substrate for LOX in animals while linoleic or
linolenic acids serve as substrates in plants (259). Five LOX
enzymes have been identified in humans that catalyze four
different reactions producing fatty acid hydroperoxides
(36) and are named based on position of oxygenated resi-
dues in arachidonic acid (277). 5-LOX produce proinflam-
matory leukotrienes (98, 255) in human monocytes and
macrophages (323). The fact that LOX contribute to ath-
erosclerosis (271) illustrates the potential importance of
these reactions. Their location is cytosolic in neutrophils
and nuclear in macrophages in the resting state, but neutro-
philic LOXs also move to the nucleus upon stimulation
(322). 12/15-LOX are also expressed in macrophages and
are involved in atherosclerosis (162, 332). LTs and HETE
can directly activate NADPH oxidase leading to ROS pro-
duction by translocating the p47PHOX subunit to the
plasma membrane (264).

Eicosanoids are produced in various cells of the GI tract
including leukocytes, epithelial cells, and other mucosal
cells (309). 15-LOX-1/-2 is downregulated in human colo-
rectal tumors (118), and administration of 15-LOX-1 has
shown anticarcinogenic effects (28). H. pylori induce
5-LOX-derived LT production in human gastric epithelial
cells (GEC) contributing to the neutrophil infiltration char-
acteristic of the inflammation associated with infection
(104). 5-LOX-derived LTs contribute in H. pylori-medi-
ated gastric carcinogenesis.

E) MYELOPEROXIDASE. Myeloperoxidase (MPO) is a heme-
enzyme localized in lysosomes of neutrophils, macro-
phages, and monocytes. This enzyme chlorinates H2O2 to
highly reactive HOCl (FIGURE 2, Eq. 4). It also catalyzes
oxidation of thiocyanate (SCN�) to generate another ROS,
hypothiocyanite (OSCN�) via a similar reaction (326).
MPO normally exists in the ferric (Fe III) form, although it
undergoes different stages of activation depending on the
ligands, O2

·� or H2O2 (235). Lactoperoxidase present in
the airway and digestive tract epithelia is also capable of
generating OSCN� (88). HOCl reacts with H2O2 to gener-
ate singlet oxygen (1O2) and chloride ion (Cl�) (FIGURE 2,

Eq. 5). 1O2 is not a free radical, but has properties similar to
ROS due to its electronic structure.

MPO activity is increased in H. pylori-infected subjects
(257) and plays a role in the development of H. pylori-
induced atrophic gastritis, a potential precursor of gastric
cancer (250, 338). Increased MPO activity is also found in
inflamed mucosa in ulcerative colitis, and this may contrib-

ute to the progression to malignancy associated with this
disease (293).

F) NITRIC OXIDE SYNTHASE. Nitric oxide synthase (NOS) is a
heme-containing monooxygenase that generates NO. Three
different isozymes of NOS have been identified (274), con-
stitutively expressed neuronal NOS (nNOS or NOS I) as
well as endothelial NOS (eNOS or NOS III), and endotoxin
or cytotoxin-inducible NOS (iNOS or NOS II) (224). All
types of NOS catalyze the oxidation of L-arginine to an
intermediate, N-hydroxy-L-arginine, followed by genera-
tion of L-citrulline and ·NO (FIGURE 2, Eq. 6) (37). At low
L-arginine concentrations, L-arginine-uncoupled NOS can
react with O2

·� to generate H2O2.

NO· is a weak oxidant, but when it combines with O2
·� to

generate OONO�, it becomes a potent ROS (155). ·NO and
OONO� generate very stable nitrite (NO2

�) and nitrate
(NO3

�) ions which accumulate in cells, leading to the for-
mation of highly reactive intermediates, such as ·NO2,
N2O3, or ·NO (FIGURE 2, Eq. 7). These intermediates cause
nitration and nitrosation of important biological macro-
molecules such as DNA, RNA, proteins, and lipids, thereby
disrupting their function. 8-Nitroguanine, a nitration prod-
uct of DNA and RNA, is a potent mutagen and pro-oxidant
formed within cells (141). Nitrated lipids are capable of
eliciting varied physiological responses and can also pro-
duce diffusible NO.

NOS are expressed in the GI tract. NO is involved in GI
mucosal defense as well as injury. NO maintains normal
functions of the GI mucosa and has a cytoprotective role. It
maintains GI mucosal integrity by regulating gastric muco-
sal blood flow, epithelial secretion, and barrier function
(16). However, NO can have deleterious effects, and in-
creased iNOS expression is found in chronic ulcerative coli-
tis and peptic ulcer patients (239). As such, RNS generated
by iNOS have immense effects on the normal gut as well as
pathophysiological conditions of the GI tract.

G) CYCLOOXYGENASE. Cyclooxygenase (COX) is a bifunc-
tional enzyme (having both COX and peroxidase activities)
that releases arachidonic acid (AA) from membrane phospho-
lipids and catalyzes conversion of AA to prostanoids (FIGURE
2, Eq. 8). COX has two isoforms: COX-1 and COX-2. A
splice variant of COX-1, COX-3 (also called COX-1b or
COX-1 variant), has been reported. Initially it was thought
to have no physiological role in humans, but recent reports
indicate that this enzyme possibly has cytoprotective func-
tions and is induced in human colon cancer cells (205) and
gastric cancer cells during high osmotic stress (172). COX
adds two O2 molecules to AA by its bioxygenase activity to
generate an unstable cyclic hydroperoxide, PGG2. Next, it
reduces PGG2 by its peroxidase activity to an endoperox-
ide, PGH2(266). PGH2 is converted to biologically active
and stable prostanoids such as PGE2, prostacyclins, and
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thromboxane A2 by various synthases. The peroxidase ac-
tivity of COX generates NAD� and NADP� radicals. These
radicals can eventually generate O2

·� (163).

COX-1 and COX-2 are expressed in normal human gastric
mucosa with increased levels at the edge of ulcers (133). H.
pylori can upregulate both COX-1 and COX-2. COX-2 has
been associated with precancerous changes in the GI mu-
cosa including Barrett’s esophagus, H. pylori-induced gas-
tritis, as well as inflamed colonic mucosa (154) and is im-
plicated in the development of cancers associated with these
diseases (207). COX-1 has constitutive expression while
COX-2 is upregulated by inflammation and tumorigenesis
(179). Accordingly, selective COX-2 inhibitors (coxibs)
have been developed as anti-inflammatory and antitumor
drugs.

H) TRANSITION METALS. Transition metal ions such as iron
(Fe2�) and copper (Cu) carry out the Fenton reaction that
generates HO· and OH· from H2O2 while being oxidized to
Fe3� and Cu2�, respectively. These are reduced back by a
reducing agent (FIGURE 2, Eq. 9b). The net Haber-Weiss
reaction is shown in FIGURE 2 (FIGURE 2, Eq. 9c). The
generation of HO· through this pathway accelerates lipid
peroxidation (40). Oxidation of certain biological mole-
cules during exercise generates superoxide anion radicals,

and this is mediated by trace amounts of transition metals
(63). For example, ferrous ion (Fe2�) can lose its electron to
oxygen to produce O2

·� and Fe3� (97). Molecules that un-
dergo such autooxidation are hemoglobin, myoglobin, cat-
echolamines, reduced cytochrome c, and thiols.

2. Exogenous or environmental sources

There are multiple external triggers that induce oxidative
stress that have direct or indirect effects on responses in the
GI tract. Air pollutants, tobacco smoke, ionizing and non-
ionizing radiations, foods and drugs, as well as xenobiotics
can all contribute to oxidative stress. Chemical agents like
quinones (33); heavy metals such as lead, arsenic, mercury,
chromium, and cadmium; organic solvents; and pesticides
are common exogenous sources of ROS (331). Various ex-
ogenous and endogenous sources of ROS are included in
FIGURE 3, but this section focuses on those with the most
relevance to the GI tract.

A) RADIATION AND CHEMOTHERAPY. Ionizing radiation, such as
x-rays, neutrons, as well as �, �, and � rays, can all cause
oxidative stress. � Particles have weak penetrative power,
but the rest are very penetrating through the human body.
Ionizing radiation can produce HO· by radiolysis of water
or ROS via secondary reactions (249). High levels of ioniz-
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ing radiation cause injury to the cerebrovascular, GI, and
hematopoietic systems. In the prodromal phase following
damage to all of these tissues, GI symptoms appear includ-
ing anorexia, nausea, vomiting, and diarrhea. When mice
receive doses of 6–30 gray (Gy), GI injury syndromes ap-
pear, caused in part by p53-mediated death of GI epithelial
cells (149). Radiation-induced cell death can be mitigated
or even prevented in mice with the antioxidant N-acetyl-
cysteine (NAC) (136) which establishes ROS as critical fac-
tors in development of radiation-induced GI syndromes.

Cancer chemotherapy is often accompanied by toxic side
effects, and ROS generation by chemotherapeutic agents is
the primary event leading to induced toxicity. This is evi-
dent by increased lipid peroxidation, and reduced antioxi-
dant and tissue GSH levels during chemotherapy. Agents
that produce high levels of ROS include anthracyclines
(doxorubicin, daunorubicin), alkylating agents, platinum
coordination complexes (e.g., cisplatin), epipodophyllotox-
ins (e.g., etoposide and teniposide), and the camptothecins
(60). Methotrexate (MTX) is a widely used chemothera-
peutic agent that causes gastrointestinal toxicity leading to
diarrhea, nausea, and decreased nutrient absorption. The
XO system is involved in MTX-mediated ROS production
in an animal model (60).

Both radiation and chemotherapy induce systemic oxida-
tive stress and reduce levels of vitamin E and beta-carotene
in patients (57). Antioxidant vitamins have been used to
treat these complications (192). Topical application of vi-
tamin E enhances the rate of healing at sites of ulceration.
Oral beta-carotene supplementation during the course of
radiation and chemotherapy helps in the treatment of oral
mucositis (192). Thus understanding the role of ROS in
response to these antioxidant vitamins has helped in plan-
ning strategies to deal with some ROS-mediated tissue dam-
ages.

B) CIGARETTE SMOKE. Cigarette smoke is another significant
generator of ROS (109) and has been shown to modulate GI
disease. It is comprised of more than 7,000 chemical com-
pounds and oxidative agents, and tobacco smoke contains
1014-1016 free radicals per puff (329). The active chemicals
include aldehydes, quinones, benzo(a)pyrene, epoxides,
and peroxides (55). Cigarette smoke has a gas phase which
contains ·NO, peroxyl radicals, and carbon-centred radicals
as well as a tar phase containing relatively stable polycyclic
aromatic hydrocarbons and nitrosamines (319). In the pres-
ence of iron, tar semiquinone can generate hydroxyl radi-
cals (HO·) and hydrogen peroxide (H2O2).

Tobacco use is associated with various GI diseases includ-
ing peptic ulcers, Crohn’s disease (296), gastroesophageal
reflux disease (GERD) (272), Barrett’s esophagus (62), as
well as carcinoma in the esophagus, gastric cardia (302),

and distal intestine (4). Interestingly, tobacco smoking has a
protective effect in ulcerative colitis, which highlights the
pathogenic differences between Crohn’s disease and ulcer-
ative colitis and reflects the complex mixture of compounds
found in tobacco smoke (113, 169). Understanding the
mechanisms underlying this difference may provide valu-
able information for developing new treatments for these
two major forms of IBD.

C) FOODS AND ALCOHOL. Ingested food can generate O2
·� and

H2O2 in the GI tract (67). Humans ingest macronutrients
(carbohydrates, proteins, and fats), micronutrients (miner-
als and vitamins), food preservatives, as well as microor-
ganisms. Dietary iron and also copper generate ROS by the
Fenton reaction. Increased intake of Fe2� generates ROS
and RNS, lipid peroxidation, and oxidative stress, and its
accumulation in tissues increases the risk of cancer and
inflammation (96). Trans fatty acids in processed foods also
generate ROS (334). This may in part be attributable to the
presence of acrylamide, which can be found in snack foods,
breakfast cereals, and crackers. Acrylamide is absorbed
mainly via ingestion and reacts with hemoglobin (26).
Chronic acrylamide exposure gives rise to oxidative stress
in humans by the increased production of ROS.

Lipids from vegetable and animal origin, when heated in
microwave ovens, generate free radicals. In addition, foods
from plants containing phenols supply oxidants to the body
(3) while ethanol at high concentrations can directly dam-
age the mucosal layer of the GI tract. Alcoholic liver disease
(324) and alcoholic pancreatitis (217) occur in part due to
ROS generated from ethanol. Furthermore, cancers of the
oropharynx, larynx, esophagus, and liver are also associ-
ated with increased alcohol intake (225). Although these
associations may be explained in part by the disruption of
the intestinal barrier function due to alcohol-induced NO
synthesis (279) and increased production of NF-�B and
tumor necrosis factor (TNF)-� (225), further studies are
required to better understand the mechanisms of alcohol-
induced GI injury.

D) DRUGS AND XENOBIOTICS. Many drugs and xenobiotics con-
tribute to the formation of free radicals in the body. Anti-
cancer drugs such as anthracyclines and analogs, mitoxan-
trone and other quinones, actinomycin D, enediynes such as
bleomycin, chartreusins, elasmin A and related compounds
can cause oxidative stress (76). The resultant oxidative
stress facilitates their ability to kill tumor cells. Glucocorti-
coid therapy can lead to O2

·� production (131), but its
effects on inducing apoptosis in certain leukocyte popula-
tions confer a net decrease on oxidative stress. Volatile an-
esthetics may generate free radicals and change antioxidant
levels in patients undergoing surgery (292). However, how
these agents impact luminal GI pathophysiology is not well
known.
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Aspirin and antipyretic, analgesic NSAIDs such as ibupro-
fen and naproxen, also generate ROS. NSAIDs actions in-
clude nonselective inhibition of COX, thereby blocking for-
mation of PGE2 (241). Two main target organs of adverse
reactions associated with NSAIDs are the GI tract and the
renal system. NSAID-induced gastric injuries, including ul-
ceration (320), occur in part due to induced aggregation of
neutrophils in the gastric vascular endothelium (307). This
can lead to ROS production and mucosal injury associated
with NSAID treatment in rats (294). Acidic NSAID mole-
cules irritate the gastric mucosa directly, but reduction of
prostaglandin synthesis in rat gastric mucosa is more signif-
icant because this increases gastric acid secretion, and re-
duces bicarbonate secretion and mucosal blood flow,
thereby increasing the risk of gastric ulceration and damage
to the small intestine (315). A PGE1 derivative, misoprostol,
and agents that inhibit gastric acid secretion such as proton
pump inhibitors and histamine receptor blockers are used
for the treatment and prevention of NSAID-mediated gas-
troduodenal injury (229). It is believed that by removing
bacterial populations of the stomach and the small intes-
tine, NSAID-induced mucosal damage can be reduced
(183). As mitochondrial oxidative phosphorylation medi-
ates NSAID-induced mucosal injury of both of these or-
gans, agents that prevent uncoupling of oxidative phos-
phorylation may be useful in treating NSAID-mediated GI
injuries.

III. ANTIOXIDANT DEFENSE SYSTEMS

Oxidation reactions are crucial for aerobic life, but uncon-
trolled ROS generation is damaging. Although free radicals
are continuously generated, the body is equipped to defend
against the harmful effects of ROS with the help of antiox-
idants, collectively called the antioxidant defense system
which comprises both enzymatic and nonenzymatic mech-
anisms. Antioxidants remove free radicals from the system
and inhibit oxidation by being oxidized themselves. Dietary
intake is another very important source of antioxidants and
points to the potential effects of malnutrition or malabsorp-
tion of nutrients on the regulation of these mediators.

A. Endogenous Enzymatic Antioxidants

The major enzymatic antioxidants are superoxide dismuta-
ses, glutathione peroxidase, glutathione-reductase, cata-
lase, and superoxide reductases. Superoxide reductase is an
oxidoreductase present only in the anaerobic and faculta-
tive microorganisms (234). SOD and catalase provide ma-
jor antioxidant defenses against ROS.

1. Superoxide dismutases

Superoxide dismutases (SOD) are metal ion cofactor-re-
quiring enzymes that catalyze dismutation of O2

·� into O2

and H2O2 (FIGURE 2, Eqs. 10a and 10b). Three isoforms of
SOD exist in humans (204): cytosolic copper and zinc-con-
taining enzyme (Cu-Zn-SOD), manganese-requiring mito-
chondrial enzyme (Mn-SOD), and an extracellular Cu-Zn
containing SOD (EC-SOD). Iron-containing SOD (Fe-
SOD) is present in bacteria and plants but not in vertebrates
and yeast, while nickel-containing SOD (Ni-SOD) is pres-
ent only in prokaryotes (297). Mn-SOD is essential for sur-
vival as Mn-SOD null mice die soon after birth (188).

O2
·� formed in the mitochondria is dismuted to H2O2 by

Cu-Zn-SOD present in the mitochondrial intermembra-
nous space and Mn-SOD present in the mitochondrial ma-
trix (213). GPX present in the mitochondrial matrix can
scavenge H2O2. Uncharged H2O2 crosses the mitochon-
drial membranes and in the cytosol can be scavenged by
either cytosolic Cu-Zn-SOD or catalase (236). Gastrointes-
tinal mucosal injury can be prevented by SOD in the gas-
trointestinal mucosa (150, 152). Intestinal tissues from IBD
patients have increased levels of all three SOD isoforms,
particularly in the epithelium (161).

Reduced SOD activity in the gut causes gastric ulcer, and
increased SOD activity has been associated with ulcer heal-
ing in patients (200). These responses illustrate both the
detrimental effects of ROS on tissue damage and the impor-
tance of antioxidant activity in promoting health. Gastric
adenocarcinoma and squamous cell esophageal carcinoma
tissues exhibit increased expression of Mn-SOD relative to
the normal mucosa (134). Colorectal cancer is also associ-
ated with enhanced Mn-SOD expression. In contrast, Cu-
Zn-SOD is slightly lower in cancer tissues than in normal
tissues. Whether these changes are pathogenic or they sim-
ply reflect altered homeostasis has yet not been established.

2. Glutathione peroxidase

Glutathione peroxidase (GPX) converts glutathione (GSH),
a tripeptide consisting of glutamate, cysteine, and glycine,
into oxidized glutathione (also called glutathione disulfide,
GSSG) and, during this process, reduces H2O2 to H2O and
lipid hydroperoxides (ROOH) to corresponding stable al-
cohols (FIGURE 2, Eq. 11). The GPX reaction is coupled to
glutathione reductase (GSSG-R), which maintains reduced
glutathione (GSH) levels (FIGURE 2, Eq. 12) (34). Neurons
are most vulnerable to free radical damage as they have very
low levels of GSH. GPX serves an important role in protect-
ing cells from the harmful effects of peroxide decomposi-
tion.

Isozymes of GPX are found in the cytoplasmic, mitochon-
drial, and extracellular compartments (288). Humans have
eight isotypes of GPX, most of which contain selenocysteine
residues at their active site (74). GPX1 is ubiquitous, but
GPX2 has epithelium-specific expression. GPX2 (originally
named GPX-GI) was discovered in the gastrointestinal tract
(52) which protects the gut against the absorption of dietary
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hydroperoxides (318). GPX2 expression is detected in var-
ious parts of the GI tract and is induced in gastric cancer
cells (153). GPX2 provides a first line of defense against
ROS derived from inflammation associated with both
pathogenic and nonpathogenic commensal bacteria in the
gut (54). GPX1 and GPX2 double-knockout mice suffer
from IBD-like symptoms as a result of induced oxidative
stress and inflammatory responses (90). Understanding the
mechanisms by which GPXs cause IBD and developing
GPX-mimetics for future therapeutic approaches could en-
hance the management of human IBD.

3. Catalase

Catalase dismutates H2O2 to H2O and O2 (FIGURE 2, Eq.
13) and is found mainly in peroxisomes (261). Catalases are
heme enzymes, but a manganese catalase is found in pro-
karyotes (333). In humans, catalase is found largely in liver,
kidney, and erythrocytes, although all organs express this
enzyme. Catalase-expressing pathogens such as Campylo-
bacter jejuni (10), H. pylori (198), Helicobacter hepaticus
(95), and enterobacteriaceae family bacteria (281) includ-
ing Escherichia coli, Shigella, and Salmonella synthesize
catalase to deactivate H2O2 to evade host response and
survive within the host. Less catalase activity is noted in
colorectal cancer (47), gastric adenocarcinoma, and H. py-
lori-infected stomach (196). Crohn’s disease patients show
permanent suppression of catalase activity in their mono-
nuclear cells (126). Genetically modified Lactobacilli capa-
ble of producing catalase have been shown to reduce tumor
in colon (75) and colitis in mice (166). Scientists even claim
that catalase function is not to detoxify H2O2, but to pro-
tect cells from apoptosis (203). Further support for this
view comes from a study involving IBD patients (156).
However, dissecting out the antiapoptotic and antioxidant
roles of catalase in various GI diseases could help in devel-
oping more effective treatment strategies for inflammatory
GI diseases.

4. Glutathione reductase

Glutathione reductase (GR or GSR) reduces oxidized glu-
tathione disulfide (GSSG) to GSH (FIGURE 2, Eq. 12). GR is
ubiquitously expressed except for Drosophila, Trypano-
somes, and gram-negative bacteria (143). This homodi-
meric enzyme is a flavoprotein disulfide oxidoreductase.
Each subunit contains four domains: FAD-binding and
NADPH-binding domains, a central domain, and an inter-
face domain. The active site is formed by dimerized inter-
face domains, and only the dimer has catalytic activity (19).
GR protects red blood cells, hemoglobin, and cell mem-
branes from oxidative stress by generating GSH (48). Ribo-
flavin deficiency leads to reduced GR activity (100). In-
creased level of GSH is often associated with drug resistance
of various cancers including colon cancer (25, 246). Clinical
trials of GR inhibitors and a better understanding of the

GST detoxification pathway will further help in developing
chemotherapeutic regimens to treat colon cancer.

5. Heme oxygenase

Heme oxygenase (HO) catalyzes degradation of heme and
generates CO, biliverdin, and iron (282). Two distinct HO
isoforms, HO-1 and HO-2, have been reported (253).
HO-2 is constitutively expressed, and HO-1 is inducible.
There is a low expression of HO-1 at baseline in nearly all
cells, but it is strongly induced by its substrate heme, heat
shock, UV radiation, I/R injury, lipopolysaccharide (LPS),
cytokines, and oxidative stress (312). Although HO-1 does
not have a direct antioxidant enzymatic function, HO-1
and its product CO are believed to have indirect cytopro-
tective responses against oxidative stress (214, 304). HO-1
overexpression leads to resistance of hyperoxia-induced
lung cell death, protein oxidation, and lipid peroxidation
injury (228), whereas CO prevents oxidant-induced lung
injury (215). HO-1 also has cytoprotective function in GI
tumor cells. In an experimental colitis model, HO-1 was
significantly upregulated in inflamed colon (310) as was
also found in patients with IBD (222). Nrf2-deficient mice,
which lack transcriptional regulation of Nrf2 on HO-1
gene, are more susceptible to dextran sodium sulfate, a
chemical inducer of colitis, when compared with wild-type
mice (147). HO-1 is crucial in modulating cell cycle, apo-
ptosis, as well as oxidative stress in colon cancer cells (210).
However, studies to understand HO-1’s potential in treat-
ing free radical-induced GI diseases are still in their infancy.

B. Endogenous Nonenzymatic Antioxidants

1. Glutathione

Glutathione is found in all eukaryotic cells and is one of the
key non-enzyme antioxidants in the body. It is generally
present in its reduced form, GSH. This is ubiquitously ex-
pressed, and together with three enzymes, glutathione re-
ductase GPX, and glutathione S-transferases (GST) (187),
form the glutathione system. In the gut mucosa, the GSH
system serves as an antioxidative barrier. High intake of
fruits and vegetables stimulate GSH-dependent enzymes
(120) which may account for at least some of the reported
antioxidative benefit of these food groups.

GSH concentrations are much higher in the glandular gas-
tric tissue, perhaps conferring some additional protection
from the effects of gastric acid. While H. pylori infection-
induced inflammation causes damage that in part is attrib-
utable to the production of ROS, this infection overwhelms
the ability of mucosal cells and local glutathione to entirely
prevent ROS-mediated damage. Therapeutic regulation of
glutathione availability prevents the damage caused by H.
pylori infection (184), which illustrates the impact of alter-
ing the relative balance of pro- and antioxidants in disease.
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A very high correlation exists between high GST expression
in the GI tract and tumor occurrence. Two isoenzymes
of GPX, GPX-1 and GPX-2 or GPX-GI, catalyze reduction
of hydroperoxides in the intestinal epithelia. GPX�/� mice
are susceptible to infection-induced inflammation and can-
cer (53). In humans, low GST activity is associated with
high tumor incidence, and vice versa. Glutathione/GST
causes neoplastic changes in H. pylori-infected gastric mu-
cosa (301). GST activity is reduced in colon cancer. Again,
dietary intake of fruits and vegetables reduces the risk of
colorectal cancer (107), which may in part be attributable
to their ability to favor an antioxidant environment.

2. Thioredoxin

The thioredoxin system is comprised of thioredoxin (Trx)
and thioredoxin reductases (TrxR). Trx is disulfide-con-
taining oxidoreductase that modulates activity of redox-
sensitive transcription factors. Trx is present in the cyto-
plasm, membranes, mitochondria, and the extracellular
space (151). Its active site contains a conserved sequence
Cys-Gly-Pro-Cys. Oxidized Trx (Trx-S-S) is reduced by a
flavoenzyme TrxR and NADPH (122) to its active dithiol
form which scavenges ROS and helps maintain proteins in
their reduced state (8). Several clinical conditions have been
shown to involve Trx (21). Trx shields ocular lens from free
radical damage (245) and inhibits reperfusion-induced ar-
rhythmias in a rat cardiac tissue (7), indicating a protective
effect during acute ischemic heart disease. TRX-1 shows
cytoprotective action in various inflammatory conditions.
For example, TRX-1 reduces DNA damage and neutrophil
aggregation in the Helicobacter felis-infected stomach, sug-
gesting a protective role in murine gastritis (144).

Thioredoxin binding protein-2 (TBP-2) is a negative regu-
lator of Trx and has multiple regulatory functions in cellu-
lar redox regulation, growth, apoptosis, and aging. TBP-
2�/� mice die from GI bleeding under fasting conditions,
indicating a protective role of TBP-2 in gut pathophysiology
(212). Anti-ulcer drugs like geranylgeranylacetone can in-
duce Trx production in rat hepatocytes. This drug also pro-
motes secretion of Trx in rat gastric mucosa, suggesting that
it has a protective role in at least experimental gastric ulcer-
ation (77). Bile acids upregulate TrxR mRNA expression in
GI cancers via induced production of ROS (167).

3. Melatonin

Melatonin is a hormone synthesized from serotonin primar-
ily in the mammalian pineal gland but is also found in the
retina, lymphocytes, GI tract, and bone marrow (284). It is
ubiquitous and can be found in dietary sources such as oats,
yeast, and other plants. It is effective in both aqueous and
lipid phases in neutralizing HO· and peroxyl radicals,
CO3

·�, ·NO2, O2
·�, and HOCl (247) and can readily cross

the blood-brain barrier. Melatonin as an antioxidant is ir-

reversibly oxidized and cannot be reduced. Thus it is re-
ferred to as a suicidal or terminal antioxidant (278). During
the oxidative reaction, it is converted to several antioxidant
intermediate metabolites, 6-hydroxymelatonin being the
primary metabolite found in the nuclei and mitochondria.
Mitochondria generate most free radicals generated within
cells (112) and are particularly prone to oxidative damage
as they lack protective histone proteins and have fewer
DNA-repair enzymes. As melatonin can directly cross the
mitochondrial membranes, it plays a very significant role in
protecting mitochondria from oxidative damage. In this
manner it protects vital organs including the liver from
alcoholic damage (177). Other antioxidants can be con-
verted to free radicals, but melatonin can never become a
free radical as its oxidative role involves donation of two
electrons. Melatonin’s anti-inflammatory effects in animal
studies and limited human studies suggest that supplemen-
tal melatonin may have a beneficial effect in colitis (284).
Further studies are required to fully evaluate its anti-inflam-
matory and antioxidant functions.

C. Exogenous Antioxidants

1. Vitamin C

Vitamin C or ascorbic acid is the primary antioxidant in
plasma and cells (185). It is synthesized from glucose in the
liver of most mammalian species, but not by humans and
therefore must be ingested to avoid scurvy, a potentially
lethal condition (216). Vitamin C can be obtained from
fresh fruits and vegetables. Vitamin C donates electrons to
other compounds and prevents their oxidation. The many
relevant species reduced by vitamin C include various ROS,
RNS, sulfur radicals, O3, nitrosating compounds, and
HOCl. Vitamin C reduces heavy metal ions (Fe, Cu) that
can generate free radicals via the Fenton reaction, and thus
it can have pro-oxidant activity (273) although its main
function is as an antioxidant.

2. Vitamin E

Vitamin E (the most biologically active form is �-tocoph-
erol) is an important and abundant antioxidant that pro-
tects cell membranes from lipid peroxidation (LPO) (289).
�-Tocopherol terminates the activity of LPO by scavenging
lipid peroxyl radicals (LOO·) but itself is converted into a
reactive radical during this reaction (295). �-Tocopherol
can also reduce Fe or Cu, as a pro-oxidant (327). The ability
of �-tocopherol to act as a pro- or antioxidant depends on
the amount of �-tocopherol available to scavenge ROS
(327). However, according to some reports, �-tocopherol
has no significant role in antioxidant metabolism (11). In
one in vitro model, in the presence of Cu2�, �-tocopherol
showed an oxidative DNA-damaging effect (328). Epide-
miological studies indicate that food rich in fruits and
vegetables lowers cancer rates, but supplementation of
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exogenous vitamin E and other antioxidants have not
been shown to prevent gastrointestinal cancers (32). This
underscores the complexity of understanding the benefi-
cial effects of foods beyond their individual antioxidant
components.

3. Carotenoids including vitamin A

Vitamin A, which is found in food, is referred to as carote-
noids or provitamin A. Yellow and orange fruits as well as
green leafy vegetables provide most of the carotenoids in
our diet. Alpha- and beta-carotene, lycopene, and cryptox-
anthin are the main carotenoids in food as well as in the
body (103). Beta-carotene and other carotenoids exhibit
antioxidant properties depending on the in vitro experi-
mental system used. Antioxidant properties of biological
carotenoids depend on retinol-binding proteins and other
endogenous antioxidants in vivo (243). Beta-carotene has
been shown to suppress lipid peroxidation in mouse models
(132). Antioxidant properties can be reversed to pro-oxi-
dant behavior depending on O2 tension or carotenoid con-
centration (336).

4. Minerals

Zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), and
selenium (Se) are key components of enzymes with antiox-
idant functions and are designated as antioxidant micronu-
trients. Zn, Mn, and Cu are cofactors of superoxide dismu-
tase (Cu/Zn-SOD) (115). Fe is a component of catalase. Se
is a major antioxidant in the form of selenoproteins that
mitigates the cytotoxic effects of ROS. Cereals contain sel-
enomethionine, a naturally occurring amino acid that is the
most important nutritional source of Se. When Se-GPX is
inhibited under physiological conditions, such as during Se
deficiency, it leads to toxicity through increased O2

·�, ·NO,
and lipid peroxidation (189). Thus again, proper nutrition
and absorption of these micronutrients is essential to main-
tain redox homeostasis.

5. Polyphenols including flavonoids

Plant polyphenols are important antioxidants, and dietary
intake of these compounds can be up to 50–800 mg/day
(232). Polyphenols comprise flavonoids, phenols, phenolic
acids, lignins, and tannins. Flavonoid sources include fruits,
vegetables, nuts, red wine, beer, tea, seeds, grains, spices,
and medicinal plants. Flavonoids prevent superoxide anion
production by inhibiting XO (111). In addition, they inhibit
COX, LOX, GST, microsomal monooxygenases, and
NADH oxidase (39). Many flavonoids chelate free Fe and
Cu that could otherwise increase ROS generation, and also
reduce ROS such as O2

·�, and HO· (41).

IV. ROS AS SIGNALING MOLECULES AND
ROS-MEDIATED REGULATION OF
CELLULAR SIGNALING

Although often thought of as harmful molecules, ROS act
as essential signaling molecules. Despite this function being
widely reported, it has remained controversial or perhaps
under investigated. FIGURE 4 illustrates key ROS signaling
events within cells. ROS modulate a number of redox-sen-
sitive signaling pathways. Well-characterized targets are the
catalytic Cys residues of tyrosine kinases and mitogen-acti-
vated protein (MAP) kinase phosphatases (protein tyrosine
phosphatases). Oxidation of their Cys residues reversibly
abolishes enzymatic activity (287). ROS also cause integra-
tion of cellular functions by regulating growth factor-medi-
ated signaling pathways. Specificity of these signaling
events is conferred by subcellular compartmentalization of
H2O2 (305) and by local modulation of H2O2 concentra-
tion by scavengers (321).

In mammals, thiol-based peroxidases, peroxiredoxins
(PRXs, a family of peroxidases), and GPX play important
roles in ROS signaling. PRXs modulate H2O2 signaling
downstream of growth factor tyrosine kinases and cytokine
receptors (142). PRX1 is induced in macrophages by oxi-
dized low-density lipoprotein and functions not only as an
antioxidant and a reducer of ROS, but activates p38
MAPK, and enhances cell survival (61). PRX2 blocks H2O2

and TNF-�-induced upregulation of NF�B (61). Overex-
pression of PRX4 also inhibits the above-mentioned event
(138). Control of inflammatory responses by ROS is of
course very relevant to GI diseases and is discussed in more
detail in section V.

Another level of regulation of mammalian ROS is achieved
by modulating mammalian antioxidant systems in a process
involving several factors. p53 can be activated by NO,
which decreases H2O2 accumulation by upregulating
GPX1 (254). S-nitrosylation of the p53 inactivator Hdm2, a
ubiquitin ligase (260), inhibits its interaction with p53,
thereby blocking p53 ubiquitination and proteolysis. ·NO
downregulates Mdm2 (mouse equivalent of Hdm2), simi-
larly decreasing p53 ubiquitination (311). c-Myc can in-
duce GSH formation, which potentiates its oncogenic func-
tions (24). The class O forkhead box (FOXO) family of
transcripton factors is activated by H2O2 and imparts tol-
erance to oxidative stress by enhancing SOD1 expression
(43). NRF2 transcription factor modulates the expression
of defensive genes coding detoxifying enzymes and anti-
oxidant proteins. KEAP1, the inhibitor of NRF2, helps in
its retention in the cytosol. The NRF2-KEAP1 pathway is
committed to xenobiotic and oxidant elimination. In re-
sponse to attack by electrophiles or ROS, NRF2 is
switched on and off via distinct mechanisms. Oxidative
modification of KEAP1 at Cys residues and NRF2 phos-
phorylation results in release of NRF2 from KEAP1
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(335). Stabilized NRF2 translocates to the nucleus, inter-
acts with various proteins, and binds with antioxidant
response elements involved in activation of gene expres-
sion, thereby protecting cells from free radical damage.

Eukaryotic ROS sensing transcription factors, AP-1, and
NF-�B act as potent redox sensors due to the presence of
single Cys in their DNA-binding domains (1). Oxidation of
these Cys residues blocks their binding to the respective
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FIGURE 4. Schematic depiction of multiple signaling pathways that generate ROS and the intracellular events
activated by ROS accumulation. Upon activation, G protein-coupled receptors (GPCRs) activate phospholipase
C (PLC) leading to the activation of protein kinase C (PKC) molecules. Platelet-derived growth factor receptors
(PDGFRs) activate phosphoinositide 3-kinase leading to activation of ras-related C3 botulinum toxin substrate
1 (RAC1). Both RAC1 and PKC activate membrane-bound receptors leading to membrane relocation and
assembly of various components of phagocytic NADPH oxidases. Mitochondrial electron transport chain (mito
ETC) is another robust source of intracellular ROS generation. ROS in turn lead to enhanced production of
(APE1/Ref1) and activation of several signaling events including p53-mediated apoptotic events, mitogen-
activated protein kinase (MAPK) pathways, NF-E2-related factor (NRF2)-mediated activation of genes contain-
ing antioxidant response element (ARE), and nuclear factor-�B (NF-�B). Transcription factors including AP1,
NF-�B, cAMP response element-binding (CREB), and early growth response (EGR) protein, induced by these
signaling events are kept in the active and reduced form by APE1/Ref1. Thus ROS signaling events play a
central role in regulation of proinflammatory events, cell cycle, proliferation, and cell death. Antioxidant defense
enzymes such as catalase, thioredoxins (TRX), peroxidases, and peroxiredoxins (PRX) contribute to preventing
excessive levels of ROS from accumulating at the cellular and tissue level.
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consensus DNA sequences. Apurinic/apyrimidinic (AP) en-
donuclease 1 (APE1), also known as Redox effector factor 1
(Ref1), functions as a reducing agent for various transcrip-
tion factors (91). This ubiquitous multifunctional protein is
induced by ROS (242) and is involved in base excision
repair (78). The DNA-binding activity of transcription fac-
tors are restored by Trx (180). Although reducing condition
is favorable for DNA binding, both AP-1 and NF-�B can be
activated by oxidative stress via induction of APE1/Ref1. A
Zn-finger DNA-binding protein, early growth response
gene-1 (Egr-1), is activated by ROS, and a positive feedback
loop between APE1/Ref1 and Egr-1 regulates their early
transcriptional activation after oxidative stress (233). Egr-1
also induces SOD1 and thus reduces free radical-induced
damage (194). The functions of these signaling molecules
will be discussed further in the next section.

V. PATHOPHYSIOLOGY OF OXIDATIVE
STRESS IN THE GI MUCOSAL
DISEASES

The GI tract is prone to ROS attack as it is accessed by the
outside environment with resident immune cells and intes-
tinal flora as well as dietary factors, all potential sources of
ROS. Two main enzymatic reactions generate ROS in the
GI tract-the HX/XO system and the NADPH oxidase sys-
tem. In fact, the GI tract has the highest concentration of
XO in the body, which along with numerous phagocytic
cells (and a large number of catalase-negative bacteria in the
colon), combine to generate large amounts of O2

·� (181).
ROS have been linked with various inflammatory GI disor-
ders such as gastroduodenal inflammation, ulceration, and
gastric cancer (230). Excessive levels of ROS damage cellu-
lar proteins (244) including cytoskeletal proteins (15) and,
ultimately, disrupt GI tract barrier to increase gut permea-
bility which contributes to inflammation in a variety of GI
diseases. Furthermore, excess ROS induce inflammation by
stimulating PMNs, thereby causing further damage to the
tissue. As many GI diseases are initiated and promoted by
oxidative stress, the mechanisms underlying the develop-
ment of these pathophysiological conditions need to be
elaborated.

A. Esophageal Diseases

1. Reflux esophagitis, Barrett’s esophagus, and
esophageal adenocarcinoma

GERD occurs due to prolonged contact of the esophageal
mucosa with refluxed acidic gastric contents and is a very
common disorder especially in developed nations. Acid, bile
salts, and esophagitis (inflammation of the esophagus) that
are associated with GERD lead to increased ROS, reduce
the amount of antioxidants (for example, GSH and vitamin
C), and increase expression of ROS-inducible genes. Reflux

esophagitis can lead to erosions or ulceration of the esoph-
agus and also Barrett’s esophagus (BE). In BE, specialized
intestinal-type columnar epithelium replaces the normal
squamous epithelial lining of the esophagus possibly due to
the chronic exposure to gastroesophageal refluxate (316).

Bile acids, one of the major constituents of duodenogas-
trooesophageal refluxate, are also believed to promote BE
and esophageal adenocarcinoma (EA). Injection of SOD or
buthionine sulfoximine reduces esophagitis in rat duodeno-
gastroesophageal reflux model, suggesting that EA develop-
ment is mediated by inflammation and oxidative stress
(314). EA starts with metaplasia, followed by dysplasia,
which ultimately develop into carcinoma (5). Individuals
with BE are prone to develop EA, although more recent
studies show a lower association between the two (121,
125). Prolonged contact with acid and bile of the gastro-
esophageal refluxate damages esophageal epithelium and
induces inflammation. The amount of bile salts and acid in
the esophageal refluxate is proportional to the degree of
esophageal mucosal injury (202). Unconjugated bile acids
are robust COX-2 inducers and activate PI3K/AKT and
ERK1/2 pathways in BE and EA cells through ROS induc-
tion (270).

Comparison of mucosal biopsies from erosive gastritis and
BE revealed that O2

·� is the main oxidant responsible for
reflux esophagitis (137). O2

·�, along with H2O2, HO·,
ONOO� produced by mitochondrial complexes, NADPH
oxidase and NOS in inflammatory cells and the epithelium
are linked with reflux esophagitis, BE, and EA (128). ROS
activate varied signal transduction pathways such as AP1,
NF-�B, insulin receptor kinase, MAPKs, and Src kinases
which regulate proliferation, differentiation, and apoptosis
of epithelial cells (46, 102).

Various processes of reflux-induced free radical generation
in the esophageal epithelium contribute towards BE patho-
genesis. For example, lipid peroxidation is enhanced in BE
(313), and along with reactive lipid-derivatives, NO and
HOCl are also enhanced in BE and EA (317). Other changes
include an increase in iNOS that is associated with inflam-
mation and cell proliferation in BE and EA (56). COX-2 is
overexpressed in human EA and is induced in biopsies of
acid or bile acid-treated columnar-lined esophagus (252).

An inverse correlation exists between antioxidant supple-
mentation and EA development (168). ROS scavengers can
reduce esophageal mucosal damage. For example, SOD
prevents the development to BE and EA in rats (231). Sup-
plementation of �-tocopherol decreases EA progression in
rats (50). Aspirin and NSAIDs reduce the risk of BE and EA,
and the protective effect of NSAIDs targets an early stage of
the metaplasia-dysplasia-carcinoma sequence (5). Aspirin
may provide protection against BE and EA by inhibiting
COX-2, while NSAIDs might serve as chemopreventive
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agents by reducing neoplastic progression in BE (299), but
further studies are needed to prove the purported benefits.

2. Esophageal squamous cell cancer

A second major type of esophageal cancer is squamous cell
carcinoma (ESCC). ESCC is associated with a poor prog-
nosis due to its typically late stage at the time of diagnosis
and propensity for metastasis. It is a relatively aggressive
form of squamous cell cancer compared with other tissues
such as skin, head/neck, lung, and urogenital tract. Oxida-
tive stress markers such as 8-hydroxydeoxyguanosine (8-
OhdG) and thiobarbituric acid-reactive substances are ele-
vated in tissues from ESCC (79). Alcoholism, cigarette
smoking, as well as mineral and antioxidant vitamin defi-
ciencies seem to promote ESCC (121), while consumption
of antioxidants like vitamin C, �-carotene, and �-tocoph-
erol are associated with a reduced risk of ESCC (283). Thus,
by association, oxidative stress appears to be a major player in
development of ESCC. Diakowska et al. (80) found that
8-OhdG level is high in advanced ESCC patients and total
antioxidant levels are decreased (80). Thus the authors pro-
posed that estimation of serum 8-OhdG and total antioxidant
status can be used as diagnostic markers of ESCC progression.
In vitro experiments showed that oxidative stress and radia-
tion cause nuclear accumulation of FOXO3a, and its down-
regulation reduced the radiosensitivity of esophageal cancers
(49). The same study also reported that patient survival pro-
portionately increases with nuclear FOXO3a accumulation
and thus FOXO3a can act as a therapeutic marker for ESCC.
Further studies in animals and other models are required to
identify ROS-induced ESCC-associated proteins that could be
successfully used as diagnostic and therapeutic markers of
ESCC.

B. Gastroduodenal Diseases

1. Peptic ulcer disease and gastritis

Gastritis is defined as inflammation of the stomach mucosal
lining and occurs in several conditions including H. pylori
infection, NSAID use, alcohol consumption, and stress.
Peptic ulcer disease (PUD) occurs in the proximal GI tract
and is often associated with chronic gastritis. Gastric and
duodenal ulcers represent the most common and chronic
PUDs. On the basis of pathophysiology, PUD can be
broadly classified into the following etiologic groups: 1)
excessive acid secretion type (e.g., Zollinger-Ellison syn-
drome), 2) associated with infections, and 3) NSAID in-
duced (174, 275). Gastritis and peptic ulcer are caused by
multiple factors, both endogenous and exogenous, and free
radicals are closely linked to both conditions.

There are several factors contributing to the accumulation
of ROS in the stomach. Reduced antioxidant enzyme SOD
levels (200) and antioxidant vitamin intake (206) contrib-

ute to the accumulation of ROS associated with gastrodu-
odenal inflammatory diseases. Ethanol-induced gastric in-
flammation is associated with increased O2

·� generation
(117). Phagocytic leukocytes are the main source of ROS in
chronic inflammation such as one observes in H. pylori-
induced gastritis and IBD. Significant numbers of neutro-
phils and/or macrophages infiltrate the gastric mucosa dur-
ing inflammation, generating large amounts of ROS.

Another cause of gastritis is ischemic injury, which is
known to involve free radicals such as O2

·�, H2O2, and
HO· (191). Exogenous factors are also important. Smoking
increases MPO activity in neutrophils (38) and in the extra-
cellular spaces, thus enhancing gastric damage. XO activity
is also higher in cigarette smoke-exposed rats (51). All these
lead to neutrophil aggregation and vascular damage. Apo-
ptosis, oxidative damage by ROS, and reduction of angio-
genesis in the gastric mucosa lead to arrest of cell prolifer-
ation, and these events in turn induce ulceration (173).
ROS-mediated increased lipid peroxidation, lowered GSH
level, and antioxidant systems are involved in the pathogen-
esis of almost all forms of gastric ulcer (71, 108).

The role of H. pylori in development of gastritis and PUD
deserves special mention as it is a major contributor to
peptic ulcer and gastritis. When first determined to be a
cause of peptic ulcer, this organism was found in �95% of
cases of duodenal ulcers and up to 70% of cases of gastric
ulcers (94). Rates of infection in both types of ulcers in
developed countries have decreased but still remain high in
many developing nations. H. pylori strains isolated from
duodenal ulcer patients induce higher neutrophil activity
relative to gastritis strains (70). In the acute stage of H.
pylori infection, neutrophil infiltration is observed, but un-
like other bacterial infections, active inflammation persists
throughout this lifelong infection that characterizes the ma-
jority of infected subjects worldwide. Chronic inflamma-
tory cells including macrophages/monocytes, lymphocytes,
and plasma cells are also present in the gastric mucosa of
chronically infected humans, and thus these stromal cells
contribute significantly to the development of gastritis and
PUD. Gastric epithelial pit cells also produce ROS by acti-
vating nonphagocytic NADPH oxidase in response to H.
pylori (286). Davies et al. (72) reported that mucosal sam-
ples from patients with duodenal ulcer and severe duodeni-
tis generated significantly higher ROS levels than those
from control subjects. This pathogen also enhances gastric
antral ROS production which is correlated with bacterial
load (73). The fact that infected individuals have significant
reduction in vitamin E and C levels likely also contribute in
the oxidative stress during infection (83), and low antioxi-
dant levels are also linked to gastric ulcer disease (206).
Therefore, the balance of factors that enhance or attenuate
the local concentration of oxidants regulates disease pro-
gression.

BHATTACHARYYA ET AL.

342 Physiol Rev • VOL 94 • APRIL 2014 • www.prv.org

 by 10.220.33.6 on S
eptem

ber 18, 2016
http://physrev.physiology.org/

D
ow

nloaded from
 

http://physrev.physiology.org/


Host and environmental factors such as genetics, diet,
stress, tobacco, and levels of hygiene contribute signifi-
cantly to the accumulation of ROS and the pathogenesis of
H. pylori infection (173, 211). H. pylori possibly reduces
GEC’s ability to protect from ROS-mediated damage; how-
ever, the mechanisms that account for this are still elusive
(269). High levels of lipid peroxidation and decreased mucosal
GSH levels are noted in patients with H. pylori infection or
uninfected peptic ulcer and gastritis (139). A chemotactic pep-
tide from H. pylori, N-formyl-methionyl-leucyl-phenylalanine
(fMLP) contributes to neutrophil accumulation and activation
(197). The severity of H. pylori-induced GI diseases is often
associated with the cag (cytotoxin associated gene) patho-
genicity island (PAI), a 40-kb stretch of DNA encoding
several components of a type IV secretion system (263). The
cag(�) strains exhibit enhanced oxidative burst in PMNs
(337). Intracellular GSH levels are lowered by H. pylori
infection (23) and impairs GSH metabolism in the gastric
epithelium (148). Kimura et al. reported that H. pylori vac-
uolating cytotoxin A (VacA) decreases GSH efflux and sup-
presses intracellular GSH turnover rate (148). Catalase and
SOD released by H. pylori are insufficient to remove excess
extracellular ROS but play important roles in the elimina-
tion of ROS generated by bacteria (198). NH3 derived from
H. pylori reacts with HOCl to generate monochloramine
(NH2Cl). NH2Cl can penetrate cell membranes and dam-
ages intracellular components (106). Lipid peroxidation is
increased in H. pylori-infected patients and is significantly
lessened in the mucosa of patients after successful eradica-
tion of infection. (84).

H. pylori and ROS collaborate to activate the transcription
factors NF-�B and AP-1 in the gastric epithelium which
upregulate the expression of chemokines including CXCL8
(IL-8) (69, 145). IL-8 also enhances neutrophil migration
into the gastric epithelial layer and their subsequent activa-
tion (65, 145), thereby further contributing to inflamma-
tion. We have reported that the expression of APE1/Ref1,
which reductively activates transcription factors, is induced
in H. pylori-infected human gastric epithelia (82). We have
also shown that APE1/Ref1 expressed in gastric epithelial
cells enhances transcriptional activity of AP1 and NF-�B
and induces H. pylori-mediated IL-8 expression (209). As
discussed, APE1/Ref1 reductively activates transcription
factors to enhance their ability to bind to DNA. Thus these
observations point to one potential mechanism whereby the
oxidative stress signals are transduced to regulate the in-
flammatory response to H. pylori.

H. pylori colonization of the gastric pits is a major risk
factor that predicts the severity of pathogenesis. Host cell
death and survival depends on ROS produced in the in-
fected stomach. H. pylori activate the intrinsic pathway of
apoptosis (45). Induced expression of pro-apoptotic factors
Bax and Bid and reduced expression of the anti-apoptotic
factor bcl-2 have been reported in H. pylori infection (9).

Suppression of pit cell death by H. pylori is also reported
and is believed to favor persistent bacterial colonization in
the stomach as the rapid self-renewal of progenitor cells and
apoptosis of gastric pit cells limit bacterial colonization.
Infection with cagA(�) H. pylori but not with a mutant
increases the survival factors phospho-ERK and antiapop-
totic protein Mcl1 expression in the gastric pits (193). As
APE1/Ref1 activates the tumor suppressor apoptotic pro-
tein p53, but forced overexpression of APE1/Ref1 prevents
apoptosis (6), we examined this “paradoxical role” of
APE1/Ref1 in H. pylori-mediated GEC apoptosis. We ob-
served that acetylation of APE1/Ref1 as a result of H. pylori
infection suppresses Bax expression, thereby preventing
p53-mediated apoptosis in infected gastric epithelium (29).
ROS are known to activate and stabilize hypoxia-inducible
factor 1� (HIF1�) (248). Gastric epithelial ROS enhance
normoxic stabilization of HIF1� (218). We showed that
APE1/Ref1 increases HIF1� level in H. pylori-infected gas-
tric mucosa, and in conjunction with transcriptional co-
activator p300 induces transcriptional activity of HIF1�
(30). Further studies are needed to determine the role of
HIF1� in regulating oxidative stress in mucosal inflamma-
tion due to H. pylori infection and other factors.

RNS generation, in contrast, has been found to be helpful
for maintaining gastric mucosal health. ·NO is a free radical
that may inhibit pathogenic mechanisms of gastric ulcer by
slowing disease progression (171). ·NO stimulates mucus
secretion by gastric mucosal cells (170) and inhibits expres-
sion of adhesion molecule in the epithelium such as P-selec-
tin, thereby reducing the ability of neutrophil to adhere in
the gastric mucosa (306) and preventing neutrophil-re-
leased ROS-mediated ulceration. ·NO inhibits mast cell de-
granulation, thus providing another level of gastroprotec-
tion (306). Thus ROS or RNS species are important to
identify as different entities can either enhance or attenuate
gastric tissue damage.

2. Gastric adenocarcinoma and gastric cancer

Currently, gastric cancer is the fourth most common cancer
in the world and second most common cause of mortality
from cancer. Gastric cancer involves a number of genetic
alterations of tumor-regulatory genes as well as epigenetic
factors. H. pylori infection is the major cause of gastric
cancer and a useful biomarker for this disease. So far, H.
pylori gastritis is the only universal precursor condition for
the diffuse form of gastric cancer. Correa (64) postulated
that hyperproliferation found in H. pylori gastritis initiates
a sequence of events leading to gastric cancer. This hyper-
proliferation possibly favors mutations which transform
normal gastric mucosa to gastric carcinoma. Histopatho-
logically, the sequence starts with superficial gastritis fol-
lowed by multifocal atrophy, intestinal metaplasia and,
lastly, dysplasia or cancer (64). H. pylori colonize the stom-
achs of �50% of humans, and those who are infected have
at least a twofold increased risk of gastric cancer relative to
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the uninfected population (123). The cag� H. pylori strains
are more highly associated with gastric carcinogenesis than
strains that do not have cag (221). Significantly high ROS or
RNS production occur in H. pylori-infected gastric mucosa,
vascular endothelium, as well as in neutrophils accumu-
lated in the inflamed mucosa (199). Phagocytes accumu-
lated in gastric mucosa after H. pylori infection produce
O2

·�, HO·, and HOCl. O2
·� is not a very reactive molecule.

The exact role of HO· is still not well understood, but OCl�

produced by phagocytic neutrophils reacts with NH3 gen-
erated by the urease activity of H. pylori in the stomach
lining and generates highly reactive molecule NH2Cl.
NH2Cl has been reported to induce apoptosis in rat gastric
mucosal cells (201). Epstein-Barr virus (EBV) is one of the
major etiological agents of gastric cancer and represents 7%
of gastric cancer cases (129). NH2Cl derived from infiltrat-
ing neutrophils in H. pylori-infected stomach is able to con-
vert latent EBV into lytic EBV which can further contribute
in gastric carcinogenesis (195). Although the role of ROS
produced in infected GECs is not clearly understood, those
are believed to initiate signaling events in GECs which de-
termine the course of H. pylori pathogenesis. In addition to
stimulating host responses that contribute to ROS, H. py-
lori infection induces oxidative stress in GECs directly
through the generation of ROS and regulates proinflamma-
tory cytokine production, inflammation, and cell death (29,
81, 209). Persistent ROS causes proto-oncogene activation,
oncogene/tumor suppressor gene mutations, and chromo-
somal aberrations, as a result of oxidative genome damage
including oxidation of guanine to generate 8-OhdG and
8-oxo,7,8-dihydroguanosine (8-OHG) in DNA and RNA,
respectively (68, 85).

Gastric adenoma and gastric cancer tissues (H. pylori-in-
fected or uninfected) have increased mucosal expression of
ROS and APE1/Ref1 compared with normal mucosa (99).
Infection with H. pylori is associated with reduced amount
of ascorbic acid in the gastric lumen and lowers its amount
in the gastric juice. This antioxidant impairs effects of car-
cinogens, as it can reduce mutagenic agents such as nitro-
samines and ROS. As the conventional therapeutic ap-
proach to kill cancer cells is via generation of ROS, deple-
tion of cellular antioxidants increases the efficiency of ROS
in killing cancer cells. Studies to inhibit various antioxidant
mechanisms during neoadjuvant therapies will help us in
controlling the disease.

C. Intestinal Diseases

1. IBDs (ulcerative colitis, Crohn’s disease)

IBDs, both Crohn’s disease and ulcerative colitis, involve
chronic inflammation of the GI tract. In ulcerative colitis,
only the colon is affected, whereas Crohn’s disease may
occur anywhere in the GI tract. Ulcerative colitis generally
begins in the rectum, advancing proximally as the disease

progresses with continuous inflammation that affects only
the mucosal layer of the gut wall. In contrast, Crohn’s dis-
ease inflammation may occur in a segmental fashion and is
transmural, involving all layers of the GI tract wall. The
exact causes of IBD are not completely understood but are
believed to result from inappropriate inflammatory re-
sponse to commensal gut microbiota, which may be genet-
ically regulated. Altered mesenteric circulation, intestinal
microcirculation, and intestinal ischemia are potential etio-
logic factors in IBD, although their involvement could be
secondary (127). The association of ROS with IBD is evi-
dent from the observation that increased ROS and de-
creased antioxidant levels contribute toward major patho-
genic mechanisms in IBD (58, 126). ROS also potentiate
immune reactions in IBD by inflammatory leukocytes,
mainly PMNs, further augmenting tissue damage. O2

·�,
H2O2, and HO· secreted by phagocytes accumulate at the
site of inflammation resulting in lipid peroxidation. No
wonder that McCord described the GI tract as a “free rad-
ical time bomb” (186) and “in IBD, the fuse appears to be
lit” (42).

Defects in mucosal antioxidant defenses are a contributing
factor in ulcerative colitis as the redox status of mucosal
glutathione is associated with inflammation and disease
progression. The severity of ulcerative colitis in mice is re-
lated to SOD (159). Dextran sodium sulfate (DSS) is used to
induce inflammatory responses in mouse models of ulcer-
ative colitis. This results from activation of I�B� and NF-�B
pathways via ROS generation. DSS increases sulfate load of
cells which induces ROS, leading to activation of inflamma-
tory response. Likewise, diets rich in sulfur in human ulcer-
ative colitis induce ROS-mediated inflammation (31). Iron,
which induces ROS production via the Fenton reaction,
contributes to induction of colorectal tumor in a murine
ulcerative colitis model (265). The antioxidant resveratrol
significantly reduces inflammatory responses of ulcerative
colitis in mice (330), further establishing the importance of
ROS in ulcerative colitis.

Understanding the role of ·NO in intestinal inflammation is
less straightforward. While some reports suggest ·NO’s role
in inflammation, other studies indicate that it has a protec-
tive role in the intestine (308). ·NO reacts with O2

·�, pro-
duced by activated neutrophils, to form another potent ox-
idant, peroxynitrite (ONOO�). ONOO� administration to
the colon results in tissue injury (240). Thus iNOS might
contribute in tissue injury via generation of ONOO�, and
iNOS inhibitors have been shown to reduce colonic damage
and inflammation (190). Oral administration of pre- and
probiotics in DSS-induced acute murine colitis decreases
NO levels in peritoneal macrophages and thus is reported to
reduce colonic lesion (2). Further experiments to identify
anti-inflammatory properties of probiotics that have been
used to treat patients with IBD could determine underlying
mechanisms of these potentially beneficial agents.
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While the two forms of IBD share similar pathophysiology,
HO· and O2

·� are found to be responsible for Crohn’s dis-
ease, while H2O2 and HOCl are more associated with ul-
cerative colitis (160). Increased XO and Mn-SOD activity
are reported in inflamed mucosa of Crohn’s disease patients
(160). Crohn’s disease patients exhibit elevated TNF-� in
the colonic mucosa, and inflamed mucosa shows induction
of iNOS, similar to ulcerative colitis (267). Enhanced oxi-
dative stress and inflammation in conjunction with de-
creased antioxidant levels have been reported in patients
with active Crohn’s disease. However, with improvement
of the patient’s condition, these parameters of oxidative
stress go back to normal levels (178). As NF-�B is a major
inducer of inflammatory cytokines, the effect of a potent
NF-�B inhibitor, vanillin, has been studied in mouse model
of colitis (325). Vanillin was shown to suppress the produc-
tion of Th1 cytokines as well as scavenges 1O2, underscor-
ing its potential as a future treatment for IBD.

Lower plasma levels of vitamins A and E as well as beta-
carotene and decreased antioxidant enzymes in the intesti-
nal mucosa of IBD patients may determine the severity of
IBD (116). Further studies are required to establish whether
these vitamins affect the course of the disease. Antioxidants,
to some extent, are effective in treating experimental colitis.
SOD has had some success when used in the treatment of
murine ulcerative colitis (89) and lecithinized SOD (PC-
SOD), which overcomes the clinical limitations of SOD,
treats ulcerative colitis more effectively. Further evidence
that ROS contribute to the pathogenesis of IBD comes from
the discovery that sulfasalazine, a drug with antioxidant
properties, has some beneficial effects in the treatment of
IBD. Despite these advancements, none could be claimed as
a cure of IBD even with combinations of such agents. Dis-
ruption of intestinal homeostasis is now believed to be the
major event in the development of IBD (176). Specifically,
the role of gut microbiota in this process is developing as
our knowledge in this field advances. Treating UC patients
with fecal bacteriotherapy (infusion of fecal microbiota
from healthy donors) is an emerging field of research and
has been found to improve UC (35). Substantial research in
this field is required to understand how fecal transplanta-
tion benefits patients with IBD and potentially other gastro-
enteric diseases.

2. Enteric infections

Intestinal epithelia produce ROS in response to microbial
signals. The human large intestine contains �1014 pro-
karyotes from over 500 species (86). Epithelia contacted by
enteric commensal bacteria rapidly generate ROS (165).
Commensal bacteria-induced ROS generated in the intesti-
nal epithelium modulate the protein degradation machinery
of various signaling molecules and thus regulate diverse
physiological events within the host cells (165). The early
response to S. enterica serovar Typhimurium infection is
ROS generation by NADPH oxidase with potent bacteri-

cidal effects (300). During the later stages of Salmonella
infection, RNS are also generated (182). The antioxidant
N-acetylcysteine (NAC) and NADPH oxidase inhibitor di-
phenyliodonium (DPI) have been reported to attenuate dis-
ease, implicating ROS generation as an important host re-
sponse to gastrointestinal infection (165). A key issue to
ascertain is whether therapeutic inhibition of ROS will pro-
tect the host from enteric infection-induced tissue damage
or if any benefit would be offset by the impairment of anti-
microbial host responses.

3. Ischemic intestinal injury

Intestinal I/R occurs in surgical and trauma patients and
arises when blood flow to the intestine is interrupted due to
various circumstances (291). I/R activates Toll-like recep-
tors (TLRs) leading to acute intestinal and lung injury and
inflammation observed during gut trauma (303). The tissue
damage due to reperfusion is primarily caused by reentry of
oxygen, rather than by ischemia itself. Ischemia followed by
reperfusion is more damaging than ischemia without reper-
fusion (220). One explanation for this damage is that ATP
becomes metabolized to HX during ischemia, while during
reperfusion, oxygen reacts with HX to form xanthine and
O2

·�. Reperfusion enhances the damaging effects of isch-
emic injury due to accumulation of activated neutrophils
and generation of ROS (175). These events are collectively
called reperfusion injury. I/R-mediated GI injury is signifi-
cantly reversed by both SOD and allopurinol. Observations
that SOD prevents I/R-induced GI injury and oxidized glu-
tathione is found in I/R-exposed GI mucosa establish the
crucial role of ROS in the pathogenesis of I/R-mediated GI
injury.

Blockage of blood supply to the colon leads to ischemic
colitis. Ischemic colitis is of two types: occlusive and non-
occlusive. Occlusive ischemic colitis occurs when a blood
clot diminishes blood flow to the colon; nonocclusive isch-
emia develops because of narrowing of blood vessels or low
systemic blood pressure (119). In its milder form, ischemic
colitis leads to mild necrosis or ulceration, whereas severe
ischemic colitis is characterized by sepsis, ulceration, and in
some cases gangrene. Ischemic colitis has some pathological
features in common with IBD. Enhanced lipid peroxidation
is evident in ischemic colitis (135). Treatment of feline ex-
perimental I/R GI injury with antioxidants like SOD and
drugs that attenuate the effect of inflammatory mediators
have shown promising effects (219). While the morbidity
and mortality of intestinal ischemia is best mitigated by
preventing the ischemic insult, once injury occurs better
strategies to reduce anoxia and oxidative stress are helpful,
and further research in this field is needed.

4. Colorectal cancer

The development of colorectal cancer (CRC) is dependent
on several mechanisms. Genes that affect the control of cell
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growth are frequently mutated in colon cancer. In CRC,
free radicals produced by the colonic bacteria Enterococcus
faecalis may directly cause mutations in colonic DNA re-
sulting in colon cancer (14). Free radicals convert dietary
procarcinogens to carcinogens that may contribute to CRC
(124). Lipid peroxidation of polyunsaturated fatty acids
results in production of reactive metabolites that have also
been implicated in the pathogenesis of CRC (18).

Chronic inflammation in IBD results in persistent oxidative
stress and inflammation that contribute to dysplasia (251).
A population-based study and one meta-analysis have
shown that Crohn’s disease and ulcerative colitis patients
have an increased risk of developing small bowel carcinoma
in Crohn’s disease and colon cancer in both forms of IBD,
compared with a non-IBD population (27). The risk of CRC
increases with the duration of clinical disease, the severity of
the inflammatory response, and the extent of IBD (290).
CRC in IBD patients generally begins with low-grade dys-
plasia, progressing to indefinite dysplasia, then to high-
grade dysplasia and eventually, invasive adenocarcinoma.
DNA damage caused by ROS is a major contributor to
CRC development in ulcerative colitis patients. Thus oxi-
dative stress-induced cellular damage may provide a mech-
anistic basis for colon cancer by causing genetic instability,
specific gene alterations, and aberrant methylation. Inflam-
mation-induced ROS interact with cancer-regulating genes,
transcription factors, as well as DNA mismatch repair genes
(158). Cytokines such as IL-6, IL-8, TGF-�1, and mediators
such as COX-2 are pivotal factors in the development of
CRC (158). Excess iron intake may also lead to CRC by
inducing ROS and inflammation-mediated epithelial
changes (265a). There is emerging information that chronic
inflammation and host microbes may play key roles in not
only IBD-related carcinogenesis but also in sporadic and
other forms of CRC (285).

VI. CONCLUSIONS

Many cell types within the mucosa of the GI tract produce
ROS as part of normal physiology, yet the gut mucosa also
is a target of various oxidants that can lead to pathological
conditions. Oxidative stress makes a substantial contribu-
tion to the pathogenesis of many GI mucosal diseases, and
despite recent progress, mechanisms of ROS-mediated GI
diseases are not well established. Understanding the cellular
and molecular mechanisms including altered signaling
caused by ROS are critical to developing future therapies
for GI diseases mediated by oxidative stress. As discussed,
major GI diseases in which ROS play a major role (e.g.,
gastritis, gastric cancer, IBD, colonic inflammation, and
cancer) are substantially linked to the microbiota as well as
disruption of the antioxidant balance in the mucosa. Future
treatment strategies for these important mucosal GI dis-
eases lie in a better understanding of free radical biology of
the GI mucosa.
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