
Schedulability Analysis for Tasks
with Static and Dynamic Offsets

By: J.C. Palencia and M. González Harbour
Departamento de Electrónica y Computadores, Universidad de Cantabria, SPAIN

Abstract

In this paper we present an extension to current
schedulability analysis techniques for periodic tasks with
offsets, scheduled under a preemptive fixed priority
scheduler. Previous techniques allowed only static offsets
restricted to being smaller than the task periods. With the
extension presented in this paper, we eliminate this
restriction and we allow both static and dynamic offsets.
The most significant application of this extension is in the
analysis of multiprocessor and distributed systems. We show
that we can achieve a significant increase of the maximum
schedulable utilization by using the new technique, as
opposed to using previously known worst-case analysis
techniques for distributed systems.

This work has been supported in part by theComisión

Interministerial de Ciencia y Tecnologíaof the Spanish
Government, under grant number TAP97-892

1. Introduction

The collection of real-time analysis techniques for fixed-
priority systems [1], historically known as rate monotonic
analysis [3], represents a mature technology for obtaining
guarantees about the timing requirements in hard real-time
systems. Although it is possible to get higher utilization
levels with dynamic priority scheduling algorithms, fixed
priority systems are simpler to analyze and understand, and
are supported in standard operating systems and compiler
systems.

Rate monotonic analysis (RMA) allows an exact
calculation of the worst-case response time of tasks in
single-processor real time systems, including the effects of
task synchronization [8], the presence of aperiodic tasks, the
effects of deadlines before, at or after the periods of the
tasks [2], precedence constraints and tasks with varying
priorities [4], overhead analysis, etc. However, there are two
related areas in which current RMA cannot provide exact

solutions to the response times: distributed hard real-time
systems, and systems in which tasks suspend themselves.
Current techniques for these systems are based on the
assumption that all tasks are independent, and thus they lead
to pessimistic results [10][6]. If an exact or a less
pessimistic technique could be accomplished, this would
enable more efficient use of the computing power available
in these real-time systems.

Tindell developed in [11] a technique to calculate the
worst-case response bound or an upper bound to it, for sets
of tasks with static offsets. In his paper, the system is
composed of periodic transactions, each containing several
tasks. Each task is released after some time, called the
offset, elapses since the arrival of the event that triggers the
transaction. In [11], the task offsets are restricted to being
smaller than the task’s periods, and they are static. This is
useful in those systems where task activations are timed
precisely, at periodic intervals, to avoid the negative effects
of jitter. However, a technique to calculate the worst-case
response times of tasks sets with offsets could be very
valuable to obtain a solution to the problems of task
suspension and distributed systems if task offsets could be
dynamic, i.e., if they could change from one activation to
the next. For example, in distributed systems a task may be
released when a previous task completes its execution and
a message is received; this release time can vary from one
period to the next. In addition, in distributed systems it is
common that task deadlines are larger than the periods, and
thus it is also very likely that task offsets might become
larger than the task periods.

Consequently, in this paper we extend Tindell’s analysis
of tasks with static offsets in the following ways: we
eliminate the restriction of task offsets being smaller than
the period; we provide a formal basis that overcomes some
defects in [11]; and most important, we extend the technique
to cover the case in which task offsets may vary
dynamically, and thus we make the technique directly
applicable to the analysis of distributed systems and systems

in which task suspend themselves. As we will show, in
distributed systems the new technique allows a significant
increase of the schedulable utilization of the CPU compared
to the case when previous analysis techniques were used.
This comes at no cost for the application, which will still be
scheduled using fixed priorities.

The paper is organized as follows. In Section 2 we
present the analysis for tasks with static offsets. We start
with the computational model and discuss existing
techniques for solving this problem. Then, we present our
extension of Tindell’s technique to allow task offsets to be
larger than the periods. In Section 3 we extend this
technique to the analysis of tasks with dynamic offsets.
Then, in Section 4 we show how to apply this analysis to
determine the schedulability of a distributed or
multiprocessor real-time system. In Section 5 we compare
the results obtained with our technique with the results
obtained with previously known techniques; we will see that
with the new technique the response times are significantly
lower. Finally, in Section 6 we give our conclusions.

2. Analysis for Tasks with Static Offsets

2.1. Computational Model

The real-time system that we will consider for the
analysis of tasks with static offsets is composed of a set of
tasks executing in the same processor, which are grouped
into entities that we will call transactions [11]. Each
transactionΓi is activated by a periodic sequence of external
events with periodTi, and contains a set ofmi tasks. The
relative phasings between the different external events are
arbitrary. Each task is activated (released) when a relative
time —called theoffset— elapses after the arrival of the
external event. In this section of the paper we will assume
that the offset is static, i.e., it does not change from one
activation to the next. Each activation of a task releases the
execution of one instance of that task, that we will call a
job.

Figure 1 shows an example of such system: the horizontal
axis represents time; down-pointing arrows represent the
arrival of the external events associated to each transaction,
while up-pointing arrows represent the activation times of
each task; and shaded boxes represent task execution. We
will assume that each task has its own unique priority, and
that the task set is scheduled using a preemptive fixed
priority scheduler. Notice that although offsets represent a
kind of precedence constraints, in our analysis tasks are
activated at a time equal to the arrival of the external event

plus the offset, and they execute at their assigned priority

τ11 τ12

T1T1

φ11
φ12

Γ1

R12

Rn2

Rn3

R11

Rn1

τ21 τ22
T2 T2

φ21 φ22

Γ2

Tn Tn

φn1 φn2 φn3

Γn

.
.

.
.

.

Figure 1. Computational model of a system composed of
transactions with static offsets

regardless of whether tasks of the same transaction and
smaller offsets have finished or not.

Each task will be identified with two subscripts: the first
one identifies the transaction to which it belongs, and the
second one the position that the task occupies within the
tasks of its transaction, when they are ordered by increasing
offsets. In this way,τij will be the j-th task of transaction
Γi, with an offset ofΦij and a worst-case execution time of
Cij. In addition, we will allow each task to have jitter, that
is to have its activation time delayed by an arbitrary amount
of time between 0 and the maximum jitter for that task,
which we will call Jij. This means that the activation time of
taskτij may occur at any time betweent0+Φij andt0+Φij+Jij,
wheret0 is the instant at which the external event arrived.

We will allow deadlines to be larger than the period, and
thus at each time there may be several activations of the
same task pending. We will also allow both the offsetΦij

and the jitter Jij to be larger than the period of its
transaction,Ti. For each taskτij we define its response time
as the difference between its completion time and the instant
at which the associated external event arrived. The worst-
case response time will be calledRij. Each task may have an
associated global deadline,Dij, which is also relative to the
arrival of the external event.

We will assume that if tasks synchronize for using shared
resources in a mutually exclusive way they will be using a
hard real-time synchronization protocol such as the priority
ceiling protocol [8]. Under this assumption, the effects of
lower priority tasks on a task under analysisτab are
bounded by an amount called the blocking termBab,
calculated as the maximum of all the critical sections of
lower priority tasks that have a priority ceiling higher than

or equal to the priority ofτab. Analysis of systems with
aperiodic tasks will be addressed in a future paper.

2.2. Current Response Time Analysis Techniques

The RMA analysis technique for tasks with jitter by
Tindell and Clark [10], was extended by Tindell [11] to take
into account the task offsets, and thus reduce the pessimism
of the analysis. He obtained an exact schedulability analysis
that was computationally intractable for large task sets,
because of the high number of cases that had to be checked,
which was exponentially dependent on the number of tasks.
However, based upon this technique he developed an
approximate upper bound for the worst-case response time,
that could be obtained by analyzing a number of cases that
was polynomially dependent on the number of tasks.
Although the approximate upper bound is pessimistic, it is
much closer to the exact solution than the original RMA
technique.

However, Tindell’s technique was restricted to task
offsets being smaller than the associated task periods. In
addition, although to our knowledge his results were correct,
there were some defects in the development of his analysis;
for example, Theorem 1 in [11] did not take into account
jitter, and other results were based on this theorem. For
these reasons, in this section of our paper we extend his
technique to allow task offsets larger than the task periods,
and we also formalize the technique via a complete set of
proofs. Furthermore, we introduce a different kind of
notation, which will help us in a future extension of our
technique to further exploit precedence constraints among
the tasks of a transaction.

Sun and Liu developed in [9] a technique similar to
Tindell’s analysis with offsets, and applied it to the analysis
in multiprocessor systems, but their technique was restricted
to offsets and deadlines smaller than the task periods, and
it did not take into account the effects of jitter. Both [11]
and this paper handle jitter for task activations, and
deadlines larger than the task periods.

2.3. Exact Response-Time Analysis

In this subsection we will extend Tindell’s technique for
calculating an exact response time analysis of a set of tasks
with static offsets [11], to allow offsets larger than the task
periods, and we will formalize its development. Although
the analysis will be intractable for large task sets because of
the large number of cases that need to be considered, it will
serve as the basis of the upper-bound approximation that

appears in Subsection 2.4.
For building the worst-case scenario for a taskτab under

analysis, we must create a critical instant that leads to the
worst-case busy period. A taskτab busy period is an
interval of time during which the CPU is busy processing
task τab or higher priority tasks. For tasks with offsets, we
must take into account that the critical instant may not
include the simultaneous activation of all higher priority
tasks, as it was the case when all tasks were independent.
The existence of offsets makes it impossible for some sets
of tasks to simultaneously become active.

When analyzing the response time of a particular task,
the offset of a higher priority task may be changed by
adding or subtracting whole periods of that latter task,
without any effects on the response time of the lower
priority tasks, since one instance of a task is
indistinguishable from another instance. Therefore, in order
to simplify the analysis, we will consider a reduced task
offset, φij, which is always within 0 andTi:

where functionmod is the usual modulus operation, and

(1)φ ij Φ ij mod Ti

where x is the greatest integer number that is less than
or equal tox. This result holds for all higher priority tasks,
regardless of whether they belong to the same transaction as
the task under analysis, or to different transactions. It also
applies when calculating the interference of other jobs of the
own task under analysis.

In order to derive the analysis technique, we will try to
find out the contribution of each task to the worst-case
response time, supposing that we know the time at which
the critical instant occurs. Later, we will explore how to
calculate the critical instant. Let us focus on the activation
pattern of taskτij, and let us call its phase relation with the
critical instant,φ, the time interval between the activation
of transactionΓi that occurred immediately before or at the
critical instant, and that critical instant. Notice that 0≤φ<Ti.

In order to calculate the worst-case contribution ofτij to
the response time of lower priority tasks we must categorize
each instance of the task into one of the following sets:

• Set 0: Activations that occur before the critical instant
and that cannot occur inside the busy period even with
the maximum jitter delay.

• Set 1: Activations that occur before or at the critical
instant and that can be delayed by an amount of jitter
that causes them to coincide with the critical instant.

• Set 2: Activations that occur after the critical instant.
Figure 2 shows two possible scenarios for the alignment

of the transactionTi’s arrival pattern and the critical instant.

tc

tc

φij φij φij φij

Jij

Jij

Scenario 1

Scenario 2

Ti

φij φij

Ti

t0

t0

t1

t1

t3

t3

φ

∆

φij

φ

∆

φij

t2

t2

Figure 2. Scenarios for calculating the contribution of
taskτij to the response time of lower priority tasks.

Scenario 1, in the upper part of the figure, corresponds to
the case in whichφ≥φij, and the lower part, Scenario 2,
corresponds toφ<φij. Dotted lines represent the actual jitter
or delay in the activation time for each instance of the task.
Time t0 corresponds in both scenarios to the first event ofΓi

whose taskτij may be delayed by jitter until the critical
instant,tc (activations beforet0 would require a delay larger
than the maximum jitter to occur attc). The event that
occurs att1 may also be delayed by an amount that makes
it coincide with the critical instant. The activation ofτij

associated with the event that arrived att2, can be delayed
until the critical instant in Scenario 1, but not in Scenario 2,
because the offsetφij is larger than the relative phaseφ
between the event arrivals and the critical instant. For
scenario 2, the job associated with the event arriving att2
must be included in Set 2.

Once the jobs of taskτij have been categorized into the
three sets above, the calculation of the jitter terms that lead
to the worst-case contribution ofτij to the response time of
lower priority tasks is done according to the following
theorem.

Theorem 1. Given a taskτab critical instant,tc, and a
phase relationφ between the arrival pattern of transaction
Γi and the critical instant, the worst-case contribution of
task τij to the response time ofτab occurs when the
activations in Set 1 have an amount of jitter such that they
all occur at the critical instant, and when activations in Set
2 have an amount of jitter equal to zero.

Proof: By definition of the busy period, activations in Set
0 are not involved in it; otherwise, since they occur before
the critical instant, the busy period would have started
earlier.

For activations in Set 1, we must delay them with a jitter
amount that causes them to occur inside the busy period.

But if this delay causes the activation to occur after the
critical instant, it might fall outside the busy period. Thus,
to ensure the maximum possible contribution to the busy
period, the jitter amount must be such that the activation
occurs at the critical instant.

For activations in Set 2, the larger the jitter delay they
have, the more probability that the activation occurs outside
the busy period. Thus, to ensure the worst possible
contribution, the jitter amount for these activations must be
zero.

Under the conditions of Theorem 1, we will now
calculate the number of activations of taskτij that belong to
Set 1, and thus that may accumulate at the critical instant.
We will call this numbernij (in the example, the upper-part
scenario hadnij=3 and the lower-part scenario hadnij=2). To
calculatenij, we will define ∆ as the difference in time
between the time at which the last activation in Set 1 would
have occurred if it had no jitter delay, and the critical
instant. In the example ofFigure 2, ∆ = tc- t2+ φij for
Scenario 1, and∆ = tc- t1+ φij for Scenario 2. It can be seen
that:

(2)∆

φ φ ij if φ≥φ ij

Ti φ φ ij if φ<φ ij

or, equivalently:
(3)∆ (φ φ ij) mod Ti

The first activation ofτij in Set 1 corresponds to the
event arriving att0, which is the first one whose activation
may occur at or after the critical instant. Therefore, this is
the only activation that simultaneously verifies:

(4)t0 φ ij Jij ≥ tc

and:
(5)t0 Ti φ ij Jij < tc

By looking atFigure 2 we can see that:
(6)tc t0 (nij 1)Ti φ ij ∆

and replacing it in the two previous expressions we get:

(7)t0 φ ij Jij ≥ t0 (nij 1)Ti φ ij ∆
t0 Ti φ ij Jij < t0 (nij 1)Ti φ ij ∆

from which we get:

(8)nij 1 ≤
Jij ∆

Ti

and nij 1 >
Jij ∆

Ti

1

Given thatnij is an integer number, the solution to the
above two expressions is:

(9)nij

Jij ∆
Ti

1

In order to determine the effects of activations belonging

to Set 2, we need to know the time at which the first of
them occurs; the others will occur at periodic intervals after
the initial one. We will callϕ the time difference between
the critical instant and that first activation in Set 2. Given
the definition of∆ we have:

(10)ϕ Ti ∆
We could have usedϕ in Equation (9) above to obtain:

(11)nij

Jij ϕ
Ti

According to Theorem 1, the worst-case contribution of
τij to a busy period of a lower priority task is equivalent to
nij activations at the critical instant, plus a sequence of
periodic activations starting atϕ time units after the critical
instant. Without loss of generality, let’s set the origin of
time at the critical instant. Then, the worst-case contribution
of task τij to the response time ofτab at time t is
determined by:

(12)
W(τ ij,φ ,t) nij(φ)Cij

t ϕ(φ)
Ti

Cij

Jij ϕ(φ)

Ti

t ϕ(φ)
Ti

Cij

with
(13)ϕ(φ) Ti (φ φ ij) mod Ti

The total interference of the tasks of transactionΓi on the
execution of τab is obtained by taking into account the
contributions of all higher priority tasks:

(14)W(Γi,φ ,t)
∀j∈hpi(τ ab)

W(τ ij,φ ,t)

where hpi(τab) represents the set of tasks belonging to
transactionΓi with priority greater than or equal to the
priority of τab.

Now, we must determine how to calculateφ, the phase
between the arrival pattern ofΓi and the critical instant. We
will base this calculation on the following theorem:

Theorem 2. The worst-case contribution of transactionΓi

to a task τab critical instant is obtained when the first
activation of some taskτik in hpi(τab) that occurs within the
busy period coincides with the critical instant, after having
experienced the maximum possible delay, i.e., the maximum
jitter, Jik.

Proof. By definition of the busy period, right before the
critical instant there are no pending tasks of priority higher
than the priority ofτab. Now suppose that we choose a
critical instant that does not coincide with the activation of
some task inhpi(τab). Let us focus on the first activation of

a task belonging tohpi(τab) that occurs within the busy
period, τik. If we cause the arrival of the events ofΓi to
occur earlier while keeping the same activation patterns for
all its tasks, until taskτik coincides with the critical instant,
all the jobs of tasks belonging tohpi(τab) that were in the
busy period continue to be in that same busy period, but we
have brought more jobs of those tasks, and perhaps other
additional tasks, closer to the busy period, thus increasing
the chance of additional interference on taskτab. Thus by
making the first job ofτik coincide with the critical instant
we can only make its contribution worse.

Now, we have to check that the worst-case contribution
of transactionΓi is obtained when a job of a taskτik that
initiates the critical instant has experienced the worst-case
delay, equal toJik. Let us call I the set of jobs of tasks
belonging tohpi(τab) that initiate the busy period, and let us
suppose that each of these jobs has a jitter valuej il less than
the maximum for its associated task,Jil. Now let us move
back (i.e., earlier in time) the event arrivals of transaction
Γi, and simultaneously, increase the jitter delay of all the
events inI by the same amount of time, so that all these
jobs continue to be activated at the same time as before;
jitter delays for all other jobs remain unchanged (and thus
they are activated earlier). Under these conditions, we will
move back the event arrivals until we reach the point when
either: a) one of the jobs inI reaches its maximum jitter; or
b) when a job in the busy period that did not belong toI
gets aligned with the critical instant (because it is activated
earlier). In case b), we insert the new job into setI, and we
continue the process of moving back the event arrivals of
Γi, in an iterative manner, until we reach condition a), under
which one or more of the activations that start the busy
period have experienced their maximum jitter. Notice that
during this process, none of the activations that belonged to
the busy period has been moved to a point before the
critical instant, and thus all the jobs that belonged to the
busy period remain in it. However, because the event
arrivals of Γi now occur earlier, it is possible that jobs
which previously occurred after the end of the busy period
are now activated inside the busy period, thus making it
longer and increasing the response times for the task under
analysis,τab. Therefore, the theorem follows.

By applying theorem 2, and supposing that we know that
task τik is one that originates the critical instant, we can
determine the phase between the event arrivals and the
critical instant:

(15)φ (φ ik Jik) mod Ti

Substituting this expression in equation (13) we obtain

the phaseϕijk between any taskτij and the critical instant
created withτik:

(16)ϕijk ϕ(φ) φ (φ ik Jik) mod Ti

Ti (φ ik Jik) mod Ti φ ij mod Ti

and applying the properties of the modulus function,
(17)ϕijk Ti φ ik Jik φ ij mod Ti

Using this value, we can now obtain the expression of
the worst-case contribution of transactionΓi when the
critical instant is initiated withτik. We will call this function
Wik(t,τab), and we obtain it by replacing (17) in equations
(12), (13) and (14):

(18)

Wik(τ ab,t) W(Γi,φ ,t)
φ (φ ik Jik) mod Ti

∀j∈hpi(τ ab)

Jij ϕijk

Ti

t ϕijk

Ti

Cij

In order to obtain the worst-case response time of task
τab we need to apply the above function for all the
transactions in the system. The main problem now is that
for each transactionΓi we need to find the taskτik with
which we create the critical instant. In order to perform an
exact analysis, it is necessary to check all possible variations
of one task out of every transaction, and choose the
variation that leads to the worst response time for the task
under analysis.

The number of variations, and thus of different critical
instant possibilities that need to be checked, is determined
by the number of tasks of priority higher than that of the
task under analysis that exist in each transaction in the
system. We also have to take into account that the task
under analysis itself may originate the critical instant for its
transaction. Thus, the total number of variations is:

(19)
Nv(τ ab) Na(τ ab) 1 N1(τ ab) N2(τ ab) ...

Na(τ ab) 1
∀i≠a

Ni(τ ab)

whereNi (τab) is the number of tasks belonging tohpi(τa).
Each of theNv(τab) variations is characterized by a tuplev
of indexes, one for each transaction. Each indexv(i)
identifies the task of transactionΓi that initiates the critical
instant.

For convenience, we will number the jobs of the task
under analysis using the letterp, with consecutive numbers
ordered according to the activation time that they would
have had if they had no jitter. In addition, we will assign the
valuep=1 to the activation ofτab that occurs in the interval
(0,Ta]. This means that the activation that occurred in
(Ta,2Ta] gets the valuep=2, etc. Similarly, the activation that

would have occurred in the interval (-Ta,0] but that was
delayed to the critical instant corresponds top=0, the one in
(-2Ta,-Ta] to p=-1, etc. Notice that activations that occur
after the critical instant are numbered with positive numbers,
while previous activations have values ofp≤0.

For each variationv we will obtain the completion time
of each of the jobs ofτab in the busy period. This time,
wv

ab(p) is obtained by considering the execution ofτab

together with the interference from all the other tasks in the
system:

(20)w v
ab(p) Bab (p p v

0,ab 1)Cab
∀i

Wiv(i) τ ab,w
v

ab(p)

wherepv
0,ab corresponds to the lowest-numbered job, and is

equal to:

(21)p v
0,ab

Jab ϕabv(a)

Ta

1

The solution to equation (20) is obtained as in the normal
rate monotonic equation [10] by starting from a value of
wv

ab(p)=0, and iterating until two consecutive iterations
produce the same value. This analysis has to be repeated for
all the jobs present in the busy period. The length of the
busy period, which we will callLv

ab, may be obtained with
the following equation:

(22)L v
ab Bab

L v
ab ϕabv(a)

Ta

p v
0,ab 1 Cab

∀i

Wiv(i) τ ab,L
v

ab

which represents the first instant after the critical instant at
which all jobs ofτab and of all higher priority tasks have
been completed. With the length of the busy period, we can
obtain the maximum value ofp that we need to check:

(23)p v
L,ab

L v
ab ϕabv(a)

Ta

The global response time is obtained by subtracting from
the obtained completion time the instant at which the
external event that activated the transaction arrived.
According to our numbering scheme, the first activation of
τab after the critical instant corresponds to the valuep=1
and, by definition, it corresponds to instantϕabv(a).
Consequently thep-th activation occurs atϕabv(a) + (p-1)Ta.
Since the task is activatedΦab time units after the event
arrival, the event arrival for each jobp occurs atϕabv(a) +
(p-1)Ta - Φab. Therefore, the global worst-case response time
for job p is:

(24)R v
ab(p) w v

ab(p) ϕabv(a) (p 1)Ta Φab

Notice that in the above equation we have to use the real

offset, Φab, instead of the reduced offsetφab, which was
used when calculating interference of higher-priority tasks
on the task under analysis. To calculate the global worst-
case response time for taskτab we must determine the
maximum among all the potential critical instants examined:

(25)Rab max
∀v

max
p p v

0,ab..p
v

L,ab

R v
ab(p)

By applying the described analysis to each task in the
system we can obtain the global worst-case response times
and, by comparing them with the deadlines, we can
determine whether the system will meet or not its timing
requirements. However, although the analysis technique is
exact, it represents an NP-complete algorithm in which the
number of cases to check grows exponentially with the
number of tasks. This means that for most practical
problems the algorithm is intractable and cannot be used.
For this reason, in the following subsection we will use the
upper-bound approximation that appears in [11], in which
the number of cases to test is polynomially dependent on the
number of tasks, at the price of providing pessimistic
results. As it is shown in [11], these results will be much
less pessimistic than the ones obtained with the current
analysis techniques in [10].

2.4. Upper-Bound Approximation for Worst-
Case Analysis

In [11], Tindell developed an approximate method that
will enable us to obtain upper bounds for the global worst-
case response times in a system composed of transactions
with fixed offsets. Although the technique is not exact, the
number of cases that need to be checked has a polynomial
dependency on the number of tasks, which makes the
method applicable even for relatively large systems. If the
response times obtained with this method are smaller than
the respective deadlines, the method gives guarantees that
all timing requirements will be met.

The analysis is based on the exact technique developed
in [11] and which we extended in the previous subsection.
There, we obtained the equation that calculates the worst-
case contribution of a transactionΓi on the response time of
task τab when the critical instant coincides with the
activation of taskτik:

(26)Wik(τ ab,t)
∀j ∈hpi(τ ab)

Jij ϕijk

Ti

t ϕijk

Ti

Cij

The main problem with that analysis technique is that we

don’t know which taskτik must be used to create the worst-
case busy period. This caused us to have to check all
possible variations. Tindell avoided it by obtaining an upper
bound to the interference of the tasks of a transactionΓi in
a busy period of durationw, as the maximum of all possible
interferences that could be caused by considering each of
the tasks ofΓi as the one originating the busy period:

(27)Wi (τ ab,w) max
∀k ∈ hpi(τ ab)

Wik(τ ab,w)

Therefore, using this function in the calculation of the
response times, we can make sure that the time obtained is
an upper bound for the contribution of the tasks of
transaction Γi and thus it would not be necessary to
calculate all the possible variations fork. By using one
function like this for each transaction, we can calculate the
global worst-case response time for a particular task by
checking only a single case.

In order to introduce less pessimism, we will not use that
function for the transaction to which the task under analysis
belongs, but we will use the original transaction.
Consequently, for the analysis we must consider all the
possibilities of critical instants created with each of the tasks
in the sethpa(τab) plus τab; the number of possibilities is
small, equal to the number of tasks inhpa(τab) plus one. For
a critical instant created withτac, the worst-case response
time is determined by:

(28)
wabc(p) Bab (p p0,abc 1)Cab

Wac τ ab,wabc(p)
∀i≠a

Wi τ ab,wabc(p)

As it is shown in [11], this equation can be solved using
the traditional RMA iterative method. Parameterp0,abc

corresponds to the first activation that occurs at the critical
instant:

(29)p0,abc

Jab ϕabc

Ta

1

The length of the busy period is calculated as:

(30)
Labc Bab

Labc ϕabc

Ta

p0,abc 1 Cab

Wac τ ab,Labc
∀i≠a

Wi τ ab,Labc

and from it:

(31)pL,abc

Labc ϕabc

Ta

The global worst-case response time is obtained by
subtracting from the completion time the instant at which

the associated event arrived:
(32)Rabc(p) wabc(p) ϕabc (p 1)Ta Φab

And then we need to take the worst of all the response
times obtained:

(33)Rab max
∀c∈hpa(τ ab) b

max
p p0,abc..pL,abc

Rabc(p)

Notice that this algorithm requires only inspecting a
number of possible critical instants equal to the number of
tasks in transactionΓi that have priorities larger than or
equal to the priority ofτab (and including itself). It is
usually a relatively small number, with which we obtain
acceptable results, as it can be seen in [11].

3. Analysis for Tasks with Dynamic Offsets

In this section we will extend the analysis to include the
case in which the system has tasks with dynamic offsets. As
in the case with static offsets, the system is composed of a
set of transactions that execute in the same processor. Each
transactionΓi has a period ofTi and contains a set ofmi

tasks with activation offsetΦij, execution timeCij, and
maximum jitterJij. However, in this case tasks offsets are
allowed to vary dynamically, from one activation to the
next, within a minimum and a maximum value: Φij∈
[Φij, min,Φij, max].

Dynamic offsets are useful in systems in which tasks
suspend themselves or in distributed systems. For example,
a task may execute for some time, and then suspend itself
to read some data from a disk. Let us suppose that the
suspension time is betweenSmin and Smax. We would then
model this task as a transaction composed of two tasks: task
τi1 corresponding to the code before the suspension, and
taskτi2 to the code after the suspension. The activation time
of the second task depends on the completion time of the
first task, plus the suspension time, and thus the offset for
task τi2 is variable in the intervalΦi2∈[Rb

i1+Smin,Ri1+Smax],
whereRb

i1 andRi1 are, respectively, the best-case and worst-
case response times of taskτi1. The same kind of effect
happens in distributed systems, when a task is activated
upon the arrival of a message, which arrives at a variable
time within a given time window. Distributed systems are
considered in Section 4.

In the analysis for tasks with static offsets that was
presented in Section 2, the activation phase represented the
minimum interval of time that could exist between the
arrival of the external event and the activation of the
associated task. On the other hand, the jitter term
represented the maximum delay that the task activation

could suffer, counted from the arrival of the external event
plus the task’s offset. Therefore, it is easy to notice that we
can model the case in which the offsets may vary as a
special case of a system with static offsets, by defining an
equivalent static offsetΦ’i j and an associated equivalent jitter
term J’i j, for each task, in the following way:

(34)Φ ij Φ ij ,min

Jij Jij Φ ij ,max Φ ij ,min

Therefore, the analysis with static offsets can be applied
to this equivalent transaction to obtain the worst-case
response times. However, in most systems in which task
offsets can vary dynamically, their minimum or maximum
values, or both, are dependent on the response times of
previous tasks in the transaction. For example, in a system
with several suspending tasks like the one that was
mentioned above, the minimum offset of the task after the
suspension was a function of the best-case response time of
a previous task in the same transaction, while the maximum
offset was a function of the worst-case response of that
same task:

(35)Φ ij Φ ij ,min R b
ij 1 Smin

Jij Jij Φ ij ,max Φ ij ,min Jij Rij 1 R b
ij 1 Smax Smin

The main problem is that the response times are
dependent on the task offsets, and the task offsets depend on
the response times. ForRij

b
-1, we can use any lower bound

to the best-case response time. If task execution times can
be arbitrarily small, this lower bound is zero. Otherwise, we
can use the task’s own best-case execution time. For a more
detailed analysis of the best-case response time see [7].

So now our main problem is the calculation of the worst-
case response times, which depend on the task offsets,
which in turn depend on the worst-case response times. This
is a problem similar to the calculation of response times in
distributed systems, which depend on the task jitters, while
the task jitters themselves depend on the response times.
The solution to this problem appears in [10], and consists of
starting from an initial value of response times of zero, and
iterating over the analysis until a stable solution is achieved.
The monotonic dependency of the response on the jitter
terms determines the convergence of the method: the larger
the jitter terms, the larger the response times, and viceversa.

In our case we will start with an initial value of the
response time equal to zero, and thus an initial value for the
jitter in the equivalent model of:

(36)Jij Jij Smax Smin ∀i,∀j

Then, we apply the analysis using the technique for static

offsets with the equivalent offsets and jitter terms. In this
way we obtain the response times of each task. Using these
response times we re-calculate the equivalent jitter using
(35), and with this new value we recalculate the response
times. We continue this calculation in an iterative way until
we obtain the same result in two successive iterations, that
is:

(37)R (n 1)
ij R (n)

ij ∀i , ∀j

We call this algorithm WCDO (worst-case analysis for
dynamic offsets). It converges to a solution, if one exists,
because of the monotonicity of the worst-case response
times given in Eq. (25) with the jitter terms. This
dependency is also in accordance with the results of
Theorem 2.

4. Analysis of Multiprocessor and Distributed
Systems

In multiprocessor and distributed systems it is usual that
the system can be modeled with "transactions" composed of
several tasks, like in the computational model described in
Section 3. For example, in a system following the client-
server architecture, a client task is activated by the arrival
of an external event, and requests services from one or more
servers, perhaps in different processors. This client task can
be modeled as a transaction. Each piece of code between the
service requests would be modeled as a task. Each portion
of execution of a server in another processor is modeled as
another task in the same transaction. Each task in the
transaction, τij, is activated by the completion of the
previous task in its transactionτij -1.

In a distributed system, the transmission times of the
messages through the communications network must also be
taken into the analysis. If we use a real-time network that is
based on fixed priority messages like the CAN bus or point
to point lines [5], we can model the network as if it was
another processor, accounting the non-preemptability of the
message packets as additional blocking time [6]. Thus, for
simplicity, we will only talk about tasks and processors,
although one or more of these processors may in fact be
modeling a communications network. Other scheduling
strategies for the messages in the network can also be
adapted to our worst-case analysis.

Consequently, we will model the activities executing in
a distributed system as transactions, each composed of a
chain of tasks. Each task represents a task or a portion of a

task executing in a processor, or a message transmitted
through a communications network. The first task in the
transaction is activated by the arrival of a periodic external
event; let us suppose that this external event has no jitter.
We will use a model similar to the one used for tasks that
suspended themselves in Section 3, defining an equivalent
offset and jitter term of zero for the task that initiates the
transaction, and with the following values for each task that
does not initiate the transaction:

(38)Φ ij Φ ij ,min R b
ij 1

Jij Jij Φ ij ,max Φ ij ,min Rij 1 R b
ij 1

whereRij
b
-1 is a lower bound to the best-case response time

of task, andRij -1 is an upper bound for the worst-case
response time.

Evidently, a task executing in a given processor cannot
preempt tasks executing in other processors, and thus we
must redefine the sethpi(τab) of tasks that can preempt a
given taskτab to contain only tasks that belong to the same
processor asτab:

(39)hpi(τ ab) j∈Γi priority(τ ij)≥priority(τ ab)
processor(τ ij) processor(τ ab)

Using these equivalent offsets and jitter terms we can use
the same iterative method that was presented in Section 3,
algorithm WCDO, but using equation (38) to calculate the
equivalent offsets and jitters, and starting with initial values
of Jij=0 andφij=Rij

b
-1 for each task. As before, convergence

of the iterative algorithm is guaranteed by the monotonic
dependency of the response times on the jitter terms.

In order to better understand the technique presented, we

CPU-1

Task-1

m1

m2

Task-2

CPU-2
Task-3

Task-4

Task-5Serial line

Figure 3. Simple distributed system

will illustrate it with a simple example. Consider the system
that appears inFigure 3. Tasks 1, 3 and 5 are simple
periodic tasks. Task 2 is a periodic task that suspends itself
to request service from task 4. Right before the suspension,
task 2 transmits a message,m1, through the network, which
is a serial line. Task 4 is activated at the arrival of this

message at CPU-2; when it completes its execution it sends

Table I. Timing parameters for the example

Task Original Ci Ti Di Prio.

Γ1 τ11 task-1 4 20 20 High

Γ2

τ21 task-21 20

150 150

Low

τ22 m1 25 -

τ23 task-4 15 Med

τ24 m2 34 -

τ25 task-22 30 Low

Γ3 τ31 task-3 5 30 30 High

Γ5 τ51 task-5 100 200 200 Low

messagem2 back through the same serial line. Then, task 2
resumes its execution until completion. Task 2, task 4 and
both messages can be modeled as a transaction with five
tasks; the timing parameters of all the transactions and tasks
are shown inTable I. The scheduling policy used in the
network is FIFO; this can be easily modeled by assuming
that, when analyzing each message, the other one has higher
priority. We will assume that the execution times of each
task, and the transmission times of each message are fixed,
i.e., there is no difference between the best and the worst-
case. This means that we can use the execution or
transmission times as the local best-case response times for
each associated task, and thus calculate the offset of each
task as:

If we analyze the described system using the

(40)Φ ij R b
ij

k 1..j 1

Cik

conventional analysis techniques in which we assume that
each task is independent of the others, we get a response
time for transactionΓ2 of 266 time units, which is well past
its end-to-end deadline of 150. However, if we apply the
analysis technique described in this section, we obtain a
worst-case response time for that same transaction of 145
time units, which makes the transaction schedulable (Table II

shows the results of the analysis for the five tasks of
transactionΓ2). The reason for this difference is that in the
original analysis the first portion of task 2 is preempted
once by the second portion, and viceversa. The same
happens for the messages in the network: each one preempts

the other one once. However, in practice, because of the

Table II . Results for transactionΓ2

task Φ2j J2j R2j

τ21 0 0 28

τ22 20 8 53

τ23 45 8 73

τ24 60 13 107

τ25 94 13 145

task offsets, it is not possible that portion 2 of task 2
interferes with portion 1 or viceversa, nor it is possible that
the messages interfere with each other. This is correctly
taken into account by the analysis with dynamic offsets that
we have developed in this paper.

5. Comparison with existing techniques

We have compared the results of the analysis for tasks
with dynamic offsets with the results obtained using the
current analysis technique for distributed systems, which
assumes that each task is independent of the others [10]. For
this purpose, we have conducted extensive simulations with
different task sets whose execution times and periods were
generated randomly. Priorities were assigned using the rate
monotonic algorithm. The results of some of these
simulations are shown in this section.

The first set of graphs (Figures 4 to 6) compares the

Analysis for:
 1 processor
 10 transactions
 10 tasks per transaction

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90

% Utilization

R
in

de
p
/R

W
C

D
O

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin=1000

Figure 4. Rindep/RWCDO, 1 processor, best=0

response times obtained using Tindell and Clark’s technique

for independent tasks,Rindep, with the response times

Analysis for:
 4 processors
 10 transactions
 12 tasks per transaction
 best case = 0

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 10 20 30 40 50 60 70 80 90

% Utilization

R
in

de
p
/R

W
C

D
O

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin = 1000

Figure 5. Rindep/RWCDO, 4 processors, best=0

obtained using algorithm WCDO,RWCDO. In these figures,
we show the average ratioRindep/RWCDO obtained for five
simulated tasks sets for each point in the graph. The X axis
represents processor utilization. Each figure presents the
results for three different ratios of the maximum transaction
period over the minimum transaction period,Tmax/Tmin.
Figure 4 shows the results for a set of 10 transactions with

Analysis for:
 4 processors
 10 transactions
 12 tasks per transaction
 best case > 0

1

1,5

2

2,5

3

3,5

4

4,5

5

0 10 20 30 40 50 60 70 80 90

% Utilization

R
in

de
p
/R

W
C

D
O

Tmax/Tmin = 10
Tmax/Tmin = 100
Tmax/Tmin = 1000

Figure 6. Rindep/RWCDO, 4 processors, best>0

10 tasks per transaction, in one processor, for the case in
which the best-case response times are considered
negligible, and thus the task offsets are all zero. It can be
seen that for normal utilization levels of around 70%, the
response times with independent tasks are roughly between
2.2 and 2.6 times larger than in the analysis with dynamic
offsets. The results with best case response times equal to
the task execution times are the same for this case.

Figure 5 shows the results for a similar case, but running

Analysis for:
 4 processors
 5 transactions
 20 tasks per transaction
 Tmax/Tmin=100

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

Maximum schedulable utilization

D
/T

Independent tasks
WCDO with best case=0
WCDO with best case > 0

Figure 7. Max. Sched. Utilization, 100 tasks

on four processors. We can see that as the number of tasks
of the same transaction that are in the same processor
diminishes, the benefits of the WCDO algorithm also
diminish. However, these benefits are still significant, with
response times between 1.27 and 1.37 times better for 70%
utilization. Figure 6 shows the results for the same case as
Figure 5, except that the best case response time of each
task is considered equal to the sum of the execution times
of itself and all its predecessor tasks in the same transaction.
We can see that, in this case, the results are significantly
better, with response times between 2 and 2.6 times better
than in the analysis with independent tasks, for a utilization
of 70%.

The second set of graphs (Figure 7 and Figure 8)

Analysis for:
 4 processors
 5 transactions
 12 tasks per transaction
 Tmax/Tmin=100

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90

Maximum schedulable utilization

D
/T

Independent tasks
WCDO with best case = 0
WCDO with best case > 0

Figure 8. Max. Sched. Utilization, 60 tasks

compare the maximum schedulable utilization that can be

obtained for a given task set using the analysis for
independent tasks, algorithm WCDO with zero best case
response times, and algorithm WCDO with best case
response times equal to the task execution times. The
maximum schedulable utilization is obtained by analyzing
a system with low utilization and then increasing its
utilization until the system no longer meets its deadlines.
The maximum schedulable utilization is taken as the last of
the task sets for which the deadlines were met. The
simulations have been done for different ratios of deadlines
over periods,Di/Ti. Figure 7 shows the results for the
simulation of a system with 4 processors, 5 transactions and
20 tasks per transaction, withTmax/Tmin=100.Figure 8 shows
the results for a similar task system, but with 12 tasks per
transaction instead of 20. We can see that from values of
Di/Ti=2 and higher, we can get a increase of around 8%
more schedulable utilization in the case of 12 tasks, and
25% more in the case of 20 tasks. We can see that, as the
number of tasks of the same transaction that execute in the
same processor increases, the benefits of the analysis with
offsets also increase. It is also worth mentioning that for
systems with several processors the results are better if we
consider best-case response times larger than zero, although
it is still possible to get benefits from our new analysis if
we consider the best execution times equal to zero.

6. Conclusions

In this paper we have presented an extension to Tindell’s
technique for analyzing tasks with static offsets in the
context of preemptive fixed-priority scheduling. Our
extension consists of allowing the task offsets to be larger
than the task periods, and formalizing the development of
the technique. In addition, we have extended the technique
to the case of dynamic offsets, which vary from one
execution to the next. We have shown that the analysis for
dynamic offsets is useful for analyzing systems with tasks
that suspend themselves, as well as multiprocessor and
distributed systems. In all these systems, tasks offsets are
dependent on the response time of previous tasks in the
same transaction. Through simulation results, we have
shown that the benefits of the analysis for dynamic offsets
over current analysis techniques for distributed systems are
very high. The response times with the new technique are
significantly lower. And the maximum schedulable
utilization can be increased up to an additional 25% of
schedulable utilization.

We are currently working on further extensions of the

technique presented in this paper to include aperiodic tasks,
as well as further exploiting the effects of the precedence
constraints existing in distributed systems and other kinds of
systems.

References
[1] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González

Harbour, “A Practitioner’s Handbook for Real-Time Systems
Analysis”. Kluwer Academic Pub., 1993.

[2] J.P. Lehoczky, “Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines". IEEE Real-Time Systems
Symposium, 1990.

[3] C.L. Liu, and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”.
Journal of the ACM, 20 (1), 1973, pp 46-61.

[4] M. González Harbour, M.H. Klein, and J.P. Lehoczky.
“Fixed Priority Scheduling of Periodic Tasks with Varying
Execution Priority”. Proceedings of the IEEE Real-Time
Systems Symposium, December 1991, pp. 116-128.

[5] J.J. Gutiérrez García, and M. González Harbour, "Increasing
Schedulability in Distributed Hard Real-Time Systems".
Proceedings of the 7th Euromicro Workshop on Real-Time
Systems, Odense, Denmark, June 1995, pp. 99-106.

[6] J.C. Palencia Gutiérrez, J.J. Gutiérrez García, and M.
González Harbour, “On the Schedulability Analysis for
Distributed Hard Real-Time Systems”. Proceedings of the 9th
Euromicro Workshop on Real-Time Systems, Toledo, Spain,
June 1997, pp. 136-143.

[7] J.C. Palencia Gutiérrez, J. J. Gutiérrez García, and M.
González Harbour, “Best-Case Analysis for Improving the
Worst-Case Schedulability Test for Distributed Hard Real-
Time Systems”. To appear in the proceedings of the 10th
Euromicro Workshop on Real-Time Systems, Berlin,
Germany, June 1998.

[8] L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority
Inheritance Protocols: An approach to Real-Time
Synchronization”. IEEE Trans. on Computers, Sept. 1990.

[9] J. Sun and J. Liu, “Bounding the end-to-End Response Time
in Multiprocessor Real-Time Systems”, Proceedings of the
Third Workshop on Parallel and Distributed Real-Time
systems, Santa Barbara, CA, 1995.

[10] K. Tindell, and J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”. Microprocessing &
Microprogramming, Vol. 50, Nos.2-3, pp. 117-134, April
1994.

[11] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Technical Report YCS 221, Dept. of Computer
Science, University of York, England, January 1994.

