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ABSTRACT

DIFFEOMORPHIC TRANSFORMATIONS FOR AUTOMATIC
MULTI-MODALITY IMAGE REGISTRATION

by
Ramkrishnan Narayanan

Co-Chairs: Charles R. Meyer and Jeffrey A. Fessler

Image registration is usually the first step before performing any post-processing

operations such as surgical planning, volumetric measurements, diagnosis, etc. There

are numerous registration algorithms that use any of several geometric interpolants

to warp images. The deformation can be modeled by a suitable parameterization of

the interpolant, through a uniform grid placement of control points or adaptively,

where control points are only placed where images are misaligned. Nonparametric

approaches do not use control points at all, e.g., fields regularized by elastic con-

straints.

There are two main challenges in control point based approaches: the choice of

deformation model and the method of parameterization. While some transformations

focus on modeling local changes, some on continuity and invertibility, there is no

closed-form nonlinear parametric approach that satisfies all these properties. This

dissertation presents a class of nonlinear transformations that are controllably local

and continuous, and invertible under certain conditions. They are straightforward



to implement, fast to compute and can be used as alternatives to splines and radial

basis functions.

The second challenge is the method of parameterization, that is, the location and

scale at which control points are placed. Poor choice of parameterization results in

deformations not being modeled accurately or over-parameterization, where control

points may lie in homogeneous regions with low sensitivity to cost. This lowers

computational efficiency due to high complexity of the search space and might also

provide transformations that are not physically meaningful, and possibly folded.

This dissertation proposes a method to find mismatched locations in images and

the spatial scale at which they are misregistered. Mismatch is specified based on

location and smooth spatial scale (mismatch vector) at which local joint entropy is

high.

First we show that mismatch vectors found by our method are in good agreement

with known deformations applied to synthetic images. Next we use these attributes

to parameterize our iterative registration method to demonstrate registration perfor-

mance. The result is a completely automatic multimodality registration algorithm

that achieves high accuracy of alignment (voxel sized errors) for the registration of

brain structures in MR images.
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CHAPTER I

Introduction

Medical imaging provides clinicians access to vast amounts of data that combine

both functional and anatomical information of patients. While modalities such as X-

Ray, Magnetic Resonance Imaging (MRI), Computed Tomography and Ultrasound

(US) provide anatomical information, Positron Emission Tomography (PET), Single

Positron Emission Tomography (SPECT) and functional MRI provide information

on metabolic processes. Different modalities have their own advantages, e.g., MRI

images help provide soft tissue contrast while CT provides information on skeletal

structures, and PET is often used to study brain and heart function. A problem that

commonly arises is how this data can be compared. Image intensities correspond-

ing to the same scene cannot be compared directly because of the different sensors

used, their parameters, acquisition related noise, different coordinate systems used,

and tissue warps that occur due to metabolic or physical processes of the structures

imaged. To be able to efficiently integrate and analyze data acquired, e.g., to per-

form diagnosis, treatment monitoring, dose estimation, stereotactic surgery, etc, the

images must be aligned in a manner that the structures within, correspond with one

another. This step is commonly referred to as registration or fusion.

Registration is also widely used outside medical image analysis. E.g., in com-

1
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puter vision it is used to track objects or perform depth analysis, in remote sensing

for surveillance, location and orientation of landmarks, and resource monitoring. In

pattern recognition it could be used to authenticate signatures or character recogni-

tion. In medical imaging, several thousand papers have been published in the area

of image registration depending on organs imaged, modality and type of analysis to

be performed.

I will discuss all aspects of the registration strategy starting with the definition

of the registration problem and will touch upon popular methods. For a broader

understanding, I refer the reader to several reviews [1, 2, 3, 4, 5] that have been

published over the last fifteen years. I will conclude with the desirable properties of

registration algorithms, and set up the problem statement based on these challenges.

1.1 Registration problem

Following Hill’s [4] definition, registration typically refers to the procedure by

which one determines a transformation that relates the position of features in one

image or coordinate space with the position of the corresponding feature in another

image or coordinate space. Another definition also allows one to compare correspond-

ing intensities but we will not use this because we are often interested in working

with images belonging to different modalities. Mathematically, for two images A and

B, sampled on grids xA and xB, we seek to maximize a similarity measure SIM .

The geometric transformation that maximizes this similarity measure is the solution

and is found as

T̂ = argmaxT SIM(A(xA), B̃(T (xA))) (1.1)

Image A is usually referred to as the target and B is called the floating image. The

transformation is found on the target grid xA. The floating image B which is sampled
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on xB is pulled back to xA, i.e., finding B̃(xA). We now have two images: A(xA) and

B̃(xA) whose similarity can now be computed under the hypothesized transformation

T . SIM is a generic similarity measure and is discussed in Section 1.4.

Recently, several papers that discuss the registration of multiple images have been

published [6, 7, 8, 9]. This may be useful for atlas construction where several images

are normalized to the same spatial frame. In same-patient tumor studies, it could

be used to establish a consistent correspondence of voxels over time, in the region of

the tumor to study the effect of therapy. The problem statement is similar to the

pairwise case. For a set of N images, we define the estimated set of transformations

as

(T̂1, T̂2, . . . , T̂N−1) = argmaxT1,...,TN−1
SIM(A(xA), B̃1(T1(xA)), B̃2(T (xA)), . . .

, B̃N−1(TN−1(xA))),

where A is picked as one of the images in the set and is usually chosen as the one

most easy to register onto. Bi for i = 1, . . . , N − 1 are the other images in no

particular order. It is also possible that no specific target image A is picked and all

images are registered onto a common spatial frame. In this dissertation, I have only

studied pairwise registration and extension of methods proposed, to multiple images

will need further analysis.

Registration can be split into the following steps:

1. Transformation/Deformation model: Application of a transformation T to the

target grid xA

2. Interpolation: Compute the intensities of floating image B(xB) on the warp

grid T (xA) to get B̃(T (xA))
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3. Similarity measure: Measure the similarity of the two images, A(xA) and

B̃(T (xA))

4. Optimization: Optimize transformation parameters so as to maximize the sim-

ilarity measure

The specific transformation models, intensity interpolants, similarity measures and

optimizers can vary widely depending on several factors. In the next few sections, I

will discuss some of the commonly used approaches.

1.2 Transformation Models

The transformation that needs to be estimated through the maximization of any

of the above similarity measures is rewritten below for convenience:

T̂ = argmaxT SIM(A(xA), B̃(T (xA))) (1.2)

T above, can be estimated linearly or nonlinearly depending on the kind of defor-

mation that the two images differ by. [10] presents a discussion on transformation

functions typically used for registration. Affine transformations are global (displaces

all voxels on the grid xA), linear (with a translation part) and are usually the first

step towards aligning the images.

Often parametric transformation models are initialized by specifying a correspon-

dence of landmarks in the two images, given by pi and qi, i = 1, . . . , n. Any number

(n) of such landmarks may be provided (n ≥ 3 in 2D, n ≥ 4 in 3D). The objective

is to estimate a globally optimal solution T , i.e., maximizing the similarity measure

(SIM) such that

qi = T (pi) (1.3)
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Nonparametric models are more recent and are typically used in large deformation

problems where every voxel is allowed to move independently while constrained by

an elastic or viscous fluid-based regularizer.

1.2.1 Affine

An affine transformation that relates the two sets of landmarks is given by

q = Ap + b

In the case of an over-determined system, the equality is not valid and the coefficients

are optimally estimated in a least squares sense [11].

In 3D, A is a non-singular 3 × 3 matrix and b is a vector of length three. The

transformation is described by twelve degrees of freedom. The new coordinates based

on the affine transformation are

x′ = a11x + a12y + a13z + b1

y′ = a21x + a22y + a23z + b2

z′ = a31x + a32y + a33z + b3.

Arun et al [12] have discussed a method of efficiently finding the rotation and transla-

tion matrices for two point sets. Such transformations are often inadequate in cases

where organs may undergo local deformations and will necessitate the use of splines,

radial basis functions or free form deformation models. The following sections discuss

commonly used transformations for nonlinear registration.

1.2.2 Radial basis functions (RBF)

A radial basis function is a univariate continuous function that is radialized by

composition with the Euclidean norm on the n-dimensional space. For a detailed
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discussion on RBFs see Buhmann [13]. RBFs are essentially radially symmetric

continuous functions centered about control point locations. The coefficients are

weighted by a function that depends on the distance from the individual control

points. Standard radial basis functions have the form

T (x) =
n∑
i

wiφ(‖x− pi‖) (1.4)

The solvability of the coefficients (wi) for certain types of bases is not guaranteed.

E.g., Thin Plate Spline (TPS) basis is not positive definite and a polynomial term is

augmented to the interpolant to make it uniquely solvable yielding

T (x) =
n∑
i

wiφ(‖x− pi‖) +
m∑
j

viPj(x). (1.5)

Imposing the additional constraint that the coefficient vector w and the polynomial

space are orthogonal, i.e.,

n∑
i

wiPj(pi) = 0, j = 1 . . . M

and substituting Eq. (1.5) in Eq. (1.4) we get the system




K P

P T 0







w

v


 =




qk

0


 , (1.6)

where k refers to the coordinate. K is an n × n matrix of basis functions: Kij =

φ(‖pi−pj‖). Table 1.1 lists the commonly used basis functions in registration. These

Table 1.1: Green’s functions typically used for registration
Name Dimension φ(r)

TPS even r4−d log r
TPS odd r4−d

Multiquadratics n (r2 + c2)µ, µ ∈ R+

Inverse multiquadratics n (r2 + c2)−µ, µ ∈ R+

Gaussian n e−
r2

2σ2
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RBFs do not have compact support. There have been several papers more recently

in registration literature [14, 15, 16] that are built on theory developed by Wendland

[17] and Wu [18]. These compact RBFs consist of a single polynomial piece in the unit

interval [0, 1]. They are piecewise polynomial and positive definite which eliminates

the need for the polynomial part in Eq. (1.5) and can be solved for directly as

Kw = qk

K is a full rank matrix and the coefficients can be directly computed. Some ψd,k(r)(same

as φ(r)) functions of Wendland are listed below for dimension (d) = 3 and smoothness

parameter k:

ψ3,0 = (1− r)2
+

ψ3,1 = (1− r)4
+(4r + 1)

ψ3,2 = (1− r)6
+(

35

3
r2 + 6r + 1),

where (1− r)+ =





(1− r), 0 ≤ r ≤ 1

0, otherwise

Functions with support a having the same properties can be obtained by simply

replacing r in the equation above with r
a
. To the best of the author’s knowledge, a

result that proves the non-singularity of K for variable support at each control point

location has not been reported. In the context of image registration, it is important

that the transformations do not fold, i.e., preserve topology. Rohr et al [15] discuss

allowable support sizes a depending on the displacement (4) of corresponding con-

trol points in the source and target for different ψ functions. It is not clear how the

conditions would change if the supports intersected.
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1.2.3 B-splines

Before use in image registration, B-splines were often used to interpolate and

approximate scattered data [19, 20]. Several papers, notably [21, 22] have since

appeared to model deformations in registration. In its most common form, the cubic

B-spline is C2 continuous and local, i.e., every voxel’s displacement is only calculated

from the position of the sixty four nearest (3D) control points around it. For a control

point φijk on a lattice φ, located at (i, j, k), i = −1, 0, . . . , m+1, j = −1, 0, . . . , n+1

and k = −1, 0, . . . , o + 1 transformation is calculated as

T (x, y, z) =
3∑

k=0

3∑

l=0

3∑
m=0

Bl(u)Bm(v)Bn(w)φi+lφj+mφk+n,

where Bl are the basis functions

B0(u) =
(1− u)3

6

B1(u) =
3u3 − 6u2 + 4

6

B2(u) =
−3u3 + 3u2 + 3u + 1

6

B3(u) =
u3

6
, 0 ≤ t ≤ 1

Indices i, j and k above are computed at each voxel as i = [x] − 1, j = [y] − 1 and

k = [z] − 1. Also s = x − [x], t = y − [y] and u = z − [z]. A grid of control points

placed at different resolutions and the images are registered. Its local behavior makes

it a desirable model in several applications. This property also enables the efficient

computation of the pullback maps.

1.2.4 Viscous fluid flow

In nonparametric approaches, every voxel is assigned a deformation vector and

is allowed to move independently, with suitable spatial regularization. Christensen
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et al [23, 24] have used the Navier-Stokes equation to model viscous fluid flow:

µ52 v + (λ + µ)5 (5.u) + b(v) = 0, (1.7)

where b(v) is the body force that drives the deformation into registration, v is the

velocity of mass of a point passing through x at time t. The first term is associated

with constant volume, and the second term relates to the growth or shrinkage of local

regions within the target. [23] used a cost function based on a Gaussian sensor model.

The expression for body force is obtained from the variation of the cost term with the

displacement field. They estimated the displacement fields iteratively by solving a

system of nonlinear partial differential equations through Successive Over Relaxation

(SOR). These fields are constrained to be smooth, and re-gridding is performed when

the transformations become singular. Such methods were limited to intra-modality

registration. In a recent effort, Suetens [25] made several modifications, and extended

it to inter-modality using mutual information.

1.2.5 Elastic

Elastic registration methods are also nonparametric. In [26], the authors present

an elastic registration method that can be used with mutual information. For the

transformation: T (x) = x+u(x), where u(x) is the displacement field, the matching

problem is defined as

I(u) = J(u) + αR(u). (1.8)

J is the similarity term that could be based on SSD, correlation or MI. R is the

regularization term that applies smoothing constraints on the deformation, and is

usually a function of the Jacobian of the deformation field. The displacements u can

be determined by solving the Euler equations (setting the variational of I to zero).

A gradient descent strategy was used in [26] to solve for the displacement fields.
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1.3 Intensity interpolation

For the two images A and B sampled on xA and xB to be compared by a simi-

larity measure, they need to first be normalized on the same grid. The deformation

is applied to the target image grid xA and the intensities in B are computed at the

deformed locations T (xA) based on the knowledge of intensities B(xB). These inten-

sities B̃(T (xA)) are computed via interpolation. Several intensity interpolants have

been discussed in the literature, e.g., nearest neighbor, linear, splines, etc. While

these methods rely on finding the interpolated image B̃(T (xA)), Partial Volume In-

terpolation (PVI) methods [27, 28] do not directly interpolate intensities. Instead

they update the corresponding histogram positions fractionally. In 2D for a point

(x, y) transformed to (TX(x, y), TY (x, y)), four locations are fractionally updated in

the 2D histogram corresponding to its four nearest neighbors based on the distance of

(TX(x, y), TY (x, y)) from the respective grid positions. See Pluim et al [29] for more

information. Due to the discrete nature of the sampled data, these interpolants are

known to induce artifacts in the registration that affect the smoothness of the sim-

ilarity measure. Tsao [30] performed a comparison of commonly used interpolants

for registration.

1.4 Similarity measures

Voxel similarity measures differ based on the intensity relationship of the two

images.

1.4.1 Sum of Squared Differences (SSD)

SSD is one of the simplest similarity measures and has been shown to be the opti-

mal measure when the two images differ only by Gaussian noise [31]. It is calculated



11

as

SSD =
1

N

∑
xA

|A(xA)− B̃(xA)|2, (1.9)

where N is the number of voxels in the target image. This method is sensitive to

even small contrast differences and effect of outliers. Sum of Absolute Differences

(SAD) is less sensitive to the presence of outliers on the image boundary and is given

by

SAD =
1

N

∑
xA

|A(xA)− B̃(xA)|. (1.10)

1.4.2 Correlation coefficient

Correlation coefficient is more robust measure in that it can be used when the

images have a linear relationship. It is also sensitive to varying illumination, has

a flatter similarity maxima and higher complexity compared to SSD or SAD. The

most commonly used form is the normalized cross correlation given by

CC =

∑
xA

(A(xA)− Ā)(B(xB)− B̄)√∑
xA

(A(xA)− Ā)2
∑

xB
(B̃(xA)− B̄)2

(1.11)

See [32] for a review on CC and its modifications. Recently correlation ratio [33] has

been proposed to register multi-modality images assuming a known function that

relates intensities.

1.4.3 Information theoretic approaches

Information theoretic approaches have now become standard to register images

belonging to different modalities. They measure the statistical dependency between

the two images. A study of Mutual Information (MI) - the most commonly used

information theoretic method, and its relationship with other methods (correlation

coefficient, correlation ratio) can be found in [34]. Entropic graph methods, have also
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emerged more recently due to their direct extension to higher dimensions (multiple

images).

Mutual information

Mutual information is now the most popular objective function for inter-modality

registration. Pluim [35] surveyed mutual information based registration methods

recently. In the paper, history of MI based registration is discussed that I will

briefly repeat here to give the reader an idea of the evolution of measures for multi-

modality registration. One of the first papers proposed was by Woods [36, 37] called

the Variance of Intensity Ratios. The method was based on the assumption that

the same grey value in images corresponded to the same tissue type. The ratio of

corresponding voxels in image pairs was found and its variance was minimized. Hill

[38] measured the extent of clustering of corresponding grey values in a feature space

and later proposed [39] using third order moments of the histogram to measure the

skewness. This further led to Collignon [40] and Studholme’s [41] work on minimizing

joint entropy which paved the way for mutual information based registration.

MI is a histogram method, i.e., it is measured from the density functions estimated

from the joint histogram of the image pair. Analyzing structure and function has

been made possible through the use of Mutual Information (MI) and joint entropy.

Registration by maximizing MI proposed by Viola [42] and is given by

MI = H(A) + H(B̃)−H(A, B̃) = H(A)−H(A|B̃), (1.12)

where H(A) = EA(log(p(A))) is the entropy of the target image A and p(A) is its

probability distribution. It can be thought of as a measure of how well B̃ explains

A. If the images are well registered, then B̃ reduces the conditional entropy H(A|B̃)

in the equation above resulting in high MI. Although joint entropy [41] can be used
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directly, MI was found to vary more smoothly with mis-registration [4].

More compactly it can be rewritten as

MI(A, B̃) =
∑

a

∑

b

p(a, b) log2(
p(a, b)

p(a)p(b)
), (1.13)

where p(a) and p(b) are the marginal densities and p(a, b) is the joint density respec-

tively of A and B. Observe that p(a) remains the same throughout the registration

process and need not be recomputed each time. The marginal densities can be esti-

mated empirically from the normalized histograms of the images or through Parzen

windowing [43, 42].

MI was found to be more robust to poor image overlap compared to joint entropy.

Studholme et al proposed Normalized Mutual Information (NMI)[44] to overcome

this dependence on overlap by normalizing MI with the joint entropy estimated from

the joint histogram of the overlap volume as

NMI(A,B) =
H(A) + H(B̃)

H(A, B̃)
=

I(A, B̃)

H(A, B̃)
+ 1 (1.14)

Graph methods

Graph methods [45, 46] for registration were proposed as an alternative to his-

togram methods because they eliminated the need to estimate the densities of under-

lying images, which are unknown to begin with. They can also be directly extended

to higher dimensions, i.e., more than two images, unlike histogram based methods

which requires large memory and run much slower in higher dimensions.

Given a set Zn = {z1, z2, . . . , zn} where zi is defined as pixel pair of intensity levels

(or projection of the images on a basis) associated with images A and B̃, or a longer

vector depending on the number of images to be registered, a minimal spanning tree

is an acyclic graph that passes through all coordinates associated with Zn and is one
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that minimizes the total edge weight:

L(Zn) = mine

∑
e

‖e‖γ (1.15)

All points on the graph are connected by n − 1 edges ei. ‖e‖ is the Euclidian (L2)

norm of the edge and γ is a real weight exponent γ ∈ (0, 1). It has been shown [46]

that the length when normalized by
√

n produces sequences that converge within a

constant factor to the alpha entropies with α = 0.5 when bivariate pixel intensity

coincidences are implemented.

These measures have higher compute times for cost function evaluations compared

to histogram methods in 2D. To the best of the author’s knowledge no studies have

been performed comparing them with MI or joint entropy.

1.5 Optimization strategies

Different applications are characterized by different types of parameterizations,

images sizes, similarity measures and deformation complexities. Broadly speaking,

optimizers are either function value based, e.g., simplex, Powell’s method, or gradient

based, e.g., steepest descent and conjugate gradient. Suetens et al [47] have done a

detailed study of the optimizers, multi-resolution strategies and how this effects the

number of function evaluations.

1.6 General concerns

Before picking the “optimal ”registration strategy for the application targeted,

some factors to keep in mind are as follows

• Modality type: same or different
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• Transformation: parametric or non-parametric, topology preserving or not,

smoothness, locality

• Computational speed: real time, minutes or hours

• Initialization mechanism: multi-resolution grid refinement or adaptive control

point placement

• Intensity interpolation methods: linear, spline based, partial volume

• Degrees Of Freedom: affects time taken and complexity of the search space

• Computation of the inverse transform, inverse consistency

1.7 Problem statement

The broader goal of this thesis is to provide a framework for completely automatic

multimodality registration. Due to its applicability in multimodality registration, I

have used mutual information or joint entropy to measure similarity or mismatch

based on standard techniques. Optimization and intensity interpolation methods

have also been well studied. One of the big challenges is the selection of a suitable

transformation model and its parameterization throughout the image.

To run without user intervention, geometric parameterization that involves the

placement of control points throughout the image must be done automatically. A

straightforward solution would be to place a grid of control points uniformly over the

entire image. However, control points placed in locations where the images are al-

ready well registered are unnecessarily optimized over. This increases the time taken

and the complexity of the optimization. Additionally, if the images are relatively

homogenous, moving these control points has little effect on the similarity measure

and may provide geometrical deformations in that region that are not physically



16

meaningful and possibly folded. Researchers have suggested adaptive approaches

where control points may be adaptively placed or optimized over, depending on local

information content or image mismatch. No analysis has been made on the nature

of the mismatch in terms of its location and spatial extent where control points, or

in our case seed points must be initialized. Such an analysis would enable param-

eterization at the appropriate location and scale where the images are mismatched

which could potentially reduce the number of degrees of freedom and possibly speed

up computation.

The choice of the transformation model is also crucial. Several transformations

are global in nature and may not be appropriate in applications where local changes

such as tumor growths may need to be modeled. In such cases models whose support

can be changed depending on the nature of the warps would be useful. The flexibility

of being able to pick the smoothness of the transformation is a plus. In certain

applications where deformations are not very large, smoother models could be used

as opposed to large deformation situations where we would prefer a less smooth

requirement to allow for greater flexibility of the transformation. The definition

of a family of transformations that possess similar properties with variable degrees

of smoothness and function profile under a common theoretical framework would

be desirable. Finally transformations that are topology preserving, i.e., that yield

solutions that are always invertible would be very applicable in registration problems

where such models do not violate physically improbable tissue deformations. Many

commonly used parametric transformations do not implicitly possess this property

and often times a penalty must be imposed that discourages these solutions.

The challenges that this dissertation deals with are these two important aspects

of registration, i.e., the initialization through an appropriate spatial parametrization
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of control points and a transformation model that possesses the desirable qualities

discussed in the previous paragraph. This would then enable us to combine the

two strategies into a completely automatic registration framework for multimodality

registration.

1.8 Dissertation overview

The dissertation consists of two parts: a parametric deformation model that is

smooth and invertible, and an automatic method of parameterization for this model

based on image mismatch through location and scale. The first part stemmed out of

a need to replace Thin Plate Splines with methods that could model local changes

without affecting distant regions already well registered, guarantee invertibility and

provide variable degree of smoothness in the deformation. To eliminate user inter-

vention, a means of efficient parameterization of this model was developed in the

second part. Note however that the second part of the paper only discusses image

mismatch location and scale without any special consideration for the type of geo-

metrical model, i.e., B-spline knots could be initialized using this information as well.

Although the second part is the first step of registration, I will discuss about it after

discussing deformation models because it is essentially an independent procedure.

In chapter 2, I will discuss the geometric deformation model, its properties and

derive conditions for invertibility and show some results. In chapter 3, I will present

a method to estimate mismatch by computing local joint entropy through location

and scale simultaneously and provide a visual and quantitative analysis to validate it.

Chapter 4 combines the theory in chapters 2 and 3 to demonstrate a completely au-

tomatic multi-modality registration algorithm. Validation is performed using known

warps on brain images to register tumors and other brain structures to arrive at voxel
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sized errors. The conclusion in chapter 5 summarizes the contributions and future

work.

1.9 MIAMI fuse

Our group has compiled a set of registration software packages built on Advanced

Visualization System 5 (AVS 5). The implementation is a MI based similarity mea-

sure using TPS as the geometric interpolant. MIAMI fuse [48, 49, 50] stands for

Mutual Information based Automatic Multimodality Image fusion. Due to its mod-

ular nature, MIAMI fuse in several modified forms was used for testing and validation

of theory in this dissertation, specifically the modules that computed the similarity

measure, deformation model parameters, warping and interpolation.



CHAPTER II

Diffeomorphic transformations: A local

parametric approach

Methods for image registration have three main components: the geometric trans-

formation used to model deformations, the objective function, and the optimization

algorithm. While using Mutual Information (MI) as the objective function has been

successfully explored and validated [42], finding a simple transformation possessing

the useful qualities of smoothness, compact support, and the existence of an inverse

has been an ongoing effort. Rigid or affine transformations cannot be used to recover

local warps. Deformation fields that are solutions to Ordinary Differential Equations

(ODEs) [51, 52] have been proposed because of their ability to recover large defor-

mations while still being invertible. These methods have large number of degrees of

freedom except Arsigny’s Polyrigid transforms [53] and geodesic spline representa-

tions of diffeomorphisms [54]. In contrast the parametric transformation proposed

here is a more parsimonious approach in that it can be applied only in regions that

need correction.

Different types of radial basis functions with global e.g., Thin Plate Splines [48],

and local support [14] are used as well. This is because they have fewer degrees of

freedom and can be used to recover local warps. But these types of deformations are

19
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not invertible in general. In addition, functions with global support change distant

regions of the image that may not require correction while attempting to change

local regions that do. B-Splines [21] have been used successfully because of their

C2 continuity and local support, but injectivity conditions are non-trivial [55]. In

Arsigny’s Polyrigid transforms [53] using ODEs, the deformation vector is obtained

by integrating the velocity vector that is a distance weighted sum of individual vec-

tors corresponding to ‘action’ points whose solution is the trajectory equation. This

method always ensures that the transform is continuous and invertible. However

these weights are normalized, so the transform is global. Furthermore, methods that

use ODEs do not have a closed form and the deformation is computed by integrating

the velocity vector in a finite number of time steps to obtain the transformation.

This paper was motivated by the ideas discussed in [53]. We introduce a nonlinear

transformation that possesses the properties discussed by modifying the affine trans-

formation, so that at the center of the region that needs correction we have an affine

transform described by all the parameters of the transform, and gradual convergence

to identity as we move away from the center. This convergence can be controlled

using our transform model. Also our transform has a closed form and is easy and

fast to compute because it is characterized by few parameters and always ensures

that an inverse exists under certain trivial conditions.

We show some preliminary results using a multi-scale approach to image regis-

tration by applying corrections starting from the coarsest level of scale to the finest.

We applied synthetic B-Spline based deformations to images and then corrections

were applied at three levels of scale using only one seed point at each. A seed point

is the center of the region that we are trying to correct. They are picked based on

finding high gradients of local MI with respect to local affine transformation parame-
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ters. Results show that using these transforms could be a good alternative to current

methods used in image registration.

We used normalized mutual information (NMI), first proposed by Studholme [44]

as the objective function and a simultaneous perturbation based gradient optimizer

[56] to maximize NMI.

2.1 The Locally Affine Transformation Model

This section introduces a locally affine transformation model for image registra-

tion. Such warps can be applied in specific regions of the image through appropriate

parameterizations so as to model deformations locally while still being spatially con-

tinuous. They are derived through a modification of the commonly used global affine

transformation model. In order to motivate the specific form of the model, let us

first examine the affine transformation of vector x about the center x0 in Rn given

by

T (x) = esAesS(x− x0) + st + x0, (2.1)

where x =

[
x1 x2 . . . xn

]T

, x0 =

[
x01 x02 . . . x0n

]T

, t =

[
t1 t2 . . . tn

]T

(translation), A is the skew symmetric matrix corresponding to the rotation matrix,

S is the symmetric matrix corresponding to the scale matrix and s ∈ [0, 1].

At s = 0 we have the identity transformation while at s = 1 we get the complete affine

transformation about the center x0. All intermediate values of s render affine trans-

formations of varying degrees between the two extents. One possibility of producing

warps that appear locally affine would be to parameterize s in the transformation

above spatially in the form of a continuous function, say λ(r), where r = ‖x − x0‖

so that at r = 0, s = 1 and as r increases s → 0 to get

T (x) = eλ(r)Aeλ(r)S(x− x0) + λ(r)t + x0. (2.2)
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The locality of the transformation can now be easily controlled by the scale of the

support function λ and we now have with warps that appear affine near x0 and

approaching identity with increasing distance from x0. Although this appears to be

a good model, proving that an inverse exists for a choice of affine parameters and

support extents is difficult. An alternate possibility to model locally affine warps is

writing this in the form of a composition of local warps namely rotate and scale, and

translation to get the transformation (T : Rn → Rn)

T (x) = eλ(r)Aeλ(r)S(x− x0) + λ(r′)t + x0 (2.3)

where

r′ = ‖eλ(r)Aeλ(r)S(x− x0)‖ = ‖eλ(r)S(x− x0)‖

and

s ≡ λ(r) (2.4)

One can also write T in Eq. (2.3) as

T (x) = (TT ◦ TRS)(x) + x0 (2.5)

where

TRS(x) = eλ(r)Aeλ(r)S(x− x0) (2.6)

and

TT (x) = x + λ(‖x‖)t. (2.7)

Eq. (2.5) above is a composition of a local translation applied on a local rotate

and scale about x0. We can show that the individual transformations are invertible

under certain conditions making it easy to prove that the transformation is in general

topology preserving as long as translations and scale are within certain bounds.

Any support function satisfying the properties mentioned earlier can be used, e.g.,



23

Gaussians, piecewise polynomial functions, etc. In the case of the Gaussian the

function λ(r) = e−
r2

2σ2 . The simulations in this chapter are registrations applied to

head images. Due to the milder nature of warps associated with head registration we

chose the Gaussian support function although compactly supported functions could

also be picked to model more complex deformations depending on the application

involved, e.g., inter-patient registration for atlas construction where the inherent

variability across the population needs to be modeled as opposed to physical or

metabolic changes in same patient studies.

These warps can in general be applied as a composition of several warps while

still preserving topology with local behavior and is discussed in a later section of this

chapter. The location of seed points (x0) about which the warps are centered can be

picked so that they lie in mismatched regions. The scale of the support function can

also be fine tuned in the optimization optionally along with the affine parameters to

improve alignment.

The transform also satisfies many desirable properties discussed in the following

subsections. These properties depend on the choice of λ which can be chosen to be

local and smooth. The properties discussed here are for λ(r) chosen to be gaussian

in Eq. (2.4). One may select the function λ based on what properties one seeks

to satisfy. The formulation for both the 2D and 3D case is conceptually the same.

However, in 3D it is easier to represent rotation components by a rotation vector.

A rotation about each coordinate is equivalent to a single rotation about the axis

of the rotation vector whose magnitude specifies angle, and individual components

specify orientation (see appendix).
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2.1.1 Continuity and Locality

Continuity is determined by the choice of the function λ. The Gaussian ensures

C∞ continuity. Locality also depends on λ. The Gaussian function has “nearly”

local support. Functions with strictly local support may also be used to arrive at

different conditions for an inverse to exist.

2.1.2 Existence of Inverse

Current methods using spline-based deformation models have either difficult con-

ditions to incorporate in the optimizer to prevent folding, i.e not invertible or use

regularization methods that discourage folding by adding an additional smoothness

term in the objective function [21]. In our method we derive loose bounds for the

transformation parameters which are straightforward to implement and always en-

sure invertibility.

The Jacobian matrix for a transformation T : Rn → Rn must be positive definite

everywhere to ensure invertibility. We have found the conditions for which the de-

terminant of the Jacobian of the transformation is positive to always guarantee an

inverse (see Appendix). We picked λ to be Gaussian because of its loose bounds,

infinite continuity and an easily controllable region of influence. Other functions like

inverse multi-quadratics or differentiable local support functions of the type proposed

by Wendland [17] may also be used and lead to similar conditions.

As λ Gaussian, shown in Eq. (2.3) the transformation T has an inverse as long

as

‖t‖ <
σe√

2

and

0 < a < ee0.5 ≈ 5.2003,
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where t is the translation vector and a = max(ax, ay), the larger of the two anisotropic

scales in the x and y direction. In our previous work we reported the bound for trans-

lation for the Gaussian as σe0.5 instead, which is incorrect and the correct bound is

in fact σe√
2

as reported in this dissertation.

It is worth mentioning at this point that the bounds above are sufficient for

invertibility. A larger parameter space could exist where the transformation would

still be invertible. However practically these bounds were found to be loose and we

rarely experienced folding in our simulations. In the rare occasion that this occurred,

the cost was reset to the original cost thereby discouraging these solutions. Table

2.1 summarizes bounds derived for two local support functions to compare with the

Gaussian. The corresponding plots are shown in Fig. (2.1).

Table 2.1: Bounds for inverse
N(x0, σ) ψa(r) = (a− r)4

+(4r + a)/a5 ψa(r) = (a− r)2
+/a2

Translation σe√
2
≈ 1.9221σ 64

135
a ≈ 0.4741a a

2

Scale ee0.5 ≈ 5.2003 e
625
432 ≈ 4.2493 e2 ≈ 7.3891

In general these bounds appear to be rather tight for the compactly supported

Wendland functions. In order to allow a fair comparison of the bounds, equivalent

support sizes were used as in [15] where a = 3
√

π
2
σ so that the integrals over the

functions were equal. See Table 2.2 for the new comparison.

Table 2.2: Bounds for inverse under equal area
N(x0, σ) ψa(r) = (a− r)4

+(4r + a)/a5 ψa(r) = (a− r)2
+/a2

Translation 1.9221σ 1.7826σ 1.88σ
Scale 5.2003 4.2493 7.3891
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Figure 2.1: Gaussian compared with other functions with compact support

2.2 Initialization and Registration

2.2.1 Initialization

We implement a multi-scale approach to image registration starting from the

coarsest level of scale and proceeding to the finest.

At each level of scale we pick only regions that are mis-registered and apply the

algorithm. Rohde et al. [14] picked regions with large gradient of cost function with

respect to radial basis function coefficients while Park et al. [57] used a mismatch

measure to quantify mis-registration.

Here we pick regions based on its sensitivity to local affine deformations. Since
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we apply corrections based on a locally affine transformation model, the gradients

computed give us a meaningful estimate on the extent of mis-registration. The way

these gradients are computed is as follows. A rectangular window is picked with

dimensions in correspondence with the scale and three control points are placed in

a triangular fashion spanning the area of the window. The window is placed in

the reference and the floating image and the control points in the floating image

are perturbed and the gradient of NMI with respect to the affine coefficients is

found. This window is moved over the complete reference and floating image in an

overlapping fashion. If the gradients of the cost in a region is not small, then it is

likely that this region is mis-registered. Regions with large magnitude of gradient

norm above a selected threshold are picked and the centers of these regions denoted

as seed points are used in the global registration step. If pi are the parameters that

define our affine transformation, the gradient of local NMI is computed as

ĝ =

[
∂NMI

∂p1

∂NMI
∂p2

. . . ∂NMI
∂p6

]T

We apply transformations about these points and correct for them locally using

the transformation model at different levels of scale. Since these points are also

fed as parameters to the optimizer they will also be allowed to move to model the

deformation better.

2.2.2 Multi-scale Nonrigid Registration

The final deformation is computed iteratively across different levels of scale. Since

the spatial support of the deformation can be constrained to be local, seed points are

picked in the initialization step at these different scales, and they serve as the centers

for our locally affine transformation model. Global registration is then initiated at

the coarsest level of scale (large σ) and optimization is performed over all the seed
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points with large to smallest σ. The final transform is computed as a composition

of individual transformations.

After optimizing over each region, the geometric maps are stored and this is

repeated over other regions of the image. Since each of these transforms correct for

only one region at a time, they have very few parameters and high local sensitivity

yielding their ability to model local changes accurately. Also, only regions that are

mis-registered are picked and corrected instead of placing a grid of control points

and picking which ones are active (needing optimization) and inactive. This gives

us a finer control over the region we are trying to correct. E.g. if we have N seed

points, the final transformation is

T (x) = (TN ◦ TN−1 . . . T2 ◦ T1)(x), (2.8)

where each seed point ’i’ is associated with a transformation Ti.

The reference and the floating image are assumed to be already affine registered

with each other before we begin the algorithm. The individual transformation param-

eters are computed for each seed point. There may be several seed points identified

at a level of scale. Global normalized mutual information was used as the objec-

tive function and a simultaneous perturbation based gradient optimizer proposed by

Spall [56] was used to arrive at the final solution. All eight parameters corresponding

to the transformation were optimized: i.e. two translation parameters (tx and ty),

rotation angle (θ), two anisotropic scale parameters in the scale matrix (ax and ay),

two center coordinates (Cx and Cy) and a variance parameter (σ from the Gaussian

function).

Algorithm

1: Initialize reference (A) and floating images (B) and set T0 to an identity map
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2: for i = 1 to Levels of Scale do

3: M = # of seed points picked based on high local gradients

4: for k = 1 to M do

5: T̂i,k = argmax Ti,k
NMI(A(•), B((Ti,k◦T̂i,k−1 . . . T̂i,2◦T̂i,1◦T̂i−1◦T̂i−2 . . . T̂0)(•)))

6: end for

7: T̂i = T̂i,k

8: end for

9: T̂ = T̂i

(a)

(d)

(b)

(e)

(c)

(f)

Figure 2.2: Deformations applied to a uniform grid at two different levels of scale (σ).
The figure shows the same amount of rotation (a and d), translation (b
and e) and scale (c and f) applied individually for a small and large σ
respectively
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2.3 Results

2.3.1 Examples of Locally Affine deformations

Fig. (2.2) shows examples of rotate, translate and scale applied individually

about one seed point for two different σ. This is to show that we can model all kinds

of local and global changes using a combination of these parameters.

         (a)                            (b)                           (c)

         (d)                            (e)                           (f)

Figure 2.3: Registration of T1 and T2 weighted slices using three seed points (a)
Original T2 weighted reference image. (b) artificially deformed T1
weighted floating image. (c) T1 weighted floating image after registra-
tion. (d) Applied Deformation (e) Estimated inverse after registration
(f) Estimated inverse applied to the induced deformation
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           (a)                                (b)                                 (c)

           (d)                                (e)                                 (f)

Figure 2.4: Registration of a coronal slice of a vervet monkey using three seed points.
(a) Original reference image. (b) artificially deformed floating image. (c)
Reconstructed floating image after registration. (d) Applied Deformation
(e) Estimated inverse after registration (f) Estimated inverse applied to
the induced deformation
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Figure 2.5: Average norm of registration error vs. iterations at three different levels
of scale (σ). (a) Human brain - T1, T2 weighted registration. (b) Monkey
brain registration
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2.3.2 Registration Experiments

Fig. (2.3) shows a head registration example using an axial slice from T1 and T2

weighted images from Brainweb [58]. They were artificially deformed using B-Splines

at three different levels of scale. This was done by moving one knot in the B-Spline

grid by a known amount at each scale, refining the grid and repeating the procedure

at the next level. Registration was performed using three seed points each working

at a different scale. i.e different σ. The outline for the ventricle was marked manually

so that the registration performance could be visually assessed. In Fig. (2.3), (a)

is the original T2-weighted reference image and (b) is the deformed floating image

with three seed points marked. The seed points from left to right are in decreasing

levels of scale (σ), i.e. three optimizations were performed, one at each scale. The

registered T1 image in (c) shows that the ventricles follow the contours more tightly

after registration. (d) shows the applied deformation, (e) is the estimated inverse

obtained via registration and (f) shows the deformation computed(e) applied to the

induced deformation(d) which should resemble a uniform grid as best as possible.

Fig. (2.4) shows a coronal slice from a vervet monkey atlas developed at UCLA’s

Laboratory of Neuroimaging [59]. The slice was deformed using B-Splines similar

to the procedure described in the previous paragraph. Seed points were placed at

exactly three locations each with a different variance (σcenter > σright > σleft) for

the Gaussian function that controls the support of the transformation. The contours

in (c) shows that the boundaries of the caudate and putamen hug the manually

segmented boundaries more tightly, a marked improvement from (b).

Fig. (2.5) shows the registration error versus iterations at three different levels

of scale for the first and second example respectively. Only twelve iterations were

performed at each scale and each experiment took less than three minutes to run on
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a 3.2 Ghz PC with 2 Gb memory running MATLAB 7.
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2.4 Appendix

Here we derive conditions under which an inverse exists for a Gaussian weight-

ing function. The conditions have been derived for a vector x ∈ Rn(i.e. x =[
x1 x2 . . . xn

]T

) for rotation and scale about x0 =

[
x01 x02 . . . x0n

]T

. The

bounds for 2D and 3D that we are interested in will turn out to be the same as the

N dimensional case.

We will derive the conditions for translation, rotation and scale each treated

individually and will show that these are sufficient conditions for an inverse to always

exist.

For e.g., for λ gaussian we get,

∂λ(r)

∂xi

= − r

σ2
e−

r2

2σ2
(xi − x0i)

r
= −dx̄i,

where d = r
σ2 e

− r2

2σ2 and x̄i = xi−x0i

r
. Let x̄ be the direction cosine vector so that

x̄ =

[
x̄1 x̄2 . . . x̄n

]T

and ‖x̄‖ = 1.

2.4.1 Translation

Consider the case where the vector x is subjected to pure translation with no

rotation or scaling (i.e. T (x) = x + λ(‖x− x0‖)t). One can show that the Jacobian

of this transformation can be derived as

J = I + t∇xλ(r). (2.9)

T (x) always has an inverse as long as det(J) > 0. Applying this condition we get

det(J) = 1 +
∑

i

ti
∂λ(r)

∂xi

> 0 (2.10)

1+ < t,∇xλ > > 0 (2.11)

1 +
∂λ

∂r
< t, x̄ > > 0 (2.12)
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Applying the Cauchy-Schwarz inequality to the inner product and substituting ‖x̄‖ =

1 we get the sufficient condition

‖t‖ < − 1
∂λ
∂r

(2.13)

This condition can be further simplified based on the worst case scenario to get

simpler conditions by choosing the smallest possible value the right hand side of the

above equation can assume. For example, in the Gaussian case we get

‖t‖ <
σe√

2
, (2.14)

where σe
1
2 is the smallest value possible for − 1

∂λ
∂r

.

Note that although the bounds may be loose practically speaking for registration,

in that sufficiently large local translations can be accommodated for a given scale,

there might still be a much larger parameter space of possible translations where the

inverse may still exist. Such situations are possible because the conditions derived

above are only sufficient. Additionally one can imagine more complex situations

where two seed points in close proximity can cause equal and opposite translations

that may be too large to satisfy the above condition and yet invertible.

2.4.2 Rotation

For x ∈ Rn, the rotation matrix can be constructed as the composition of ele-

mentary rotations in planar subspaces. Each of these matrices is a Jacobi rotation

matrix. The rotation matrix is invertible as long as each of these matrices has an

inverse. The Jacobian for a Jacobi matrix corresponding to the planar subspace

containing axes ‘i’ and ‘j’ is given by

J = Qij




p1 p2

p3 p4

0

0 In−2




Qij
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where

Qij is the permutation matrix

p1 = cos(λθ) + rθdx̄2
i sin(λθ) + rθdx̄ix̄j cos(λθ),

p2 = − sin(λθ) + rθx̄ix̄jd sin(λθ) + rx̄2
jθd cos(λθ),

p3 = sin(λθ)− rx̄2
i θd cos(λθ) + rx̄ix̄jθd sin(λθ) and

p4 = cos(λθ)− rx̄ix̄jθd cos(λθ) + rx̄2
jθd sin(λθ).

The determinant of this matrix is always 1. The volume is always preserved under

rotation. So the transformation (T (x) = eλ(r)A(x− x0) + x0) always has an inverse

2.4.3 Scale

Finally consider the case when the transformation consists of only scaling. (i.e.

T (x) = eλ(r)S(x− x0) + x0). Similar to the translation case, one can find the deter-

minant of the Jacobian for scale and apply the condition det(J) > 0 to get

det(J) = 1 + r
∂λ

∂r
< x̄, s >> 0 (2.15)

where s =

[
log a1 log a2 . . . log an

]T

and ai are the anisotropic scales in each

dimension.

Let smax = ‖s‖∞ = log a, i.e., the logarithm of the largest anisotropic scale a =

max(a1, a2, . . . , an). Eq. (2.15) above can be simplified (‖x̄‖2 = 1) to get the suffi-

cient condition

1 + smaxr
∂λ

∂r
> 0 (2.16)

or

smax < − 1

r ∂λ
∂r

(2.17)

Depending on the choice of the support function, the right hand side can be replaced

further by the smallest value it can assume. For e.g., in the case of the Gaussian we
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get the condition

0 < a < ee0.5 ≈ 5.2003. (2.18)

Typically the largest scale for existence of inverse was found to be sufficiently large

to accommodate large local volume changes.

2.4.4 Conditions for Inverse

We have derived the bounds so that an inverse always exists for rotation, trans-

lation and scale each individually applied. Let TR be the isomorphism for pure

rotation (i.e. no scale or translation) so that TR(x) = eλ(r)A(x − x0) + x0 and let

TR′(x) = TR(x) − x0. We need to show that T in Eq. (2.5) has an inverse. Let us

first show that TRS in Eq. (2.6) is invertible. The transformation TRS is

TRS(x) = eλ(r)Aeλ(r)S(x− x0)

= P TR′(x)

where

P = eλ(r)A




a
λ(r)
x 0

0 a
λ(r)
y


 e−λ(r)A.

Being similar to a diagonal matrix P is invertible. Also TR′ is always invertible since

TR is. So TRS always has an inverse as long as a < ee0.5 ≈ 5.2003.

We have already proved that TT in Eq. (2.5) has an inverse as long as ‖t‖ <

σe
1
2 .(See Eq. (2.14)). So the transformation T (x) = (TT TRS)(x) + x0 has an inverse

as long as

‖t‖ <
σe√

2
(2.19)

and

0 < a < ee0.5 ≈ 5.2003. (2.20)
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2.4.5 Computation of Jacobian

The chain rule is used to find the derivatives of composed functions. In higher

dimensions it may not be as obvious. For a detailed discussion see [60]. I have only

discussed the notations and the final expression here.

Let F (x1, . . . , xn) and G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm) be differentiable func-

tions of several variables, and let

H(x1, . . . , xm) = F (G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm))

be the function determined by the composition of F with G1, . . . , Gn

Let, X ⊂ Rm and Y ⊂ Rn be open domains and let F : Y → Rl, G : X → Y

be differentiable mappings. In essence, the symbol F represents l functions of n

variables each:

F = (F1, . . . , Fl), Fi = Fi(x1, . . . , xn),

whereas G = (G1, . . . , Gn) represents n functions of m variables each. The Jacobian

determinant of G composed with F is the product of the Jacobian detorminant of F

at (x1, x2, . . . , xm) and that of G at (G1, G2, . . . , Gn). For a detailed discussion see

[60]

The derivative of such mappings not a function but a matrix of partial derivatives

called the Jacobian matrix.

Thus

DF =




D1F1 . . . DnF1

...
. . .

...

D1Fl . . . DnFl




DG =




D1G1 . . . DmG1

...
. . .

...

D1Gn . . . DmGn




The chain rule now takes the same form as it did for functions of one variable:

D(F ◦G) = ((DF ) ◦G) (DG),
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In our locally affine transformation the function F refers to the translation com-

ponent TT and G is the Rotation-Scale component TRS. See equations 2.6 and 2.7.

We can then find the Jacobian individually(G and F ) and estimate the local volume

change as

det(D(F ◦G)) = det((DF ) ◦G) det(DG)

or in this case

det(D(TT ◦ TRS)) = det((DTT ) ◦ TRS) det(DTRS) (2.21)

We have already derived in Section 2.4.2 that local rotations are always volume

preserving so that det(DTRS) = det(DTS), i.e new volume depends only on scale.

We can now easily find the Jacobian as

D(TT ◦ TRS) =







1− dx̄1t1 . . . −dx̄nt1

...
. . .

...

−dx̄1tn . . . 1− dx̄ntn



◦ TRS




.




a
λ(r)
1 (1− rdx̄1

2 log(a1)) . . . −a
λ(r)
1 rdx̄1x̄n log(a1)

...
. . .

...

−a
λ(r)
n rdx̄nx̄1 log(an) . . . a

λ(r)
n (1− rdx̄n

2 log(an))




(2.22)

The local volume at x can be estimated by computing the determinant of the

matrix product as

det(D(TT ◦ TRS)) = (1− dx̄T t)|x=TRS(x)(
n∏

j=1

a
λ(r)
j )(1− rd

n∑
j=1

x̄2
j log(aj)) (2.23)
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2.4.6 Rotation vector and the Rodriguez formula

Doing infinitesimal rotations about each axes could be very tedious. Since the

rotation of a vector about each of the three axes can be done sequentially, one

followed by the other, we can represent the rotation as a single rotation matrix. The

Rodriguez formula[15] is a useful technique by which rotations about each axis in

3D can be performed by a single rotation about an arbitrary axis called the rotation

vector whose coordinates specify the position of the axis, magnitude corresponds to

the angle and sign refers to the direction of rotation. Consider a vector x̄ that is to

be rotated about an axes ā. The vector x can be split up into two components x̄‖

and x̄⊥. w̄ is a vector normal to both ā and x̄⊥ so that w̄ = ā× x̄⊥. Let the operator

’R’ be the rotation operator. So

R(x̄⊥) = x̄⊥ cos(θ) + sin(θ)w̄ (2.24)

R(x) = R(x̄⊥) + R(x̄‖) (2.25)

= cos(θ)x̄⊥ + sin(θ)w̄ + R(x̄‖) (2.26)

= cos(θ)x̄⊥ + sin(θ)w̄ + (ā.x̄)ā (2.27)

= cos(θ)(x̄− (ā.x̄)ā) + sin(θ)w̄ + (ā.x̄)ā (2.28)

So,

R(x) = cos(θ)x̄ + (1− cos(θ))(ā.x̄)ā + sin(θ)(ā× x̄) (2.29)

Note that,

Symmetric




ax

ay

az




=




a2
x axay axaz

axay a2
y ayaz

axaz ayaz a2
z




= ā.āT (2.30)
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So,

Symmetric




ax

ay

az







x

y

z




= ā(ā.x̄) (2.31)

And for any two vectors ā and x̄ the cross product in matrix form is given by,

ā× x̄ =




0 −az ay

az 0 −ax

−ay ax 0







x

y

z




. (2.32)

So,

Skew




ax

ay

az







x

y

z




= ā× x̄ (2.33)

Substituting (2.31) and (2.33) in equation(2.29) we get the final expression for the

Rodriguez formula for a rotation about an arbitrary axes.




x′

y′

z′




=




Symmetric




ax

ay

az




+ skew




ax

ay

az




sin(θ) + I cos(θ)







x

y

z




(2.34)



CHAPTER III

Mismatch location and scale selection

Image registration provides geometric correspondences of structures using the

same or different modalities. Over the last decade several innovative registration

methods have been proposed and used successfully in medical imaging. For a survey

see [4, 61]. Often an image pair is aligned initially based on an affine transformation

before a nonlinear warp is applied. The nonlinear warp may be parametric (e.g., thin

plate splines [48], B-splines [22], compact radial basis functions [15] or other param-

eterizations [53, 21, 14, 54, 62, 22, 63]), or non-parameterized free-form deformation

fields based on an elastic [26, 64] or viscous fluid flow [23, 25] regularization.

Regardless of the specific deformation model used, the time needed to complete

registration is related to the extent of geometrical misalignment, the time taken for

each cost computation, and the total number of DOF used to describe the defor-

mation. In certain applications the images may not belong to the same modality,

necessitating the use of Mutual Information (MI) based methods [42] that maybe

more time consuming than Sum of Squared Differences (SSD) or correlation. Even

for intra-modality registration, MI is often used because of its robustness to differ-

ences in scanner parameters. Also registration times tend to be high if the images

are large and deformations are complex with the added requirement that user in-

43
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tervention is impractical. However often we can use fewer DOF if we place control

points at locations having the most image mismatch.

There have been some papers that discuss spatially preferential parameterizations

prior to registration. Rohlfing et al. [65] used multi-level B-splines for registration

where a control point at a particular scale was held fixed (i.e., not optimized) if its

local marginal entropies on the target and floating images were below 50% of the

respective maximum entropies. Rohde et al. [14, 66], in their compactly supported

radial basis function strategy, used only those control points that produced large

gradients of cost. Schnabel et al. [67] also picked active control points based on

cost gradients for their B-spline method. Park et al. [68, 57] added thin plate spline

control points at each iteration at locations with large local mismatch. As far as

we are aware, thus far no thorough analysis has been made to find mismatched

regions and their degree of mismatch through an analysis of a wide range of spatial

scales at all locations in the image pair prior to registration. For any of the several

deformation models used, the knowledge of location and spatial extent of deformation

could help drastically reduce compute times by avoiding parameterization of local

regions already well aligned. This enables algorithms to work at several distinct

locations at specific scales and yet contain the dimensionality of the optimization

search space.

The choice of deformation model depends on the specific application. In our

simulations we demonstrated the performance of this initialization approach of loca-

tion and scale selection in conjunction with a parametric deformation model we have

demonstrated previously [62].

The scale of a deformation model relates to the notion of scale space. Koenderink

[69] discussed three aspects of scale in images: pixellation, i.e., inner scale, extent of
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the Regions Of Interest (ROI), i.e., outer scale and the resolution of the histogram

used to describe the intensity distribution of the image, i.e., tonal scale. In this paper

we focus on the spatial extent of the mismatch between images so we will only use

outer scale. The estimated mismatch vector contains the location and outer scale at

which the images are mismatched. Any reference further to scale in the paper is to

outer scale.

The ideas discussed here are extensions to commonly used approaches in the

vision community to quantify local complexity in images using information theoretic

measures. Gilles [70] used Shannon entropy to quantify local image complexity.

Salient patches identified as peaks in scale space were used to estimate a global

transformation between aerial reconnaissance images. Jagersand [71] used Kullback

contrast between successive scales as a measure of differential information gain at a

particular scale. Kadir [72] made several extensions to Gilles’ idea notably the search

through a wide range of scales in color images containing complex scenes and the use

of a new saliency measure that weighs the entropy by a measure of self-dissimilarity in

scale space. In this paper we use a similar approach to estimate feature mismatch for

a pair of images using joint entropy. This makes it possible to study the mismatch

of image pairs through feature space and scale space simultaneously. Further, we

have computed mismatch through continuous outer scale (Gaussian) giving smooth

joint entropy estimates. Our registration algorithm also optimizes over this support

in addition to the transformation model parameters to provide fine control over

scale. Building on our previous work from [62] and [73] we demonstrate a completely

automatic multimodality registration algorithm.

The paper is organized as follows. We begin Section 3.1 by defining the mismatch

vector. Sections 3.2 and 3.3 define some of the tools that we will use to find mismatch.
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In Section 3.4 we show the accuracy and precision in location and scale to find

mismatch using our method. Finally in Section 3.5 we outline the algorithm for

mismatch vector selection. These mismatch vectors contain attributes that provide

useful information to parameterize the deformation model we use for registration in

the next chapter. We have included several examples to show that the mismatch

vectors are in excellent agreement with the deformation errors in the mis-registered

images.

3.1 Mismatch Measure

We propose to locate feature mismatch for a pair of images using joint entropy

that is computed from local histograms. In three dimensions each mismatch vector

found is made of individual location components Cx, Cy and Cz, and scale component

α corresponding to mismatch and is of the form [Cx Cy Cz α]T , or [Cx Cy α]T in

two dimensions. In the next two sections we will discuss some of the tools we have

used to find mismatch.

3.2 Local Histogram

The local joint histogram for a pair of images captures the distribution of intensi-

ties within a locally specified support. Koenderink [69] used histograms to represent

local information content in images parameterized based on the “inner scale” (gaus-

sian blurring window), “outer scale” (gaussian region of interest) and histogram

resolution. We define the local joint histogram of two images, I1(r) and I2(r) as

h(i1, i2; α, β, r0) =
1

2πα2

∑
r

A(
r− r0

α
)e
− (I1(r,σ)−i1)2

2β2 e
− (I2(r,σ)−i2)2

2β2 (3.1)

where A(r−r0

α
) = e

−(r−r0)2

2α2 denotes a gaussian window function with “outer scale”

parameter α centered at r0, and Ik(r, σ) = Ik(r)⊗G(r, σ) where k = 1, 2. i1 and i2
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are variables that span the respective image intensities, G is the gaussian kernel of

the scale space filter with kernel width σ, and β is the Parzen window width. We are

interested in finding the location(r0) and region of interest (α, i.e. outer scale) over

which the two images are misaligned. The 2πα2 factor is the normalization applied

to the spatial gaussian window so that the histogram sums to one. The gaussian

window parameterized by α prevents abrupt truncation of features and gives much

smoother entropy profiles across scale compared to using a circular window.

3.3 Local joint entropy

The joint entropy is measured from the normalized local histogram described

above and is computed as

H(α; r0) = − 1

N0

∑
i1

∑
i2

h(i1, i2; α, β, r0) log2(
h(i1, i2; α, β, r0)

N0

) (3.2)

where N0 is the sum of the histogram h. (N0 is always 1 except near image bound-

aries). The spatial scale (α) at which the target image is misaligned with the floating

image at location r0 is then estimated over a range of scales using joint entropy. If

the two images are locally mis-registered at r0 and scale α∗, then we expect a peak

in joint entropy at that scale.

3.3.1 Example1: Sensitivity to scale

Fig(3.1) shows the target images (left column) and corresponding floating images

(middle column). The images have the same intensities within the shapes (circle

and square). Clearly the images in the top row are mismatched at a lower scale

in the local region centered at the circle compared to the images in the bottom

row. The right column shows their entropy vs outer scale(α). The peaks show the

scale at which the corresponding images are mismatched. Circles are drawn on the
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Figure 3.1: Entropy profile in outer scale. Left column: target images; Middle col-
umn: floating images; Right column: joint entropy vs. outer scale for
center pixel denoted by *, i.e., H(α; rcenter).

images in the left column with radius α∗ that correspond to peaks in joint entropy.

Observe that this mismatch in scale can be distinguished easily in outer scale. This

is discussed in greater detail in following sections. Additionally the magnitude of

entropy at this scale gives us a quantitative estimate of the relative importance of

this location and scale. Later in this paper we show examples that demonstrate

this and our ability to pick highly deformed regions for placing control points. The

joint entropy is computed for the image pair at all locations through a broad range

of scales and only peaks in joint entropy centered at each pixel through outer scale

are picked as being mis-aligned. It is possible that multiple peaks may be found

corresponding to more than one spatial scale being significant at a pixel location. In

these cases we choose the scale corresponding to the larger magnitude of entropy.
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(a) (b)

Figure 3.2: Search through feature space and scale space a) Target Image, b) Floating
image. Center and radius of the red circle shows location and scale of
mismatch.

3.3.2 Example2: Largest joint entropy location and scale

Fig. (3.2) shows several ellipses (3.2a) and a very similar pattern in (3.2b) except

for the square in one position replacing the ellipse and the inversion of colors. We

computed joint entropy over the entire image and found the peaks in scale at every

pixel location. The red circle plotted on the first image shows the center of the

region and the scale (circle radius) at which the joint entropy was highest in the

entire image. Observe that it tracks the boundary of the ellipse in (3.2a) closely.

3.3.3 Example3: Spatial variation of joint entropy

Fig. (3.3) shows a local deformation applied to (a) to get image (b). The applied

deformation error norm is shown in (c) and (d) is the absolute difference image ((b)

and (a)). All calculations are made only along the horizontal line superimposed on

the figures to get an idea of the linear spatial variation of peaks and corresponding

joint entropy. (e) shows the computed scale at which peaks were found on this line

and (f) shows the joint entropy computed at the peaks. The entropy is clearly max-

imum near the region of the deformation and decreasing with increasing distance

from mismatch. The scale that corresponds to the maximum entropy is estimated

from (e) which looks bowl shaped because different points on the line find mismatch
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Figure 3.3: a) Target image, b) Floating image , c) Registration error norm, d) Ab-
solute difference between images in a) and b), e) Significant spatial scale
peaks, f) Joint entropy at scale peaks, g) Outer scale found(line)on in-
tensity difference along line profile and h) Outer scale(line) on geometric
error norm
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at different scales. If no peaks were found over the discrete range of scales searched,

the scale estimated was set to zero and entropy was not computed (seen as zero in

the plot). While points near the deformation estimate scale correctly, distant points

find peaks at higher scales. This is dealt with by varying scale of a gaussian low-

pass filter as spatial scale increases (discussed in the next subsection). Additionally

this also enables us to discriminate local deformations better as will be seen in a

following example. The computed scale location and its magnitude are plotted in

red (width of two standard deviations of outer scale peak estimated) in (g) and (h)

over the intensity difference plot and error norm plot respectively showing how well

the estimated location (center of the red line) and scale correspond with the existing

mismatch.

3.3.4 Inner and Outer scale

Eq.(3.1) contains three components of scale. While the Parzen window width β

is fixed at all spatial scales (α), the degree of smoothing (σ) should be related to the

spatial scale (α). Jagersand [71] used different patch sizes at different resolution. In

our simulations we varied the scale σ with α as σ = α/3 i.e., when we are looking at

larger regions of interest (α) we are also interested in the variation of coarser features

(higher σ).

Example4: Mismatch location and scale identification

The importance of varying σ with α is shown in Fig. (3.4) for an image of size

213×291. (a) is the original image, (b) the deformed image obtained by warping (a)

using B-splines, (c) pixel-wise deformation error norm, and (d) shows the positions

where peaks in joint entropy were found, where its magnitude corresponds to the

scale of deformation. (e) and (f) are respectively the magnitudes of joint entropy
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Figure 3.4: a) Target image, b) Floating image, c) geometric error norm, d) peaks
in scale, e) joint entropy at peaks without gaussian scale space low pass
filter and f) joint entropy at peaks with gaussian scale space filter

obtained by keeping σ fixed, and varying σ with α. In both cases the scale is found

to be α ≈ 25 at the pixel with highest entropy but (f) tracks the deformation error(c)

much more closely than (e). The range of scales searched was limited from 6 to 40,

i.e., it was assumed that the maximum scale of the deformation was below 40.

3.4 Precision and Accuracy of location and scale

In the next experiment, we deformed an image (dimensions 236 × 330) using a

locally affine geometric deformation [62] at five different locations and four different

scales. We applied each deformation independently (20 cases, one location and scale

at a time) and the computed the mismatch vector. A typical deformation is shown

in Fig. (3.5a) centered at ‘+’ with a deformation spread width [62] = 27 pixel units.

The circle drawn has a radius equal to twice this width. The corresponding warped

image is Fig. (3.5b) and the absolute intensity difference before and after warp is

shown in Fig. (3.5c).
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Figure 3.5: a) Typical target Image with deformation center and scale, b) Warped
floating image, c) Absolute intensity difference, d) Clusters of identified
centers, f) Estimated vs. true deformation scale
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The circles in Fig. (3.5d) show the original location of the deformation cen-

ter and the numbers show the estimated centers for each location. Note that the

five numbered markings each are well clustered. Accuracy can be seen visually by

the proximity of the markings to the circles. However it possible that regions that

are maximally mismatched in intensity may not lie exactly at circle locations, i.e,

locations of maximum geometric deformation error norms may not coincide with

maximum intensity mismatch so accuracy measurement quantitatively is not possi-

ble here but the combined vector precision was found to be small (1.71 pixels) and

was computed as the mean deviation of estimated locations from their respective

cluster mean vector. Fig. (3.5e) compares the estimated outer scale with the true

scale(kernel width) of the deformation. The scale estimation error was found to be

0.87 pixel units.

3.4.1 Example5: Multimodality case

An artificial multi-modality case is considered where we picked an image, (Fig.

(3.6(a))), inverted its intensities, affine transformed and warped it to get (b). (c) is

got after registering (b) with (a) through an affine transformation as before. The

geometrical error norm (only due to warps) is shown in (d). (e) shows the locations

where peaks in entropy were found and (f) shows their joint entropy at the respective

scale. The highest peak in (f) corresponds well with the location having the largest

deformation error in (d).

3.5 Mismatch vector selection

For automatic registration, several mismatch vectors are picked from the image.

The number of vectors picked is variable although we found 16-24 vectors at each

iteration gave the best trade-off in terms of time and registration accuracy taking
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Figure 3.6: a) Target image, b) Affine transformed and warped floating image, c)
Floating after affine registration, d) Known warp error norm, e) Esti-
mated peaks in scale, f) Joint entropy at peaks in scale

into consideration both this initialization step and the registration step to be dis-

cussed in the next chapter. A clustering procedure was implemented to space them

sufficiently apart so that they have non-overlapping supports. The support param-

eter for registration is set as the scale(α) from the corresponding mismatch vector.

Therefore we define the selection of mismatch vectors as follows:

3.5.1 Mismatch vector selection procedure

1: Initialize number of vectors to pick in MV

2: Compute all mismatch locations and scale as

(r∗0, α
∗) =

{
α : ∂2H(α;r0)

∂α2 < 0| ∂H(•)
∂α

=0

}

3: while i = 1 to MV do

4: Pick i’th mismatch vector components(r0, α) as

(r∗0i, α
∗
i ) = argmax(r∗0,α∗)H(r∗0, α

∗)
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5: if is empty(r∗0i, α
∗
i ) then

6: break

7: end if

8: no overlap =





0, Dj < Sj ∀j = 1 . . . i− 1

1, otherwise

where Dj = ‖r∗0i − r∗0j‖, Sj = α∗i + α∗j and j = 1 . . . i− 1

9: if no overlap then

10: Accept (r∗0i, α
∗
i ). i = i + 1.

11: end if

12: end while

In the actual implementation, the joint entropy was computed at all voxels, and

a wide range of α. The locations r∗0 estimated and the scale α∗ were used to initialize

a locally affine deformation model (described in the previous chapter). Potentially,

other deformation models like B-splines or Radial basis functions could be used as

well based on this initialization. This method of initialization followed by registra-

tion can be repeated iteratively until no further improvement occurs. The complete

registration framework is described in the next chapter.



CHAPTER IV

Automatic multimodality registration

In this chapter we will discuss the complete registration framework using the

deformation model and mismatch measure discussed in Chapters 2 and 3 respec-

tively. We begin Section 4.1 by discussing the specific support function used in

our model followed by the registration strategy in Section 4.2. For our validation,

brain images were warped with known B-spline and compactly supported Radial

Basis Function(RBF) based deformations and registration was attempted. An auto-

matic iterative strategy via initialization (finding mismatch vectors) and registration

resulted in voxel sized errors.

4.1 Deformation model

Once the mismatch vector is estimated, control point or seed point parameteri-

zations are then be applied at these locations that are relatively more mismatched

(using additional scale information available depending on the model initialization).

Any deformation model may be used to recover these warps during registration. Here

we have demonstrated its effectiveness using a deformation model proposed by us

earlier to do non-rigid registration [62] using warps that are locally affine. Functions

with local support can be used to control the degree of spatial warp with a scale
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parameter that can be fined tuned during registration. We have used compactly

supported Wendland functions [17] to define the locality of the deformation. Specif-

ically we used ψ(r̃) = (1 − r̃)4
+(4r̃ + 1) for r̃ = r/a where r is the distance from

the deformation center and a is the spatial scale. This function was found to work

well for estimated scale to correct deformations while providing loose bounds under

trivial conditions for an inverse to always exist (See appendix).

4.1.1 Registration deformation model invertibility conditions

In our previous work[62] we proved the existence of simple conditions that allowed

for loose bounds in the deformation that always guaranteed an inverse. However

the bounds were derived for a gaussian support function. Following similar steps,

conditions can be derived for any support function. In this paper we used a the

compactly supported function ψ(r̃) = (1− r̃)4
+(4r̃+1) and in a similar manner found

that the transformation(T ) for any seed point always has an inverse as long as

‖t‖ < 0.4741 b (4.1)

and

0 < a </ 4.2493, (4.2)

where t is the translation vector and a = max(ax, ay, az), the largest of the three

anisotropic scales in the x, y and z direction(or only x and y in 2D), and b is the

support of the piecewise polynomial function for the translation part at each seed

point. These bounds in practice were found to be loose and we rarely experienced

any folding in our simulations.

Each deformation is specified via a seed point location, scale and its associated

set of affine parameters. Registration for successive seed points is performed through

a composition of the transformation over all previously optimized parameters. E.g.
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if we have N seed points, the final transformation is

T (x) = (TN ◦ TN−1 . . . T2 ◦ T1)(x), (4.3)

where each seed point ’i’ is associated with a transformation Ti. The individual

transformation parameters are computed for each seed point. Global Normalized

Mutual Information (NMI) [44] was used as the objective function and a simplex

based optimizer was used to optimize over seed point parameters, i.e. for 2D, two

translation parameters (tx, ty), rotation angle (θ), two anisotropic scale parameters

(ax, ay), two center coordinates (Cx, Cy) and a support parameter (s) where (Cx, Cy)

and s were set equal mismatch vector components r0 and α respectively.

4.2 Registration framework

In the previous chapter we discussed mismatch vectors and how they were com-

puted. This is the initialization step. The initializer returns a set of mismatch vectors

sorted in descending order of joint entropy at the respective scale where entropy was

peaked. To improve computational speed the joint entropy over scale was computed

only at edge pixels along the target image. Edges were computed using a Laplacian

Of Gaussian(LoG) filter with a threshold set to 0.03 and kernel width(σ) = 3.5 for the

byte ranged images. This reduced the number of pixels over which entropy (through

outer scale) was calculated ten fold. The components of the mismatch vector and

affine parameters (tx,ty,θ,ax,ay) that define the model parameters are optimized one

seed point at a time. The support parameter was independently varied for transla-

tion and rotation-scale, i.e., two different supports although initialized to the same

value (as specified by the mismatch vector component α, i.e., outer scale) were op-

timized individually. This is different from our previous work [62] where a single

support parameter was used. Although this increases the number of parameters by
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one it was found to give a much greater degree of flexibility while still preserving

invertibility, compact support and smoothness of the transformation.

Several seed points may be optimized simultaneously in Eq. (4.3) if their supports

do not overlap, allowing a certain degree of parallelization. Specifically for the case

of our registration experiments and deformation model used, we found that using 25

seed points at a time to do registration worked effectively although the parallelization

option was not exploited. After registration, the floating image is warped onto the

target and the initialization procedure is repeated. This is performed iteratively

until 4 NMI < thresh. Some seed points picked may not lead to improvement in

cost (4 NMI < 3e−4). Mismatch vector selection may further be influenced by a

distance filter that restricts it to locations (and scale) with high joint entropy and

non-overlapping support with these seed points in subsequent iterations.

4.3 Algorithm

A is the target image. After affine registration with the target, the interpolated

floating image(B) is calculated from the pullback map.

1: Set T̂ to identity.

2: Compute NMI(A(•), B(T̂ (•))). 4NMI = thresh + ε. Set i = 1.

3: while 4 NMI > thresh do

4: Pick M mismatch vectors sorted in descending order of joint entropy

5: for k = 1 to M do

6: T̂i,k = argmax Ti,k
NMI(A(•), B((Ti,k ◦ T̂ )(•)))

7: Update: T̂ = T̂i,k ◦ T̂

8: end for

9: Compute NMI(A(•), B(T̂ (•))) and 4 NMI
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Figure 4.1: Automatic multimodality registration

10: i = i + 1

11: end while

Note that ˆT (•) always stores the most current deformation map in the form of

a 2D/3D array and is not computed from the previously estimated transformation

parameters each time, speeding up computation. Fig. (4.1) shows the flowchart of

the registration framework.
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4.3.1 Implementation details

Table 4.1: Parameter specifications for simulations
Procedure Step Parameter selection

Preprocessing Laplacian of Gaussian filter kernel width = 3.5
threshold = 0.03

Initialization Gaussian Histogram weighting function Outer scale = σ
Locations search range Image pixel locations

Outer scale search range 6-33 pixels
Mismatch vector distance filter Non-overlapping supports

Registration Support function ψ(r̃) = (1− r̃)4
+(4r̃ + 1)

Seed points/iteration 25
Termination criteria 4 NMI < 0.01

4.4 Results

4.4.1 Tumor growth modeling

The nature of tumor growth is emulated for an axial T1 weighted real 256 ×

256 image containing a real tumor using a simplistic model of a pure geometrical

deformation with no intensity variation (see Fig. (4.2)) and no physical constraints

to prevent warping at the boundary of the head. Fig. (4.2(a)) shows the target

image with contours delineating tumor and ventricles, Fig. (4.2(b)) shows the target

image and a 5 × 5 grid of control points displaced randomly (N(0,3.5) in X and Y

directions. A compactly supported (support = 40mm) radial basis function (ψ(r̃) =

(1− r̃)6
+(35

3
r̃2 +6r̃ +1)) was used to warp the target image, creating a warped image

Fig. (4.2(d)) using the pullback map. Fig. (4.2(d)) also shows the original and new

locations of the contours superposed on the warped image and Fig. (4.2(c)) shows

the deformation map. Fig. (4.2(e)) is the outer scale image where joint entropy peaks

through scale were found, intensity(α) mapped to color and Fig. (4.2(f)) shows joint

entropy at these locations. Both Fig. (4.2(e)) and Fig. (4.2(f)) were estimates at

the end of the first iteration (of initialization). The mismatch locations and scale
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Figure 4.2: a) Target image with ventricles delineated, b) Target image with control
points, c) Applied known deformation, d) Warped image with outlines
before and after warp showing mismatch e) Locations with peaks in scale,
scale mapped to color f) Joint entropy at peaks in scale, g) Floating
image on target after registration, h) magnified outline before registration
near ventricles, i) After registration, j) Seed point locations on estimated
deformation, k) magnified seed point locations on estimated deformation
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seem to agree with true deformations. Initialization and registration were iterated,

and Fig. (4.2(g)) shows the result after only three iterations (Normally iterated

until 4 NMI < thresh). The average original error norm at warped locations was

1.6616mm and the average final error norm after three iterations was 0.8404mm.

Two iterations were enough to get voxel sized errors (1.0619mm). Fig. (4.2(g))

and Fig. (4.2(h)) show the contour mismatch before and after registration close

to brain structures, and Fig. (4.2(j)) and Fig. (4.2(k)) show the locations of seed

points on the registration deformation map for the whole image and in the vicinity

of the tumor respectively. Note how well clustered the seed points are in accordance

with the applied deformation error (as opposed to being scattered over the entire

image). Although seventy five seed points were used in all (25 per iteration), each

optimization was performed over a strictly local region of the image consisting of

only 9 parameters making it very fast. Picking anywhere between 16 and 32 seed

points per iteration seemed to work well in terms of time taken in our registration

experiments for comparable registration accuracy. See Table 4.3. We used 25 seed

points in all our simulations. It is possible that some redundant parameterization

maybe performed in later iterations (see head boundaries in Fig. (4.2(e))) that do not

get picked until much later due to their lower joint entropy (see Fig. (4.2(f))). These

seed points will not lead to improvement in the objective function and registration

will automatically terminate(4 NMI < 0.01).

4.4.2 Registration of brain structures

In this example we demonstrate registration of brain structures for a single axial

slice of a 181× 217 T1 weighted MR image (in-plane spacing 1mm) from Brainweb

[58]. The slice (see Fig (4.4)top row left) is warped using a 11 × 11 grid B-spline
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Figure 4.3: Left: Registration error in mm vs. seed points per iteration. Right:
Registration error in mm vs. time in seconds

deformation (top row center) where only the 16 knots at the center marked distinctly

are displaced randomly (N(0,4)). Eight synthetically warped images were generated

based on independent deformations applied each time. The target image was de-

lineated based on important structures in the brain namely the lenticular nucleus,

ventricles and the caudate nucleus shown in the same figure (top right). On warp-

ing, each of their contours are displaced and original contour displacement errors are

computed. The bottom row in the same figure shows one typical example (of the

eight warped slices). The original contour plotted on the target image (bottom left),

original and warped contour superposed on the target image (bottom center) and

the original and final contours on the target (right center) are shown.

For each of the warped images, an initialization routine was used to find the mis-

match vectors followed by registration using 25 seed points each time. In order to

compare registration performance all images were iterated exactly 4 times although

practically registration could be performed until the improvement is above a thresh-

old (4 NMI < 0.01 seemed to work well). The registration accuracy was found to
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Figure 4.4: a) Target image, b) Target image with 16 control points displaced marked
⊕, c) Ventricles, caudate and the lenticular nucleus delineated, d) Out-
lines on magnified target, e) Outline mismatch before registration, f)
After registration

be close to voxel size (see Table 4.2 showing OCDE - original contour displacement

error and FCDE - final contour displacement errors both in mm) on completion.

Finally Fig. (4.5) shows the original contours of the brain structures plotted on

a 2D histogram of all seed point locations picked(100 in each image, 800 in all) for

registration. The histogram was blurred with a narrow windowed gaussian for easier

visual inspection. Also shown(‘+’) are the locations of knot points on the B-spline

grid that were displaced. Observe that seed points tend to be picked at locations

close to where the original deformations were applied.
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Figure 4.5: Histogram of seed point locations for all eight experiments on the con-
tours of structures. Original locations of B-spline control points displaced
are given by a +.

Table 4.2: Contour registration errors. Top row shows original average contour dis-
placement errors for each sample and bottom row shows final average
contour displacement errors

Samples 1 2 3 4 5 6 7 8

OCDE 2.5192 2.2425 1.9142 2.5769 2.7295 1.6745 2.5227 2.8405
FCDE 1.2348 1.1329 1.3864 1.5513 1.3915 1.1463 1.3112 1.1725



CHAPTER V

Conclusion

5.1 Contributions

We have demonstrated and tested a new local nonlinear transformation for multi-

modality image registration. This transformation is local, smooth and has affine

behavior near the region of interest. The parameters controlling the support of this

transform can be initialized and changed (by the optimizer) during the course of the

registration to match the level of scale of the induced deformation. Furthermore, the

transformation has a closed form and there is no need to integrate the velocity vector

over time as in the case of methods using ODEs, making it very fast. Since each

region is optimized one at a time, only eight parameters are used in the optimization

which makes it very fast. Although we can always guarantee that folding does not

occur, finding a direct inverse is not straightforward. A numerical inverse could

be found finally using the optimized parameters after registration if required. In

Chapter 2, I have also derived the expression for the Jacobian that can be used to

measure local volume change.

This dissertation also focussed on identifying mismatch in images through loca-

tion and scale. Mismatch vectors are picked based on peaks in joint entropy through

outer scale computed at every pixel location, and location-scale pairs with high
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entropy were used to parameterize a geometric deformation model. This type of

initialization allowed for finer correction and parameterization only in regions that

were significantly warped instead of a uniform grid placement with control point

placement in regions with no deformation or low mismatch.

Combining the proposed parameterization method based on mismatch with the

deformation model we have demonstrated a completely automatic registration algo-

rithm. Results show that they can be used to reliably register structures in the brain

to within voxel sized errors.

5.2 Transformation model selection

Different local support functions can be used. In Chapter 2, I used the Gaussian

function for the brain registration examples, while in Chapter 4, I used a local sup-

port function. In addition to their different profiles, ability to use different support

functions give some flexibility in smoothness and invertibility bounds. Their support

parameter can also be fine tuned during optimization.

5.3 Future work

5.3.1 Time considerations

The deformation model has a closed form and consists of only nine parameters in

2D. Computation time for the transformation, intensity evaluation and computation

of MI for a given set of parameters was of the order of a few hundred milliseconds on

a 3.6 GHz, Pentium 4 CPU with 2 Gb memory running MATLAB (for images sizes

256 × 256). Each seed point initialization led to an optimization cycle consisting

of about 30-40 function evaluations. The number of seed points depends on how

misaligned the images are. Typically we needed around 100 seed points to achieve
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voxel sized errors to register brain structures. Since the registration is iterative with

the initialization step, where mismatch vectors are computed, seed points could be

picked in a non-overlapping fashion (within the registration step) each time, i.e.,

deformations are allowed to overlap in general. This way several optimizations can

be performed at once.

The initialization step was computationally more expensive. Finding joint en-

tropy throughout the image and through a range of spatial extents took several

minutes to compute for the same machine configuration as above for 2D images.

Due to its coarse grained nature, mismatch can be computed over image sub-blocks

independently on several machines at a time. Parallelization of this routine by run-

ning on 16 machines simultaneously (Pentium 4, 3.06 GHz, 4 Gb memory each)

took approximately 1.5 minutes (image size 256× 256). Potential speed ups can be

achieved by converting the code to C discussed next.

5.3.2 Extensions to 3D

All simulations in this dissertation were done for 2D images. Conceptually the

methods can be directly extended to 3D. In order to register 3D data sets, the

implementation would have to be done in C.

5.3.3 Comparison with B-splines and radial basis functions

A comparison of registration accuracy and time taken using the transformation

model proposed here for different support functions with B-splines and radial basis

functions would be useful to decide the best transformation model for the targeted

application.
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