
International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

227

Regression Testing of Object-Oriented Software: Towards a Hybrid

Technique

Pierre-Luc Vincent, Linda Badri and Mourad Badri

Software Engineering Research Laboratory, Department of Mathematics and Computer Science

University of Quebec, Trois-Rivières, Quebec, Canada

{PierreLuc.Vincent, Linda.Badri, Mourad.Badri}uqtr.ca

Abstract

We propose, in this paper, a hybrid regression testing technique and associated tool for

object-oriented software. The technique combines, in fact, the analysis of UML models to a

simple static analysis of the source code of the modified program. The basic models we use

are use cases model and corresponding UML statechart and collaboration diagrams. The

goal of the static analysis of the source code is to identify changes that are not visible in

design models. The developed tool identifies the modified (and/or impacted by modifications)

use cases and selects the appropriate test cases from an existing test suite. New (JUnit) test

cases, covering new scenarios or those whose structure has been modified after changes, are

generated when necessary. In this way, the technique supports an incremental update of the

test suite. The selected JUnit test cases, including the new ones, are automatically executed. A

case study is reported to provide evidence of the feasibility of the approach and its benefits in

terms of reduction of regression testing effort.

Keywords: Software Maintenance, Regression Testing, Object-Oriented, Test Case

Selection, Test Case Generation, Use Cases, UML Diagrams, Static Analysis

1. Introduction

Modern software development is becoming more and more complex. Moreover, as

software systems are used for a long period of time, software evolution is ineluctable.

Software systems need, indeed, to continually evolve during their lifecycle for various

reasons: adding new features to satisfy user requirements, changing business needs,

introducing novel technologies, correcting faults, improving quality, etc. So, as software

evolves, the changes made to the software must be carefully managed. In particular, it is

important to ensure that modifications do not adversely affect the software. Software

maintenance (and evolution) plays a key role in the overall lifecycle of software.

Furthermore, it takes a large part of the lifecycle costs. Among the various maintenance

activities, regression testing represents a crucial one. Regression testing is actually an

important activity to ensure software quality, particularly when software is actively

maintained and updated. It can also be used in the testing release phase of software

development.

Regression testing is a process that consists of determining if a modified software system

still verifies its specifications and whether new errors were introduced inadvertently [1-3].

For obvious reasons, the retest-all approach that consists in rerunning every test case in the

initial test suite, produced during initial development, is inefficient, costly and unacceptable

in the maintenance phase [4]. Moreover, it does not consider obsolete (no longer valid) and

new test cases. In addition, it is often impractical due to the development cost and delivery

schedule constraints [5]. An alternative approach, known as a selective retest approach,

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

228

assumes that not all parts of a software system are affected by changes [6]. Regression test

selection in this case consists in selecting and running, from an initial test suite, a reduced

subset of appropriate test cases in order to verify the behavior of modified software and

provide confidence that modifications, and parts of the software affected by modifications,

are correct [7, 8]. This leads to a reduction in the cost of (regression testing and) software

maintenance. If a selective retest approach reveals the same faults as a retest-all approach,

then it is considered to be safe [9-13]. Regression test selection techniques can, in fact,

discard test cases that could reveal faults, possibly reducing faults detection effectiveness [7].

Furthermore, regression test techniques also need to determine if additional test cases are

required.

Regression testing techniques need to address different important issues [6, 12]:

modification identification (finding where changes occur in a software and parts of the

software that are possibly impacted by these modifications), test selection (deciding which

tests are more likely to reveal faults introduced by modifications), test execution (executing

test cases and verifying the behavior of software) and test suite maintenance (determining

where additional tests may be needed). Many researchers have addressed the regression

testing problem (and particularly the regression test selection problem) in the literature [1-3,

5, 6, 8, 12-23]. These techniques, adopting different approaches, attempt to reduce the effort

required to test a modified program by selecting a suitable set of test cases from a test suite

used during development. The reuse of test cases offers, indeed, major advantages because

the creation of new test cases is a costly activity [6, 14]. Moreover, changes in software can

introduce new scenarios, and/or change the structure of existing ones. Original test cases do

not cover these changes (and their impact). New test cases are often needed. According to

Engström et al. [12], no general solution has been put forward since no regression test

selection technique could possibly respond adequately to the complexity of the problem and

the great diversity in requirements and preconditions in software systems and development

organizations.

Most of the regression testing techniques proposed in the literature are code-based [1-3, 5,

17, 20, 22, 23]. Engström et al., [12] argue that these techniques can achieve a high degree of

precision in the selection of test cases. These techniques follow different approaches to

support the regression testing process and consider different levels of granularity. Code-based

techniques have, however, certain shortcomings: usually quite costly (particularly when

working with large and complex software systems) and may be prone to comprehension

errors since the testers need to access and understand the source code [8, 24]. Chen et al., [25]

argue that code-based techniques are good for unit testing but have a scalability problem. In

addition, some of these techniques are not extensible enough to apply to large components

[22]. Fahad et al., [26] argue that it is more difficult to identify changes from the code than

from the models. Finally, these techniques are dependent on the programming language used

and in some cases don't support all of its constructions [1].

A limited number of regression testing approaches are based on models, especially for

object-oriented software (OOS) [6, 18, 21]. These approaches are independent from

programming languages, which gives them more applicability. According to Fahad et al.,

[26], model-based regression testing techniques have many advantages over code-based

techniques. However, model-based approaches also have some limitations. Particularly,

models must be complete and up-to-date. Advances in the field of reverse engineering allow,

however, reducing the effects of such a drawback [27]. Different models can, actually, be

generated automatically from the source code of a program. Moreover, according to Briand et

al., [21], techniques based only on models may not be as accurate as code-based techniques

(incompatibility between model and code). Some changes in the source code of the programs

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

229

may not have impact on models. In fact, models being abstraction are often insensitive to

minor code changes (changes in a method’s body for example). Regression testing techniques

based solely on models cannot capture this type of change.

In this paper, we present a hybrid regression testing technique, and associated tool, for

OOS. The proposed technique combines, in fact, the analysis of UML models to a simple

static analysis of the source code of the modified program. The basic models we use in our

approach are use cases model and corresponding UML (Unified Modeling Language)

statechart and collaboration diagrams. The static analysis of the source code aims basically at

identifying changes (in a method’s body) that are not visible in design models. In this way,

the technique combines the advantages of both model-based and code-based approaches to

improve the accuracy in the selection of adequate test cases. The developed tool identifies the

modified (and/or impacted by modifications) use cases (parts impacted by modifications) and

selects the appropriate test cases, from an existing test suite, that must be retested. New JUnit

test cases, covering new scenarios or those whose structure has been modified after changes,

are also generated when necessary. In this way, the technique supports an incremental update

of the test suite (test suite maintenance, which is a crucial issue in regression testing). The

selected JUnit test cases, including the new ones, are automatically executed. A case study is

reported to provide evidence of the feasibility of the methodology and its ability to reduce the

regression testing effort.

The article is organized as follows: A brief review of the literature on regression testing

techniques for OOS is presented in Section 2. Section 3 presents the methodology of the

proposed approach and associated tool. Section 4 presents the case study, the definition of the

evaluation criteria and a discussion of the results. Finally, Section 5 concludes the paper and

gives some future work directions.

2. Related Work

Rothermel et al., [2] present a regression testing technique using both static and dynamic

analysis of programs. The code of the program under test is instrumented. The test cases that

cover modified code are executed. The execution time varies depending on several factors

(for example, cases where the modifications change the control graph's path structure).

Harrold et al., [3] present the first regression testing technique to support the Java language.

The technique uses both static and dynamic analysis. The code here also is instrumented. It is,

in fact, an extension of Rothermel's DejaVu technique [2]. This approach selects the test cases

that must be retested after a change, but do not address the problem of new test cases

generation. A tool (RETEST) allows the automation of the process. Rothermel et al., [20]

present an extension of the DejaVu technique adapted to the C++ language. The test selection

process is supported by a tool (DejaVOO).

Kung et al., [1] present an algorithm based on the concept of firewall. The technique

isolates modules that need to be re-tested after a change. Static code analysis is used to

identify the classes that have been impacted by changes. This work focuses on the

identification of the impacted classes and the determination of a test order but does not

address the generation and execution of tests. Abdullah et al., [17] elaborate the concept of

firewall presented by Kung et al., [1]. The main novelty of the approach is that a distinction is

made between high level and low level changes. In addition, this approach takes into account

polymorphism and dynamic binding. The generation of new test cases is discussed but no tool

is mentioned.

White et al., [23] present an extension to Adbullah's approach [17]. The extended firewall

takes into account, in addition to the elements of the standard firewall, global variables,

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

230

cycles and paths. In regression testing techniques based on the concept of firewall, the

elements included in the firewall may be elements that interact with modified elements,

elements that are direct ancestors of modified elements or elements that are direct

descendants of the changed elements. This work does not cover the generation of new test

cases. Skoglund et al., [22] evaluate the firewall technique on a large system. The authors

conclude that the time required for extraction and analysis of the data is more important than

retesting all. Firewall techniques are simple and easy to use especially with small changes [9].

Wu et al., [5] propose a technique based on dependency relationships (Affected Function

Dependency Graphs) to identify variables and functions affected by changes. This technique

addresses only the test case selection problem. Chen et al., [25] use an activity diagram

(control flow graph) to describe system requirements, behaviors and workflows of underlying

system to test. The paths that correspond to the affected graph nodes determine the tests to be

rerun. Wu et al., [28] use class, collaboration and statechart UML diagrams for regression

component-based software. Pilskalns et al., [6] present a regression test selection technique

based on UML class and sequence diagrams. The technique takes into account OCL (Object

Constraint Language) expressions. The approach combines information from class diagrams

and sequence diagrams in a direct acyclic graph. No tool is mentioned to automate the

approach.

Briand et al., [21] present an impact analysis and regression test selection technique based

on UML designs. The used models are class, sequence and use cases diagrams. After a

change, the two versions of the different models are compared and the test cases are classified

into: obsolete, re-testable and reusable. A tool (RTSTool) is used to automate the approach.

The authors mention that it is likely that the approach is not as accurate as if it was based on

the source code. Mansour et al., [24] present also a regression test selection technique based

on UML models. The used models are class, interaction and interaction overview diagrams.

3. Regression Testing Methodology

Use cases are used to describe functional requirements. Informally, a use case is a

collection of related success and failure scenarios that describe actors using a system to

support a goal [29]. A scenario, also called a use case instance, is a specific sequence of

actions and interactions between actors and the system. It is one particular story of using the

system, or one path through the use case. The development (and testing) process is driven by

use cases. Use cases can be described by several UML models. A useful application of

statechart diagrams is to describe the legal sequence of external system events that are

recognized and handled by a system in the context of a use case. A statechart diagram that

depicts the overall system events and their sequence within a use case is a kind of use case

statechart diagram [29]. Moreover, in OOS, objects interact in order to implement the

behavior. The dynamic interactions between groups of objects may be specified using UML

collaboration diagrams. Collaboration defines, in fact, the roles a group of objects play when

performing a particular task (a complex operation for example). The specification described

in a collaboration diagram must be preserved during the transformation process into an

implementation [30, 31].

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

231

List of modified

methods (M(M))

Statechart and

Collaboration

DIagrams

(Vi, Vi+1)

IdentifIcation of

modified use cases

M(UC)

Classification of test

cases (eliminate

obsolete tests)

Test Cases GeneratIon

(new scenarios)

Test Suite,

Vi+1

IdentifIcation of

impacted and new

scenarios

Automated execution of

tests

Test Suite,

Vi

Figure 1. Iterative Methodology

The proposed approach, illustrated by Figure 1, covers the important issues that regression

testing strategies need to address: change identification, test selection, test execution and test

suite maintenance. The technique supports the identification of use cases affected by changes

(scenarios to be (re-) tested). Moreover, it allows the selection, from an existing test suite, of

the test cases appropriate to cover the modified (impacted) scenarios. It also supports the

generation of new test cases when necessary. The different test cases selected (or newly

created) are executed automatically. We assume in our approach that UML models are

updated after modifications. Let Vi and Vi+1 be two versions of a program P (models and

source code). The version Vi+1 is obtained following changes instantiated to the version Vi.

We focus on the scenarios impacted by changes (and new ones). The approach is organized in

several steps.

3.1. Identification of Modified Methods

In order to identify the modified methods, we perform a static analysis of the source code

of the two versions Vi and Vi+1 of the program (Figure 2). We use, in fact, an impact analysis

tool that we developed in a previous work [32]. The obtained list M(M) of modified methods

also contains the removed and added methods. This is particularly useful because it allows

identifying the changes (change in a method’s body) that are made to the source code of the

program that do not require an update of the design models (not visible in design models).

Source code of

the program

(Vi+1)

Source code of

the program

(Vi)

Impact Analysis Tool

List of modified

(impacted)

methods

Figure 2. Identification of Modified (impacted) Methods

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

232

3.2. Identification of Impacted Use Cases

We determine the set M(UC) of use cases that have been affected by one or more

modifications to assist in identifying (and classifying) appropriate test cases. Each use case

identified as impacted by changes will be marked (marking of the corresponding statechart

and collaboration diagrams - version Vi+1). The goal is to identify the set M(S) of modified

(impacted and/or new) scenarios of a use case. In order to ensure that modifications have not

adversely affected the system, all these scenarios will be (re-) tested. This step is essentially

based on the comparison of the diagrams corresponding to the different use cases (statechart

and collaboration diagrams) of the two versions Vi and Vi+1 (creating a mapping of the

changes between the two versions). UML diagrams are described in our approach using

XML. The comparison uses also the list M(M) of modified methods. Figure 3 shows an

example of a use case statechart diagram for the use case "Process a sale" of a sales

management application [29]. Figure 4 shows the collaboration diagram of the enterArticle

method. The use case statechart diagram of Figure 3 contains a transition named enterArticle.

WaitForSale ArticlesEntry

WaitForPayment

createNewSale

enterArticle

createPayment

TerminateSale

Figure 3. A Use Case Statechart Diagram - Process a Sale [29]

Register

enterArticle(code,qty)

Sale

ProductCatalog

2. createLineArticle(spec,qty)

1. spec:=getSpecification(code)

la:LineArticle

ProductSpecification
SalesLinesItem

1.1 spec:=find(code)

2.1 create(spec,qty) 2.2 add(la)

Figure 4. Collaboration Diagram of the enterArticle Operation [29]

3.3. Identification of Impacted Scenarios

For each modified (impacted) use case UCi, the corresponding statechart diagram (version

Vi+1) is transformed into a tree TSD (the modified scenarios are marked). Each collaboration

diagram corresponding to a modified method is also transformed into a tree TCD (the modified

sequences of calls of the methods are marked - collaboration). Each modified method,

included in a scenario of the use case, will be replaced by its own tree (sequence of calls). The

different (complete) scenarios of the use case (from TSD) that have been modified M(S)

(impacted scenarios, new scenarios and scenarios whose structure has been changed) must be

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

233

(re-) tested. We draw, in this process, on the approaches that we have developed in previous

work [31, 33, 34].

Let us consider the used example. If the collaboration “enterArticle” (Figure 4) is changed,

then the use case statechart diagram “Process a sale” (Figure 3) will be marked at the level of

the transition "enterArticle". The tree corresponding to the use case “Process a sale” of

Figure 3 is shown in Figure 5. In this example, we can clearly see that there are two possible

scenarios. The first scenario is one where the enterArticle method is called once. The second

scenario is one where the enterArticle method is called several times.

Wait for sale

Article Entry

createNewSale

Wait for Payment

Sale Complete

enterArticle

terminateSale

createPayment

Figure 5. Message Tree for the Use Case Process a Sale

The message tree of the 'enterArticle' collaboration is shown in Figure 6. As it is a trivial

collaboration, there is only one possible path. As 'enterArticle' is changed, then the path of the

'Process a sale' use case that contains the 'enterArticle' transition should be re-tested and

'enterArticle' will be replaced by its own sequence appearing at the level of the message tree

(Figure 5).

ProductCatalogue.

getSpecification

ProductSpecification

.find

Sale.createLineArticle

LineArticle.new

SalesLineItem.add

Figure 6: Message Tree for the 'enterArticle' Collaboration

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

234

3.4. Classification of Test Cases

We focus, in this step, on the identification (classification and eventually generation) of the

test cases corresponding to the set of impacted scenarios M(S). With the set of impacted

scenarios M(S) identified previously, this step allows to select, from the existing test suite, the

test cases covering the impacted scenarios (reuse). We perform, in fact, a static analysis of the

XML descriptions of the models combined to a static analysis of the source code of the test

cases (JUnit code). We also identify the scenarios that are not covered by the existing suite

for which new test cases are generated. The initial test suite is thus updated incrementally. In

this step, the various test cases are analyzed and classified into different categories: Obsolete

(test cases that are no longer valid - deleted), Retestable (test cases that cover scenarios that

have been modified), Reusable (test cases that cover scenarios that have not been modified –

kept in the test suite but not used for regression testing) and New (new test cases that cover

new scenarios or scenarios whose structure has been modified by changes).

User Interface

(Eclipse)

Eclipse

Environnement

JDOM/Xerces

(XML)
JUnit

UML models

analysis module

(XML format)

Identification of

impacted scenarios

module (complete

scenarios)

Test cases

generation module

Results

UML Models

List of modified

methods

Regression test

suite

Main components

Figure 7. Architecture of the Tool

The approach we propose considers both unit testing (unit test cases - methods) and

integration testing (integration test cases - use cases – impacted, modified and new scenarios).

The (prototype) tool that we developed, based in part on an extension of the JUnit Framework

(http://www.junit.org), allows the generation and automatic execution of test cases. All new

and re-testable test cases are tested. The architecture of the tool is given in Figure 7. It is

composed of several modules. It supports all phases of the methodology.

4. Case Study

4.1. The case study

In order to provide evidence of the feasibility of the methodology and its benefits in terms

of regression testing effort reduction, we used our approach (and associated tool) on a case

study. The case study is an ATM (simulator) system (taken from the literature), allowing to

perform basic banking operations (withdrawal, deposit, transfer, balance, etc.). We adapted

the case study for our purposes. Figure 8 gives the use cases model of the application.

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

235

ATM

Customer

Operator

Bank

Withdraw

Deposit

Transfer

Inquiry

Session

Start ATM

Stop ATM

<<Include>>

<<Include>>

<<Include>>

<<Include>>

Figure 8. Use Cases Model

To evaluate our approach, we have made several changes to the different models of the

original application (V1) to produce three successive versions (V2, V3 and V4). In addition, we

have also made several changes on some methods in the source code of the version V3. We

have deliberately made changes that are not visible in the design models. The objective was

basically to test the ability of our approach (and associated tool) to detect these changes and

select the appropriate test cases (from the original test suite). We have, in fact, developed the

necessary JUnit test cases (original tests) for our application (before instantiating changes).

Subsequently, the evaluation is performed by applying our technique on each pair of

successive versions ((V1, V2), (V2, V3) and (V3, V4)). The evaluation is performed in three

iterations. Each iteration includes data collection and analysis and interpretation of results.

We compared our methodology with the retest-all strategy.

Table 1. Changes made between Versions 1 and 2

Total (V.1)

Added Changed Deleted Total (V.2)

Methods 32 5 2 3 34

Classes 13 1 5 0 14

Use Cases 7 0 3 0 7

Table 2. Changes made between Versions 2 and 3

Total (V.2)

Added Changed Deleted Total (V.3)

Methods 34 3 5 1 36

Classes 14 0 3 1 13

Use Cases 7 0 5 0 7

Table 3. Changes made between Versions 3 and 4

Total (V.3)

Added Changed Deleted Total (V.4)

Methods 36 0 4 0 36

Classes 13 0 0 0 13

Use Cases 7 0 0 0 7

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

236

The initial specification of the application has 7 use cases, 7 statechart diagrams and 4

collaboration diagrams. The implementation (in Java) has a total of 13 classes and 32

methods. The second version includes changes made on 3 of the 7 use cases. Two methods

have been renamed, a method was moved to another class, a transition was added to the

statechart diagram describing one use case (Inquiry) and a message has been added in the

collaboration diagram of one method. Table 1 presents the detailed statistics on the

differences between version V1 and version V2 of the application. The third version of the

application includes changes made on 5 of the 7 use cases. A new collaboration diagram is

added to keep the credit card after three unsuccessful attempts by the user to enter his

password. The statechart diagrams of the 4 possible transactions are modified to no longer to

eject the card after a transaction is done to allow more than one transaction per session.

Finally, a method is moved to another class and a transition is added to the statechart diagram

of one use case (Session) to allow users to make more than one transaction per session. Table

2 presents the detailed statistics on the differences between version V2 and version V3 of the

application. The fourth version of the application includes changes made only to the source

code of the program that do not require changes to the models. The following methods have

been changed: SecurityAudit.setFailedPinCount, Transaction.invalidPin, Deposit

(constructor), and Inquiry (constructor). Table 3 presents the detailed statistics on the

differences between version V3 and version V4 of the application.

4.2. Evaluation Criteria

A review of the literature on the evaluation criteria used by different researchers allowed

us to identify two major classes of criteria: criteria for the reduction of the cost of regression

testing and criteria for the effectiveness of the detection of faults [8]. Although both classes

are important, in this paper we concentrate on test suite size reduction criteria. We adapted

some criteria defined in the literature to evaluate: the reduction of the number of test cases to

re-test both at the integration level (in terms of scenarios) and at the unit level (in terms of

methods), and the reuse rate of test cases. Let P be a program.

Definition 1: The reduction of the test suite at the integration testing level is given by:

ReductInteg(P) = 1 – (STC/TC), where STC represents the selected test cases and TC

represents the set of all test cases of the program.

Definition 2: The reduction of the test suite at the unit level is given by: ReductUnit(P) = 1 –

(M/AM), where M represents the methods that are part of the selected test cases and AM

represents the set of all methods.

Definition 3: The reuse rate of the test suite at the integration level is given by: ReuseInteg(P)

= RITC / ITC, where RITC represents the number of integration test cases (sequences) that

are classified reusable or re-testable and ITC represents the total number of integration test

cases (sequences).

Definition 4: The reuse rate of the test suite at the unit level is given by: ReuseUnit(P) =

RUTC / UTC, where RUTC represents the number of unit test cases (methods) that are

classified reusable or re-testable and UTC represents the total number of unit test cases

(methods).

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

237

4.3. Results and Discussion

Iteration 1: From version V1 to version V2

At this iteration, for integration testing, there are 6 test cases (complete test sequences)

selected on a total of 17. The 6 test cases correspond, in fact, to new scenarios. For unit tests,

there are 17 unit test cases selected on a total of 34 test cases (see Table 4), including 5 new

and 12 re-testable. Figure 9 shows the evaluation results based on the two criteria ReductInteg

and ReductUnit for test suite reduction. The reduction of the test suite is significant for both

integration (64.7%) and unit (50%) levels when compared to retest-all strategy although the

changes we made (from version 1 to version 2) affect the majority of use case scenarios.

Figure 10 shows the evaluation results based on the two other criteria ReuseInteg and

ReuseUnit for the reuse rate of test cases of our approach. The reuse rate of the test suite is

here also significant for both integration (64.7%) and unit (85.3%) levels.

Table 4. Classification of Test Cases (Iteration 1)

 Total (V.1)

Obsolete Retestable Reusable New Total (V.2)

Unit
 32 3 12 17 5 34

Integration
 15 4 0 11 6 17

 Figure 9. Test Suite Reduction Figure 10. Test Case Reuse Rate

Iteration 2: From version V2 to version V3

At this iteration, for integration testing, there are 10 test cases (complete test sequences)

selected on a total of 20. The 10 test cases correspond to new scenarios. For unit tests, there

are 23 unit test cases selected on a total of 37 test cases (see Table 5), including 4 new and 19

re-testable. Figure 11 shows the evaluation results based on the two criteria ReductInteg and

ReductUnit for test suite reduction. The reduction of the test suite is significant for both

integration (50%) and unit (38%) levels when compared to retest-all strategy. Figure 12

shows the evaluation results based on the two other criteria ReuseInteg and ReuseUnit for the

reuse rate of test cases of our approach. The reuse rate of the test suite is here also significant

for both integration (50.0%) and unit (89.2%) levels.

Table 5. Classification of Test Cases (Iteration 2)

 Total (V.2)

Obsolete Retestable Reusable New Total (V.3)

Unit 34 1 19 14 4 37

Integration 17 7 0 10 10 20

64.7% 50.0%
0.0%

50.0%

100.0%

Test Case Reduction (Integration)

Test Case Reduction (Unit)

64.7%
85.3%

0.0%

50.0%

100.0%

Test Case Reuse (Integration)

Test Case Reuse (Unit)

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

238

Figure 11. Test Suite Reduction Figure 12. Test Case Reuse Rate

Iteration 3: From version V3 to version V4

At this iteration, for integration testing, there are 4 test cases (complete test sequences)

selected on a total of 20. The 4 test cases correspond to existing scenarios where the source

code of one or more methods has been modified. For unit tests, there are 15 unit test cases

selected on a total of 37 test cases (see Table 6). If the same evaluation would have been done

using only a model-based regression testing approach that does not consider changes to

source code, then no test cases would be selected at all. As mentioned previously, our

technique uses an impact analysis tool (Badri, 2005) to identify the list of modified methods.

This list is then used to identify the impacted test sequences. In this iteration, the 4 selected

test sequences contain a total of 15 methods that must be retested. Figure 13 shows the

evaluation results based on the two criteria ReductInteg and ReductUnit for test suite

reduction. The reduction of the test suite is significant for both integration (80%) and unit

(59%) levels when compared to retest-all strategy. All test cases in this iteration are reusable

since no test case was made obsolete and the complete test sequences are exactly the same as

for version V3. Figure 14 shows the evaluation results based on the two other criteria

ReuseInteg and ReuseUnit for the reuse rate of test cases of our approach. The reuse rate in

this iteration is equal to 100% for both integration and unit levels.

Table 6. Classification of Test Cases (Iteration 3)

 Total (V.2)

Obsolete Retestable Reusable New Total (V.3)

Unit 37 0 15 12 0 37

Integration 20 0 4 16 0 20

Figure 13. Test Suite Reduction Figure 14. Test Case Reuse Rate

5. Conclusions and Future Work

We have presented a regression testing technique and associated tool for object-oriented

systems. The technique combines, in fact, the analysis of UML models to a simple static

analysis of the source code of the modified program. The UML models we used are use cases

model and corresponding statechart and collaboration diagrams. The goal of the static

analysis of the source code is to identify changes that are not visible in the design models.

50.0% 38.0%
0.0%

50.0%

100.0%

Test Case Reduction (Integration)

Test Case Reduction (Unit)

50.0% 89.2%
0.0%

50.0%

100.0%

Test Case Reuse (Integration)

Test Case Reuse (Unit)

80.0% 59.0%

0.0%

50.0%

100.0%

Test Case Reduction (Integration)

Test Case Reduction (Unit)

100% 100%

0.0%

50.0%

100.0%

Test Case Reuse (Integration)

Test Case Reuse (Unit)

International Journal of Software Engineering and Its Applications

 Vol. 7, No. 4, July, 2013

239

The technique covers the different important issues that regression testing strategies need to

address: change identification, test selection, test execution and test suite maintenance. The

developed tool identifies modified use cases (parts impacted by modifications) and selects the

appropriate test cases from an existing test suite. New test cases are generated when

necessary. In this way, the test suite is updated incrementally.

In order to evaluate the proposed technique, we used the tool we developed on a case

study. We focused on the reduction of the cost of regression testing. We have made several

changes to the different models of the original application to produce successive versions. We

focused also on changes made on some methods in the source code of the application, which

are not visible in the design models. Results provide evidence of the feasibility of the

methodology and its ability to reduce the regression testing effort (reducing test suite size).

The achieved results are, however, based on the data set we collected from only one subject

system. The performed study should be replicated using many other OO software systems in

order to draw more general conclusions. As future work, we plan to: extend the approach to

more UML views, further explore the combination of model-based and code-based techniques

in order to increase the accuracy of test case selection (and generation), use other criteria to

improve the evaluation of the approach, and finally replicate the study on other OO software

systems to be able to give generalized results.

Acknowledgements

This work was supported by NSERC (Natural Sciences and Engineering Research Council

of Canada) grant.

References

[1] D. Kung, J. Gao and P. Hsia, “Class firewall, Test Order and Regression Testing of Object Oriented

Programs”, Journal of Object Oriented Programming, (1995), pp. 51-65.

[2] G. Rothermel, M. J. Harrold, “A safe, efficient regression test selection technique”, ACM Transactions on

Software Engineering Methodology, vol. 6, no. 2, (1997) April, pp. 173-210.

[3] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon and A. Gujarathi,

“Regression test selection for Java software”, Proceedings of the 16th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, (2001), pp. 312-326.

[4] G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection Techniques”, IEEE Transactions on

Software Engineering, vol. 22, no. 8, (1996), pp. 529-551.

[5] Y. Wu, M.-H. Chen and H. M. Kao, “Regression testing on object-oriented programs”, Proc. of the 10th

International Symposium on Software Reliability Engineering, (1999), pp. 270-279.

[6] O. Pilskalns, G. Uyan and A. Andrews, “Regression Testing UML Designs”, Proc. of the 22nd IEEE

International Conference on Software Maintenance, ICSM '06'. (2006), pp. 254-264.

[7] T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter and G. Rothermel, “An Empirical Study of Regression Test

Selection Techniques”, ACM Transactions on Software Engineering and Methodology, vol. 10, no. 2, (2001),

pp. 184-208.

[8] E. Engström, M. Skoglund and P. Runeson, “Empirical evaluations of regression test selection techniques: A

systematic review”, Proceedings of the Second ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement. (2008), pp. 22-31.

[9] M. J. Harrold, “Testing Evolving Software”, Journal of Systems and Software, vol. 47, (1999), pp. 173-181.

[10] H. K. Leung and L. White, “A study of integration testing and software regression at the integration level”,

Proceedings of the Conference on Software Maintenance, (1990).

[11] J. Laski and W. Szermer, “Identification of program modifications and its applications in software

maintenance”, Software Maintenance, (1992).

[12] E. Engström, P. Runeson and M. Skoglund, “A systematic review on regression test selection techniques”,

Information and Software Technology, (2009).

[13] H. K. Leung and L. White, “Insights into testing and regression testing global variables”, Journal of Software

Maintenance: Research and Practice, vol. 2, no. 4, (1990) December, pp. 209-222.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

240

[14] H. K. Leung and L. White, “A Cost Model to Compare Regression Test Strategies”, Proceedings of the

Conference on Software Maintenance, vol. 91, (1991), pp. 201-208.

[15] G. Rothermel and M. J. Harrold, “A comparison of regression test selection techniques”, Technical report

114, Clemson University, Clemson, SC, (1993) April.

[16] D. Kung, “On regression testing of object-oriented programs”, Journal of Systems and Software, vol. 32,

(1996), pp. 21-40.

[17] K. Abdullah, “The Firewall Concept for Regression Testing and Impact Analysis of Object Oriented

Systems”, PhD thesis, Case Western Reserve University, (1998).

[18] A. Von Mayrhauser and N. Zhang, “Automated regression testing using DBT and Sleuth”, Journal of

Software Maintenance, vol. 11, no. 2, (1999) March, pp. 93-116.

[19] Y. Le Traon, T. Jéron, J. M. Jézéquel and P. Morel, “Efficient Object-Oriented Integration and Regression

Testing”, IEEE Transactions on Reliability, vol. 49, no. 1, (2000) March.

[20] G. Rothermel, M. J. Harrold, J. Dedhia, “Regression Test Selection for C++ Software”, Journal of Software

Testing Verification and Reliability, vol. 10, (2000).

[21] L. C. Briand, Y. Labiche and G. Soccar, “Automating impact analysis and regression test selection based on

UML designs”, International Conference on Software Maintenance, (2002), pp. 252-261.

[22] M. Skoglund and P. Runeson, “A case study of the class firewall regression test selection technique on a large

scale distributed software system”, Proc. of the ISESE, (2005).

[23] L. White, K. Jaber and B. Robinson, “Utilization of extended firewall for object-oriented regression testing”,

Proc. of the IEEE International Conference on Software Maintenance, (2005), pp. 695-698.

[24] N. Mansour, H. Takkoush and A. Nehme, “UML-based regression testing for OO software”, Journal of

Software Maintenance and Evolution: Research and Practice, vol. 23, (2011), pp. 51-68.

[25] Y. Chen, R. L. Probert and D. P. Sims, “Specification-based Regression Test Selection with Risk Analysis”,

IBM Center Advanced Studies Conference, (2002).

[26] M. Fahad and A. Nadeem, “A survey of UML Based Regression Testing”, IFIP International Federation for

Information Processing, Intelligent Information Processing IV; Zhongzhi Shi, E. Mercier-Laurent, D. Leake;

(Boston: Springer), vol. 288, (2008), pp. 200-210.

[27] L.C. Briand, Y. Labiche and J. Leduc, “Toward the Reverse Engineering of UML Sequence Diagrams for

Distributed Java Software”, IEEE Transactions on Software Engineering, (2006), pp. 642-663.

[28] Y. Wu and J. Offutt, “Maintaining evolving component based software with UML”, Proceedings of the 7th

European Conference on Software Maintenance and Reengineering, (2003).

[29] C. Larman, “Applying UML and Design Patterns”, An introduction to object-oriented analysis and design and

the unified process, Prentice Hall, (2004).

[30] J. Offutt and A. Abdurazik, “Generating Tests from UML Specifications”, Second International Conference

on the Unified Modeling Language (UML ’99). Fort Collins, CO, (1999) October.

[31] M. Badri, L. Badri and N. Naha, “A Use Case Driven Testing Process: Towards a formal approach based on

UML collaboration diagrams”, Post-Proceedings (selected and revised papers) of FATES (Formal

Approaches to Testing of Software) 2003, in LNCS (Lecture Notes in Computer Science) 2931, Springer-

Verlag, (2003).

[32] L. Badri, M. Badri, D. St-Yves, “Supporting predictive change impact analysis: A control call graph based

technique”, Proc. of the 12th Asia-Pacific Software Engineering Conference, (2005), pp. 167-175.

[33] P. Massicotte, L. Badri and M. Badri, “Towards a Tool Supporting Integration Testing of Aspect-Oriented

Programs”, Journal of Object Technology, vol. 6, no. 1, (2007), pp. 671- 89.

[34] M. Badri, L. Badri and M. Bourque-Fortin, “Automated State-Based Unit Testing for Aspect-Oriented

Programs: A Supporting Framework”, Journal of Object Technology, vol. 8, no. 3, (2009), pp. 121-126.

