
CS{1993{15Design and Development ofSpoken Natural-LanguageDialog Parsing SystemsDwayne Richard HippDepartment of Computer ScienceDuke UniversityDurham, North Carolina 27708-0129June 21, 1993

Design and Development ofSpoken Natural-LanguageDialog Parsing SystemsDwayne Richard HippJune 21, 1993
Supervised by Alan W. BiermannDissertation submitted in partial ful�llmentof the requirements for the degreeof Doctor of Philosophyin the Department of Computer Sciencein the Graduate School ofDuke UniversityThis document is a reformatted version of the disseration, and equivalent in content.

Copyright c 1992 by Dwayne Richard HippAll rights reserved

AbstractThe development of a practical spoken language dialog system is fraught with di�culties. Thisthesis describes the following three problems relating to the natural language parsing and presentsa workable solution for each:1. The parser in a voice dialog system must contend with ill-formed inputs. Because the parserreceives its input from a speech recognizer, the input will often contain misrecognitions. Also,the user's original speech may be elliptical, telegraphic, or otherwise grammatically ill-formed.The thesis describes a new parsing strategy aimed at overcoming the ill-formedness of dialogspeech. A new algorithm for minimum-distance parsing is used to decode the structure inthe user's utterance, and syntax-directed translation is used to convert the utterance into aninternal representation. Finally, dialog expectation is used to resolve ambiguity, anaphora,and ellipsis in the input utterance. In experimental tests, the new parser found the correctinterpretation for 83% of 2804 utterances even though only 48% of those utterances weresyntactically well-formed.2. The development of a natural language grammar for a speech dialog system becomes increas-ingly di�cult as the size of the grammar increases.This thesis describes several new algorithms collected into an integrated grammar develop-ment system which simpli�es the task of developing a large natural language grammar. Thissystem allows the user to focus on the small subset of the grammar which is of immediateinterest, and thereby allow for faster, easier, and more error free editing. Diagnostic andperformance information may also be obtained.3. Regardless of the parsing strategy used, the parser will sometimes make mistakes.This thesis describes a subsystem which uses veri�cation subdialogs to selectively verify mean-ings output by the parser. The propensity of the system to verify a given input is easilyadjusted so as to provide any required level of e�ective parsing accuracy. Experimental datashows that veri�cation can raise the e�ective accuracy of the parser from 83% to 97% withoutexcessive burden to the user.
i

ii

AcknowledgementsThis dissertation was made possible by the gracious cooperation and assistance many individuals.Most notably, Dr. Alan W. Biermann inspired and directed the research which lead to this thesis.I am deeply in his debt for his patient and insightful review of the many drafts of this dissertation,and of the entire experimental program from which this dissertation grew.Dr. Ronnie W. Smith also played a major and important role in this work. He wrote most ofthe code for the dialog controller and other higher-level intellengence in the Circuit Fix-it Shoppeprogram, then painstakingly integrated his system with my parser to make the whole system run.With help from Dania M. Egedi, Ronnie conducted the gruelling series of user experiments fromwhich most of the performance data herein reported has been derived.Countless others have contributed to the dissertation in smaller, but no less important, ways.Dr. Robert D. Rodman at North Carolina State University has been an important collaboratorthroughout the project. The Duke computer science department's Lab Sta� played a critical roleby providing us with fast, reliable hardware and outstanding systems support. The comments,suggestions, and encouragement of others, too numerous to mention, have also been most helpfulin keeping this project going.Finally, the research represented in this dissertation would not have been possible but for the�nancial support of the National Science Foundation through grant number NSF-IRI-88-03802 anda grant from Duke University which was graciously arranged by Dr. Charles Putman.

iii

iv

ContentsAbstract iAcknowledgements iii1 Background 11.1 A Statement of the Problem which this Thesis Addresses : : : : : : : : : : : : : : : 11.2 Contributions of this Thesis : 21.3 The Origin of this Thesis : 32 Overview 52.1 The Parsing Problem : 52.1.1 A New Solution : 62.1.2 Prior Art : 62.1.3 An Intuitive Description of the Solution : 72.1.4 Experimental Results : 82.2 Grammar Development : 82.3 Veri�cation subdialogs : 102.4 Implementations : 123 Parsing 133.1 A New Algorithm for Minimum-distance Parsing : 133.1.1 Intuitive Overview of MDP : 133.1.2 Formal Notation : 153.1.3 Computation of Distance for R-arcs : 163.1.4 Computation of Distance for NT-arcs : 173.1.5 Construction of the Parsing Graph : 183.1.6 Walking the Parsing Graph : 213.1.7 Correctness of MDP : 253.1.8 Complexity of MDP : 273.1.9 Extending MDP to Accept a Lattice as Input : : : : : : : : : : : : : : : : : : 283.1.10 Extending MDP to use Non-uniform Insertion and Deletion Costs : : : : : : 283.1.11 Pruning the parsing graph : 293.2 Syntax-directed Translation : 303.2.1 Notation : 303.2.2 A Theory of Syntax-directed Translations : 313.2.3 A Pedagogical Example : 323.2.4 A Practical Example : 333.2.5 Limitations of SDT : 34v

vi CONTENTS3.3 Minimum-distance Syntax-directed Translation : 343.3.1 N-best or N-ties outputs : 343.3.2 An Overview of the MDSDT Algorithm : 353.3.3 Operations on Hypothesis Sets : 353.3.4 The MDSDT Algorithm : 373.3.5 Complexity of MDSDT : 393.4 The Use of Dialog Expectation : 393.4.1 Computation of Dialog Expectation : 393.4.2 Wildcards Within Dialog Expectation Hypotheses : : : : : : : : : : : : : : : 393.4.3 Wildcards Within MDSDT Hypotheses : 403.4.4 Matching MDSDT and Dialog Expectation Hypotheses : : : : : : : : : : : : 403.4.5 Selecting the Best Hypothesis : 413.4.6 The Expectation Function : 413.5 Experimental Evaluation of the Parser : 423.5.1 Experimental Design : 423.5.2 Data Collection : 423.5.3 Performance of the Speech Recognizer : 443.5.4 Performance of the Parser : 463.5.5 Optimal expectation functions : 504 Grammar Development 534.1 Listing the Elements of a Language : 534.1.1 Listing elements of a CFL is NP-hard : 544.1.2 An Algorithm for Listing Elements of a CFL : : : : : : : : : : : : : : : : : : 554.1.3 Counting the Elements of a CFL : 584.2 Extracting Relevant Subsets of a Grammar : 584.2.1 Prior Art : 594.2.2 Construction of the Input Graph : 594.2.3 The Pertinent Production-rule Parser : 615 Veri�cation 635.1 Deciding When To Verify : 635.1.1 Con�dence Estimates : 635.1.2 Selecting A Veri�cation Threshold : 685.2 The Bene�ts of Verifying Meanings Instead of Syntax : : : : : : : : : : : : : : : : : 695.3 An Implementation : 695.4 Experimental Results : 705.5 Examples : 716 Implementation 736.1 The Parser : 736.1.1 mdt : 746.1.2 Format of the Translation Grammar : 776.1.3 gap : 786.2 The Grammar Editor : 806.2.1 ged : 806.2.2 leg : 846.2.3 rg : 84

CONTENTS vii6.3 The Veri�cation Subsystem : 857 Conclusions 877.1 Summary of New Results : 877.2 Future Directions : 88Biography 93

viii CONTENTS

List of Figures1.1 Block diagram of a typical spoken language system : : : : : : : : : : : : : : : : : : : 23.1 The input graph corresponding to the input phrase \all cows eat grass". : : : : : : : 143.2 The R-arc (rx; 2; 1; 3) added to the input graph shown in �gure 3.1. : : : : : : : : : : 153.3 The input graph of �gure 3.1 augmented with R-arcs and NT-arcs. : : : : : : : : : : 203.4 The parsing graph which corresponds to the input graph of �gure 3.3. : : : : : : : : 203.5 A small part of a hypothetical parsing graph which contains a cycle. : : : : : : : : : 243.6 An typical input lattice to the MDP algorithm in which T-arcs are allows to spannonadjacent nodes of the input graph. : 283.7 The parser accuracy on non-trivial utterances plotted against the percent of correctlyrecognized words for each experimental subject. : 483.8 The parser accuracy on non-trivial utterances plotted against the modi�ed PWC foreach experimental subject. : 493.9 The parser accuracy on non-trivial utterances plotted against the speech recognizererror rate for each experimental subject. : 493.10 The parser accuracy on non-trivial utterances plotted against the percentage of ex-tragrammatical spoken utterances for each experimental subject. : : : : : : : : : : : 503.11 The parser's accuracy as a function of the � parameter to the expectation functionof equation 3.4 : 513.12 The parser's accuracy as a function of the parameter to the expectation functionof equation 3.12 : 513.13 The parser's accuracy as a function of the � parameter to the expectation functionof equation 3.13 : 525.1 Performance curve for the con�dence estimating function named � : : : : : : : : : : 655.2 Performance curve for the con�dence estimator based on total error alone (�) versusthe con�dence estimator � (�). : 665.3 Performance curve for the con�dence estimator based on normalized error (�) versusthe con�dence estimator � (�). : 665.4 Performance curve for the con�dence estimator based on only dialog expectation (�)versus the con�dence estimator � (�). : 675.5 Performance curve for the con�dence estimator based on only distinctness (�) versusthe con�dence estimator � (�). : 67ix

x LIST OF FIGURES

List of Tables3.1 Derivation of distance for the R-arc (rz; 4; 1; 5). : 173.2 Percent of spoken words correctly recognized by the speech recognizer : : : : : : : : 443.3 Percentage of correctly recognized words : 443.4 Word error rate in the speech recognizer : 453.5 Percentage of utterances containing one or more words not in the speech recognizer'svocabulary : 453.6 Percentage of utterances which were recognized without error : : : : : : : : : : : : : 453.7 Error rates of several speech recognizers : 463.8 Percentage of all inputs which were correctly parsed : : : : : : : : : : : : : : : : : : 463.9 Percentage of nontrivial utterances which were correctly parsed : : : : : : : : : : : : 473.10 Percentage of all utterances that would have been correctly parsed assuming nospeech recognition errors : 473.11 Percentage of non-trivial utterances which would have been ungrammatical evenwithout speech recognition errors : 473.12 Percentage of non-trivial utterances which were ungrammatical when speech recog-nition errors are considered : 483.13 Percentage of all utterances which would have been ungrammatical even withoutspeech recognition errors : 483.14 Percentage of all utterances which were ungrammatical when speech recognitionerrors are considered : 485.1 Percentage of all inputs which would be correctly parsed after veri�cation : : : : : : 715.2 The over-veri�cation rate corresponding to table 5.1 : : : : : : : : : : : : : : : : : : 715.3 Percentage of non-trivial utterances which would be correctly parsed after veri�cation 715.4 The over-veri�cation rate corresponding to table 5.3 : : : : : : : : : : : : : : : : : : 72
xi

xii LIST OF TABLES

Chapter 1BackgroundThe one feature of man that enables him to excel above other species is his skill in the use oflanguage. So deft is he with words, that he tends not to comprehend fully the the di�culty ofabstract communication. This fact is nowhere more plainly seen than in the history of e�orts toprogram computers to understand human language. It seems like it should be so simple. Do noteven mentally crippled children learn to speak uently in only a few years? And yet the problem ofteaching human language to computers has resisted attack by the world's brightest minds for overfour decades. Therefore, let the readers' expectations for this thesis be tempered.But there is still reason for optimism. The speed and memory capacity of computing hardwarehas been increasing exponentially, and promises to continue to do so into the foreseeable future.With greatly increased computing resources and many new and innovative programming techniquesthe long elusive dream of a intelligent talking machine may someday become a reality.This thesis represents one small step toward the ultimate goal of a machine which conversesfreely and naturally in a human language. Herein is described a new approach to the developmentof a system which can parse and understand ill-formed spoken natural language in the context ofa dialog. A speci�c implementation of this new approach, when coupled to a task-oriented dialogcontroller (not a part of this thesis), performs remarkably well, and is in fact upon the verge ofbeing a practical industrial device.1.1 A Statement of the Problem which this Thesis AddressesA block diagram of the input side of a typical spoken language system (SLS) is shown in �gure 1.1.A speech recognizer listens to the sound of the user's speech and outputs one or more plausibletranscriptions of what was spoken. The output of the speech recognizer feeds the parser. The parserwill analyze the transcript of the user's speech and determine the meaning which the user wishesto communicate. The parser is aided by a natural language grammar which describes the syntax ofthe user's language, and the mapping from this language into the system's internal representationof meaning. Note that the natural language grammar is distinct from the grammar used to limitsearch in the speech recognizer. The output of the parser is sent to a dialog controller. Thedialog controller implements some of the higher level cognitive functions of the SLS. One particularfunction of the dialog controller is to provide dialog expectation to the parser. Presumably, thedialog controller communicates with other components of the complete SLS, such as a naturallanguage generator, a knowledge database, and some form of reasoning system; but as these othercomponents do not play a role in this thesis, they are omitted from �gure 1.1.1

2 CHAPTER 1. BACKGROUND
'& $%

6 � -- ControllerDialogParserRecognizerSpeech NaturalLanguageGrammarFigure 1.1: Block diagram of a typical spoken language system1.2 Contributions of this ThesisThis thesis provides new information which is useful in the design of those parts of �gure 1.1 whichare enclosed in the dashed box: the parser and the natural language grammar. Four results areobtained.1. A new parsing algorithm is described which is e�ective at parsing spoken natural-languageinputs in the context of a dialog. Prior work on natural language parsers has primarilyfocused on parsing of text soliloquies. But text soliloquy has a very di�erent structure fromspoken dialog, and as a result, traditional parsing methods do not work adequately for spokendialog. The di�erences between spoken dialog and text soliloquy, a summary of related priorresearch, and an overview of the new parsing algorithm are described in section 2.1. Details ofthe new parsing algorithm and experimental results from an implementation of this algorithmare given in chapter 3.2. Algorithms and tools which are useful in the development of large natural language grammarsare described. It is observed that the development of large grammars for systems which usenatural language can potentially consume most of the human e�ort applied toward developingsuch systems. Automated grammar development aids are therefore desirable to expeditethe development process. Section 2.2 further motivates the need for grammar developmentaids. That section also summarizes previous work on automated grammar development aids.Chapter 4 describes the more interesting algorithms in detail.3. Methods by which the output of a natural language parser can be veri�ed in order to improvethe accuracy of the parser are also considered. It turns out that adding selective veri�cationof meanings to a dialog processing system can greatly enhance the accuracy and performanceof that system. Further motivation of the need for veri�cation, and an overview of theresults obtained, is given in section 2.3. Details of ver�cation techniques and measurementsof performance improvements which these techniques give to a dialog processing system are

1.3. THE ORIGIN OF THIS THESIS 3both described in detail in chapter 5. The idea of selective veri�cation of meanings in a dialogprocessing system appears to be original, as no prior discussion of this idea could be foundin the literature.4. Finally, the thesis describes e�cient, robust, portable, and public-domain implementationsof the algorithms mentioned above. These implementations are e�ective tools which maybe used unaltered in future research in natural-language dialog systems. They may serve asmodels for new and more powerful natural-language dialog system development tools whichare designed in the future.1.3 The Origin of this ThesisThis thesis has grown out of e�orts to develop a voice dialog system called the \Circuit Fix-itShoppe". The mission of the Circuit Fix-it Shoppe is to use voice interaction to assist people inthe repair of an electronic circuit. Further details on the Circuit Fix-it Shoppe can be found in[36]. A 12-minute videotape describing and demonstrating this system has been prepared [18], andis included as an appendix to this thesis. The speech recognizer in the Circuit Fix-it Shoppe is acommercial speaker dependent connected speech recognizer with a 125 word vocabulary. The dialogcontroller was developed by Ronnie Smith and is the topic of his Ph.D. thesis [35]. Other parts ofthe Circuit Fix-it Shoppe program have been developed by Robin Gambill and Dania Egedi.

4 CHAPTER 1. BACKGROUND

Chapter 2OverviewThis chapter gives an overview of each of the four main results obtained in this thesis and originallylisted in section 1.2. This chapter might therefore be viewed as an ampli�cation or enlargement ofsection 1.2. The intent of this chapter is to provide an overview of the problems addressed by thisthesis, and their solutions, without burdening the reader with excessive detail. A detailed analysisof the problems and solutions appears in the chapters that follow.2.1 The Parsing ProblemAs is pointed out in [6], [9], [16], [40], and [43], the parser in an SLS is confronted with di�cultiesthat are not encountered by traditional text-based natural language parsers.1. The input to the system is spoken, and then interpreted by a speech recognizer. The speechrecognizer will typically generate multiple interpretations of the user's speech none of whichmay be absolutely correct.2. Input to the system may be syntactically ill-formed. Even in the absence of speech recognitionerrors, the input to the parser may not be a well-formed phrase according to the naturallanguage grammar used by the parser. Ill-formedness may have several causes:� Speech performance errors. The users will not always say exactly what they intendeddue to slips of the tongue, poor choice of words, or other problems.� Telegraphic speech. In normal conversation, structure words such as \is" or \to" areusually deemphasized. When conversing with a computer with imperfect language skills,many people will subconsciously omit such structure words altogether, resulting in aphrase that sounds like a telegraph message. (See [14].)� Vocabulary errors. Users will sometimes speak words which are not in the vocabularyof either the speech recognizer or the parser.� Inadequacies in the language model. The system's understanding of the natural languageused for input is probably incomplete and inaccurate.3. Because the system operates in the context of a dialog, inputs may be elliptical. Many utter-ances will be sentence fragments. Others will contain pronouns with inde�nite or ambiguousantecedents. 5

6 CHAPTER 2. OVERVIEW4. Finally, the meaning of inputs to the system tend to be highly context dependent. The samephrase spoken at di�erent times can have divergent meanings. The particular meaning givento an input is strongly inuenced by the preceding dialog.Most modern speech recognition systems incorporate linguistic knowledge in order to reducethe amount of search. However, this linguistic information is often in the form of a �nite-stategraph or word-pair transition probability matrix and is not suitable for detailed linguistic analysis.This low-level linguistic knowledge is sometimes automatically generated from higher-level linguis-tic knowledge available in a downstream parser, as in [45]. Even among systems which use moresophisticated linguistic knowledge ([31], [40], [42]), there is still the implicit assumption that all in-puts are syntactically well-formed. In some systems ([23] and [46] for example) the well-formednessassumption is made explicit. There are no speech recognition or speech understanding systems incurrent publication which even attempt to handle problems of ellipsis and context dependency.Various e�orts have been made to construct natural language parsers which can understandsyntactically ill-formed inputs and which are not integrated with a speech recognizer. A methodfor parsing a context-free language with an unknown number of missing words is described in[24], but this method's usefulness is limited by the necessity of knowing where the missing wordsshould be. Case frame and island parsing techniques are described in [13], [16], [17], [39], and[40]. These techniques are e�ective when the ungrammatical sections of an input occur in betweengrammatically well-formed phrases, but have di�culty when important phrases are themselvesill-formed. A system described in [11] uses dialog expectation to repair ill-formed inputs. Someadvocate a connectionist approach, as in [20] and [38], but the e�ectiveness of these techniques hasnot yet been demonstrated.Prior work on methods for handling ellipsis and context dependent meaning has mostly stud-ied text input, which is not subject to the distortions and errors associated with speech input.Summaries of this prior work can be found in [3], [12] and [34].2.1.1 A New SolutionChapter 3 of the thesis will describe a new parsing strategy for ill-formed spoken dialog. This newparser has three major subcomponents.� Minimum-distance parsing (MDP) is used to decode the underlying structure of each inpututterance.� Syntax-directed translation (SDT) is used to translate the utterance into a Prolog predicatewhich encapsulates the meaning which the user intended to communicate.� Finally, dialog expectation is used to resolve ellipsis and anaphora and to provide dialogcontext to disambiguate an otherwise ambiguous utterance.2.1.2 Prior ArtBasic minimum-distance parsing algorithms are described in [2], [26], and [27]. In [2], Aho and Pe-terson describe a two-step method for minimum-distance parsing. First the grammar is augmentedwith extra rules called error productions. Then a parser is described which uses the minimumnumber of error productions. The Aho and Peterson algorithm runs in time O(n3k2) where n isthe number of symbols in the string to be parsed and k is the number of symbols in the originalunaugmented grammar. In [27], Lyon presents a one-step algorithm for minimum-distance parsingwhich is based on Earley's generalized parsing algorithm [8], and which also runs in time O(n3k2).

2.1. THE PARSING PROBLEM 7Levinson in [26] describes a minimum-distance parsing algorithm based on Younger's generalizedparsing method [44]. However, Levinson's algorithm requires that the grammar be in Chomskynormal form, which precludes its use for syntax-directed translation, since syntax-directed transla-tion grammars cannot in general be put in Chomsky normal form1. Levinson suggests the use ofhis algorithm for speech recognition, but states that no one has ever before used minimum-distanceparsing of a context-free language for that purpose (though many have used minimum-distanceparsing of regular languages.) The �rst reported use of Levinson's algorithm in a speech recogni-tion application is by [29].Theoretical issues of syntax-directed translation were summarized by Aho and Ullman in [1].The author is aware of no prior work which uses dialog expectation in any manner resemblingits use in the new parser.2.1.3 An Intuitive Description of the SolutionThe distance between two strings of words is de�ned to be the minimum weighted sum of thenumber of insertions and deletions needed to convert one string into the other. The distance isintended to be an approximate measure of the di�erence in meaning between the two strings. Thatis, a large distance should indicate that the two strings mean very di�erent things, but a smalldistance should show that the strings have a similar (or identical) meaning. For this reason, wordssuch as \not" which make a big di�erence in the meaning of an utterance if they are insertedor deleted are given a large weight, whereas words like \the" which do not signi�cantly alter themeaning of an utterance if inserted or deleted are given a small weight.The parser has two inputs: a syntax-directed translation grammar (SDTG) and the string ofwords spoken by the user. The SDTG de�nes a context-free language called the input languageand a meaning for every string in the input language. The goal of the algorithm is to �nd anappropriate meaning for the user's words. When the user's input happens to correspond exactlyto some string in the input language the task is simple { the algorithm just �nds the meaningassociated with the input language string and that is also the meaning of the user's input. Butif the user's input is not in the input language, the situation is more troublesome. This situationis where the \minimum-distance" aspect of minimum-distance parsing comes into play. Since thespoken utterance itself is not in the input language, the algorithm �nds a string which is in theinput language and which is closest (or has minimal distance to) the user's string of spoken words,and uses the meaning of this closest string as the meaning of the user's input. The hope is thatthe user's input and the string in the input language are su�ciently close that they share the samemeaning.In the above discussion, and throughout this thesis, a meaning is simply a string in a context-free language, called the output language, which is de�ned by the SDTG. In the implementation,the output language happens to consist of a class of Prolog structures which are understood bythe dialog controller. Other implementations, however, might well de�ne very di�erent outputlanguages. The mapping between strings of the input language and strings of the output languageis computed by the SDT algorithm in accordance with the SDTG. The SDT component of theparser is combined with MDP to produce a new algorithm called minimum-distance syntax-directedtranslation (MDSDT).There are two complications to the parsing system described above. First, the input to theparser is not a single string of words, but a lattice. A lattice is an acyclic directed graph with a1Proof: An exhaustive search will show that nonterminals on the right-hand side of the syntax-directed translationproduction rule \S ! ABCD : BDAC" cannot be grouped together to yield only two right-hand side nonterminalswithout disrupting the mapping to the nonterminals in the semantic part of the production rule.

8 CHAPTER 2. OVERVIEWsingle source and a single sink. Each arc of the lattice is labeled with a word, so that the collectionof all paths through the lattice beginning at the source and ending at the sink is a set of manystrings of words, any of which might be what the user actually said. Thus a lattice is a compactrepresentation of a large set of possible user inputs. The MDP algorithm which accepts a lattice asinput is an intuitively straightforward extension of MDP which inputs a solitary string. The lattice-input MDP �nds a string in the CFG's language which is closest to any of the strings representedby the lattice and uses that string to �nd the meaning of the user's input.The second complication is that two or more strings in the input language may be at the samedistant from the user's utterance, or else the di�erence in distances may be slight. In such cases, itis necessary to �nd multiple meanings for the user's utterance based on all proximate strings in theinput language and then to select one of these possible meanings. The selection of one of severalpossible meanings for an utterance is the principal use of dialog expectation.Dialog expectation is a set of meanings (that is to say, a set of strings in the SDTG's outputlanguage) which are generated by the dialog controller. Each meaning in this set is called anexpectation. Each expectation comes with an expectation cost which is a measure of how stronglythe expectation is anticipated at the current point in the dialog. When the MDP algorithm outputsmultiple meanings, each of the meanings has an associated utterance cost which is just the distancebetween the user's input and the string from the input language which generated the meaning. Eachmeaning is matched with its corresponding dialog expectation, and the corresponding expectationand utterance costs are combined into a total cost by an expectation function. The meaning withthe smallest total cost is selected to be the �nal output of the parser. An important side-e�ect ofmatching MDP meanings with expectations is that ellipsis and anaphora in the user's speech areoften resolved based on what the dialog controller expected the user to say.2.1.4 Experimental ResultsThe new parser has been tested in an actual SLS. Using subjects that have no special knowledgeof computers or the implemented SLS, the parser was able to �nd the correct meaning for 83% of2804 inputs even though only 48% of these inputs were grammatical.Several di�erent expectation functions were tested and it was found that the one which gavethe best results used the expectation cost only to break ties between meanings with the very bestutterance cost. This is a much weaker use of expectation cost than was anticipated.2.2 Grammar DevelopmentBeesley and Hefner [4] claim that 80% of the development time for an SLS is typically spent workingon the natural language grammar. Empirical observations of the time spent developing the 500rule grammar for the Circuit Fix-it Shoppe are consistent with Beesley and Hefner's claim.In spite of the immoderate amount of time required to develop a natural language grammar,comparatively little research has been directed toward developing tools or techniques which canassist in grammar development. Some software aided grammar development systems (SAGDSs)have been described. Many of these SAGDSs provide an interactive environment which allowsbreakpoints to be set in the grammar for testing and tracing purposes [4] [15] [22] [41]. One SAGDS,described in [5], provides the ability to restrict attention to a small subset grammar. Memmi andMariani [28] describe an SAGDS which will generate random sentences from the grammar underdevelopment, and generate a complete lexicon for the grammar.The following categorization of the grammar development problem is based on the experienceof developing a 500-rule grammar for the Circuit Fix-it Shoppe.

2.2. GRAMMAR DEVELOPMENT 91. Correcting errors. Some well-formed phrases in the input language will be translated into thewrong output language string. When these errors are found they must be corrected.2. Making incremental changes and additions. During the development of the SLS, the languageoutput by the parser and input by the dialog controller will occasionally be modi�ed toaccommodate unforeseen semantic representation problems. Additions will also have to bemade to the input language of the parser as the developers discover that users sometimesphrase their statements in ways which were not initially anticipated.3. Testing for errors and adequate language coverage. The grammar should be extensively ana-lyzed for errors of commission as will as omission. The following are some, but not all, of thekinds of tests that are desirable:� Is every rule in the grammar actually used? Unused rules might be a vestige of someobsolete functionality, but they might also indicate that some part of the grammar wasaccidently left in an incomplete state.� Does the input terminal set correspond to the vocabulary of the speech recognizer?� Are all outputs of the parser well-formed from the point of view of the dialog controller?� How many di�erent ways can one communicate a given meaning to the parser?There are many techniques which can be useful for correcting errors, making incrementalchanges, and testing in a large natural language grammar. In the sequel, emphasis is placedon methods suitable for use with SDTGs, though many of the techniques described may be usefulwith ordinary context-free grammars as well.1. Techniques for extracting small, manageable subset grammars from a large unwieldy parentgrammar.Operations of this type are useful when studying or modifying some speci�c aspect of thegrammar. When an analysis of a large grammar is attempted manually, the analyst tendsto devote a preponderance of time searching through the grammar for those few productionrules which are relevant to the feature or behavior being studied. Not only is this processslow and tedious, but it is also error prone. One is never quite sure if all pertinent productionrules have been found.With the aid of tools which will automatically search for speci�c production rules, the task oftesting or enhancing some speci�c behavior of the grammar is made much easier. Operationswhich are useful automatic search aids include:� Finding the union, intersection, or di�erence between two subsets of a grammar. Thesekinds of operations are used to combine the results of operations described in subsequentbullets.� Finding the subset of rules in a grammar which can be derived from, or are derived bysome other rule subset of that grammar. Operations of this kind are useful for addingdetails to a grammar subset found by operations of the next two bullets.� Finding the subset of rules in a grammar which match a given regular expression. Thisoperation is useful for �nding one or more production rules relating to a single word orconcept.

10 CHAPTER 2. OVERVIEW� Finding the subset of rules in a grammar which can be used to recognize (generate) anystring in the intersection of the input (output) language of a SDTG and the languageof a given regular expression. The great usefulness of this operation is described insection 4.2.2. Performance evaluation techniques.Whether one is trying to isolate an error, or verify that a recent change has the intendede�ect, or scan for inadequencies in the language model, grammar analysis tools will make thejob much faster and less error prone. Performance analysis tools might include:� The ability to parse a chosen input. One should be able parse using any subset of thegrammar. Also, it is often useful to be able to root the parse on some nonterminal otherthan the usual starting nonterminal, and thereby parse a subphrase which is not itself acomplete well-formed input.� The ability to produce a parse tree for any phrase. As with a direct parse, one shouldbe able to do this using a subset grammar, and starting at any nonterminal.� The ability to list and count all well-formed strings in some subset of either the input oroutput language. This operation is useful for testing the coverage of the input grammar.It is also useful in determining whether or not a grammar subset will generate anyunexpected meanings. Since both input and output languages will probably be in�nite,it is necessary to restrict the listing in some way.� The ability to list or count all terminals, nonterminals, or rules in the grammar or anysubset of the grammar. These operations are useful to verify that the grammar is bothself-consistent and consistent with what the speech recognizer generates and what thedialog controller expects to see. These operations can also serve as general utilities inan integrated grammar development package.3. Techniques for extending, modifying, and revising the grammar.For this thesis operations in this category are limited to editing the text of a grammarsubset using a standard text editor. Future work may include automatic inference of newproduction rules based on a set of examples and counter-examples, or automatic simpli�cationand consolidation of production rules within an existing grammar.Chapter 4 details algorithms for implementing the development tools described above. Thegrammar development techniques described above have been integrated into a complete SAGDSwhich is described in Chapter 6 It is believed that this new SAGDS will be a signi�cant helpin developing new natural language grammars, and that it would have greatly reduced the timeneeded for the development of the Circuit Fix-it Shoppe's grammar had it been available when thatgrammar was developed.2.3 Veri�cation subdialogsChapter 5 of the thesis describes techniques for verifying the meaning of what a user says whenthere is doubt that the meaning has been correctly deduced.Every natural language parser will sometimes misunderstand its input. Misunderstandings canarise from speech recognition errors or inadequacies in the language grammar, or they may resultfrom an input which is ungrammatical or ambiguous. Whatever their cause, misunderstandings

2.3. VERIFICATION SUBDIALOGS 11can jeopardize the success of the larger system of which the parser is a component. For this reason,it is important to reduce the number of misunderstandings to a minimum.In a dialog system, it is possible to reduce the number of misunderstandings by requiring theuser to verify each utterance. Some speech dialog systems implement veri�cation by requiring theuser to speak every utterance twice, or to con�rm a word-by-word readback of every utterance.Such veri�cation is e�ective at reducing errors which result from word misrecognitions, but doesnothing to abate misunderstandings which result from other causes. Furthermore, veri�cation ofall utterances can be needlessly wearisome to the user, especially if the system is working well.A superior approach is to have the SLS verify the deduced meaning of an input only undercircumstances where the accuracy of the deduced meaning is seriously in doubt, or correct under-standing is essential to the success of the dialog. The veri�cation is accomplished through the use ofa veri�cation subdialog, which is a short sequence of conversational exchanges intended to con�rmor reject the hypothesized meaning. The following example of a veri�cation subdialog will su�ceto illustrate the idea:computer: What is the LED displaying?user: The same thing.computer: Did you mean to say that the LED is displaying the same thing?user: Yes.As will be seen in chapter 5, selective veri�cation via a subdialog results in an unintrusive, human-like exchange between user and machine.A subsystem is described which has been added to the Circuit Fix-it Shoppe dialog system andwhich uses a veri�cation subdialog to verify the meaning of the user's utterance only when themeaning is in doubt or when accuracy is critical for the success of the dialog. Notable features ofthis veri�cation subsystem include:� Veri�cation is selective. A veri�cation subdialog is initiated only if there is reason to suspectthat the overall performance and accuracy of the dialog system will be improved. In this way,the veri�cation subsystem responds much as a person would.� Veri�cation is tunable. The propensity of the system to verify can be adjusted so as to provideany required level of speech understanding accuracy.� Veri�cation operates at the semantic level. The system veri�es an utterance's meaning, notits syntax. This helps overcome misunderstandings which result from inadequacies in thelanguage model, or ungrammatical or ambiguous inputs.The most important aspect in the development of a veri�cation subdialog system is the decisionof whether or not a particular input should be veri�ed. The system described in this thesis computesfor each meaning a con�dence, which is a measure of how plausible the parser's output is, and averi�cation threshold which is a measure of how important the meaning is toward the success ofthe dialog. A veri�cation subdialog is undertaken if the con�dence drops below the veri�cationthreshold. Details of how con�dence and veri�cation thresholds are computed form a major partof chapter 5.Other factors in the development of a veri�cation subdialog system include the algorithm usedto implement subdialogs and the manner in which veri�cation is added to the larger SLS. Theseissues are also treated in chapter 5.The performance of the implemented veri�cation system is aesthetically pleasing. The ver-i�cation subdialogs are uid and natural, so much so that some observers fail to notice that a

12 CHAPTER 2. OVERVIEWveri�cation has taken place. Furthermore, the net accuracy of the parser is greatly improved. Thepercentage of utterances which are correctly understood can be raised from 83% to about 97% withonly a small veri�cation overhead.2.4 ImplementationsChapters 3, 4, and 5 are primarily concerned with theoretical aspects of parsing, SAGDSs, andveri�cation. But these things are not just theoretical concepts; they have all been implementedinto working programs. Chapter 6 of this thesis describes these implementations. The reason fordescribing the implementations is three-fold:1. It is hoped that the programs written in support of this thesis will be useful for future researchboth by the author and by others. To this end, the programs have been designed and writtenin a very portable manner so that they may be connected to diverse and divergent SLSs witha minimum of rework. Chapter 6 is intended to provide a Users Reference Manual for theimplementions.2. Some of the implementation techniques used are novel and have worked very well in thatthey have provided a stable and robust structure to the code which is also easily altered andmodi�ed. This is especially the case with the parser which is implemented as 6 separateprocesses under UNIX which communicate through pipes. Future researchers may wish toimitate these techniques even if they don't use the actual code.3. Sometimes it is easier to understand abstract theory if one has a clear vision of the end result.Some readers may wish, therefore, to review the more concrete material in chapter 6 beforeperusing the earlier chapters.

Chapter 3ParsingThis chapter reports on the new parser. The minimum-distance syntax-directed translation(MDSDT) algorithm, which forms the heart of the new parser, is described in section 3.3. Thesections before 3.3 discuss various subproblems and simpli�cations of MDSDT in an e�ort to intro-duce the algorithm slowly and to make the presentation more readable and understandable. Theparser's use of dialog expectation is described in section 3.4. Finally, section 3.5 reports on how animplementation of the new parser performed in actual experiments.3.1 A New Algorithm for Minimum-distance ParsingThis section will describe a new algorithm for minimum-distance parsing (MDP) based on a depth-�rst search of a structure called the parsing graph. This new algorithm improves upon algorithmspreviously described in [2], [26], and [27] in two ways.1. This algorithm will accept a lattice as input. Prior minimum-distance parsing algorithmsaccept only strings of symbols.2. This algorithm is able to prune the search so as to be a constant factor faster than anypreviously reported minimum-distance parsing algorithm.Both of these improvements are omitted from the initial description of the new MDP algorithm inorder to make the initial description more lucid.The reader should note that the MDP algorithm is not used directly. Rather, it is combined withsyntax-directed translation, described in section 3.2, to produce the MDSDT algorithm describedin section 3.3. The MDP algorithm is here presented in isolation only as an aid to understandingMDSDT.3.1.1 Intuitive Overview of MDPThere are two inputs to the MDP algorithm, a context-free grammar (CFG) and an input phrasewhich is a string of symbols from the terminal alphabet of the CFG. (The terminal alphabet forthe implementation is the subset of English words which are understood by the speech recognizer.)The language speci�ed by the CFG is called the input language. Between every string in the inputlanguage and the input phrase there is a distance which is de�ned to be the minimum numberof word insertions and deletions needed to convert the input phrase into the string of the inputlanguage. The output of the MDP algorithm is the least of these distances.13

14 CHAPTER 3. PARSINGmmmmm �� SSw�� SSw�� SSw�� SSw grasseatcowsall 54321Figure 3.1: The input graph corresponding to the input phrase \all cows eat grass".In practice, the MDP algorithm is modi�ed slightly in order to compute the minimum weighteddistance between the input phrase and the input language. The weighted distance is the sum ofweights on each insertion and deletion needed to transform one string into the other. The weightsare intended to show the relative importance of words to the meaning of the input phrase. Wordssuch as \not" which make a big di�erence in the meaning of an utterance if they are insertedor deleted are given a large weight, whereas words like \the" which do not signi�cantly alter themeaning of an utterance if inserted or deleted are given a small weight. In this way, the distancebetween two phrases is made a better estimate of the di�erence in their meanings. It is not di�cultto weigh the insertions and deletions of distance computations di�erently, but it is yet anothercomplication which makes the MDP algorithm more di�cult to understand upon �rst reading. Forthis reason, the initial description of the MDP algorithm will consider insertions and deletions tobe unweighted. The changes to the MDP algorithm which are necessary to implemented weightedinsertions and deletions are summarized in section 3.1.10.The input phrase is represented as a linear graph with each arc of the graph representing oneword (or terminal symbol) of the input phrase. This graph is called the input graph. Suppose theinput phrase is \all cows eat grass", then the corresponding input graph would be as shown in�gure 3.1. The nodes of the input graph are numbered from 1 to V where node 1 is the sourcenode and node V is the sink node. V is 5 in �gure 3.1.The MDP algorithm works by adding new arcs to the input graph. The added arcs may beeither nonterminal-arcs (hereafter called NT-arcs) or they may be rule-arcs (called R-arcs). Eachof the added arcs is marked with a distance. In order to distinguish them from the added arcs, theoriginal arcs of the input graph are called terminal-arcs or T-arcs. As the names suggest NT-arcsare related to nonterminals in the CFG, T-arcs are related to terminals in the CFG, and R-arcs arerelated to rules of the CFG. The exact nature of these relationships will become evident presently.In �gure 3.1, all T-arcs span adjacent nodes. This is not necessarily the case for NT- and R-arcs.Later, the MDP algorithm will be generalized to allow T-arcs to span nonadjacent nodes as well.The output of the MDP algorithm is the distance on the NT-arc spanning nodes 1 to V of theinput graph and corresponding to the starting nonterminal of the CFG. Call this arc the root arcof the input graph. The distance on the root arc depends upon distances of other added arcs inthe input graph. (A detailed description of how the distance is computed is given below.) Thedistances on these other arcs depend in turn on yet other arcs, and so forth, until ultimately thedistance of the root arc depend upon the presence of T-arcs in the input graph.It is conceptually helpful to construct a directed graph showing the dependency relationshipsof arcs in the input graph. Call this dependency graph the parsing graph. Each arc in the inputgraph corresponds to a node of the parsing graph. If A and B are two arcs of the input graph andthe distance of A depends directly on the distance of B, then in the parsing graph there is an edgefrom node A to node B. B will be called a child of A. Call the node of the parsing graph whichcorresponds to the root arc of the input graph the root node. It will be shown below that the MDPalgorithm is a depth-�rst search of the parsing graph beginning at the root node.

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 15mmmmmAAA ���� �� SSw�� SSw�� SSw�� SSwdistance= 0NP ! all cows � grasseatcowsall 54321Figure 3.2: The R-arc (rx; 2; 1; 3) added to the input graph shown in �gure 3.1.3.1.2 Formal NotationA context-free grammar or CFG is the 4-tuple (N ;�; P; S) where N is a set of nonterminal symbols,� is a set of terminal symbols, P = fr1; r2; : : : ; rjP jg is a set of production rules, and S 2 N is aspecial nonterminal which is the start symbol of the grammar. Each production rule, ri, is a pair(n; �) where n 2 N is the left-hand side (LHS), and � 2 (N [�)� is the right-hand side (RHS).The notation jrij means the same as j�j, the number of symbols on the right-hand side of that rule.Assume, without loss of generality, that the nonterminal S does not appear on the RHS of anyproduction rule. Further assume that every production rule which does not have S on its LHS hasat least one symbol on its RHS. If a particular CFG does not meet these last two criteria, then itcan easily be converted to a related CFG that does using methods outlined in, for example, [19].A terminal-arc or T-arc is the triple (t; u; v) where t 2 � is a terminal symbol, and u and v arenon-negative integer node numbers designating the head and tail nodes of an arc. A T-arc may beintuitively understood to represent a single word input to the parsing algorithm.A rule-arc or R-arc is the quadruple (r; x; u; v) where r is a single rule in the CFG, x is aninteger called the index such that 0 � x � jrj and, u and v are node numbers. Intuitively, eachR-arc represents that the �rst x symbols on the RHS of rule r have been matched against some ofthe T-arcs between the nodes u and v. A distance associated with each R-arc gives the numberof insertions and deletions needed to e�ect that match. Here are two simple examples of R-arcs:The R-arc (r; 0; v; v) represents matching no symbols from the RHS of production rule r againstno symbols of the input graphs. The R-arc (r; jrj; 0; V) means that all symbols on the RHS of theproduction rule have been matched against all symbols of the input phrase. (V is the number ofnodes in the input graph.) As a third example, suppose the production rule rx is of the followingform: NP ! all cowsIf the R-arc (rx; 2; 1; 3) is now added to the input graph of �gure 3.1, the result is �gure 3.2. Thedistance on this arc is 0 because the �rst two symbols on the RHS of the production rule exactlymatching the T-arcs between nodes 1 and 3.A nonterminal-arc or NT-arc is the triple (n; u; v), where n is a single nonterminal symbol, andu and v are node numbers. Intuitively, each NT-arc represents that the subset of rules in P whichhave the nonterminal symbol n as their LHS have been matched against the sequence of T-arcsbetween the nodes u and v. A distance associated with each NT-arc gives the minimum number ofinsertions and deletions needed to e�ect such a match.

16 CHAPTER 3. PARSING3.1.3 Computation of Distance for R-arcsThe distance on an R-arc is computed recursively from the distances of other R-arcs. Speci�ca-tion 3.1 below is a precise description of how the distance on an R-arc is computed. This method forcomputing the distance on an R-arc is essentially the minimum edit-distance algorithm describedin [37]. That the correct minimum distance is computed can be shown by induction.Speci�cation 3.1 The computation of distance for the R-arc (r; x; u; v).1. If x = 0 and u = v then the R-arc matches nothing against nothing, and its distance istherefore 0. This case is the basis for the recursion.2. If x > 0 and v > u and the T-arc between nodes v � 1 and v is labeled by the x-th symbolon the RHS of production rule r, then the distance on the R-arc (r; x; u; v) is the same asthe distance on the shorter R-arc (r; x� 1; u; v � 1). This case corresponds to extending arule match without error. For example, the distance on the R-arc (rx; 2; 1; 3) in �gure 3.2was computed from the distance on the R-arc (rx; 1; 1; 2) by matching the second word onthe RHS of rx (\cows") against the T-arc spanning nodes 2 and 3.3. If x > 0 then let the distance on (r; x; u; v) be one greater than the distance on the R-arc(r; x� 1; u; v). This case corresponds to inserting an extra word in the input phrase in orderto match the x-th symbol on the RHS of the production rule. The distance is increased byone to reect the insertion.4. If u < v then let the distance on (r; x; u; v) be one greater than the distance on the R-arc(r; x; u; v� 1). This case corresponds to deleting a word from the input phrase, speci�callythe word on the T-arc which spans the nodes v � 1 to v. The distance is increased by one toreect the deletion.5. If more than one of the above steps is applicable, chose the one which gives the minimumdistance.An example is now given to demonstrate how the distance on an R-arc is computed. Let therule of the R-arc be rz as follows: S ! cows eat the grassBy inspection, we see that the distance on an R-arc (rz; 4; 1; 5) on the input graph of �gure 3.1should be two { one for the deletion of the \all" arc between nodes 1 and 2 and one for the insertionof \the" as the third word in the production rule. A step-by-step derivation of this distance is shownin table 3.1. The �rst column of table 3.1 names a sub-arc whose distance is used to establish thedistance of (rz; 4; 1; 5). The second column is the distance for the sub-arc. The right-most columnof the table justi�es the distance by referring to the case of speci�cation 3.1 by which the distancewas computed. Table 3.1 is not a complete proof of the distance for the R-arc (rz; 4; 1; 5) becauseit fails to enumerate all possible R-arcs for the production rule rz , and such an enumeration isnecessary due to case 5 of speci�cation 3.1. Nor is table 3.1 an algorithm. Table 3.1 is only anexample intended to show how the distance of any R-arc depends on the distances of smaller R-arcs.Speci�cation 3.1 is de�cient in an important detail { it fails to mention what should be done if anonterminal symbol is found on the RHS of the production rule r. The changes needed to supportnonterminals in R-arcs are intuitively straightforward. When a nonterminal is encountered, oneneed only search the input graph for an NT-arc instead of a T-arc, and then add in the distance ofthe NT-arc when matching. Speci�cation 3.2 will make this idea more precise.

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 17R-arc Distance Justi�cation(rz; 0; 1; 1) 0 case 1(rz; 0; 1; 2) 1 case 4(rz; 1; 1; 3) 1 case 2(rz; 2; 1; 4) 1 case 2(rz; 3; 1; 4) 2 case 3(rz; 4; 1; 5) 2 case 2Table 3.1: Derivation of distance for the R-arc (rz ; 4; 1; 5).Speci�cation 3.2 Changes to speci�cation 3.1 to support the presence of nonterminal symbols onthe RHS of production rules.1. The basis case is unchanged.2. When matching a nonterminal instead of a terminal, an NT-arc is used instead of a T-arc.But NT-arcs, unlike T-arcs, might span multiple nodes of the input graph, and more than oneNT-arc might terminate at the node v. Hence, this case should search for all NT-arcs of theform (@; z; v) where @ is the x-th RHS symbol of the production rule r and where z 6= v. (Thecomputation of NT-arcs is described in section 3.1.4.) The distance on the R-arc (r; x; u; v)should be the sum of the distances on the NT-arc and on the R-arc (r; x� 1; u; z). The nodez is chosen so that the distance is minimized.3. Inserting a nonterminal is just like inserting a terminal, except that the added distance is notone but the length of the shortest string which can be generated from the inserted nonterminal.If @ is a nonterminal, then call the length of the shortest terminal string which can be derivedfrom @ the insertion cost of @. Note that the insertion cost for nonterminal @ is also thedistance on the NT-arc (@; v; v) for 1 � v � V . If @ is the x-th RHS symbol of the productionrule r, then the distance on the R-arc (r; x; u; v) is the distance of the R-arc (r; x� 1; u; v)plus the insertion cost of @.4. There is no deletion case for nonterminals. Instead, a nonterminal may be deleted by usingmultiple terminal deletions as described in speci�cation 3.15. As before, when more than one of the above cases apply, choose the case which gives the leastdistance.3.1.4 Computation of Distance for NT-arcsCompared to R-arcs, the computation of distances on NT-arcs is straightforward. Suppose @is a nonterminal and that all production rules of the CFG which contain @ on their LHS arefr1; r2; : : : ; rqg. Then, the distance on the NT-arc (@; u; v) is just the least of the distances on theR-arcs: (r1; jr1j; u; v)(r2; jr2j; u; v)...(rq; jrqj; u; v)

18 CHAPTER 3. PARSINGThus, the distance of a nonterminal is the distance found by completely matching any of its pro-duction rules.3.1.5 Construction of the Parsing GraphFrom the above descriptions it is seen that the distance with which the root arc is labeled dependsupon the distances of several other NT-, R-, and T-arcs. The other NT- and R-arcs in turn dependupon still other NT-, R-, and T-arcs, and so forth until everything ultimately depends on thepresence of T-arcs. The dependencies between arcs are made explicit by the parsing graph, whichis described in detail in this subsection. The subsequent subsections will show how the distance onthe root arc can be computed by a depth-�rst search of the parsing graph beginning at the rootarc.Nodes of the parsing graph come in three varieties. Each node of the parsing graph is labeled bya distance (just as each arc of the input graph is) and the di�erent varieties of nodes are intendedto show the di�erent ways in which the distances on nodes may be computed. The allowed typesof parsing graph nodes are:1. Leaf nodes are nodes of the parsing graph which have no leaving edges. Every leaf node hasa distance of 0.2. Minimization nodes are nodes in the parsing graph for which the distance is computed bytaking the minimum of the distances of all the node's children.3. Summation nodes are nodes of the parsing graph for which the distance is the sum of all ofthe node's children.In addition to distance labels on nodes, edges in the parsing graph may also be labeled by adistance when the parsing graph is �rst constructed. The edges cause a �xed increase in thecomputed distance when they are transversed. For example, suppose that A and B are two nodesof the parsing graph and that there is an edge from B to A. (Thus A is a child of B.) If A has adistance of DA and the edge has a distance of �, then the distance of A as seen by node B is reallyAD + �.The construction of the parsing graph from the arcs of the input graph is as follows: T-arcscorrespond to leaves of the parsing graph. For each NT-arc in the input graph there is a singleminimization node of the parsing graph. Call such a parsing graph node an NT-node. The childrenof this NT-node are the subgraphs (described in the next paragraph) which correspond to R-arcsupon which the NT-arc depends. Hence the distance for the NT-node will be the minimum ofthe distances on the child R-nodes, exactly modeling the distance computation for the NT-arc asspeci�ed in section 3.1.4.The construction of parsing graph elements which correspond to R-arcs is more di�cult, re-ecting the increased complication associated with computing the distance of an R-arc. In the �rstde�nition of the parsing graph (just prior to the beginning of section 3.1.2) it was implied that thereis a one-to-one correspondence between arcs of the input graph and nodes of the parsing graph.This is true for NT- and T-arcs, but for reason of simplicity in the algorithms to be described sub-sequently, it is useful for R-arcs of the input graph to sometimes have more than one correspondingnode in the parsing graph. Consider that each R-arc corresponds to a small subgraph of the parsinggraph, and call each such subgraph an R-subgraph.The root of every R-subgraph is a minimization node. Suppose the corresponding R-arc is(r; x; u; v) and the x-th symbol on the RHS of production rule r is @. The speci�cation 3.3 tells

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 19what leaving edges and what additional nodes must be added to the root node in order to completethis R-subgraph.Speci�cation 3.3 The construction of the R-subgraph (r; x; u; v) given the existence of its rootnode.1. If x = 0 and u = v, then the root of the R-subgraph is a leaf node with a distance of 0. Thiscase corresponds to case 1 of speci�cations 3.1 and 3.2. If this case applies, then all of thefollowing cases should be disregarded.2. If @ is a terminal symbol and there exists a T-arc (@; v� 1; v), then add a summation node,X , to the R-subgraph, make an arc from the root of the subgraph to X , and make arcsfrom X to both the T-arc (@; v� 1; v) and the root of the R-subgraph for (r; x� 1; u; v� 1).This case constructs the parsing graph so as to compute the distance according to case 2 ofspeci�cation 3.1.3. If @ is a nonterminal symbol, then add to the R-subgraph V summation nodesfX1; X2; : : : ; XV g (recall that V is the number of nodes in the input graph) and make anedge from the root of the subgraph to each of these summation nodes. From each summationnode, Xk, make edges which leave the subgraph and connect to the NT-node (@; k; v) and theroot of the R-subgraph (r; x� 1; u; k). The primary focus of this case is the implementationof case 2 of speci�cation 3.2. However, the summation node Xv is used to implement case 3of speci�cation 3.2. This is because the distance on the NT-arc (@; v; v) is always just theinsertion cost of the nonterminal @.4. If @ is a terminal symbol and u < v, then make an edge from the root of the subgraph tothe root of the R-subgraph for (r; x; u; v� 1). Label the arc with a distance of 1. This caseimplements case 5 of speci�cation 3.1.5. Finally, if @ is a terminal symbol and x > 1, then make an edge from the root of the subgraphto the root of the R-subgraph for (r; x� 1; u; v). Label the arc with a distance of 1. This caseimplements case 4 of speci�cation 3.1.An example R-subgraphA simple example will help to elucidate the construction of an R-subgraph. Suppose the inputgraph is as shown in �gure 3.1. Let the grammar be as follows:S ! all cows VPVP ! eat grassThis is a rather oversimpli�ed grammar, but it will su�ce for this demonstration. To the inputgraph of �gure 3.1, add 7 R-arcs designated A{G and 4 NT-arcs designated H{K.

20 CHAPTER 3. PARSING��� ��� ��� ��� ���- - - -�� HHj �� HHj

 JJĴ

 JJĴHH ��* HH ��*JJJ

�AAAA �����BBBBBB �������1 2 3 4 5all cows eat grassABCDEF I J K
Figure 3.3: The input graph of �gure 3.1 augmented with R-arcs and NT-arcs.

��� ��� ���������������������
������ ������������������ CCCCCW ������ CCCCCW ������ CCCCCW ������ CCCCCW�����������

� JJJJĴHHHHHHHHHHj -PPPPPPPPPPPPPPPq� � � �A BCD EK J F I G H

+2+1
Figure 3.4: The parsing graph which corresponds to the input graph of �gure 3.3.A: (\S ! all cows VP", 3, 1, 5)B: (\S ! all cows VP", 2, 1, 5)C: (\S ! all cows VP", 3, 1, 4)D: (\S ! all cows VP", 2, 1, 4)E: (\S ! all cows VP", 2, 1, 3)F: (\S ! all cows VP", 2, 1, 2)G: (\S ! all cows VP", 2, 1, 1)H: (\VP", 1, 5)I: (\VP", 2, 5)J: (\VP", 3, 5)K: (\VP", 4, 5)The input graph with the addition of some of the R- and NT-arcs is shown in �gure 3.3. (Arcs G andH are omitted from this �gure for clarity.) Now consider the R-subgraph of the parsing graph whichcorresponds to the arc A in �gure 3.3. A diagram of this R-subgraph is shown in �gure 3.4. Onlythose nodes within the dashed box of �gure 3.4 are properly a part of the R-subgraph. The othernodes in the �gure show how the R-subgraph is connected to the outside. The arc of the parsing

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 21graph from node A to node B corresponds to the insertion of the nonterminal VP in accordancewith step 3 of speci�cation 3.2. Similarly, the arc from node A to node C corresponds to thedeletion of the T-arc between nodes 4 and 5 in accordance with step 4 of speci�cation 3.1. The R-subgraph contains 4 summation nodes (each labeled by the symbol \�") which each correspond tothe matching of the nonterminal VP against an NT-node, as described by step 2 of speci�cation 3.2.3.1.6 Walking the Parsing GraphThe distance of the root of the parsing graph may be e�ciently computed by a depth �rst search.The depth �rst search of a cycle-free parsing graph is described �rst, since this case is muchsimpler and therefore easier to understand. However, most practical natural language grammarswill generate parsing graphs that contain cycles. Hence a procedure for a depth-�rst walk of aparsing graph with cycles is subsequently described.Cycle-free Parsing GraphsEvery node of the parsing graph is initially labeled with two values:� An upper bound, named >, on the distance for the node. The minimum distance ultimatelycomputed must be less than or equal to this value. Initialize this value to +1.� A lower bound, named ?, on the minimum distance of the node. The minimum distanceultimately computed must be greater than or equal to this value. This value is initialized tozero.Let the true minimum distance of the node be called D. Then by de�nition we have ? � D � >.The objective of the algorithm is to lower > and raise ? until they converge on a single value, andthus determine D.Algorithm 3.1 A recursive procedure for computing the distance of a node in a parsing graphwhen the parsing graph contains no cycles.Input: 1. F , a cycle-free parsing graph with every node initialized as described above.2. A, a node in F , whose distance is to be computed.3. `, the limiting value. The calling function cannot use this node if its distance is greaterthan `, so computation can be abandoned without consequence if ? exceeds `. Theouter-most call to this algorithm has ` = +1.Output:1. >, the upper bound estimate of node A's distance.Method:1. If A is a leaf in the graph, then return > = 0.2. If > = ?, then the exact distance has already been computed by a prior call to thisprocedure. Just return > without further computation.3. If ` < ?, then additional computation will be of no bene�t. Just return > withoutfurther computation.

22 CHAPTER 3. PARSING4. If ? < > < `, then set ` >.5. If A is a minimization node, then for each child node of A do the following:(a) Call algorithm 3.1 recursively with the given child and with a limiting value of `.Let the resulting upper bound be x.(b) If x < >, then set > x.(c) If > < `, then set ` >.6. Otherwise, if A is a summation node with children g and h, then do:(a) Call algorithm 3.1 recursively on g and with a limiting value of `. Let the resultingupper bound be x.(b) If 0 � ` � x, then call algorithm 3.1 recursively on h and with a limiting value of`� x. Let the resulting upper bound be y.(c) If x+ y < >, then set > x+ y.7. If > � `, then set ? >.8. Return the value in >.Parsing Graphs With CyclesPractical natural language grammars will usually result in parsing graphs which contain cycles. Thisis because natural languages are in�nite languages, and therefore must be described by grammarswhich allow a nonterminal to derive a string which contains itself, or in other words, grammarswhich allow derivations of the form A!+ �A� (3:1)where A is a nonterminal and � and � are strings of zero or more terminals and nonterminals. LetX be a node of the parsing graph which is labeled by the nonterminal A. Because of the way inwhich the parsing graph is constructed, there is a path from X to every node of the parsing graphupon which the distance of X depends, and so there must be paths from X to nodes correspondingto each symbol on the right-hand side of derivation 3.1. Now if all of the symbols in � and � areinserted into the input phrase (that is to say that step 3 of speci�cation 3.2 is applied to everysymbol in � and �), then any parsing graph node which corresponds to the left-hand side A ofderivation 3.1 must also correspond to the right-hand side A in that derivation since the left- andright-hand sides of any derivation must span the same set of input symbols and � and � do notspan any input symbols. X is such a parsing graph node, so there will be a path in the parsinggraph from X back to itself { a cycle.A cycle in a parsing graph is a set of strongly connected nodes. The entry point of a cycle isthe node in the strongly connected set which the graph walking algorithm attempts to evaluate�rst. Once the algorithm enters a cycle, it can potentially begin circling around nodes in the cycleforever. This is not necessarily the case, since the limiter value, `, will often prevent the full cyclefrom being explored, but the potential for the in�nite loop does exist and must be addressed.The in�nite loop is broken at the �rst node in the cycle which the algorithm encounters. Everynode in the parsing graph is assigned a marker with possible values BUSY and IDLE to indicatewhether or not computation of the distance of that node is currently in progress. If the algorithmencounters a node marked BUSY, it knows it is in a cycle and can take appropriate action.When a BUSY node (call it A) is seen, the algorithm is unable to compute the correct > valuefor that node, and must instead return whatever > value has already been computed. Usually thevalue returned is +1, though sometimes it may be smaller if children of A which are not a part ofthe cycle have already been explored. In either case, however, the value returned is not necessarily

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 23the correct minimum distance for A. This does not damage the original computation of A (thecomputation of A which was started when A was encountered the �rst time), since the distance ofnode A can never be less than itself, and since the intervening nodes in the cycle cannot reducethe apparent distance of A but can only increase it or leave it unchanged. However, the incorrectdistance returned at the second encounter of A can cause nonminimal distances to be computedfor other nodes in the cycle. If the cycle is later reentered at a di�erent point, then nodes in thecycle between the new entry point and A must be recomputed.The crux of the problem is on step 7 of algorithm 3.1. This step in e�ect says for the nodebeing computed: \I have tried every possible path out of this node, and the best distance I could�nd was >, so the minimum distance, ?, must be no less than >." This statement is correctin a cycle-free parsing graph, but if the node being computed is an intermediate node in a cyclethen this statement is false. The presupposition \I have tried every possible path" fails since thebreaking of the cycle prevented exploration of at least one path. The conclusion, that ? must beno less than >, is therefore invalid. As a result, the algorithm 3.1 must be modi�ed so as not toperform step 7 if the node being computed is an interior node of a cycle.The method for detecting whether or not a node is interior to a cycle involves the use of a globalblocking count, which is the number of times that a cycle has been detected and broken. There isalso a blocking count associated with each node of the parsing graph, which can be compared tothe global blocking count to determine if the node is interior to a cycle. This per node blockingcount is initially zero for every node in the parsing graph. The method for walking a parsing graphwith cycles is shown in its entirety in algorithm 3.2.Algorithm 3.2 A recursive procedure for computing the distance of a node in a parsing graphwhen the parsing graph does contain cycles.Input: 1. F , a parsing graph with every node initialized as described above.2. A, a node in F whose distance is to be computed.3. `, the limiting value. The calling function cannot use this node if its distance is greaterthan `, so computation can be abandoned without consequence if ? exceeds `. Theouter-most call to this algorithm has ` = +1.Output:1. >, the upper bound estimate of node A's distance.Method:1. If A is marked BUSY, then increment the blocking count on A and the global blockingcount. Return > without further processing.2. If A is a T-node (a leaf in the graph), then return > = 0.3. If > = ?, then the exact distance has been computed before. Just return > withoutfurther computation.4. If ` < ?, then additional computation will be of no bene�t. Just return > withoutfurther computation.5. If ? < > < `, then set ` >.6. Mark A as BUSY and set its blocking count to zero.

24 CHAPTER 3. PARSING�������� ������������

� JJJJJĴ??�������@@@@@@I
123 45Figure 3.5: A small part of a hypothetical parsing graph which contains a cycle.7. Record the global blocking count in a local variable gbc.8. If A is a minimization node, then for each child node of A do the following:(a) Call algorithm 3.2 recursively with the given child and with a limiting value of `.Let the resulting upper bound be x.(b) If x < >, then set > x.(c) If > < `, then set ` >.9. Otherwise, if A is a summation node with children g and h, then do:(a) Call algorithm 3.2 recursively on g and with a limiting value of `. Let the resultingupper bound be x.(b) If 0 � ` � x, then call algorithm 3.2 recursively on h and with a limiting value of`� x. Let the resulting upper bound be y.(c) If x+ y < >, then set > x+ y.10. Mark A as IDLE.11. Reduce the global blocking count by the blocking count of A.12. If > � ` and the global blocking count equals gbc then set ? >.13. Return the value in >.An example of recursion blocking in algorithm 3.2The following example of the parsing graph walking algorithm is provided to help clear up anyconfusion the reader may have about how the algorithm works. Consider the portion of a parsinggraph shown in �gure 3.5. Each of the nodes in the parsing graph segment would, of course, havemany arcs to other nodes of the parsing graph, but as these other arcs do not play a role in theexample, they are omitted from the �gure. Suppose that in the course of executing algorithm 3.2,node 1 of �gure 3.5 is visited, and that the global blocking count is 326. While executing step 8,algorithm 3.2 calls itself recursively on node 2 of the graph. The local variable gbc is set to theglobal blocking count, the blocking count for node 2 is set to zero, and node 2 is marked BUSY. Thealgorithm is again called recursively for nodes 3, 4, and 5. At each of these recursions, then local gbc

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 25variable is set to the global blocking count. Now the algorithm is called recursively again on node 2.But because node 2 has been marked BUSY, the condition on step 1 of algorithm 3.2 is statis�ed.This causes the global blocking count, and node 2's blocking count to both be incremented, and therecursion to block. Execution now returns to node 5 and step 12 of algorithm 3.2. The conditionfails because the gbc variable of node 5 is 326 but the global blocking count is 327. Consequently,the lower distance bound ? is not set equal to the upper distance bound > and the computationof distance for node 5 is left incomplete. The same thing happens at nodes 4 and 3. When theoriginal execution of algorithm 3.2 for node 2 resumes, step 11 causes the global blocking count tobe reduced back to 326. The test on step 12 now succeeds, and the computation of distance fornode 2 is completed.After node 2 is computed, the computation at node 1 resumes and the algorithm is calledrecursively for node 4. Node 4 was visited previously, during the computation of node 2, but thecomputation of node 4 was left incomplete because node 2 had blocked. Now the computation mustbe redone. The computation of node 4 causes node 5 to be recomputed as well. Algorithm 3.2 iscalled for node 2 again, as part of the computation of node 5, but step 3 causes the recursion tostop at this point. No further blocking occurs, so nodes 5 and 4 are successfully computed thistime.3.1.7 Correctness of MDPThis section will attempt to convince the skeptical reader that the distance computed by the MDPalgorithm is the minimum distance between the input graph and the language described by thecontext-free grammar. De�nitions of minimum distance for R-arcs and NT-arcs are given. Twolemmas and a theorem are then presented which show that the distance computed for each R-arcand NT-arc is the minimum distance for that arc. Because the �nal output of the MDP algorithmis the distance on the NT-arc labeled by the starting nonterminal and spanning the entire inputgraph and because all NT-arcs are labeled by the correct distance, then the output of the MDPalgorithm must therefore be correct. Begin with the de�nitions.De�nition 3.1 The Minimum Distance of an R-arc.Let G be a context-free grammar having initial nonterminal S which does not appear on theright-hand side of any production rule. Let the R-arc in question be (r; x; u; v) where r is aproduction rule in G and x is a nonnegative integer which is not greater than the number of symbolson the right-hand side of r and u and v are numbers of nodes in the input graph. Construct anew context-free grammar from G (call the new grammar G0) as follows: remove from G everyproduction rule what contains the initial nonterminal S, then add to G a single production rulewhich has S as the left-hand side and on the right-hand side has the �rst x symbols on the right-hand side of r. Let X be the set of all paths of T-arcs between u and v of the input graph. (Eachsuch path is represented as an ordered list of words which are the labels on the T-arcs traversed.)Let Y the language of strings generated from G0. Let the function D(a; b) be the minimum editdistance between two strings a and b. Then, the minimum distance of the R-arc (r; x; u; v) is de�nedto be minfD(p; q) j p 2 Xandq 2 Y g (3:2)The de�nition of minimum distance for an NT-arc is very similar to that for an R-arc.De�nition 3.2 The Minimum Distance of an NT-arc.

26 CHAPTER 3. PARSINGLet the NT-arc in question be (@; u; v). The minimum distance of an NT-arc is de�ned exactlyas the minimum distance of an R-arc except that the contruction of the new context-free grammarG0 is changed slightly. G0 is produced from G by �rst removing every production rule containingthe initial nonterminal S and then adding a single production rule which as S as the left-hand sideand for the right-hand side as the single nonterminal @.Lemma 3.1 For a given R-arc H which has been added to the input graph, if the distance labelof each arc upon which H directly depends according to speci�cations 3.1 and 3.2 is the minimumdistance for that arc, and if the distance on arc H is computed according to speci�cations 3.1 and3.2, then the distance on H is the minimum distance for H.Proof: Speci�cation 3.2 is the same as speci�cation 3.1 except that speci�cation 3.2 assumesthat the x-th symbol on the right-hand side of the production rule r in the R-arc (r; x; u; v) is anonterminal. Because of this symmetry between speci�cation 3.2 and speci�cation 3.1 the prooffor each speci�cation is essentially the same. Therefore, for brevity's sake, only speci�cation 3.2 isexpounded upon in the sequel.Call the x-th symbol on the right-hand side of production rule r by @. If case 1 of speci�cation 3.2applys, then the sets X and Y both contain only the empty string and the distance between themis clearly zero. If case 1 does not apply, then the proof will be by contradiction. Suppose one ofcases 2, 3, or 4 from speci�cation 3.2 was used to compute the distance on H but the distancecomputed is not the minimum distance for H . Then there must be members of sets X and Y , callthem p and q, such that the distance between those members, D(p; q), is less than the computeddistance for arc H . The left-most end of q must be composed of one or more symbols derived from@. This is because q is derived from the right-hand side of r and the left-most symbol on the right-hand side of r is @, (It is not possible for @ to derive the empty string because the grammar wasassumed to have no production rules with an empty right-hand side, with the possible exceptionof one production rule which has the initial nonterminal as its left-hand side. See section 3.1.2.)Call the left-most end of q which is derived from @ by ql and let the part of q which is not ql becalled qr. Thus q = qr � ql, where the dot means concatenation. When computing the distancebetween q and p, the tail ql of q must be matched against some part of the left side of p. Call thissegment pl and call the rest of p by pr. Thus p = pr �pl. Because distance is additive and addition isassociative, it must be the case that D(p; q) = D(pr; qr)+D(pl; ql). But now observe that D(pr; qr)is exactly the minimum distance on some R-arc (r; x � 1; u; w) where w is a node in the inputgraph. (The value of w depends upon what symbols are in pr.) Now consider the interpretationof D(pl; ql). If pl is the empty string, then D(pl; ql) is the insertion cost of the string ql. Becauseql is derived from @ and the sum D(p; q) is minimal, by supposition, then D(pl; ql) must be theminimum insertion cost of the nonterminal @. But if that where the case, then D(p; q) would havebeen computed as the minimum distance for the arc H by case 3 of speci�cation 3.2 which wouldviolate the initial assumption. Hence pl must be nonemtpy. Now if pl is nonempty, then D(pl; ql)is the minimum distance on some NT-arc (@; w; v), where w is the same node of the input graphmentioned above. (The distance must minimum because the sum D(p; q) is minimal.) But if thisis the case, then the distance D(p; q) would have been computed as the minmum distance for X bycase 2 of speci�cation 3.2 (or case 4 of speci�cation 3.1). Thus the assumption that the distancecomputed for X is not the minimum distance leads to a contradiction.The next result is the same as lemma 3.1 except that it applies to NT-arcs instead of R-arcs.Lemma 3.2 For a given NT-arc H which has been added to the input graph, if the distance label ofeach arc upon which H directly depends according to the description in section 3.1.4 is the minimum

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 27distance for that arc, and if the distance on arc H is computed according to section 3.1.4, then thedistance on H is the minimum distance for H.Proof by contradition. Suppose the conditions of lemma 3.2 are satisi�ed but the value computedfor the distance of arc H = (@; u; v) is not the minimum distance for H . Then there must be stringsp 2 X and q 2 Y such that the distance D(p; q) is less than the distance computed for H . Becauseq is in Y , it must have been derived from one of the production rules which has @ as its left-handside. Let this production rule be called r. The distance on the R-arc (r; jrj; u; v) must be theD(p; q) or else the preconditions of this lemma would have been violated. But this requires thatthe distance on H be no more than D(p; q) which violates the assumption and proves the lemma.Lemmas 3.1 and 3.2 are now used to construct the induction step in an inductive proof of thecorrectness of the MDP algorithm.Theorem 3.3 The MDP algorithm is correct.Let the \depth" of a node in the parsing graph be the maximum number of unique arcs whichcan be traversed before a leaf node is reached. (For just this theorem, consider an R-subgraph to bea complete node, and let the distance on that node be the distance on the root of the R-subgraph.)By \unique arcs" it is meant that an arc may only be traversed once. Where this restriction not inplace, many nodes would have an unbounded depth due to cycles in the parsing graph. Let S(n)mean that the distance on nodes which have a depth of n is the minimum distance. The basis,S(0), is true since the leaves are by de�nition labeled by their minimum distances. Lemmas 3.1and 3.2 allow one to infer that if S(0); S(1); : : : ; S(n � 1) are all true then S(n) must be true aswell. This is because if an node X has depth n and depends upon node Y , then either the depth ofnode Y is n � 1 or less, or else Y also depends (perhaps indirectly) on X . If Y has a lessor depththan X , then the induction hypothesis is satis�ed for Y and it must therefore be labeled by theminimum distance. If Y depends on X , then the paths out of Y can be divided into two groups.Y # is the node Y with only those arcs which do not lead back to X and Y " is Y with only thosearcs which do lead back to X . We have Y = Y # [Y ". Because each node e�ectively takes theminimum value of the nodes it depends upon (perhaps with some additional penalty distance { seespeci�cations 3.1 and 3.2) the distance label on node Y will be the minimum of the two componentsY # and Y ". The distance of Y # is the minimal because the depth of Y # must be less than n. Thedepth of Y " is greater than n, however, and so the induction hypothesis does not guarantee thatits distance is minimal. But because Y " depends on X and because distances can only increase asarcs are traversed, Y " can not contribute to the minimum distance of X and so it does not matterto the induction step if Y " is labeled by the minimum distance or not. From the above argument,one is able to conclude that S(n) if S(0) and S(1) and : : : and S(n� 1). Hence by total induction,S(n) is true for all n.3.1.8 Complexity of MDPThe worst case running time for computing the distance of a parsing graph using algorithm 3.2 isO(V 3k2) where V is the number of nodes in the input graph and k is the size of the grammar.Consider: the total number of nodes in the parsing graph is limited by the number of nodes in theinput graph and by the size of the grammar to be O(V 2k). The largest loop in the parsing graphcan be no greater than O(k), so algorithm 3.2 is called at most O(k) times for each node in theparsing graph. The running time of each invocation of algorithm 3.2 is at most O(V), by the loopat step 8. The worst case running time for the overall algorithm is obtained by multiplying thesethree factors.

28 CHAPTER 3. PARSINGffffff ����� BBBBBN�� ZZ~�� ZZ~����� BBBBBN�� ZZ~�� ZZ~�� ZZ~ heada aheadroadsseeI icyFigure 3.6: An typical input lattice to the MDP algorithm in which T-arcs are allows to spannonadjacent nodes of the input graph.3.1.9 Extending MDP to Accept a Lattice as InputIn prior discussion of MDP, it has been assumed that the T-arcs always span adjacent nodes ofthe input graph. (An equivalent assumption has also been made by all prior descriptions of otherminimum-distance parsing algorithms by other authors [2] [26] [27].) But this assumption is notnecessary to the algorithm. It would work perfectly well to treat T-arcs as if they were NT-arcs,in which case they are allowed to span multiple nodes of the input graph. The result is a latticeinput to the MDP algorithm instead of a simple input phrase. Figure 3.6 shows an example. Andsince the T-arcs are now being treated as if they were NT-arcs, there is no longer any reason togive every T-arc a distance of 0. It is acceptable, for example, to give each T-arc a distance whichis based on the speech recognizer's con�dence that the associated word was actually spoken by theuser.3.1.10 Extending MDP to use Non-uniform Insertion and Deletion CostsThis is also a good place to point out that the word insertion and deletion costs for the MDPalgorithm need not be uniformly 1. A separate deletion cost can be associated with each T-arc inthe input graph. Perhaps this deletion cost can be related to the speech recognizer's estimate ofthe likelihood that the word was actually spoken. This deletion cost can then be used in place ofthe constant 1 in case 4 of speci�cation 3.1 and in the corresponding case 5 of speci�cation 3.3.Insertion costs also need not be 1. Insertion costs are not associated with T-arcs, however,but with symbols on the RHS of production rules. Thus the grammar for the MDP algorithm isused to specify nonuniform insertion costs to replace the constant 1 in case 3 of speci�cation 3.1and in the corresponding case 6 of speci�cation 3.3. The use of nonuniform insertion costs createsa number of complications in de�nitions 3.1 and 3.2, speci�cally in the distance function D(�; �).In de�nition 3.1, it is now necessary to store the insertion cost of each symbol in each string ofthe language Y computed from G0 so that the distance function D(�; �) will know what insert costto use when computing the distance between strings. This change does not change the results ofsection 3.1.7, nor does it make the algorithm much more di�cult to implement.Section 6.1.2 describes how the nonuniform insertion costs are speci�ed in the implementation.Special notations exist to cause a terminal symbol in the grammar to have a e�ectively in�niteinsertion cost, and thus require that the symbol be present in the input for the parser to besuccessful. A similar notation exists which causes a terminal symbol in the grammar to have a zeroinsertion cost, thus making that symbol optional.

3.1. A NEW ALGORITHM FOR MINIMUM-DISTANCE PARSING 293.1.11 Pruning the parsing graphAlgorithm 3.2 is an e�cient method for �nding the distance of the root of a parsing graph. However,a few minor changes can make the program run much faster in many cases.Consider the step 4 of algorithm 3.2. This step causes the depth-�rst search to look no deeperinto the parsing graph if the lower distance bound of the current node is greater than the maximumdistance value that can be useful in the search. The e�ectiveness of step 4 at pruning the parsinggraph can be enhanced by either increasing the lower distance bound, ?, or by decreasing thelimiting value, `. Techniques for accomplishing both of these goals are described in the nextsubsections.Increasing the lower distance bound ?The lower distance bound for every node in the parsing graph is initialized to zero. This boundmay be increased as a result of computations on the interior nodes of a cycle, but that is unusual.Most often the value of ? at step 4 of algorithm 3.2 will be zero.A larger lower distance bound can be estimated for many parsing graph nodes using algo-rithm 3.3.Algorithm 3.3 An algorithm for computing a quick estimate of the lower distance bound on aparsing graph node.Input: 1. A, a graph node whose lower distance bound is to be estimated.Output:1. ?, the lower distance bound estimate.Method:1. If the lower bound of A has already been estimated by a prior call to this function, thenreturn the previously computed estimate without further computation.2. Initialize ? to zero.3. If A is associated with an NT-arc, then call this algorithm recursively to estimate thedistance of each child of A. Set ? equal to the minimum of these estimated distances.4. If A is associated with the R-arc (r; x; u; v), then for every 0 � i < x do the following:(a) Let @ be the i-th RHS element of production rule r.(b) If @ is a nonterminal, then �nd B which is the parsing graph node associated withthe NT-arc (@; u; v) and call this algorithm recursively to estimate the lower distancebound for B. Added this estimate to ?.(c) If @ is a terminal and there is no path from node u to node v of the input graphwhich contains a T-arc for @, then increase ? by the i-th insertion cost of productionrule r.(d) If @ is a terminal symbol which is on some path from u to v then leave ? unchanged.5. Return ?.

30 CHAPTER 3. PARSINGTo test the e�ectiveness of algorithm 3.3 at reducing the total parsing time, a set of 27 utterancestaken from the user experiments described in [35] were parsed both with and without the use ofalgorithm 3.3, and the time required to complete these parses were compared. (The parser used inthese tests actually implemented MDSDT, not MDP. But because MDSDT is just a combination ofMDP and SDT, the results of these tests should still be valid.) On a 25MHz SparcStation2 with 64megabytes of memory, the time needed to parse the 27 utterances without the use of algorithm 3.3was 55.7 second. Only 24.6 second were required when algorithm 3.3 was used, for a savings of56%.Decreasing the limiting value `The limiting value ` is reduced by steps 8c and step 9b of algorithm 3.2. Consider �rst step 8c.The e�ectiveness of this step can be enhanced if on the �rst time through the loop the child nodechosen for examination is one which returns a very small >. Of course, it is impossible to tellin advance which children of the node under consideration will have the smallest values of >.However, a reasonable guess can be made by �rst estimating ? for every child node, then orderingthe children so that those with the smallest ? (and thus the greatest potential for a small >) aretried �rst. This node sorting heuristic can also be used in step 9. Simply select as g the child withthe smallest ? with the hope that the > will also be small and thus provide a small limiter valuefor the computation of h.To test the e�ectiveness of sorting nodes by ?, the experiment used to evaluate algorithm 3.3was repeated with node sorting enabled. The time needed to parse the 27 test utterances was 20.3seconds. This is a 17% speed improvement over the case where nodes were not sorted by ? and a64% speed improvement over the case where algorithm 3.3 was not used at all.3.2 Syntax-directed TranslationSyntax-directed translation (SDT) is a means of associating every string of one context-free language(CFL) with some string of a second CFL. In the parser, the �rst CFL is a representation of theuser's natural language and is the language speci�ed by the CFG which is input to the MDPalgorithm. The �rst CFL was called the input language in previous discussion. The second CFLis called the output language of the SDT. In the implementation, the second CFL is a descriptionof a class of Prolog predicates which represent meaning. Hence, the implementation uses SDT toassign a meaning to every well-formed utterance in the user's natural language.A SDT can be thought of as a rewriting of the parse tree (not the parsing graph) in which leafnodes are inserted and deleted and non-leaf nodes are reordered. This section will begin with aformal description of SDTs and then conclude with some examples.3.2.1 NotationA syntax-directed translation grammar (SDTG) is the pentuple (N ;�;�; P; S) where N is a set ofnonterminal symbols, � is a set of input terminal symbols, � is a set of output terminal symbols,P = fr1; r2; : : : ; rjP jg is a set of production rules, and S 2 N is a special nonterminal which is thestart symbol of the grammar. Each SDTG production rule, ri, is a quadruple (n; �; �; J) wheren 2 N is the left-hand side (LHS), � 2 (N [�)� is the right-hand side (RHS), � 2 (N [�)� is thesemantics of the production rule, and J is a one-to-one mapping from every nonterminal symbolin � to an instance of the same nonterminal in �. Because every nonterminal in � is mapped and

3.2. SYNTAX-DIRECTED TRANSLATION 31because the mapping is one-to-one, the number of occurrences of a nonterminal in � must be atleast as great as the number of occurrences of that same nonterminal in �. 1The syntax for describing the SDTG used in the implementation is explained in words and withexamples in the appendix section 6.1.2. The reader may wish to refer to this section as an aid tounderstanding the formal de�nition of a SDTG given above.3.2.2 A Theory of Syntax-directed TranslationsEvery SDTG contains two separate CFGs as subsets. The �rst CFG is called the input grammarand describes a context-free language (CFL) called the input language. The input grammar ofSDTG (N ;�;�; P; S) is (N ;�; Pin; S) where Pin = f(n; �) j (n; �; �; J) 2 Pg. Thus the inputgrammar of a SDT is the SDT without the output terminal set � and without the semantics � andmapping function J on every production rule.The second CFG of a SDT is the output grammar which speci�es the output language. Theoutput grammar is (N ;�; Pout; S) where Pout = f(n; �) j (n; �; �; J) 2 Pg. Thus the outputgrammar is just the input grammar with the input terminal set � replaced by the output terminalset � and with the RHS of each production rule � replaced by the semantics of each productionrule �.Every SDT describes a translation language which is a set of ordered pairs, called translations,and which is a subset of f(x; y) j x 2 L(Gin) and y 2 L(Gout)g, where L(Gin) and L(Gout) are theinput and output languages, respectively. Sometimes a translation is called a complete translationin order to distinguish it from a partial translation de�ned below. Not every translation (x; y)is in the translation language of an SDT, but only those translations which satisfy the mappingrequirements set forth by the J mappings in the productions of the SDT. The following paragraphswill describe in more detail which translations are and are not in the translation language of a SDT.A partial translation is a triple (x; y;M) where x 2 (N [�)� is a set of input terminals andnonterminals, y 2 (N [�)� is a set of output terminals and nonterminals, and M is a one-to-onemapping from nonterminal symbols in y into nonterminal symbols in x. In any partial translation,the �rst string x is called the input string and the second string y is called the output string. Letthe set of all partial translations for a grammar G be TG . De�ne the relation)G : TG ! TG ascarrying one partial translation of G into another according to the rules of G. (When it is clearfrom context which SDT is to be used, the G subscript on the) operator will be omitted.) Therelation A) B is read as \B is derived from A" or as \A generates B".The) relation is intended to mimic the action of the relation with the same name in the theoryof context-free languages. Thus, the relation(x1@x2; y1@y2;M))G (x1�x2; y1�y2; M̂)holds if and only if1. The mapping M speci�es that the @ in the output string of the left-hand partial translationcorresponds to the @ in the input string of that partial translation.2. SDT G contains a production rule of the form (@; �; �; J)3. The new mapping M̂ is consistent with both the old mapping M and the production rulemapping J .1[1] requires that the mapping from � to � be both one-to-one and unto. This thesis drops the onto requirementto obtain a slightly more useful and general result.

32 CHAPTER 3. PARSINGAs in traditional formal language theory,)� is the transitive and reexive closure of).Now de�ne two special mappings, MI and M;. The identity mapping MI is used in partialtranslations in which the order of nonterminals in the output string and in the input string is thesame. MI maps the k-th nonterminal in the output string into the k-th nonterminal of the inputstring. Hence, in the partial translation (S; S;MI), the nonterminal S in the output string mapsinto the nonterminal S of the input string. The null mapping M; is used in partial translationswhich contain no nonterminals, and hence require no mapping. It is convenient to consider acomplete translation as just a partial translation which contains no nonterminals and thereforeuses the mapping M;.With this notation, it is now possible to precisely de�ne a translation language. Let G be theSDT which is (N ;�;�; P; S). The translation language of G is the set of complete translationsf(x; y) j (S; S;MI))�G (x; y;M;). In words, the translation language ofG consists of all translationswhich can be derived from the start symbol S of G using any number of applications of productionrules from G. This is analogous to the way in which a context-free language is de�ned in terms ofa context-free grammar.3.2.3 A Pedagogical ExampleThe following example SDTG will translate a simple operator pre�x expression into its equivalentoperator post�x expression.S ! C S' S" : S' S" CS ! B S : S BS ! A : AA ! a : aA ! b : b...A ! z : zB ! - : -C ! + : +C ! � : �In this SDTG, the terminal alphabet for both input and output languages is the lower-case letterwhich represent values and the operator symbols +, -, and �. The nonterminals are spelled withupper-case letters and digits. The start symbol is S. The mapping from nonterminals in thesemantics to nonterminals in the RHS of each production rule is indicated by the use of apostrophesfollowing each nonterminal name. In the �rst production rule, for example, the �rst occurrenceof S in the RHS corresponds to the �rst occurrence of S in the semantics, since both of thesenonterminals are marked with a single apostrophe. In the second production rules, no apostrophemarkings are required since no nonterminal occurs more than once in the semantics.Now consider the following pre�x expression� + a - b cIn the more familiar in�x notation, this expression would be(a + -b) � cThe following table shows the sequence of partial translations which derives the pre�x expression.The rule of the SDT which produced each step in the sequence is shown to the right of the partialtranslation.

3.2. SYNTAX-DIRECTED TRANSLATION 33S : S Initial stateC S' S" : S' S" C S ! C S' S" : S' S" C� S' S" : S' S" � C ! � : �� S' A : S' A � S ! A : A� S' c : S' c � A ! c : c� C S' S" c : S' S" C c � S ! C S' S" : S' S" C� + S' S" c : S' S" + c � C ! + : +� + A S c : A S + c � S ! A : A� + a S c : a S + c � A ! a : a� + a B S c : a S B + c � S ! B S : S B� + a - S c : a S - + c � B ! - : -� + a - A c : a A - + c � S ! A : A� + a - b c : a b - + c � A ! b : bFrom this derivation one can see that the translation of the pre�x expression is the post�xexpression a b - + c �Within the parser, translation from a string of words into a Prolog predicate occurs in an analogousfashion, though the translation is somewhat more complex due to the added complexity of bothinput and output languages.3.2.4 A Practical ExampleThe following example derivation is presented in order to illustrate how SDT is used to convertEnglish phrases into Prolog predicates within the Circuit Fix-it Shoppe program. The input phrasefor this example is no wire.The correct translation of this input is the predicateassertion(false,state(exist,wire(*,*),present))There are 471 rules in the SDTG used for this example, but only 7 of these rules apply to the exampleinput phrase. Symbols in the grammar which begin with an upper-case letter are nonterminals andsymbols beginning with a lower-case letter are terminals. The nonterminal \StartState" is thegrammar's start symbol. The relavant rules of the SDTG are these:StartState! A' : A'A ! TIS NOT' WIRE' : assertion(NOT',state(exist,WIRE',present))TIS !WIRE ! DET WIRE2' : WIRE2'DET !NOT ! no : falseWIRE2 ! wire : wire(*,*)The sequence of partial translations is shown in the following table.

34 CHAPTER 3. PARSINGStartState : StartStateA : ATIS NOT' WIRE' : assertion(NOT',state(exist,WIRE',present))NOT' WIRE' : assertion(NOT',state(exist,WIRE',present))no WIRE' : assertion(false,state(exist,WIRE',present))no DET WIRE2' : assertion(false,state(exist,WIRE2',present))no WIRE2' : assertion(false,state(exist,WIRE2',present))no wire : assertion(false,state(exist,wire(*,*),present))3.2.5 Limitations of SDTThe mapping from input to output languages in a SDTG is not arbitrary. Corresponding stringsin the input and output languages of an SDTG must share a common set of nonterminals. Also,corresponding nonterminals in the input and output must have the same children, though thechildren may be ordered di�erently. These facts place a strong constraint on the kinds of translationsthat can be implemented with a SDTG. For instance, no one could reasonably argue for the existenceof a SDTG which carried English into Japanese as these languages lack the necessary a�nity ofstructure.Yet, this weakness of SDT should not disqualify it from use as the agent for assigning meaningto sentences in a natural language. It only means that the underlying structure of the meaningsand the original sentences be related. If one views the parser not as the ultimate translation engine,but rather as a device for bringing order and structure to a chaotic and error-�lled input, as thisthesis does, then the limitations of SDT do not present a serious hindrance.3.3 Minimum-distance Syntax-directedTranslationThis section will describe the algorithm forminimum-distance syntax-directed translation (MDSDT)which is, as its name implies, a combination of minimum-distance parsing and syntax-directedtranslation which were described in the preceding sections. The MDSDT algorithm is the algorithmactually used by the parser in the Circuit Fix-it Shoppe program mentioned in the introduction.The preceding discussions of MDP and SDT were only to motivate and help explain the materialpresented in this section.Notable features of the MDSDT algorithm include:1. It will accept a lattice as input.2. It provides the N-best outputs.3. It combines minimum-distance parsing and syntax-directed translation into a single algorithm.3.3.1 N-best or N-ties outputsThe original implementation of MDSDT provided true N-best output. The N translations withthe best scores (the smallest distances) became the output of the algorithm. However, after thisimplementation was used in a series of user experiments it was found that translations with adistance which is greater than the minimum distance could be ignored without reducing the overallaccuracy of the parsing system. This observation led to a second implementation which will output

3.3. MINIMUM-DISTANCE SYNTAX-DIRECTED TRANSLATION 35up to N translations which are all tied for minimum distance. If the �rst implementation is anN-best output, then call the second implementation an N-ties output.N-ties output has a speed advantage over N-best output. With N-ties the parsing graph canbe pruned more aggressively resulting in much less search to obtain the �nal answer. On the otherhand, N-best provides a more general output. Though N-best was not found to yield better parsingaccuracy in our experiments, future studies may �nd advantages to N-best output. For this reason,both N-best and N-ties algorithms will be presented.3.3.2 An Overview of the MDSDT AlgorithmMDSDT may be viewed as MDP with some extra baggage. A thorough understanding of MDP isessential, then, if MDSDT is to be understood. An understanding of SDT, on the other hand, isvery helpful but is not essential.MDSDT uses all the same data structures as MDP { an input graph containing T-arcs, R-arcs,and NT-arcs and a parsing graph with nodes corresponding to arcs in the input graph. MDSDTdata objects store more information, however. An MDP parsing graph node holds only the upperbound > and the lower bound ?. In addition to these, MDSDT stores N strings drawn from(N [�)�. These strings are called incomplete hypotheses if they contain nonterminals. If a stringcontains no nonterminal symbols, then it is called a complete hypothesis. A complete hypothesis isa string in the output language of the syntax-directed translation grammar (SDTG). The collectionof all hypotheses on a node is the hypothesis set. If the N-best outputs are desired, then there mustalso be stored a distance with each hypothesis in the hypothesis set, but for N-ties output, thedistance of each hypothesis is the same as > and need not be explicitly stored.Modi�cations to MDP needed to create MDSDT are of two types.1. MDP must be augmented to compute the hypotheses.2. The rules for determining > and ?must be modi�ed so that they will not shut o� computationat a given node before all N of the hypotheses have been computed.3.3.3 Operations on Hypothesis SetsIt is convenient to de�ne several operations on hypothesis sets since this will make the descriptionof the MDSDT algorithm more concise. The �rst operation will be >(H), read \top of H". Theresult of >(H) is a distance which will end up playing the same role as the variable > played inalgorithm 3.2. Intuitively, >(H) is the maximum distance which an hypothesis may have if it is tobe considered for inclusion in the hypothesis set H .There are two versions of the >(H) function; one for use with N-best MDSDT and the otherfor use with N-tied.Algorithm 3.4 A procedure for computing >(H) for N-best MDSDT.Input: 1. An hypothesis set H .Output:1. A distance, D.Method:

36 CHAPTER 3. PARSING1. If the number of elements in H is less than N then set D +1.2. If the number of elements in H equals N , then set D to the maximum distance overevery hypothesis in H .3. Return D.Algorithm 3.5 A procedure for computing >(H) for N-tied MDSDT.Input: 1. An hypothesis set H .Output:1. A distance, D.Method:1. If the number of elements in H is zero then set D +1.2. If the number of elements in H is greater than zero then set D to the distance of anyhypothesis in H .3. Return D.A second operation on hypothesis sets is hypothesis union, written H1[H2. This binary opera-tion takes all hypotheses of both operand hypothesis sets and combines them into a single hypothesisset which becomes the result. In the case of N-best computations, the resultant hypothesis set istruncated so that it holds no more than N hypotheses. When truncation occurs, hypotheses withthe least distance values are retained. For N-tied computations, not only is the set truncated to Nelements, but any hypothesis with a distance greater than the minimum distance is discarded aswell.The third and �nal operation which will be de�ned on hypothesis sets ismerge, writtenH1
@H2.The merge operator takes a particular nonterminal symbol in every hypothesis of H1, speci�callyby the subscript @, and replaces it with every hypothesis in H2.Algorithm 3.6 An algorithm for computing H1
@ H2.Input: 1. Two hypothesis sets H1 and H2.2. A designated nonterminal k in every hypothesis of H1Output:1. A new hypothesis set Hout.Method:1. Initialize Hout to the empty set.2. For every hypothesis in H1 with distance d1 and of the form �@� where @ is the desig-nated nonterminal, do the following:(a) For every hypothesis in H2 with distance d2 and of the form , do the following:

3.3. MINIMUM-DISTANCE SYNTAX-DIRECTED TRANSLATION 37i. Create a new hypothesis h = �� with a distance of d1 + d2.ii. Add h to Hout, pruning the set as appropriate depending upon whether N-bestor N-ties output is desired.3. Return Hout.The merge operator is both complex and intuitively obscure, so further discussion and anexample are perhaps warranted. Realize that an incomplete hypothesis is simply an incompletelyderived string in the output language of the STDG. In this paradigm, the merge operation onhypothesis sets is equivalent to the derivation operator (\)G") from context-free grammar theory.In other words, the merge operation replaces a single nonterminal with a sequence of terminals andother nonterminals which are derived by the original nonterminal. Of course there are complicationswith multiple strings and mapping functions and whatnot, but the reader should try to avoid beingdistracted by these details. Consider an example in which the terminals are lower-case letters andnonterminals are capitals. Suppose the left operand, H1, is the following:aBcbAceabccABeabAeeBThe left operand of
 is the counterpart to the left operand on the)G operator. The right operandof
 is the counterpart to the production rule used for the derivation step. Suppose that H2, theright operand, represents the nonterminal A and has the valueuvXwYzvXYYwwXUnder this circumstance, the hypothesis set for H1
A H2 would be (assuming N � 9 and thehypothesis set is untruncated) the following:aBcbuvXwYzceaBcbvXYceaBcbYwwXceabccuvXwYzBeabccvXYBeabccYwwXBeabuvXwYzeeBabuXYeeBabYwwXeeB3.3.4 The MDSDT AlgorithmAs with MDP, the MDSDT algorithm begins with the construction of a parsing graph from theinput graph. After the parsing graph is constructed (perhaps implicitly), algorithm 3.7 is calledto compute the hypothesis set of the root of the parsing graph. This hypothesis set becomes theoutput of the MDSDT algorithm.Algorithm 3.7 shows the details. The same basic algorithm works for both the N -best andN -tied outputs depending upon which version of the >(H) function is used.Algorithm 3.7 A recursive procedure for computing the N -best or N -tied hypotheses for a nodein a parsing graph.

38 CHAPTER 3. PARSINGInput: 1. A, a graph node whose distance is to be computed.2. `, the limiting value. The calling function cannot make use of any hypothesis whichhas a distance greater than this value, so computation can be abandoned if it becomesknown that no more hypotheses with distances less than or equal to this value will befound.Output:1. An hypothesis set, H associated with the node A.Method:1. If A is marked BUSY, then increment the blocking count on A and the global blockingcount. Return H without further processing.2. If A is marked COMPLETE, the return H .3. Estimate ? using algorithm 3.3.4. If ` < ?, then additional computation will be of no bene�t. Just return H withoutfurther computation.5. If >(H) < `, then set ` >(H).6. Mark A as BUSY and set its blocking count to zero.7. Record the global blocking count in a local variable gbc.8. If A is a minimization node, then for each child node of A do the following:(a) Call algorithm 3.7 recursively with the given child and with a limiting value of `.Let the resulting hypothesis set be Ĥ .(b) Set H H [Ĥ .9. Otherwise, if A is a summation node with children g and h, then do:(a) Call algorithm 3.7 recursively on g and with a limiting value of `. Let the resultinghypothesis set be x.(b) Call algorithm 3.7 recursively on h and with a limiting value of ` � B(x), whereB(x) is the minimum distance of every hypothesis in x. Let the resulting hypothesisbe y.(c) Every summation node is the child of an R-node. Suppose the R-node for thissummation node is associated with the R-arc (r; i; u; v). Then node h is also anR-node associated with (r; i� 1; u; w). The hypotheses in y should all be copies ofthe RHS of production rule r with some of the nonterminals expanded. Yet, thei-th symbol on the RHS of r should be a nonterminal which is still unexpanded inevery hypothesis of y. For the purposes of the
 operator in the following step, callthis nonterminal @.(d) Set H H [(y
@ x).10. Mark A as IDLE.11. Reduce the global blocking count by the blocking count of A.12. If >(H) � ` and the global blocking count equals gbc then set ? >(H) and mark Aas COMPLETE.13. Return H .

3.4. THE USE OF DIALOG EXPECTATION 393.3.5 Complexity of MDSDTThe worst case running time for the MDSDT algorithm is computed in the same way that theworst case running time was computed for MDP, but with an extra term added to disclose thecomputation needed for processing the hypothesis sets. The hypothesis union operation at step 8brequires time O(N logN) assuming that the maximum number of hypotheses is N . The hypothesismerge in step 9d requires time O(N2 logN). Combining these factors with the previously computedworst case running time for MDP yields O(V 3k2N logN +V 3kN2 logN) as the worst case runningtime for MDSDT.3.4 The Use of Dialog ExpectationThe MDSDT algorithm described above is used by the parser to compute a set of up toN hypothesesof the meaning of the user's input. This section will describe how dialog expectation is used toselect one of these N hypotheses to be the �nal output of the parser.3.4.1 Computation of Dialog ExpectationDialog expectation is a collection of hypotheses which describe what the dialog system anticipatesthe user to say next. Associated with each dialog expectation hypothesis is a distance whichindicates how strongly that hypothesis is anticipated. A small distance marks a highly anticipatedhypothesis, and a large distance is used to label an hypothesis which is considered to be an unlikelyinput.Dialog expectation is computed by the dialog controller. See �gure 1.1 on page 2. Since thedialog controller is outside of the dashed box in this �gure, it does not come under the purview ofthis thesis and its operation will not be described in detail. Just as the word lattice generated bythe speech recognizer is considered to be an input to the parser, and is accepted without question,so too the dialog expectation is just another input to the parser over which the parser has nocontrol.In all implementations of the parser described in this thesis, the dialog expectation was gen-erated by the dialog controller described in [35]. This does not preclude the possibility of usinga completely di�erent algorithm for generating dialog expectation. Nevertheless, for the sake ofcompleteness the algorithm used to compute the dialog expectation in the implementations will bebriey summarized.The state of a dialog is viewed as a sequence of nested contexts, each more speci�c and focusedthan its predecessors. Meanings which relate to the innermost context and can be understood in thatcontext are made into dialog expectation hypotheses with small distance values. Meanings whichcan only be interpreted in the �rst enclosing context generate dialog expectation hypotheses withlarge distance values. This progression continues, so that meanings which can only be understoodin more remote contexts are used to generate dialog expectations with increasingly larger distances.3.4.2 Wildcards Within Dialog Expectation HypothesesWithin any given context, there are thousands of possible expectations. So that the dialog controllerwill not have to list this many hypotheses when generating the dialog expectation, wildcards areused to represent an unspeci�ed subcomponent of the hypothesis. As an example, suppose the SLSsays to the user \What is the voltage at connector 46?" Without the use of a wildcard, the dialogexpectation following this utterance might be:

40 CHAPTER 3. PARSINGVoltageIs(00.0)VoltageIs(00.1)VoltageIs(00.2)...VoltageIs(99.9)It makes much more sense in this example to express the dialog expectation as a single hypothesiswith a wildcard:VoltageIs(*)This is perhaps an extreme example, though not an uncommon one since the SLS frequently needsto receive a numeric input. But, wildcards are used to hold a place for more than just numbers. Forinstance, the entire class of meanings equivalent to the question \Where is the object?" is usuallyencoded as a single expectation with a wildcard holding the place for the unspeci�ed subject of thesentence.In the implementations, the dialog controller was coded in Prolog, and so wildcards were easilyand naturally encoded as uninstantiated variables.3.4.3 Wildcards Within MDSDT HypothesesWildcards may also appear in the hypotheses which are output by the MDSDT algorithm, thoughthe MDSDT algorithm itself does not understand the signi�cance of wildcards and treats them nodi�erently than any other symbol in the output terminal alphabet �. The grammar used by theMDSDT algorithm can be constructed so that ellipsis and anaphora in the user's input utteranceare represented in the hypotheses by wildcards. For example, the input phrase \The switch is inthe up position" may be translated intoassertion(true,position(switch,up))whereas the phrase \It is in the up position" or even the elliptical utterance \in the up position"would be translated asassertion(true,position(*,up))with the wildcard symbol *" used to signify that the subject of the sentence was left unspeci�ed.3.4.4 Matching MDSDT and Dialog Expectation HypothesesThe output of the parser is obtained by matching an MDSDT hypothesis with a dialog expectationhypothesis. The matching is performed by expanding wildcards in the MDSDT hypothesis and thedialog expectation hypothesis or both so as to make the two hypotheses identical. As an example,suppose the dialog expectation contains an hypothesis of the formassertion(true,position(switch,*))which means \the switch is in the X position" where X is unknown. Such an expectation mightresult if the SLS had just asked the user \What is the position of the switch?" Let the output ofthe MDSDT algorithm in this example beassertion(true,position(*,up))

3.4. THE USE OF DIALOG EXPECTATION 41which is a rendering of \it is up". The hypothesis which results from matching isassertion(true,position(switch,up))or \the switch is in the up position."The process of matching MDSDT and dialog expectation hypotheses is very similar to uni�cationin logic [30, pp. 142{143] and in the Prolog programming language. (In fact, Prolog uni�cation wasused to perform matching in the �rst implementation.) If each wildcard is considered a singletonvariable then the processing of matching MDSDT and dialog expectation hypotheses is equivalentto �nding the most general uni�cation of those hypotheses.3.4.5 Selecting the Best HypothesisWhen an hypothesis from the MDSDT algorithm is matched against a dialog expectation, the newhypothesis which results from the matching is assigned a distance which is based upon the distancesof the hypotheses input to the matching. Let the distance of the MDSDT hypothesis be U , and letthe dialog expectation distance be E. The distance on the hypothesis which results from matchingis C C = f(U;E) (3:3)where function f is called the expectation function. It is customary to refer to U as the utterancecost, to E as the expectation cost, and to C as the total cost of an hypothesis. The �nal outputof the parser is the hypothesis which has been successfully matched with a dialog expectation andwhich has the smallest total cost, C. If two or more hypotheses have the same C, one is selected atrandom. If no hypotheses can be successfully matched with dialog expectation then the parse fails.3.4.6 The Expectation FunctionIn the initial implementation of the parser, the expectation function was computed as a linearcombination of utterance cost and expectation cost.f1(U;E) = � � U + (1� �) �E (3:4)The parameter � in equation 3.4 varies between 0 and 1 to control the relative importance ofutterance and expectation cost. When � is near 1, utterance cost is the most important factorin choosing the parser's �nal output, but when � is near 0 the expectation cost predominates.The actual value chosen for � will of course also depend on the exact way in which distances arecomputed and on the relative scales of utterance and expectation costs.Experimental data from the �rst implementation of the parser (see section 3.5) indicated thatthe best results were obtained when � was close to 1. Due to this observation, the second imple-mentation of the parser implemented a new cost function.f2(U;E) = (E U = Umin+1 otherwise (3:5)In equation 3.5, the factor Umin is minimum distance of any hypothesis output by the MDSDTalgorithm. The e�ect of using this new expectation function was that expectation cost is nowignored expect to break ties between two hypotheses with the same utterance cost. (Two otherexpectation functions similar to equation 3.5 are described in section 3.5.5.)Coincident with the incorporation of equation 3.5 as the expectation function, the MDSDTalgorithm was converted from the N-best to the N-ties method of recording translations. The

42 CHAPTER 3. PARSINGN-ties method is faster, due to the greater opportunity for tree pruning, and with expectationfunction 3.5 there is no reason to remember hypotheses with distances greater than the minimumdistance because such hypotheses will never become the �nal output of the parser. (This is notstrictly true. A non-minimal hypothesis might become the parser's output if none of the hypotheseswith minimum distance match any dialog expectation hypothesis. In practice, however, this neverhappened.)3.5 Experimental Evaluation of the ParserThe �rst implementation of the parser was used in a series of experiments in which users with nospecial knowledge of computers conversed with the SLS to obtain help in repairing an electroniccircuit. Data obtained from these experiments indicates that the the parser performed well. Thissection will briey overview the experiments, describe how the data was analyzed, and summarizethe results of the analysis.3.5.1 Experimental DesignThe SLS used in the experiments consisted of a commercial speech recognizer, the parser designed inthis thesis, a natural language dialog system developed by Ronnie Smith [35] [36], and a commercialspeech synthesizer. The speech recognizer had a vocabulary of 125 words and was operated withoutthe use of a grammar for limiting search. Connected speech was used. The speech recognizer didnot output a lattice of word possibilities, as one would hope, but only the single best guess of thewords spoken. Additional word possibilities were added to this best guess outside of the speechrecognizer by a preprocessor to the parser. The additional words added to the input graph werebased on empirical observations of the kinds of recognition errors that the speech recognizer wasprone to make.3.5.2 Data CollectionDuring the experiments, the users spoke 2804 utterances to the SLS. Information from these ut-terances was collected and converted to a machine-readable format. The following information wascollected:� The sequence of words actually spoken by the user. These were manually entered by theexperimenters based on the audio recordings of the experiment.� The sequence of words recognized by the speech recognizer. This information was recordedautomatically during the experiments.� The set of hypotheses which resulted from matching the best 10 hypotheses computed by theMDSDT algorithm with dialog expectation hypotheses. An utterance cost and expectationcost for each hypothesis was also recorded.� The �nal output of the parser.� The text spoken by the dialog controller immediately prior to the user's utterance, andnotes concerning the user's utterance which were entered by the person who transcribed theutterance from the audio tapes. This information was used to assist in manually judging thecorrectness of each parse.

3.5. EXPERIMENTAL EVALUATION OF THE PARSER 43After the above information was collected and audited to remove errors, the following additionalfeatures of each utterance were added manually.� A notation was made on each record to indicate whether or not the output of the parser wasthe meaning intended by the user.� A second notation was made on each record to indicate whether or not the parser would havefound the user's intended meaning if the speech recognizer had made no errors.The judgment of whether or not the parser found the user's intended meaning is often verysubjective. For example, suppose the user says \the LED is alternately ashing a one and aseven", but due to misrecognition of one or more words of the utterance, the parser determines themeaning to be the equivalent of \the LED is displaying a one and a seven and the one is ashing".In this example (which occurred in the actual data), the information that the seven is ashing hasbeen lost. Nevertheless, the parser clearly had the right idea about what the user meant, eventhough it was wrong in one minor detail. In a case such as this, does one judge the parse to becorrect or incorrect? Uncertainty about the parser's correctness can arise due to reasons otherthan misrecognitions. What does one do, for example, if the user's intended meaning is not cleareven to another person? Should the parser be faulted for failing where even a human expert ispuzzled? Suppose, as another example, the user speaks a phrase whose meaning cannot possiblybe expressed in the mathematical language of the dialog controller. Any attempt to parse such anutterance is doomed to fail even before it begins. Should the parser be faulted for failing to performthe impossible?The following decision criteria were used to judge the correctness of a parsed utterance:1. If the parser �nds exactly the intended meaning, mark the parse as \correct".2. If the meaning found by the parser matches most of the meaning of the spoken utterance, andnothing in the parser's result contradicts the user's intended meaning, then mark the parse\correct".3. If the parser's output contains any information which contradicts information which the userintended to communicate, mark the parse as \wrong".4. If the user's meaning cannot be represented in the dialog controller's language, then markthe parse \wrong".5. If the parser's result and the spoken utterance do not contradict, but less than half of themeaning of the spoken utterance is preserved in the parser's output, then mark the parse as\wrong".6. If the user's meaning is ambiguous, then mark the parse \correct" if the meaning found bythe parser matches any possible interpretation of what the user said.Data from the experiments was analyzed independently by the author of this thesis and byRonnie Smith, the author of [35]. These analyses occurred without prior consultation as to how theanalyses should be conducted or as to what methods of analyses should be used. The results of thetwo analyses are di�erent, but only slightly so. The results agree within 1%. The data analysis bySmith can therefore be viewed as an independent con�rmation of the analysis undertaken in thisthesis.

44 CHAPTER 3. PARSING89 88 88 79 75 72 68 65 63Table 3.2: PWC85 84 80 74 67 63 54 54 51Table 3.3: Modi�ed PWC3.5.3 Performance of the Speech RecognizerNeither the implementation nor the performance of the speech recognizer is properly a part ofthis thesis. Nevertheless, it seems good to report how well the speech recognizer was able totranscribe the users' speech because the accuracy of the speech recognizer plays an important rolein determining the accuracy of the parser. This information may also play a role in estimating howwell the parser presented in this thesis will perform using a di�erent speech recognizer front end.The �rst measure of the speech recognizers performance is called the percent of words correct,or \PWC". The PWC is the number of words spoken by the user which were correctly recognizedby the speech recognizer divided by the total number of correct words and multiplied by 100.PWC = 100 � number of correctly recognized wordsnumber of words actually spoken (3:6)When a spoken word is misrecognized, or is not recognized at all, the PWC is reduced. When extrawords are inserted by the speech recognizer, on the other hand, the PWC remains unchanged.The PWC for the commercial speech recognizer used in the experiments described above isreported in table 3.2 below. Each number in the normal font is the PWC for one of the eightexperimental subjects. The large bold-face number is the PWC for all subjects combined. Thismanner of presentation is intended to give the reader an intuitive feel for how much the PWCvaried among the experimental subjects. A similar presentation format will be used for statisticsthroughout this section.A second measure of the speech recognizer's accuracy will be called modi�ed PWC. As withordinary PWC, modi�ed PWC is computed by taking the number of words correctly recognized,multiplying by 100, and then dividing. The di�erence is that in ordinary PWC, the divisor is thenumber of words actually spoken, but in modi�ed PWC the divisor is the number of words outputby the speech recognizer. We have:Modi�ed PWC = 100 � number of correctly recognized wordstotal number of words recognized (3:7)With modi�ed PWC, insertion errors do make a di�erence, since they increase the divisor and thuslower the score. Another view of modi�ed PWC is that it is the percentage of words seen by theparser which were actually spoken by the user. The modi�ed PWC for the experiments is shownin table 3.3.A third measure of speech recognition accuracy is called the error rate. The error rate is thenumber of errors in an utterance divided by the correct length of the utterance, and multiplied by100. Error Rate = 100 � number of errorsnumber of spoken words (3:8)

3.5. EXPERIMENTAL EVALUATION OF THE PARSER 4571 67 57 43 41 35 23 17 16Table 3.4: Error Rate3.3 2.8 1.8 1.6 1.3 1.0 0.9 0.9 0.7Table 3.5: Percentage of utterances containing one or more words not in the speech recognizer'svocabularyThe number of errors in an utterance is the minimum number of insertions, deletions, and substi-tutions needed to transform what was spoken into what was output from the speech recognizer.2The error rate for the speech recognizer in the experiments is shown in table 3.4.The speech recognizer could understand a vocabulary of only 125 words. Occasionally, the userwill speak some word which is not in this vocabulary. The percent of utterances which contain oneor more words which are not in the 125-word vocabulary is shown in table 3.5.The fact that very few utterances contained any words which were not in the speech recog-nizer's vocabulary suggests that the limited vocabulary was not a serious detriment to the overallperformance of the system.The percentage of utterances which were recognized without error is reported by table 3.6.This value is a good estimate of an upper bound on the performance of a parser which cannothandle recognition errors. Trivial utterances (that is, utterances which consist of only a singleword { typically \yes" or \no") and utterances which contain words not in the speech recognizer'svocabulary were not considered when computing numbers reported in table 3.6.Comparison to other speech recognizersTable 3.7 below shows error rates for several research speech recognition systems. The perplexityshown in this table is a measure of how many words the speech recognizer must choose from atany given moment. A larger perplexity tends to increase the error rate, since having more words tochoose from increases the chance of choosing the wrong word. For purposes of comparison, table 3.7also shows the error rate measured on the Verbex 6000 during the experiments, and the error rateof a human listener from an experiment described in the following subsection.Comparison to humansThe following simple experiment was conducted in an e�ort to measure the speech recognitionperformance of humans under conditions similar to those experienced by mechanical speech recog-2An e�cient algorithm for computing the minimum number of errors is described in [37].58 47 40 23 16 13 10 9 3Table 3.6: Percentage of utterances which were recognized without error

46 CHAPTER 3. PARSINGSystem Name Perplexity Error rateARM [33] 497 13%BBN SLS [7] 700 13%SPHINX [25] 997 29%SPICOS [32] 124 9%SUMMIT [47] 1000 56%Verbex 6000 124 41%Human 122 3%Table 3.7: Error rates of several speech recognizers97 91 90 88 83 83 80 73 64Table 3.8: Percentage of all inputs which were correctly parsednizers. A list of 100 random utterances was read by the experimenter to a volunteer subject overa telephone. The listener typed what he heard into a computer for later analysis. Each utterancehad a length which was uniformly distributed between 2 and 7 words. The words were selected atrandom3 from a 122-word vocabulary which was essentially the same as the 125 word vocabularyused by the speech recognizer. The utterances were randomized in order to prevent the hearer'sexpert knowledge of English grammar from assisting in his word recognition. The telephone wasused for two reasons. First, the telephone blocked all non-verbal communication, such as facialexpressions or hand gestures, which might have subconsciously aided in word recognition. Second,the telephone limited the speech signal bandwidth and thus prevented the hearer from using soundinformation which is not also normally available to mechanical speech recognizers. The style ofspeaking used in this experiment was connected speech.Out of 462 words spoken in this experiment, there were 13 errors { 11 substitutions and 2deletions. The PWC was 97.2, and the error rate was 2.8 percent.3.5.4 Performance of the ParserThe percentage of all utterances for which the parser was able to �nd the correct meaning is shownin table 3.8.Slightly more than half (52%) of the utterances are trivial one-word responses to questionsfrom the computer. If these trivial utterances are removed from consideration, the the percentageof utterances for which the parser found the correct meaning is reduced to the values shown intable 3.9.Most of the parsing errors were a result of speech recognition errors. If the text of what wasactually spoken were input to the parser instead of the text which the speech recognizer produced,the percentage of all utterances which would have been parsed correctly increases to the valuesshown in table 3.10. The values in this table do not change signi�cantly if only non-trivial utterancesare considered.3The drand48 function in the C library on UNIX was used to select both the length of each utterance and thewords contained within the utterance.

3.5. EXPERIMENTAL EVALUATION OF THE PARSER 4799 85 83 78 69 65 63 56 46Table 3.9: Percentage of nontrivial utterances which were correctly parsed100 99 99 98 98 98 97 96 89Table 3.10: Percentage of all utterances that would have been correctly parsed assuming no speechrecognition errorsIt is interesting to consider what percentage of inputs to the system were ungrammatical.4 In[9], Eastman and McLean report that about a third of the inputs to a natural language databasequery system were not syntactically well formed. On the other hand, Fineman argues in [10] thatungrammatical input is not normally a problem since only about 2% of natural language inputsare ungrammatical. Our experimental data supports the �ndings of Eastman and McLean. Evenwithout speech recognition errors, the percentage of non-trivial utterances that were ungrammaticalwas more than a third. Table 3.11 shows the speci�c values. When speech recognition errors areconsidered, the percentage of ungrammatical inputs was much larger, as is shown in table 3.12 Thecounterpart to table 3.11 for all utterances, both trivial and non-trivial, is shown in table 3.13.This is the percentage of all utterances which would have been ungrammatical even if the speechrecognizer had made no errors. Finally, table 3.14 shows the percentage of all utterances, bothtrivial and non-trivial, which are grammatically ill-formed after speech recognition.In interpreting the previous results, the reader should remember that the the translation gram-mar for this SLS was developed with full knowledge that the parser would be able to interpretungrammatical inputs, and so little e�ort was made to give the translation grammar complete lan-guage coverage. Nevertheless, the system would probably have never achieved a parsing accuracyas high as it did had it not been able to guess the meaning of highly ungrammatical inputs.Figures 3.7, 3.8, and 3.9 are diagrams of the relationship between the number of non-trivialutterances which were parsed correctly and measures of the speech recognizer's accuracy. Eachpoint in these diagrams represents the results from a single experimental subject. The ordinate ofeach point is the percent of correct parses and the abscissa is the speech recognizer accuracy. Letthe variable C represent the percent of non-trivial utterances which were correctly parsed, let P bethe PWC, M is the modi�ed PWC, and let R be the speech recognizer's error rate. Then linearequations which predict the value of C with minimum squared error, given either P , M , or R arerespectively equations 3.9, 3.10, and 3.11 below.C = 1:15983P � 12:5233 (3:9)4An ungrammatical input is any input which is not in the input language of the translation grammar.49 46 43 41 37 35 28 28 25Table 3.11: Percentage of non-trivial utterances which would have been ungrammatical even with-out speech recognition errors

48 CHAPTER 3. PARSING52 51 50 48 46 43 38 32 29Table 3.12: Percentage of non-trivial utterances which were ungrammatical when speech recognitionerrors are considered 26 25 24 24 21 20 17 14 12Table 3.13: Percentage of all utterances which would have been ungrammatical even without speechrecognition errors 87 70 56 53 52 43 41 40 23Table 3.14: Percentage of all utterances which were ungrammatical when speech recognition errorsare considered s ss s ss ss 100500050
100

PWCPercentCorrectParsesFigure 3.7: The parser accuracy on non-trivial utterances plotted against the percent of correctlyrecognized words for each experimental subject.

3.5. EXPERIMENTAL EVALUATION OF THE PARSER 49sss s ss ss 100500050
100

Modi�ed PWCPercentCorrectParsesFigure 3.8: The parser accuracy on non-trivial utterances plotted against the modi�ed PWC foreach experimental subject.ss sss sss 100500050
100

Error RatePercentCorrectParsesFigure 3.9: The parser accuracy on non-trivial utterances plotted against the speech recognizererror rate for each experimental subject.

50 CHAPTER 3. PARSINGs ss sss ss 100500050
100
Percent of ungrammatical spoken utterancesPercentCorrectParsesFigure 3.10: The parser accuracy on non-trivial utterances plotted against the percentage of extra-grammatical spoken utterances for each experimental subject.C = 0:880417M + 13:2553 (3:10)C = 97:2912� 0:601699R (3:11)Figure 3.10 shows the percentage of non-trivial utterances which were correctly parsed plottedagainst the percentage of non-trivial spoken utterances which were not in the input language ofthe translation grammar. Notice that the two subjects with the lowest rate of extragrammaticalutterances have respectively the worst and the best parser performance. This suggests that theaccuracy of the parser and the percentage of spoken utterances which are extragrammatical arenot linearly related.3.5.5 Optimal expectation functionsThe experiments were conducted using the expectation function 3.4 with � = 0:98. This choice of� was based largely on intuition and preconceived notions of what ought to work. But now, thedata from the experiments allows di�erent values of �, or even di�erent expectation functions, tobe tested experimentally.Figure 3.11 shows the percentage of utterances which would have been parsed correctly as afunction of the parameter �. When � is exactly 1:0, the expectation is e�ectively ignored and the�nal parser output is determined by selecting an MDSDT hypothesis with the minimum utterancecost. This strategy gives an overall parser accuracy of only 69%. For all other values of � greaterthan 0:5, however, the parser produces the much better accuracy of 83%. Furthermore, the accuracyseems not to be inuenced at all by which value between 0:5 and 1:0 is chosen for �.Figure 3.12 shows what happens when equation 3.12 is used as the expectation function andthe parameter is varied between 0:0 and 0:97.f3(U;E) = (E U � Umin + � Umax+1 otherwise (3:12)In this formula, Umin is the smallest distance associated with hypotheses output by MDSDT usingthe N-best approach. Umax is the greatest possible distance which the algorithm can produce { thatis, the distance between two strings which have no words in common. The a�ect of expectation

3.5. EXPERIMENTAL EVALUATION OF THE PARSER 51sss0 1.00.5050100
�PercentCorrectParsesFigure 3.11: The parser's accuracy as a function of the � parameter to the expectation function ofequation 3.4

sss0 1.00.5050100
PercentCorrectParsesFigure 3.12: The parser's accuracy as a function of the parameter to the expectation function ofequation 3.12

52 CHAPTER 3. PARSINGss 1051050
100

�PercentCorrectParsesFigure 3.13: The parser's accuracy as a function of the � parameter to the expectation function ofequation 3.13function 3.12 is to create a band of utterance costs around the minimum utterance cost withinwhich all utterance costs are considered to be the same. An hypothesis is selected from hypothesesfalling within this band based on their expectation cost. As can be seen in the �gure, the peakparser accuracy of 83% is obtained when is set to exactly 0:0. Even values for as small as 0:005do not perform as well as when is exactly 0:0. Again it appears that expectation is only helpfulin deciding between two hypotheses when both have exactly the same utterance cost.The expectation function shown in equation 3.13 was also tested.f4(U;E) = (E U � Umin � �+1 otherwise (3:13)This expectation function is similar to 3.12 in that a band of allowed utterance costs are generatedand expectation is used to select an hypothesis from within that band. In function 3.13, how-ever, the band is multiplicative instead of additive. Figure 3.13 shows the parser's accuracy whenequation 3.13 is used and the parameter � is varied between 1:0 and 8:8. The parser accuracy ismaximized at 83% correct when � is set to exactly 1:0. Even a � of 1:01 did not do as well. Thisis consistent with previous observations that expectation is only helpful when it is called upon tobreak an exact tie in utterance cost.

Chapter 4Grammar DevelopmentThe need for a software-aided grammar development system (SAGDS) and an outline of whatsuch a system might look like were discussed in section 2.2. The SAGDS which is proposed inthat section implements many operations on grammars and their languages, all of which play animportant role in the usefulness and functionality of the overall system. When viewed in isolation,however, many of these operations are simple tasks { tasks which are trivial to implement andwhich are not of theoretical interest in themselves. But three of the operations in the proposedSAGDS are interesting in their own right. The purpose of this chapter is to detail two of these threeoperations. (The third operations is the MDSDT algorithm discussed in the previous chapter.)The chapter begins with a discussion of the problem of listing and counting the elements of acontext-free language. It is shown that this problem is NP-hard in general, but that a solutionexists which seems to work well in most practical cases. The second problem addressed by thischapter is the task of �nding the subset of production rules in a context-free grammar that can beused to recognize any element of a given regular language.The material presented in this chapter is abstract. For a description of actual implementationsof the algorithms herein described, the reader is referred to sections 6.2.2 and 6.2.3 of the appendix.4.1 Listing the Elements of a LanguageSuppose one is given a CFG which is the input grammar of a SDT, and is asked the followingquestions:� Does the grammar give reasonable coverage of a designated subset of the natural language?� Does the grammar recognize any ungrammatical sentences?� What kinds of input phrases will this grammar recognize?� How many di�erent input phrases (shorter than a certain number of words) will the grammarrecognize?If the CFG is the output grammar of a SDT, then similar questions might be asked:� Does the grammar generate any logical forms that the dialog controller is unable to process?� What are all logical forms which the grammar will generate? (The person who develops thedialog controller may want this information for testing purposes.)� How many logical forms will the grammar generate?53

54 CHAPTER 4. GRAMMAR DEVELOPMENTThese and similar questions can be answered by a program which lists or counts the strings in aCFL. This section will consider the problems of counting and listing the elements of a CFL.The computational complexity of the listing problem is considered �rst. For most CFGs, thesize of the output for this problem is exponential in the size of the input, so if one measures thedi�culty of the problem strictly in terms of its input size then the problem will almost alwaysrequire exponential time. A more reasonable approach might be to measure the di�culty in termsof the sum of the sizes of both input and output. But even with this approach, some special casesof the problem are NP-hard and thus probably require time which is exponential in the size of bothinput and output.Since one cannot hope to (always) generate all strings in a CFL in a reasonable time, it isreasonable to ask if some of the strings can be quickly produced. Subsection 4.1.2 describes analgorithm which prints all elements of a CFL in order of length and which has proven to be e�cientin practice. With this algorithm, the user could begin listing the CFL, but can interrupt the processafter enough has been seen, or the user's patience has expired.Listing the elements of a CFL is NP-hard, but this does not rule out the possibility of an e�cientalgorithm for counting these elements. Unfortunately, as subsection 4.1.3 will demonstrate, thecounting problem is also NP-hard and is therefore no easier (asymptotically speaking) than actuallylisting the elements of the language.4.1.1 Listing elements of a CFL is NP-hardLet the problem be cast in terms of formal language recognition. De�ne the language CFL-LISTas follows: CFL-LIST = f(G;E; u; v) j G is a CFG and E is the set of allelements of L(G) containing at least u but nomore than v symbolsgIt will be shown below that the language CFL-LIST is NP-hard. To say that CFL-LIST is NP-hardmeans that �nding a deterministic Turing machine which will determine whether or not its inputis a string in the language CFL-LIST number of steps which is a polynomial in the number of bitsneeded to encode the input is at least as hard as proving that P=NP.It is useful to �rst prove an intermediate result { that a related problem called Members ofLength N (MLN for short) is NP-hard. It is not actually di�cult to directly prove CFL-LIST to beNP-hard without the use of the intermediate problem MLN, but MLN �nds use in another problemlater in this chapter, so it seems expedient to de�ne and prove it here. MLN is de�ned thus:MLN = f(G;N) j G is a CFG and L(G) contains atat least one string of length NgTheorem 4.1 MLN is NP-hard.Proof: The problem SUBSET-SUM has been proven to be NP-complete in [21]. It will beshown that SUBSET-SUM can be reduced to MLN in polynomial time. SUBSET-SUM asks ifthere is a subset of a given set of integers which sums to a given integer. Formally:SUBSET-SUM = f(A;N) j A = fa1; a2; : : : ; apg and there existsB � A such that XB = Ng

4.1. LISTING THE ELEMENTS OF A LANGUAGE 55The reduction begins by constructing a grammar G in the MLN problem based on the set A ofSUBSET-SUM. The grammar will be constructed so that the language generated will be stringsof all \1"s and the length of each string in the language will be the sum of the elements in somesubset of A. The start-state of the grammar will be S and will generate a string of nonterminals,one nonterminal for each element in A.S ! A1A2A3 : : :ApAlso de�ne a set of k nonterminals, each of which produce a string of 2k \1"s. The integer k willbe the oor of the base 2 logarithm of the largest element in the set A.D1 ! 1D2 ! 11D3 ! D2D2D4 ! D3D3...Dk ! Dk�1Dk�1Finally, each of the nonterminals A1 through Ap will produce either the empty string, �, or asequence of 1s equal in length to the value of the corresponding element of the set A. This sequenceis not generated directly but is produced by an appropriate combination of the nonterminals D1through Dk. As an example, suppose a1 = 23. This results in :A1 ! � j D5D3D2D1Using this construction, a given A may be easily converted to a corresponding G in linear time. Itis also apparent that G will generate all and only strings of length equal to the sum of elementsin subsets of A and that the size of the encoding of G is linearly related to the encoded size ofA. Hence, to determine if any pair (A;N) is an element of SUBSET-SUM, one need only convertA into G and ask if the pair (G;N) is an element of MLN, for the language L(G) will contain anelement of length N if and only if there is a subset of A which sums to N . This completes thereduction of SUBSET-SUM to MLN, and thus the proof that MLN is NP-hard.The fact that MLN is NP-hard will now be used in a proof that CFL-LIST is NP-hard.Theorem 4.2 CFL-LIST is NP-hard.Proof: The opposite problem of MLN is co-MLN. More speci�callyco-MLN = f(G;N) j L(G) is a CFG containing noelements of length NgBecause MLN is NP-hard so is co-MLN. But, an instance (G;N) of co-MLN is exactly the same asthe instance (G; ;; N;N) of CFL-LIST where ; means the empty set. Hence CFL-LIST must alsobe NP-hard.4.1.2 An Algorithm for Listing Elements of a CFLThe above proof that CFL-LIST is NP-hard is weak on two accounts:

56 CHAPTER 4. GRAMMAR DEVELOPMENT1. The proof relies on the NP-completeness of SUBSET-SUM, but SUBSET-SUM is only weaklyNP-complete. Unless some of the element sizes of SUBSET-SUM are exponentially large,there exists an e�cient dynamic programming solution to the problem. Translating thisweakness to CFL-LIST means that the value of v must become large before the problembecomes unmanageable.2. CFL-LIST has only been proven to be NP-hard for the special case where u = v. In practice,this is almost never the case. One usually sets u equal to 1 and v equal to some value in therange of 10 to 20.For these reasons, it seems likely that one should be able to �nd an algorithm for solving CFL-LIST which, though infeasible to compute for certain special cases, is adequately e�cient for manypractical instances of the problem.The following algorithm is able to compute all strings in a context-free language, and experienceshows that it usually does so with acceptable e�ciency. Furthermore, the shortest strings arecomputed �rst. With this strategy, the user is able to begin listing the strings of the language, butlater to stop the listing if it appears that computing the complete list will take too long.Algorithm 4.1 A procedure for computing the elements of a CFL beginning with the shortest.Input: 1. G, a context-free grammar.2. u and v, the length of the shortest and longest elements of L(G) which are to be printed.Output:1. All strings in L(G) which have at least u symbols but no more than v symbols. Theshortest strings are printed �rst.Method:1. Let the nonterminal symbols in G be @1;@2; : : : ;@p. The start symbol of G is @1. Let Li;jbe a set of terminal strings each containing exactly j symbols and which are generatedfrom nonterminal symbol @i. Mark Li;j as UNCOMPUTED for all 1 � i � p and1 � j � v.2. For every i between u and v do the following:(a) If L1;i is marked UNCOMPUTED then use algorithm 4.2 to compute it.(b) Print every element of L1;i. (All elements of L1;i are, of course, the same length,so the requirements of the algorithm are satis�ed no matter what order they areprinted. Yet, the algorithm will give a more pleasing output if the elements areprinted in, say, alphabetical order.)Algorithm 4.2 A procedure which computes all terminal strings of a given length which can bederived from a given nonterminal.Input: 1. G, a context-free grammar.2. @i, a nonterminal in G.

4.1. LISTING THE ELEMENTS OF A LANGUAGE 573. n, the length of every string in the outputOutput:1. Li;n, a list of every phrase which can be derived from @i in G and which contains exactlyn symbols.Method:1. Mark Li;n as COMPUTED. This will block an in�nite recursion which occurs if @i)� @iis a valid derivation in G.2. Allocate a phrase template g which has slots to hold n symbols.3. For every production rule r in G which has @i as its LHS, call algorithm 4.3 withLi;n = Li;n, r = r, x = 0, w = 0, and g = g.4. Return Li;n.Algorithm 4.3 A procedure which computes a single terminal string of a given length which canbe derived from a given nonterminal.Input: 1. Li;n, a list of phrases which is currently being computed.2. r, a production rule in G.3. x, the number of RHS symbols in r which have already been matched.4. w, the number of symbols which have already been inserted into g.5. g, a template for a new phrase.Output:1. Additional phrases are (usually) added to Li;n by this procedure.Method:1. If x is less than the number of symbols on the RHS of r and the (x+ 1)-th RHS symbolof r is a terminal and w is less than n do this:(a) Put the (x+ 1)-th RHS symbol of r into the w-th symbol slot in g.(b) Increment x.(c) Increment w.2. If x equals the number of symbols on the RHS of r and w equals n then the template gis complete. Add g to Li;n and return.3. If x is less than the number of symbols on the RHS of r and the (x + 1)-th symbol isthe nonterminal @j then do the following:(a) Let r and s be respectively the number of terminal and nonterminal symbols on theRHS of r which are to the right of the (x+ 1)-th symbol.(b) Let the upper bound > n� w� r. > is the maximum number of symbols which@j can be expanded into if the complete phrase is to be no greater than n symbolslong.

58 CHAPTER 4. GRAMMAR DEVELOPMENT(c) ? is the minimum number of symbols which @j can be expanded into if the completephrase is to be no less than n symbols long. If s is zero set ? >. Otherwise, set? 0.(d) For every ? � k � > do the following:i. If Lj;k is marked UNCOMPUTED, then use algorithm 4.2 to compute it.ii. For each string � in Lj;k do this:A. Append � to g beginning at the w-th slot.B. Recursively call this algorithm with Li;n = Li;n, r = r, x = x, w = w+k, andg = g.4.1.3 Counting the Elements of a CFLCounting the number of elements in a CFL is no easier than listing elements in the following sense:both problems are NP-hard. To prove that the counting problem is NP-hard, it will �rst be statedin terms of language recognition.CFL-SIZE = f(G;L;N) j G is a CFG and there are exactly Nelements in L(G) which are no more than Lsymbols longgTheorem 4.3 CFL-SIZE is NP-hard.Proof: Using the technique of binary search, an implementation of CFL-SIZE can be invokeda polynomial number of times to compute N given G and L. It is possible to determine whetheror not L(G) contains any string of length exactly L by �rst computing N1 from G and L andthen computing N2 from G and L � 1 and �nally comparing N1 to N2. But this is a method forcomputing MLN. In other words, MLN can be reduced to a polynomial number of invocations ofCFL-SIZE. But MLN is NP-hard (by theorem 4.1) so CFL-SIZE must also be NP-hard.4.2 Extracting Relevant Subsets of a GrammarIn the course of studying or revising a large syntax-directed translation grammar, or even an largecontext-free grammar, it is useful to extract those production rules which relate to the feature orbehavior of interest and group these rules together for easy reference. But in a large grammar andwithout some kind of automated tool for extracting the relevant parts of the grammar, one is likelyto spend an inordinate amount of time searching for the relevant production rules. Furthermore,one might never be con�dent that all of the pertinent production rules have been found.This section will describe an algorithm for extracting relevant production rules from a CFG.Call this algorithm the relevant subset algorithm. A language of interest is speci�ed by a regularexpression. Those production rules in the CFG are extracted which can participate in any successfulparse of a string in the language of interest.Algorithm OverviewThe operation of the algorithm is intuitively simple. From the regular expression, a �nite automatoncalled the input graph is constructed which will accept the language of the regular expression andwhich has the following properties:

4.2. EXTRACTING RELEVANT SUBSETS OF A GRAMMAR 591. The automaton has no null transitions.2. The automaton has only a single accepting state.Such an automaton can always be constructed provided that the language of the regular expressiondoes not contain the empty string. The automaton may not be deterministic, but that is of noconsequence to the overall algorithm.After the automaton is constructed, it becomes the input to a special parser, called the PertinentProduction-rule Parser (PPP), that determines which production rules to include in the extractedsubset.4.2.1 Prior ArtAlgorithms for converting regular expressions into graphs are described in [19]. The operation ofPPP is similar to Earley's general parsing algorithm [8], but with some simple enhancements fortracking production rule subsets. Thus neither of the major components of the following algorithmare novel. However, the way in which the components are combined and used does appear to beunique.4.2.2 Construction of the Input GraphTo convert the regular expression into an appropriate �nite state automaton, use algorithm 4.4.Algorithm 4.4 Conversion of a regular expression into a nondeterministic �nite automaton with-out null transition and with only one accepting state.Input: 1. A regular expression which does not accept the empty string.Output:1. A nondeterministic �nite state automaton with no null transitions and with only a singleaccepting state and which accepts the same language as the input regular expression.Method:1. The regular expression is expressed as a string of symbols which can be de�ned by aCFL. Use a context-free parser to discover the structure of the regular expression andto express that structure as a tree.2. Create the starting state and the accepting state of the �nite automaton. Designatethese states numbers 0 and 1.3. Call algorithm 4.5 with the regular expression tree and with the two states 0 and 1 inorder to convert the regular expression into a �nite automaton with null transitions.4. Call algorithm 4.6 to convert the �nite automaton with null transitions into one withoutnull transitions.The following algorithm recursively walks the regular expression tree in order to construct a�nite automaton which accepts the same language. The resulting �nite automaton is correct (ascan be proven by a simple induction) but it contains many null transitions.

60 CHAPTER 4. GRAMMAR DEVELOPMENTAlgorithm 4.5 Conversion of a regular expression into a nondeterministic �nite automaton withnull transitions and only one accepting state.Input: 1. A regular expression represented as a tree.2. A number, a, identifying a node in the �nite automaton which should become the startstate.3. A number, z, identifying a node in the �nite automaton which should become the ac-cepting state.Output:1. A nondeterministic �nite automaton with null transitions and with start and acceptingstates identi�ed in the input and which accepts the same language as the input regularexpression.Method:1. If the regular expression is composed of the concatenation of two other regular expres-sions, � and �, then do the following:(a) Create a new node in the �nite automaton identi�ed by the number x.(b) Call this algorithm recursively to build an automaton for � between nodes a and x.(c) Call this algorithm recursively to build an automaton for � between nodes x and z.2. If the regular expression is composed of the alternation of two other regular expressions,� and �, then do the following:(a) Call this algorithm recursively to build an automaton for � between nodes a and z.(b) Call this algorithm recursively to build an automaton for � between nodes a and z.3. If the regular expression is the Kleene closure of another regular expression �, then dothe following:(a) Create a two new nodes in the �nite automaton identi�ed by the numbers x and y.(b) Call this algorithm recursively to build an automaton for � between nodes x and y.(c) Insert a null transition from y to x.(d) Insert a null transition from x to y.(e) Insert a null transition from a to x.(f) Insert a null transition from y to z.4. Finally, if the regular expression is the symbol symbol c then simply construct an arclabeled with c between nodes a and z.The next algorithm is used to remove the null transitions from a �nite automaton.Algorithm 4.6 A procedure for removing all null transitions from a nondeterministic �nite au-tomaton.Input: � A nondeterministic �nite automaton with null transitions and with only a single accept-ing state.

4.2. EXTRACTING RELEVANT SUBSETS OF A GRAMMAR 61Output:� A nondeterministic �nite automaton with only a single accepting state but without nulltransitions.Method:� For every ordered pair (x; y) where x and y are nodes in the automaton connected by anull transition, do the following:1. For every arc in the automaton from u to v and labeled by symbol p do the following:(a) If v = x then create a new arc from u to y and labeled with p if no such arcalready exists.� Keep repeating the previous step until no new arcs can be added.� Remove all null transitions from the automaton.4.2.3 The Pertinent Production-rule ParserThe algorithm for PPP is reminiscent of the MDP parsing algorithm described in section 3.1. R-arcs and NT-arcs are added to the input graph until an NT-arc is found which spans the startstate and the accepting state of the input graph and which is labeled by the start symbol of thegrammar. The di�erences between the algorithms are these:� The R-arcs and NT-arcs of PPP are labeled with subsets of the grammar, not with distancesand semantics as in MDP or MDSDT.� The input graph for PPP can contain cycles.� PPP is not concerned with ungrammatical or ill-formed input.The �nal output of the relevant subset algorithm is found by calling the PPP algorithm tocompute the NT-arc which is labeled by the start nonterminal for the grammar and which spansthe start state and the accepting state of the input graph. The subset of production rules associatedwith the NT-arc is the relevant subset algorithm's result.Algorithm 4.7 The Pertinent Production Rule ParserInput: 1. @, a nonterminal of the grammar.2. a and z, two nodes from the input graph.Output:1. The set of production rules from the grammar which can be used to derive any sequenceof words connecting nodes a and z from the nonterminal @.Method:1. If the NT-arc (@; a; z) has already been computed then return the production rule setattached to that arc without further computation.2. Create a new NT-arc (@; a; z) and initialize its production rule set to the empty set.

62 CHAPTER 4. GRAMMAR DEVELOPMENT3. For every production rule r which as @ has its LHS, do the following:(a) Use algorithm 4.8 to �nd the production rule set associated with the R-arc(r; jrj; a; z).(b) Add every production rule in the R-arc rule set of the previous step to the rule setfor the NT-arc (@; a; z).4. Return the production rule set for the NT-arc (@; a; z).Algorithm 4.8 Computation of R-arcs for the pertinent production rule parser.Input: 1. r, a production rule the grammar.2. x, an integer between zero and jrj the number of symbols on the RHS of the productionrule.3. a and z, two nodes from the input graph.Output:1. The set of production rules from the grammar which can be used to derive any sequenceof words connecting nodes a and z from the �rst x symbols on the RHS of productionrule r.Method:1. If the R-arc (r; x; a; z) has already been computed then return the production rule setattached to that arc without further computation.2. Create a new R-arc (r; x; a; z) and initialize its production rule set to the empty set.3. If x = 0 then add r to the production rule set on the R-arc and skip ahead to step 7.4. Call the x-th symbol on the RHS of r @.5. If @ is a nonterminal then do the following(a) For every node v in the input graph, use algorithm 4.7 to �nd the set of productionrules for the NT-arc (@; v; z).(b) If the production rule set for (@; v; z) is not empty the compute also the productionrule set for the R-arc (r; x� 1; a; v).(c) If the production rule set for (r; x� 1; a; v) is also not empty, then add all produc-tion rules associated with the NT-arc (@; v; z) and the R-arc (r; x� 1; a; v) to theproduction rule set for the R-arc (r; x; a; z).(d) Go back to step 5a until all possible values v have been tested.6. If @ is a terminal then do the following(a) Let v be a node of the input graph such that there is a T-arc from v to z labeled bythe terminal symbol @.(b) Compute the production rule set for the R-arc (r; x� 1; a; v).(c) If the production rule set for (r; x � 1; a; v) is not empty then add all productionrules in that set to the production rule set for the R-arc (r; x; a; z).(d) Go back to step 6a until all possible values v have been tested.7. Return the production rule set for the R-arc (r; x; a; z).

Chapter 5Veri�cationThis chapter describes details of the veri�cation subsystem which was introduced and overviewedin section 2.3. The bulk of this chapter is taken up by section 5.1 which describes techniques fordeciding whether or not to initiate a veri�cation subdialog. In the next section, the bene�ts ofverifying semantics instead of just verifying syntax are enumerated. A description of an actualimplementation of the veri�cation subsystem is undertaken in section 5.3, followed by an analysisof experimental results and two annotated examples of veri�cation subdialogs in sections 5.4 and5.5.5.1 Deciding When To VerifyThe decision to verify a particular input is governed by two factors:1. the likelihood that the meaning deduced by the parser is what the user intended to commu-nicate, and2. the importance of the meaning to the success of the overall dialog.A simple method of incorporating both of these factors into the veri�cation decision is as follows:Assign to each meaning a con�dence which is an estimate of the chance that the meaning wascorrectly deduced from the user's original speech, and a veri�cation threshold which is a measureof the importance of the deduced meaning to the success of the dialog. Initiate a veri�cation if andonly if the con�dence is less than the veri�cation threshold. Methods for estimating the con�denceand veri�cation threshold are described in the following two subsections.5.1.1 Con�dence EstimatesSeveral algorithms for estimating the con�dence of a particular meaning have been developed andcompared in an e�ort to �nd one general method which provides consistently good results. All ofthe algorithms tested compute the con�dence as a linear function of four measurements:Total Error The total error of a particular utterance is the amount of deviation between the user'sspeech and the most similar speech template. The deviation can be measured at both thespeech recognition level (how closely does the user's speech match internal speech templates)and at the grammatical level (how closely does the sequence of words output by the speechrecognizer match a well-formed phrase in the grammatical model of the input language.)63

64 CHAPTER 5. VERIFICATIONIn the implementation, the total error is taken to be the total cost computed by the expecta-tion function. (See section 3.4.5.) Deviation at the speech recognition level could not be usedbecause requisite information is not available from the commercial speech recognizer used inthe implementation.Normalized Error The normalized error is the amount of deviation per �xed unit of input. Thenormalized error is therefore just the total error divided by the size of the user's input. Thesize of an input might be its temporal length, or the number of words in the phrase, or someother appropriate measure. In this implementation, the size of an utterance is the number ofwords output by the speech recognizer.Expectation Cost The dialog expectation is a set of meanings which the dialog controller antici-pates the user will try to communicate. Each meaning has an associated expectation cost whichis a measure of how strongly that particular meaning was anticipated. (See section 3.4.1.)The algorithm used to compute the dialog expectation in the implementation is described fullyin [35]. Here is an intuitive overview of that algorithm: The state of a dialog is viewed as asequence of nested contexts, each more speci�c and focused than its predecessors. Meaningswhich relate to the innermost context are given the lowest expectation. Meanings which canonly be interpreted in the �rst enclosing context are given a slightly higher expectation cost.This progression continues, so that meanings which can only be understood in more remotecontexts are given comparatively higher expectations cost.Distinctness The distinctness is a measure of ambiguity in an utterance. A high distinctness showsthat the meaning deduced by the speech understander is the only reasonable interpretationof the input. A low distinctness indicates that there are several competing interpretations ofthe user's speech, and that the meaning output by the speech understander is only one ofthese interpretations.In this paper, distinctness is computed as the di�erence between the total error of the meaningand the total error of that meaning which was the parser's second choice.Over- and Under-veri�cationsHere are two important de�nitions: An under-veri�cation is de�ned as the event where the parsergenerates a meaning which is incorrect but which is not veri�ed. An over-veri�cation, on the otherhand, occurs when a correct meaning is veri�ed. An under-veri�cation results in a misunderstand-ing, but an over-veri�cation is only a vexation to the user. The goal of any con�dence estimatingfunction is to simultaneously minimize the number of both under- and over-veri�cations. It is usu-ally the case, however, that under- and over-veri�cations trade o� against one another, so that onemay decrease the number of under-veri�cations only by increasing the number of over-veri�cations,and vice versa. Hence, it is instructive to think of over-veri�cations as the price one pays forreducing the number of under-veri�cations.The performance or \goodness" of a particular con�dence estimating function can be visualizedby plotting the number of under-veri�cations versus the number of over-veri�cations which occurusing the given con�dence estimator, for various thresholds, over a �xed set of meanings. Figure 5.1shows the performance curve for a particular con�dence estimating function named �. The function� computes the con�dence as a linear combination of normalized error and dialog expectation,weighted so that a single level change in context is approximately equal to inserting or deletinga single content word in a twenty-word long utterance. Each point in �gure 5.1 represents thenumber of over- and under-veri�cations which would result if a single threshold value were used

5.1. DECIDING WHEN TO VERIFY 65ssssssssssss ss ss sss sssssssssssssss0 201002040 Percent Under-veri�edPercentOver-veri�ed
Figure 5.1: Performance curve for the con�dence estimating function named �in conjunction with con�dence estimator � in order to decide whether or not to verify each of astandard set of meanings. The over- and under-veri�cations are expressed as a percentage of thetotal number of meanings analyzed. The data used to generate �gure 5.1 is the 2804 utterancesand their meanings recorded during the experiments described in section 3.5.Comparison of various con�dence estimating functionsTwo con�dence estimators may be compared by plotting their performance curves on the samegraph. A con�dence estimator is normally judged to be better if it consistently has a smaller over-veri�cation rate, for any given under-veri�cation rate. Figures 5.2 through 5.5 compare � tocon�dence estimators based on the four fundamental con�dence measurements mentioned above.The � function is used in these comparisons since it has been found to provide the best resultsunder most circumstances. Other con�dence estimating functions which were compared to � andwhich were found to be inferior are these:� Functions built from a linear combination of normalized error and total error.� Functions built from a linear combination of total error and the sum of normalized error anddialog expectation.� Functions which select the greater of normalized error and weighted total error.� Functions which select the lesser of normalized error and weighted total error.All the performance curve plots displayed in this these are derived from the 2804 utterances collectedfrom the experiments described in section 3.5. However, this was not the only dataset used in theactual analysis. Other datasets include:� The 2804 utterances in the experiments, but with duplicate occurrences of the same inputremoved. This reduced the number of utterances to 1134.� The 2804 utterances in the experiments, but processed using the second implementation ofthe parser, and using a heavily revised version of the grammar.

66 CHAPTER 5. VERIFICATIONssssssssssss ss ss sss ssssssssssssssscccccc ccc cccc cccc cc cccccccccccc0 201002040 Percent Under-veri�edPercentOver-veri�ed
Figure 5.2: Performance curve for the con�dence estimator based on total error alone (�) versusthe con�dence estimator � (�). ssssssssssss ss ss sss sssssssssssssssccccccccc cccccccccccc c ccc ccc cccc0 201002040 Percent Under-veri�edPercentOver-veri�ed
Figure 5.3: Performance curve for the con�dence estimator based on normalized error (�) versusthe con�dence estimator � (�).

5.1. DECIDING WHEN TO VERIFY 67ssssssssssss ss ss sss sssssssssssssssccc cccccc c0 201002040 Percent Under-veri�edPercentOver-veri�ed
Figure 5.4: Performance curve for the con�dence estimator based on only dialog expectation (�)versus the con�dence estimator � (�). ssssssssssss ss ss sss sssssssssssssss

ccccc c0 201002040 Percent Under-veri�edPercentOver-veri�ed
Figure 5.5: Performance curve for the con�dence estimator based on only distinctness (�) versusthe con�dence estimator � (�).

68 CHAPTER 5. VERIFICATION� The data speci�ed in the previous bullet but with duplicate entries removed.� Subsets of the data speci�ed in all of the previous bullets consisting of only utterances spokenby one of the eight experimental subjects.In every case, the performance plots were scaled di�erently to reect the di�ering speech recognitionand parsing accuracy of the various data sets, but the basic shape of the performance curves waspreserved. Though in some cases other con�dence estimating functions did just as well, none werebetter than the function �.5.1.2 Selecting A Veri�cation ThresholdThe second concern in deciding whether or not to verify a given meaning is the selection of averi�cation threshold against which to compare the con�dence estimate. The veri�cation thresholdis the quantity which is used to tune the propensity of the system to verify. A low veri�cationthreshold means that veri�cations will be frequent, to the point of being bothersome, but that thee�ective misunderstanding rate will be low. A high veri�cation threshold will result in infrequentveri�cations, but a higher misunderstanding rate.It is important to note that the veri�cation threshold need not be a constant; it may depend onthe meaning deduced by the speech understander. Meanings which are critical to the success of thedialog may be given a high threshold, thus requiring that there be high con�dence in the accuracyof the meaning to avoid veri�cation, whereas super�cial or unimportant meanings may be given alow threshold, so that the system will not waste the user's time verifying unimportant details.The selection of an appropriate veri�cation threshold is highly dependent upon the require-ments of the dialog system, and as a result, it is di�cult to make general statements about whichveri�cation thresholds are appropriate and which are not. In many cases, however, the selectionof a veri�cation threshold might be aided by a dialog work analysis. Dialog work is an intuitiveconcept which can be thought of as roughly the number of user-machine interactions or the amountof time needed to complete a dialog. The analysis which uses dialog work to select a veri�cationthreshold is as follows:A particular meaning, m, is computed by the speech understander, and a veri�cation thresholdis wanted for this meaning. Let V be the amount of dialog work needed to verify m, and let E bethe amount of extra dialog work needed to recover if m is a misunderstanding and is not veri�ed.Let u be the probability of under-veri�cation, and let f(u) be the corresponding over-veri�cationprobability. Assume that u and f(u) can be computed from historical under- and over-veri�cationrates, so that f(u) is actually the performance curve for the chosen con�dence estimator. Let thedialog work required after m is processed be K. If we assume that a veri�cation subdialog willalways �nd the correct meaning, then the total dialog work required for a given under-veri�cationrate u is W (u) in the following equation:W (u) = uE + f(u)V +K (5:1)If we could compute the value of u in equation 5.1 which minimized the dialog work, then thisu could be used in conjunction with the con�dence estimator's performance curve to �nd thecorresponding veri�cation threshold. The desired u can be found by solving the equationdduW (u) = 0 (5:2)The solution is dduf(u) = �EV (5:3)

5.2. THE BENEFITS OF VERIFYING MEANINGS INSTEAD OF SYNTAX 69Equation 5.3 says that the under-veri�cation rate which minimizes the dialog work is the ordinateof the point on the performance plot of the con�dence estimator function which has a slope of�E=V . Here is the key observation: the performance plots of many con�dence estimators containa small region which has a large second derivative. Call such a region a knee of the graph. Forexample, there is a knee in � in the vicinity of u = 0:03. For many values of �E=V , the point onthe performance graph which has a slope of �E=V will be on the knee of the graph. Hence, theunder-veri�cation rate which minimizes the dialog work will likely be in the knee of the performancegraph.It is not di�cult to �nd objections to the above analysis. Perhaps the most serious are that Vis not constant but rather depends on u, and that a veri�cation subdialog does not guarantee thatthe intended meaning will eventually be found. Nevertheless, the above analysis is a reasonable�rst-order approximation.5.2 The Bene�ts of Verifying Meanings Instead of SyntaxThere are several bene�ts to be derived from verifying at the semantic level as opposed to thesyntactic level. Below is listed a few of these advantages:� Operation at the semantic level allows the veri�cation prompt (the statement used by thecomputer to begin a veri�cation subdialog) to be a paraphrase of what the user originallysaid. The veri�cation prompt can expand pronouns into their antecedents, �ll out ellipticphrases and words, and make use of synonyms.� Since meaning, not syntax, is what is veri�ed, the system is able to respond robustly to errorswhich arise from sources other than the speech recognizer.� Because the meaning of the utterance is available, the veri�cation threshold used can bedynamically adjusted to better reect the importance of the meaning to the success of thedialog.� Dialog expectation, which is usually only available in semantic form, can be used in thecon�dence estimate if veri�cation occurs on semantics instead of syntax.5.3 An ImplementationThe techniques described in section 5.1 have been used to implement a meaning veri�cation subsys-tem. This subsystem was installed in the SLS used for the experiments described in section 3.5. Inreference to �gure 1.1, the new veri�cation subsystem was inserted between the parser and the dia-log controller. The veri�cation subsystem intercepts the meaning which the parser would normallysend to the dialog controller. If no veri�cation of the intercepted meaning is indicated, then themeaning is relayed to the dialog controller unaltered. If, however, the meaning requires veri�cationthen the veri�cation subsystem will speak an appropriate prompt by communicating directly withthe speech synthesizer, interpret the users response as understood by the parser, and �nally send acorrected meaning to the dialog controller. The dialog controller is never aware that a veri�cationhas occurred.A sketch of an algorithm used in the veri�cation subsystem is as follows:1. Listen for an input from the user. Parse the input and call the deduced meaning X .

70 CHAPTER 5. VERIFICATION2. If X does not need to be veri�ed then send X on to the dialog controller and exit.3. Compute a natural language paraphrase of X and call it Y .4. If Y could not be computed for any reason, then say \I'm not sure what you mean. Pleaserepeat." and go back to step 1.5. If Y was successfully computed then say \Did you mean to say Y ".6. Add meanings for \yes" and \no" to the dialog expectation. Listen for the user to respondand parse the new response into Z.7. If Z also needs to be veri�ed, then say \I still can't understand what you said. Please repeatyour original statement." and go back to step 1.8. If Z means \yes" then send X to the dialog controller and exit.9. If Z means \no" then say \Please repeat what you meant to say" and go back to step 1.10. If Z means neither \yes" nor \no" then transmit the meaning Z to the dialog controller andexit.The decision to verify is made by comparing the con�dence estimate and veri�cation thresholdfor each utterance. The veri�cation subsystem estimates the con�dence using function �. Theveri�cation threshold is dynamically selected based on the meaning. Questions and some statementswhich do not a�ect the future course of the dialog are given a very low veri�cation threshold sothat they are e�ectively never veri�ed. This is done because the cost of verifying such an inputis never less then the cost of recovering if such an input happens to be a misunderstanding. Forstatements which do inuence the future course of the dialog, a veri�cation threshold in the kneeof the performance curve is selected.5.4 Experimental ResultsThe veri�cation subsystem was not implemented in time to be used in the experiments describedin section 3.5. Nevertheless, the data gathered in these experiments can be used to estimate howwell the veri�cation subsystem would have improved the parser's performance had the subsystembeen operational.Assuming a constant veri�cation threshold which is adjusted so that the smallest possible under-veri�cation rate is without an \unreasonable" over-veri�cation rate and assuming that every veri�-cation subdialog will eventually result in the discovery of the correct meaning, then the percentageof all utterances which are correctly parsed is raised from 83% (shown in table 3.8) to 97% as shownin table 5.1. The corresponding over-veri�cation rate is shown in table 5.2. Both of these tables aregiven in the same format as the reported performance results of the speech recognizer and parserin sections 3.5.3 and 3.5.4. The values in the smaller typeface are for data collected from a singleexperimental subject and the single value in the larger typeface is the aggregate value.Tables 5.3 and 5.4 are the counterparts to tables 5.1 and 5.2, respectively, where only non-trivial utterances are considered. (Recall from section 3.5.4 that a non-trivial utterance is onewhich consists of more than one word.)

5.5. EXAMPLES 7199.4 99.4 98.5 97.3 96.9 96.5 96.2 95.8 92.0Table 5.1: Percentage of all inputs which would be correctly parsed after veri�cation63 36 23 22 15 15 11 9 7Table 5.2: The over-veri�cation rate corresponding to table 5.15.5 ExamplesBelow are two example veri�cation subdialogs, together with commentary. Each of the veri�cationsoccurred during a dialog which is part of a videotaped demonstration [18].Prior to the �rst veri�cation subdialog, the system has asked the user to describe the state ofa certain seven-segment LED, which the user did. An adjustment was made to the circuit and thesystem again asks for a description of the LED.computer: What is the LED displaying?user: The same thing.computer: Did you mean to say that the LED is displaying the same thing?user: Yes.The user's response \the same thing" was misrecognized as \the same same". The parser usedthe words \the same" to guess that the object of the user's intended meaning was \the samething" and used expectation from the dialog controller to �ll in the missing subject and verb\the LED is displaying". However, there was signi�cant deviation between the phrase input tothe parser and any well-formed phrase of the same meaning. In particular, 1 in 3 input wordswere wrong. This reduced the estimated con�dence below the veri�cation threshold and triggeredthe veri�cation subdialog. Notice that the subject and verb of the meaning, omitted from theuser's original utterance, are included in the veri�cation prompt. This is only possible because theveri�cation occurs on semantics instead of syntax. The user responds to the veri�cation prompt inthe a�rmative, and so the original meaning is transmitted to the dialog controller. This veri�cationsubdialog would count as an over-veri�cation.Here is another veri�cation subdialog with a similar context. The resolution of this subdialogis very di�erent, however.computer: What is the LED displaying?user: The one is ashing for a longer period of time.computer: Did you mean to say the LED is ashing a one?user: The LED is ashing one and seven.99.0 98.9 98.6 96.8 95.0 94.2 93.0 92.1 88.2Table 5.3: Percentage of non-trivial utterances which would be correctly parsed after veri�cation

72 CHAPTER 5. VERIFICATION44 40 29 28 25 18 16 16 14Table 5.4: The over-veri�cation rate corresponding to table 5.3In this dialog segment, the user's �rst input contains the word \period" which is not in the speechrecognizer' vocabulary and is therefore omitted from the speech recognizer's output. Other wordsin the input phrase are also misrecognized. The output of the speech recognizer is: \one is ashingforth longer in a time." The parser is unable to make any sense out of the phrase \forth longer ina time", but it does know what \one is ashing" means. The parser combines these three wordswith dialog expectation from the dialog controller to conclude that the user meant to say that theLED is ashing the digit one. However, �ve of the eight words in the user's utterance deviate fromany valid syntax for this statement. This resulted in a large normalized error which triggered theveri�cation subdialog. The user's second statement is di�erent from the �rst. This might havehappened because the user realized that \period" was not in the vocabulary and that she wouldneed to rephrase her remark. Whatever the reason for the change, the second statement by theuser was parsed without signi�cant error and its meaning was transmitted to the dialog controllerin place of the �rst meaning.

Chapter 6ImplementationThis chapter describes actual implementations of the subsystems previously mentioned in this thesis{ the parser, the grammar development system, and the veri�cation subsystem. Three goals of thischapter are as follows:1. It is hoped that the programs written in support of this thesis will be useful for future researchboth by the author and by others. To this end, the programs have been designed and writtenin a very portable manner so that they may be connected to diverse and divergent SLSswith a minimum of rework. The descriptions provided here are intended to provide a UsersReference Manual for the implementations.2. Some of the implementation techniques used are novel and have worked very well in thatthey have provided a stable and robust structure to the code which is also easily altered andmodi�ed. This is especially the case with the parser which is implemented as 6 separateprocesses under UNIX which communicate through pipes. Future researchers may wish toimitate these techniques even if they don't use the actual code.3. Sometimes, it is easier to understand theoretical discussions if the reader has a clear visionof the end result. Hence, some may wish to read this before perusing the more theoreticalissues in the earlier chapters.6.1 The ParserThis section documents the second implementation of the parser. The parser runs as six separateprocesses under UNIX.mdt This is the kernel of the parser. It executes the MDSDT and dialog expectationmatching algorithms. This process is described further in subsection 6.1.1.FromProlog This process receives dialog expectation information from the dialog controller(which is coded in Prolog). It recasts the information in the standard mdt formatand forwards the information to standard output where it can be read by the mdtprocess. Communication with Prolog is accomplished through the �le system.This process also relays its standard input to standard output, permitting it tobe part of a pipeline on the front end of the parser kernel.FromVerbex This process listens for speech which has been interpreted by the commercialspeech recognizer. The process translates the speech recognizers output into a73

74 CHAPTER 6. IMPLEMENTATIONform which can be understood by mdt and then relays that information to itsstandard output where it can be read by the mdt process. This process also relaysits standard input to standard output, permitting it to be part of a pipeline onthe front end of the parser kernel.gap This process accepts as input the dialog expectation and speech information whichwould normally be sent directly to the parser kernel, and modi�es that informationby adding arcs to the word lattice output from the speech recognizer. This is donein order to make up for the fact that the speech recognizer outputs only its bestguess instead of a full lattice of word possibilities. The output of this process isa copy of its input with the extra input arcs added. Addition details concerningthe operation of this process are found in subsection 6.1.3.ToDectalk This �lter intercepts the text of phrases which are to be spoken by the systemand sends that text to the commercial speech synthesizer. The ToDectalk �lteris used by the veri�cation subsystem to utter the veri�cation prompt. All inputswhich are not text phrases to be spoken are passed to standard output unaltered.ToProlog This program reformats the output of mdt and transmits the result to the dialogcontroller running under Prolog. The �le system is used to communicate withProlog.The principal concern of this chapter, and indeed this whole thesis, is the parser kernel in theprogram mdt. The other processes, with the possible exception of gap, are not expected to beespecially useful to other projects. They are included in this discussion in order to demonstratehow a collection of simple �lters on the input and output of mdt can be used to easily interface theparser with the rest of an SLS without having to make changes to the parser kernel itself.The parser subsystem is started in UNIX by a command such as this:FromVerbex | FromProlog | ToDectalk | gap | mdt | ToPrologThis command invokes all processes and causes them to communicate with each other throughpipes. Note that the above is a simpli�ed version of the command which normally starts the parserrunning. On some of the processes in the pipeline there are often command line switches which areomitted here for brevity. It is also common to preface one or more processes with an rsh commandto cause that process to run on a remote machine. In this way, the work of the parser can bespread among several computers. Spreading the work around is advantageous because both theparser kernel in mdt and the dialog controller running in Prolog use large amounts of memory andvirtual memory thrashing may occur if both processes are run on the same machine. An rsh pre�xmust also be added to FromVerbex and ToDectalk if the speech recognizer and speech synthesizerare connected to machines other than the host.6.1.1 mdtThe Minimum Distance Translator (mdt) uses the MDSDT algorithm (see section 3.3) togetherwith dialog expectation matching (see section 3.4.1) to assign a translation to a lattice of wordpossibilities. The input word lattice is typically the output of a speech recognizer. The output isintended to be a statement in logic which embodies the meaning of what was spoken.The translation from input to output is governed by a translation grammar. The translationgrammar is read from a �le when the program is initially invoked. The format of the translationgrammar is described in subsection 6.1.2.

6.1. THE PARSER 75The Minimum Distance Translator is designed to be used as an interface between a speechrecognizer and a natural language processing system. To this end, the operation of the translatorhas been kept as general as possible, so that it may be used in a wide variety of systems. It isenvisioned that the communication between the translator and other parts of the system wouldoccur through UNIX pipes, and that simple format conversion �lters on the input and output ofthe translator would make necessary changes in the format of the data.Command-line Options� cutoff=costThe maximum translation cost per node in the input graph is set to the oating point valuecost. The default is 1.5.� delcost=costThe distance penalty associated with skipping or ignoring a word in the input lattice is setto the oating point value cost.� gram=�lenameThis causes the translation grammar to be read from the �le named �lename. If no �le isspeci�ed by this option, then the grammar is read from a �le named \mdtgram" in the currentdirectory.� log=�lenameThis speci�es the name of a �le onto which a log of all translator activities is to be appended.If no log �le is speci�ed, then translator activities are not recorded anywhere.� -monitorCauses the translator to print a summary of its activity on standard error. This is useful forreal-time monitoring of what the translator is doing.� -noechoThe default action of the translator is to echo all its inputs to standard output. This switchsuppresses the echo.� start=nonterminalThe distinguished nonterminal of the translation grammar (that is, the start symbol of thegrammar) is set to be nonterminal. In the absence of this switch, the distinguished nonter-minal is StartState.� timeout=numberSpecify the maximum time (in seconds) which the translator will spend trying to translatea single input. If more time than this is required then the logical form verb|timeout| isoutput with an utterance cost of zero.� -treeThis switch will cause the translator to output not a logical form but a parse tree of therecognized input. This is useful for debugging of the translation grammar.

76 CHAPTER 6. IMPLEMENTATIONInput formatThe Minimum Distance Translator takes all its input from standard input. The input is lineoriented. No input prompt is generated. Lines which the translator does not know how to interpretare ignored. The translator understands and acts upon lines of the following form:� A from to cost labelEach line of this form describes an arc in the input word lattice. From and to are integersnode numbers which specify the beginning and end of the arc, respectively. Cost is a realnumber matching cost for the arc, and label is the name of a terminal symbol in the inputlanguage of the translation grammar with which the arc should be labeled.� BThis input causes mdt to begin translation using the input graph and expectation previouslyentered. When translation is completed, each hypothesis in the hypothesis set is printedtogether with its utterance cost. The minimum matching string of the �nal result is alsoprinted. After translation is complete, the expectation set and input graph are erased.� E cost expectation-stringThe expectation-string is a sequence of characters which is interpreted as an hypothesis ofthe dialog expectation. The distance associated with that hypothesis is speci�ed by the realnumber cost. The expectation string uses the asterisk as a wildcard character.� T word-listThis is a short-cut method for manually entering a universal expectation and a linear graph asa test input to the translator. The translator will echo the sequence of A, B, and E commandswhich will have the same e�ect as this short-cut.Output formatEvery input line is echoed to standard output regardless of whether or not the translator understoodthe line or acted upon it. When a T line is input the corresponding sequence of A, B, and E commandsis output as well. When translation occurs the hypothesis set is output by a sequence of linesdescribed below.� H utterance-cost hypothesis-stringEach hypothesis generated by the MDSDT algorithm is output in a line of this form. Thecurrent implementation uses the N-ties method of recording hypotheses, so the utterance costwill be the same for every hypothesis.� P total-cost hypothesis-stringThe hypothesis which matches the lowest-cost expectation string is output in a line of thisform. The hypothesis string on a P line has been matched against an expectation and thereforemay have had some of its wildcards expanded.

6.1. THE PARSER 776.1.2 Format of the Translation GrammarThis subsection describes the �le format of the translation grammar.The translation grammar consists of a unordered sequence of production rules. Whitespaceis ignored, except where it delimits tokens. Comments are also ignored and can occur anywherewithin the translation grammar �le. Comments are as in C (beginning with \/*" and ending with*/") or as in C++ (beginning with \//" and ending at the next newline character). Commentsdo not nest.Each production rule begins with a nonterminal symbol. A nonterminal may be any sequenceof upper or lower case letters, digits, or the underscore symbol _" except that the �rst charactermay not be a digit. This �rst nonterminal is the left-hand side (LHS) of the production rule.Following the LHS is the reserved token \->". Next is a sequence of zero or more nonterminal andinput terminal symbols which comprise the right-hand side (RHS) of the production rule. Terminalsymbols alphanumeric identi�ers like nonterminals, or they may be numeric constants, or they maybe any punctuation character which does not have a special meaning in the production rule. Thefollowing symbols have special meaning:-> : ' ? ! { } .The period may be used as a terminal symbol if it is preceded by a backslash, like this: \\.".The reserved token \:" closes the RHS of the rule and begins the semantics. The semanticsconsists of a sequence of nonterminal and output terminal symbols. The semantics section andthe entire production rule is terminated by a period. If a production rule has no symbols in thesemantics then the colon which normally precedes the semantics may be omitted.The mapping from semantic nonterminals to RHS nonterminals is indicated through the use ofapostrophes following corresponding nonterminal symbols. If a certain nonterminal in the semanticsmaps to a certain nonterminal in the RHS of the rule then both nonterminals should be followed bythe same number of apostrophes. If the same nonterminal occurs more than once in the semanticsthen each occurrence must be followed by a unique number of apostrophes.Insertion costs for symbols on the RHS of a production rule are indicated by special marksfollowing each symbol. If the symbol is not followed by any special mark then its insertion costis 1.0 if it is a terminal. If the symbol is a nonterminal then the default insert cost is computedby �nding the minimum total insertion cost of every rule for which that symbol is the LHS. If anysymbol if followed by a question mark then the insertion cost of that symbol is taken to be zero.This e�ectively makes the symbol optional in the input of the parser. If a RHS symbol is followedby an exclamation point the insertion cost for that symbol is raised to in�nity thereby making itimpossible for that symbol to be inserted. Any other insertion cost may be speci�ed by followingthe symbol with a oating point number enclosed in curly braces, like this: \{4.2}".Example translation grammarsThe following text is an example of how the simple translation grammar shown on page 32 wouldbe coded for use by the mdt program.S -> C S' S'' : S' S'' C.S -> B S : S B.S -> A : A.A -> a : a.A -> b : b....

78 CHAPTER 6. IMPLEMENTATIONA -> z : z.B -> - : -.C -> + : +.C -> \times : \times.The next example is 12 rules (out of 505) from the grammar used in the experiments. The12 rules recognize all utterances which mean the same as \the LED is displaying a one and aseven". This set of rules is not intended to typify a good grammar design, or to serve as a templatefor future grammar development. The rules are shown purely to demonstrate the syntax of thegrammar speci�cation. The nonterminal StartState is the initial nonterminal of the grammar.StartState -> A' : A'.A -> L' DS' : assertion(true,state(display,L',DS')).A -> L' displaying DS' :assertion(true,state(display,L',DS')).A -> there is DS' :assertion(true,state(display,led,DS')).DS -> OS' : OS'.L -> the? led : led.L -> the? light : led.L -> it : *.OS -> one seven : [eight,t,u,u,u,t,u,u,u,u,u,u,u].OS -> seven one : [eight,t,u,u,u,t,u,u,u,u,u,u,u].OS -> one and seven : [eight,t,u,u,u,t,u,u,u,u,u,u,u].OS -> seven and one : [eight,t,u,u,u,t,u,u,u,u,u,u,u].6.1.3 gapThe graph augmenting preprocessor (gap) program accepts as input the dialog expectation andword lattice information which would normally be sent directly to the parser kernel and modi�esthat information by adding new arcs to the word lattice. The arcs are added in order to make upfor the fact that the speech recognizer outputs only its best guess instead of a full lattice of wordpossibilities. The output of this process is a copy of its input with the extra input arcs added.The gap program accepts the following command line switches:� dict=�lenameThe name of a dictionary �le is speci�ed by �lename. If no dictionary �le is speci�ed in thisway, then the dictionary is read from a �le named mdtdict.� scale=valueThe penalty at the beginning of each entry in the dictionary is multiplied by the amountvalue. If no scaling value is speci�ed then value is assumed to be 1.0.The program adds additional arcs to the input graph in parallel with existing arcs. The dic-tionary �le speci�es what arcs are added. The dictionary �le consists of lines containing a penaltyvalue followed by two words. When ever an arc labeled by the �rst word is seen, then a new arc iscreated which is labeled by the second word and the distance of the new arc is the distance of theoriginal arc plus the amount of the penalty.

6.1. THE PARSER 79An exampleSuppose the dictionary �le contains the following entries:0.18 a i0.03 a and0.44 a only0.973 a the0.11 and a0.02 and an0.48 one on1.2 one point0 one want0.24 one what1.76 seven nothingThen let the input to the gap program be the following input graph.A 0 1 0.1 aA 1 2 0.02 oneA 2 3 0.34 andA 3 4 1.23 aA 4 5 0.06 sevenThen, the output of the gap program would be the augmented input graph shown below.A 0 1 0.1 aA 0 1 0.13 andA 0 1 0.28 iA 0 1 0.54 onlyA 0 1 1.07 theA 1 2 0.02 oneA 1 2 0.5 onA 1 2 1.22 pointA 1 2 0.02 wantA 1 2 0.26 whatA 2 3 0.34 andA 2 3 0.45 aA 2 3 0.36 anA 3 4 1.23 aA 3 4 1.26 andA 3 4 1.41 iA 3 4 1.67 onlyA 3 4 2.2 theA 4 5 0.06 sevenA 4 5 1.82 nothing

80 CHAPTER 6. IMPLEMENTATION6.2 The Grammar Editor6.2.1 gedThe core of the grammar editor is the program ged. The grammar editor is interactive, and soit is normally invoked without any arguments. However, one can specify a default grammar startsymbol with an argument of the form start=symbol. When this switch is omitted, the default startsymbol is StartState.When ged is started, the program prints the promptged =>then halts waiting for the user to type a command. To end the editing session, the user typescontrol-D at the command prompt.CommandsCommands to the grammar editor can take any of the following �ve forms:� helpThis is the easiest but perhaps the most important command in the command repertory. Inresponse to this command, the grammar editor prints a summary of all the other commandsthat it understands.� identi�er = expressionA new grammar subset is created using the assignment command. The identi�er is a alphanu-meric name which uniquely identi�es the new subset. The expression is a description of howthe subset is generated. Section 6.2.1 describes the syntax of an expression.If the identi�er in an assignment command has been previously used to mark an earlier subsetthen the earlier subset is deleted after the new is computed. This allows the identi�er on theleft to be used as part of the expression on the right. For example, to merge the contents ofgrammar subset X into grammar subset Y, it su�ces to type:Y = Y + XIf the expression is omitted from an assignment command then the subset referred to by theidenti�er is deleted.� show type in expressionThis command causes features of a grammar subset to be listed. The initial word in thecommand can be changed to count and the same feature will be counted instead. Theexpression describes the grammar subset from which the features are read.The type �eld in the command speci�es what feature of the grammar subset is displayed.Acceptable values for type are:{ rulesThis causes production rules of the grammar subset to be listed.{ terminalsThis causes all input terminal symbols used the grammar to be listed.

6.2. THE GRAMMAR EDITOR 81{ subsetsThis type lists all grammar subsets which have been given names in the grammar editor.The \in expression" part of the command should be omitted when this type is used.{ variablesThis causes all nonterminal symbols in the grammar subset to be listed.{ inputs from nonterminalThis causes all well-formed inputs to the grammar subset to be listed in lexical order.The argument nonterminal speci�es which nonterminal of the grammar subset to use asthe root of the parse tree. The \from nonterminal" may be omitted from this type andthe default grammar start symbol will be used. The program leg (see section 6.2.2) tocompute this type.{ outputs from nonterminalThis causes all well-formed outputs from the grammar subset to be listed in lexical order.The \from nonterminal" extension works the same as with the input type. The programleg (see section 6.2.2) to compute this type.� parse text from nonterminal in expressionThis command causes the linear input text to be parsed using the MDSDT algorithm and thegrammar subset speci�ed by expression. The root of the parser tree is nonterminal, except ifthe \from nonterminal" portion of the command is omitted the default start symbol is used.The text should be enclosed in double quotes, or in balanced square brackets.If the initial word of this command is changed to tree a parse tree is generated instead of astandard parse.This command is implemented as a call to the program mdt which is described in sectionc5-mdt.� write expression to �lenameThis command causes a grammar subset to be written to a �le. The subset to be written isspeci�ed by expression and the �lename is given by �lename. The �lename should be delimitedby balanced square brackets or by double quotes if it contains any special characters (such asa period.)ExpressionsAn important part of the grammar editors command syntax is the exible method used to describea grammar subset. The following bullets show how a grammar subset is constructed. Each of thefollowing bullets constitutes an expression in the command level syntax of the previous subsection.� read �lenameAn expression of this form causes the grammar to be read from a �le speci�ed by �lename.The �lename should be delimited by matched square brackets or by double quotes.� identi�erAny of the named grammar subsets created by an assignment statement can be used as anexpression simply by calling its name.

82 CHAPTER 6. IMPLEMENTATION� (expression)Parenthesis can be used in expressions to show grouping.� expression + expressionsAn expression of this form speci�es a grammar which is the union of all rules in the twosubexpressions.� expression - expressionsThe grammar speci�ed here is the set of all production rules in the �rst subexpression whichdo not appear in the grammar of the second subexpression.� expression & expressionsThis operation speci�es the intersection of the subexpressions.� match pattern in expressionThis expression speci�es a grammar subset which is all rules in the grammar of the subex-pression which match the pattern. The UNIX utility grep is used for pattern matching. Thepattern should be delimited by matching square brackets or by double quotes.� parents of expression1 in expression2In this, expression1 must be a subset of expression2. The resulting grammar subset is all pro-duction rules in expression2 which can derive production rules in expression1. The productionrules of expression1 are not included in the result of this expression.� children of expression1 in expression2This is the counterpart to the parents expression in the previous bullet. The resultinggrammar subset is all production rules in expression2 which can be derived from productionrules in expression1. The production rules of expression1 are not included in the result of thisexpression.� generate text from nonterminal in expressionThe resulting grammar is the subset of production rules in expression which can be used togenerate the semantic string text when the parse tree is rooted at nonterminal. The \fromnonterminal" subphrase can be omitted and the default start symbol will be used. The text�eld should be delimited by either matching square brackets or double quotes.Text can be a regular expression but it must not specify an null string. The regular expressionoperators are *" Kleene closure, \\|" for alternation, and \\(" and \\)" for grouping. Thespecial symbol \\." will match any token. Thus the regular expression \\.\.*" will matchany phrase of one or more symbols.This subset is computed using the program rg which is described in section 6.2.3.� recognize text from nonterminal in expressionThis is the counterpart of the generate expression of the previous bullet. The resultinggrammar is the subset of production rules in expression which can be used to recognizethe input string text when the parse tree is rooted at nonterminal. Text can be a regularexpression. This subset is computed using the program rg which is described in section 6.2.3.

6.2. THE GRAMMAR EDITOR 83� fluff of expression1 in expression2This seemingly strange operator is designed for use in conjunction with the generates op-erator. The resulting grammar is the the set of production rules in expression2 which haveRHSs which are terminal symbols in the grammar of expression1. Children, grandchildren,and so forth of the designated production rules are also included in the result.� edit expressionTo evaluate this expression, the grammar editor �rst evaluates the subexpression, then callsthe user's standard editor (speci�ed in the VISUAL or EDITOR environment variables of UNIX)to make changes to that grammar. The result of the expression is the grammar after theediting session.ExamplesSome examples of typical ged command lines and their meanings will help to elucidate the abovematerial. All of the examples in this section are printed in the typewriter font and no distinctionis made between what the program prints and what the user types. Presumably the distinction isobvious.The �rst operation after invoking the grammar editor is typically something like the following:ged => all = read "mdtgram"This command creates a new subset named all and �lls it with the production rules read from the�le mdtgram. (Recall from section 6.1.1 that mdtgram is the default name of the grammar used bythe mdt parsing program.)Now suppose that the user wants to edit all production rules having to do with the inputterminal symbol \switch". One might begin this way:ged => b = match "switch" in allThis command creates a new grammar subset named b which is all production rules in allmatchingthe pattern switch. Now the user checks to see how many rules are in b and what those rules are:ged => count rules in b2ged => show rules in bSW -> switch : switch.SW -> power switch : switch.Next the user creates a new variable which contains both the rules of b and all of the parents ofthose rules:ged => b2 = b + parents of b in allThe user now enters a complex command which causes the rules in b2 to be edited and thenreinserted into the full grammar.all = (all-b2)+edit b2After the grammar is the way the user wants it, it can be written to a new �le using the followingcommand:write all to "new.mdtgram"

84 CHAPTER 6. IMPLEMENTATION6.2.2 legThe part of the grammar editor which lists and counts the number of input or output strings ina grammar is a separate program called leg. (The name is an acronym for List Elements of aGrammar.) This program implements algorithm 4.1.The program is invoked by typing its name followed by any optional switches. The programthen generates strings in the language of the grammar in lexical order. Valid switches to thisprogram are as follows:� from=integerThis switch speci�es the length in tokens of the shortest string printed. The default value is1.� gram=�lenameThis speci�es the name of the �le from which the grammar is read. If this switch is omittedthe �le mdtgram is used.� nx=nonterminalThis switch forces the nonterminal symbol nonterminal to be treated as if it were a terminalsymbol. In other words, rules in the grammar which have nonterminal as their LHS are notused.� side=integerThis switch is used to control whether the strings generated are from the input language orthe output language of the input grammar. If the value of integer is 0 then the input languageis used but output language strings are printed if integer is 1.� start=nonterminalThis switch speci�es the start symbol of the grammar { the nonterminal which will be theroot of every parser tree. If the switch is omitted, the nonterminal StartState is assumed.� to=integerThis switch speci�es the length of the longest string which will be printed by the program.The default value is 1000.6.2.3 rgThe generate and recognize operators in expressions of the grammar editor are computed usingthe program rg. (The name rg is derived from the �rst letters of \generate" and \recognize".)When invoked, the rg program �rst read a grammar, then begins reading lines from standardinput. Each line of input is assumed to contain a single regular expression. For each regularexpression, the subset of production rules in the grammar which might be used to parse any stringin the language of that regular expression is printed on standard output. The program terminateswhen it reaches the end of its input. The algorithm described in section 4.2 is used to �nd theappropriate production rules.Command line switches can be used to alter the behavior of the program. The followingcommand line switches are recognized:

6.3. THE VERIFICATION SUBSYSTEM 85� gram=�lenameThe name of the �le from which the grammar is read is speci�ed by this switch. If the switchis omitted, then the default �le name mdtgram is used.� side=�lenameThis switch determines whether the regular expressions describe strings in the input languageor the output language of the grammar. If the value of integer is 0 then the input languageis intended but output language strings are used if integer is 1.� start=nonterminalThis switch speci�es the start symbol of the grammar { the nonterminal which will be theroot of every parser tree. If the switch is omitted, the nonterminal StartState is assumed.The regular expression notation is similar to what is commonly seen except that all operatorsare prefaced by a backslash character in order to distinguish them from ordinary tokens. Thesymbol * following any regular expression means that there may be zero or more repetitions ofthat expression. The symbol \| between two regular expressions means that either one or the otherof the expressions may be used. The two symbols \(and \) are used for grouping. Finally, thespecial symbol \. means any ordinary token. Hence the idiom \.* means zero or more tokens ofany kind.6.3 The Veri�cation SubsystemThe veri�cation subsystem is implemented as in Prolog as a preprocessor to the dialog controller.The subsystem can not be used independently and unlike the parser is not portable to other SLSs.No interesting information can be discerned from a detailed description of the implementation thatcan not as easily be gathered from the material in chapter 5. For that reason, a full description ofthe veri�cation subsystem implementation is omitted.

86 CHAPTER 6. IMPLEMENTATION

Chapter 7Conclusions7.1 Summary of New ResultsThe major results described in the preceding chapters are the following:� A new kind of parser suitable for spoken natural language dialog is described. A new andfaster algorithm for minimum-distance parsing forms the core of the new parser, but syntax-directed translation and the use of dialog expectation also play important roles. In liveexperiments using the new parser, 83% of user inputs were correctly interpreted even though43% of these inputs were grammatically ill-formed. Followup analysis of the data collectedduring these experiments showed that dialog expectation was only helpful in breaking tiesbetween competing meanings found by the minimum-distance parsing algorithm. This lastresult is surprising { it was anticipated that dialog expectation would be much more usefulin determining the correct parse.� A development tool useful in the construction of large natural language grammars is described,and algorithms used by this development tool are analyzed. The grammar development sys-tem described is unique in that it combines into a simple and consistent interface the mostcomplete collection of features of any such previously reported system. In fact, some of thefunctions of the grammar development system are original and have never been previouslydescribed in the literature. New algorithms are presented for listing and counting the num-ber of elements in a context-free language, and for �nding small subsets of the grammar'sproduction rules which are relevant to a particular class of meanings or inputs. The problemof counting the number of elements in a context-free language is shown to be NP-hard.� A subsystem for selectively verifying the deduced meaning of an utterance when that meaningis in doubt is described. When added to a complete dialog processing system, the veri�cationsubsystem improves the percentage of correct parses from 83% to 97% without excessiveadditional dialog or burden upon the user. The idea of selectively verifying the deducedmeaning of an utterance in order to improve the e�ective accuracy of the parser is original.An extensive search of the technical literature, and discussions with established computationallinguistics researchers revealed no prior mention of this idea.� Finally, an overview of the actual implementations of the above ideas was given. This overviewcontributes to the collective knowledge of computer science by providing a proven exampleof an e�ective method for implementing similar systems, and by providing a \user's reference87

88 CHAPTER 7. CONCLUSIONSmanual" to other researchers who may choose to use or extend parts of this system in futurestudies.7.2 Future DirectionsThis thesis describes working, practical solutions to several problems associated with the designand development of spoken natural language dialog parsing systems. Yet, as is typical for aninvestigative study, the results obtained pose as many questions as they answer, and thereforesuggest topics for future study. Among the questions for which further investigation is desired arethe following:� Does the new parsing strategy work as well in other problem domains as it does with re-pair dialogs? How well would the MDSDT parsing technique work in an automated airlinereservation system, for example?� Is dialog expectation really as weak as the above results suggest? There seems to be acommon belief among computational linguistics researchers that the more access a parser hasto high-level dialog expectation, the better. The �ndings of this thesis call that belief intoquestion. Collaborative studies will be necessary in order to convince most researchers thatdialog expectation is really as weak as has been reported here.� How easily does the system described here scale up? What would be the e�ect of increasingthe vocabulary size by a factor of 10, say? Would dialog expectation become more importantif the scope of the problem domain were increased? Speculation abounds about these andsimilar questions, but there are, so far, no solid answers.� Speech recognition errors were a signi�cant cause of parsing errors. In what ways might it bepossible for the parser to help the speech recognizer provide more accurate estimates of theuser's words?� How much of the developer's time can the grammar development system really save? Whatfraction of the total system development time will be spent writing the grammar if the gram-mar development tools described above are employed?� What are some reasonable techniques for dynamically computing the veri�cation thresholdin the selective veri�cation subsystem so that utterances of lesser importance are not asfrequently veri�ed? In the implementation, the veri�cation threshold was set very high forquestions and at a much lower value for all other inputs. Surely there must be a better wayto chose the veri�cation threshold than this simple binary heuristic.The above list of questions is, of course, incomplete. Much work remains to be done before thedesign of practical and robust natural language dialog parsing systems becomes routine. Evenso, it is the opinion of this author that such a goal is ultimately achievable and will yield to thecontinuing e�orts of researchers.

Bibliography[1] A. V. Aho and J. D. Ullman. Properties of syntax directed translations. Journal of Computerand System Sciences, 3(3):319{334, 1969.[2] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser forcontext-free languages. SIAM Journal on Computation, 1(4):305{312, 1972.[3] J. F. Allen. Natural Language Understanding. The Benjamin/Cummings Publishing Company,Inc., Menlo Park, California, 1987.[4] Kenneth R. Beesley and David Hefner. PeriPhrase: Lingware for parsing and structuraltransfer. In COLING-86: Proceedings of the 11th International Conference on ComputationalLinguistics, pages 390{392, Bonn, August 1986.[5] Bran Boguraeu, John Carroll, Ted Briscoe, and Claire Grover. Software support for practicalgrammar development. In COLING-88: Proceedings of the 12th International Conference onComputational Linguistics, pages 54{58, Bonn, August 1986.[6] A. Chapanis. Interactive human communication: Some lessons learned from laboratory experi-ments. In B. Shackil, editor,Man-Computer Interaction: Human Factors Aspects of Computersand People, pages 65{114. Sijtho� and Noordho�, Rockville Md., 1981.[7] Y. L. Chow, M. O. Dunham, O. A. Kimball, M. A. Krasner, G. F. Kubala, J. Makhoul, P. J.Price, S Roucos, and R. M. Schwartz. BYBLOS: the BBN continuous speech recognitionsystem. In Alex Waibel and Kai-Fu Lee, editors, Readings in speech Recognition, pages 596{599. Morgan Kaufman, San Mateo, CA, 1990.[8] Jay Earley. An e�cient context-free parsing algorithm. Communcations of the ACM, 13(2):94{102, 1970.[9] C. M. Eastman and D. S. McLean. On the need for parsing ill-formed input. American Journalof Computational Linguistics, 7(4):257, 1981.[10] Linda Fineman. Questioning the need for parsing ill-formed inputs. American Journal ofComputational Linguistics, 9(1):22, 1983.[11] P. E. Fink and A. W. Biermann. The correction of ill-formed input using history basedexpectation with application to speech understanding. American Journal of ComputationalLinguistics, 12(1):13{36, 1986.[12] R. E. Frederking. Integrated Natural Language Dialogue: A Computational Model. KluwerAcademic Publishers, Boston, 1988. 89

90 BIBLIOGRAPHY[13] Egidio P. Giachin and Claudio Rullent. Robust parsing of severely corrupted spoken utter-ences. In COLING-88: Proceedings of the 12th International Conference on ComputationalLinguistics, pages 196{201, 1988.[14] R. Guindon, K. Shuldberg, and J. Conner. Grammatical and ungrammatical structures inuser-advisor dialogues: Evidence for su�ciency of restricted languages in natural languageinterfaces to advisory systems. In ACL Proceedings, 25th Annual Meeting, Stanford, CA,1987.[15] Hans Haugeneder and Manfred Gehrke. A user friendly ATN programming environment(APE). In COLING-86: Proceedings of the 11th International Conference on ComputationalLinguistics, pages 399{401, Bonn, August 1986.[16] Philip J. Hayes, Alexander G Hauptmann, Jaime G. Carbonell, and Masaru Tomita. Parsingspoken language: A semantic caseframe approach. In COLING-86: Proceedings of the 11thInternational Conference on Computational Linguistics, pages 587{592, Bonn, August 1986.[17] Philip J. Hayes and George V. Mourandian. Flexible parsing. American Journal of Computa-tional Linguistics, 7(4):232{242, 1981.[18] D. R. Hipp and R. W. Smith. A demonstration of the \circuit �x-it shoppe". A 12 minutevideotape available from the authors at Duke University, Durham, NC 27706, August 1991.[19] John E. Hopcroft and Je�rey D.Ullman. Introduction to Automata Theory, Languages, andComputation. Addison-Wesley Publishing Company, 1979.[20] Ajay N. Jain and Alex H. Waibel. Robust connectionist parsing of spoken language. InICASSP-91, pages 593{596, 1991.[21] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,editors, Complexity of Computer Computations, pages 85{103. Plenum Press, New York, 1972.[22] Lauri Karttunen. D-PATR: a development environment for uni�cation-based grammars. InCOLING-86: Proceedings of the 11th International Conference on Computational Linguistics,pages 74{80, Bonn, August 1986.[23] Kenji Kita and Wayne H. Ward. Incorporating lr parsing into SPHINX. In ICASSP-91, pages269{272, 1991.[24] Bernard Laug. Parsing incomplete sentences. In COLING-88: Proceedings of the 12th Inter-national Conference on Computational Linguistics, pages 365{371, 1988.[25] Kai-Fu Lee, Hsiao-Wuen Hon, and Raj Reddy. An overview of the SPHINX speech recognitionsystem. In Alex Waibel and Kai-Fu Lee, editors, Readings in speech Recognition, pages 600{610. Morgan Kaufman, San Mateo, CA, 1990.[26] Stephen E. Levinson. Structural methods in automatic speech recognition. Proceeding of theIEEE, 73(11):1625{1650, 1985.[27] Gordon Lyon. Syntax-directed least errors analysis for context-free languages. Communcationsof the ACM, 17(1):3{14, 1974.[28] D. Memmi and J. Mariani. ARBUS: A tool for developing application grammars. In COLING-82, pages 221{226, 1982.

BIBLIOGRAPHY 91[29] Herman Ney. Dynamic programming parsing for context-free grammars in continuous speechrecognition. IEEE Transactions on Signal Processing, 39(2):336{340, 1991.[30] Nils J. Nilsson. Principles of Arti�cal Intelligence. Morgan Kaufmann Publishers, Inc., LosAltos, California, 1980.[31] M. Okada. A uni�cation-grammar-directed one-pass search algorithm for parsing spoken lan-guage. In ICASSP-91, pages 721{724, 1991.[32] Annedore Paeseler and Herman Ney. Continuous-speech recognition using a stochastic lan-guage model. In ICASSP-89, pages 719{722, 1989.[33] M. J. Russell, K. M. Ponting, S. M. Peeling, S. R. Browning, J. S. Bridle, and R. K. Moore.The ARM continuous speech recognition system. In ICASSP-90, pages 69{72, 1990.[34] George W. Smith. Compters and Human Language. Oxford University Press, Oxford, 1991.[35] Ronnie W. Smith. A Computational Model of Expectation-Driven Mixed-Initiative Dialog Pro-cessing. PhD thesis, Duke University, September 1991.[36] Ronnie W. Smith, D. Richard Hipp, and Alan W. Biermann. A dialog control algorithm andits performance. Unpublished as of this writing, but has been submitted to the 3rd Conferenceon Applied Natural Language Processing., 1992.[37] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of theAssociation for Computing Machinery, 21:168{173, 1974.[38] Ye-Yi Wang and Alex Waibel. A connectionist model for dialog processing. In ICASSP-91,pages 785{788, 1991.[39] W. H. Ward, A. G. Hauptman, R. M. Stern, and T. Chanak. Parsing spoken phrases despitemissing words. In ICASSP-88, volume 1, pages 275{278, 1988.[40] Wayne Ward. Understanding spontaneous speech: The phoenix system. In ICASSP-91, pages365{367, 1991.[41] J. White. The research environment in the METAL project. In S. Nirenburg, editor, MachineTranslation: Theoretical and Methodological Issues. Cambridge University Press, 1987.[42] S. J. Young, N. H. Russell, and J. H. S. Thornton. The use of syntax and multiple alternatives inthe VODIS voice operated database inquiry system. Computer Speech and Language, 5(1):63{80, 1991.[43] Sheryl R. Young, Alexander G. Hauptmann, Wayne H. Wood, Edward T. Smith, and PhilipWarner. High level knowledge sources in usable speech recognition systems. In Alex Waibeland Kai-Fu Lee, editors, Readings in speech Recognition, pages 538{549. Morgan Kaufman,San Mateo, CA, 1990.[44] D. M. Younger. Recognition and parsing of context free languages in time n3. Informationand Control, 10, 1967.[45] V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J. Polifroni, and S. Sene�. Integration ofspeech recognition and natural language processing in the MIT voyager system. In ICASSP-91,pages 713{716, 1991.

92 BIBLIOGRAPHY[46] Victor Zue, James Glass, David Goodine, Hong Leung, Michael Phillips, Joseph Polifroni, andStephanie Sene�. The VOYAGER speech understanding system: Preliminary developmentand evaluation. In ICASSP-90, pages 73{76, 1991.[47] Victor Zue, James Glass, David Goodine, Michael Phillips, and Stephanie Sene�. The SUM-MIT speech recognition system: Phonological modelling and lexical access. In ICASSP-90,pages 49{52, 1990.

BiographyDwayne Richard Hipp was born to Richard E. and Dorothy Springs Hipp on April 9, 1961 inCharlotte, North Carolina. He grew up in Stone Mountain, Georgia, and graduated from StoneMountain High School in 1979. He attended the Georgia Institute of Technology in Atlanta be-ginning in the fall of 1979. The degree Bachelor of Electrical Engineering was awarded him withhighest honor in 1983, and he received a Master of Science in Electrical Engineering, also fromGeorgia Tech, the following year. Between 1984 and 1987, he worked as an Engineer at AT&TTechnologies in Greensboro, North Carolina, but then left to pursue a Ph.D. in Computer Scienceat Duke University beginning in the fall of 1987.

93

