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1 IntroductionEver since Baker, Gill, and Solovay's [BGS75] seminal paper on relativizedcomplexity class, the meaning and signi�cance of oracle constructions has beenhotly debated [Imp88, For94].By de�nition, oracles tell us the limits of what can be proved by relativiz-able techniques. This is useful to researchers, because it tells us when not togive up on relativizable techniques (e.g., [Imm88, Sze88, BRS95]) and when anutterly novel technique will be required (e.g., [LFKN92, Sha92, BFL91, AS92]).We really want to know what happens in the real world, and oracles don'tanswer this question. People have studied special classes of oracles such asrandom [BG81] and sparse [BBS86] but neither do these reect what happensin the real world in general [Kur83, BBS86].Despite all this, researchers still rely on oracles to support their intuitions.For example, many would say that Yao's separation of the polynomial hier-archy from PSPACE by oracles [Yao85, H�as86] provides \circumstantial evi-dence" for the conjecture that the polynomial hierarchy really is di�erent fromPSPACE.Imagine that Yao had instead constructed an oracle that makes P = PHand PSPACE = EXP. Arguably, this would not have supported our intuitionsabout the polynomial hierarchy. Such an oracle would make the polynomialhierarchy implausibly tiny and PSPACE implausibly large. But then, by thetime hierarchy theorem, such an oracle would also make PH 6= PSPACE.Would it still be \circumstantial evidence" for PH 6= PSPACE in the realworld?Recall that Yao's result builds on Furst, Saxe, and Sipser'sparadigm [FSS84], which states that in general circuit lower bounds implyoracle separations. We show that in general exponential circuit lower boundsimply in fact a pair of collapses, which in turn imply Furst et al's separa-tion. Our approach is based on combining oracle construction techniques ofBeigel, Buhrman, and Fortnow [BBF98] with bounded-query techniques ofAmir, Beigel, and Gasarch [ABG90].2 PreliminariesWe assume that the reader is familiar with the basic notions of complexitytheory. (See [Pap94], for example.) In this section, we recall some de�nitionsthat will be used in this article.For any number r, a language L is in MODrP if there is a polynomial-timenondeterministic Turing machine N such that for every input string x, x 2 Lif and only if the number of accepting computations of N on x is not congruentto 0 modulo r. MOD2P is usually denoted �P.1



A language L is in PP if there is a polynomial-time nondeterministic Turingmachine N such that for every input string x, x 2 L if and only if more thanhalf the computations of N on x are accepting.A language is in EXP if it is recognized by a deterministic Turing machinein time 2nO(1).3 The Main Oracle ConstructionThis section is devoted to the proof of the following theorem.Theorem 1 There is an oracle A such that PA = NPA and �PA = EXPA.Let M be a nondeterministic linear-time oracle Turing machine such thatfor all A,MA accepts an NPA complete language LA. Let N be a deterministicoracle Turing machine that runs in time 2n and such that for all A, NA acceptsan EXPA complete language KA.Let c be a constant whose value will be determined later. Let x0 be the�rst string (with respect to lexicographic ordering) whose length is at least c.We will construct A such that for all x � x0,x 2 LA , h0; x; 1jxj2i 2 Aand x 2 KA , jfv : jvj = jxj2 and h1; x; vi 2 Agj is odd:The �rst condition will imply that PA = NPA by allowing a deterministicTuring machine to recognize the NPA complete language LA in polynomialtime. Similarly, the second condition will imply that �PA = EXPA.Strings of the form h0; x; 1jxj2i are said to be of type 0. Strings of the formh1; x; vi are said to be of type 1. By abuse of language, these strings are alsocalled queries.To each query h1; x; vi of type 1, we associate a Boolean variable Ahx;viwhose value is the answer to the query, i.e., Ahx;vi = 1 if h1; x; vi 2 A andAhx;vi = 0, otherwise. The set of queries fh1; x; vi : jvj = jxj2g is called theblock of x. Denote by Ax the string of variables corresponding to the block ofx. The condition on queries of type 1 can now be written asx 2 KA , MOD2(Ax) = 1:Notice that the condition on queries of type 0 implies that these queriesare determined by shorter queries. Therefore, an assignment to the queriesof type 0 that satis�es the condition on queries of type 0 will automaticallyfollow from an assignment to the queries of type 1.2



We therefore concentrate on the construction of an assignment to thequeries of type 1. This will be done by constructing an in�nite sequence(A(x))x�x0 of assignments such that for every x � x0, for every y 2 [x0; x],y 2 KA(x) , MOD2(A(x)y ) = 1: (1)An assignment A such that for every x � x0,x 2 KA , MOD2(Ax) = 1can then be obtained by using a standard argument.Consider an arbitrary x � x0. This string x will be �xed for the remainderof the proof. Our goal is now to construct an assignment A(x) that satis�esthe above condition. For convenience, we will drop the superscript and simplywrite A.Consider the computation of MA on an arbitrary input string z. Thiscomputation can be simulated by �rst guessing the answers to all the oraclequeries and verifying them at the end. This implies that the computationof MA on z can be represented by a depth-two circuit B0z with an OR gateof fan-in 2jzj at the output, AND gates of fan-in jzj on level one, and whoseinputs are either answers to queries of type 1 or answers to queries h0; w; 1jwj2iof type 0 with jwj � qjzj. By the condition on queries of type 0, replace eachsuch query h0; w; 1jwj2i by the circuit B0w that represents the computation ofMA on w. Repeat this recursively. The result is a circuit Bz whose inputs areonly queries of type 1, whose size is at most 22jzj and whose depth is at mostlog log jzj. And, of course, Bz represents the computation of MA on z.Now consider the computation ofNA on an arbitrary input string y. Again,this computation can be simulated by �rst guessing the answers to all the oraclequeries and verifying them at the end. This implies that the computation ofNA on y can be represented by a depth-two circuit C 0y with an OR gate offan-in 22jyj at the output, AND gates of fan-in 2jyj on level one, and whoseinputs are either answers to queries of type 1 or answers to queries h0; w; 1jwj2iof type 0 with jwj � 2jyj. Replace each query h0; w; 1jwj2i by the correspondingcircuit Bw. The result is a circuit Cy whose inputs are only queries of type 1,whose size is at most 22jyj+2 and whose depth is at most log jyj.Since Cy represents the computation of NA on input y, (1) can be rewrittenas follows: for every y 2 [x0; x],Cy(Ax0 ; : : : ; Ax; : : :) = MOD2(Ay): (2)For every z � x, set Az = 0. Now, by contradiction, suppose that an as-signment cannot be found to satisfy (2). In other words, suppose that forevery sequence of binary strings �x0; : : : ; �x, there is y 2 [x0; x] such that3



Cy(�x0 ; : : : ; �x) 6= MOD2(�y). The following lemma, adapted from a resultof Amir, Beigel and Gasarch [ABG90, Theorem 17], states that this impliesthe existence of a not too large circuit computing the MOD2 function on jAzjvariables, for some z 2 [x0; x].Lemma 2 If for every �x0; : : : ; �x, there is y 2 [x0; x] such thatCy(�x0; : : : ; �x) 6= F (�y);then there is a circuit of size 225plogN and depth log logN that computes the Ffunction on N variables, for some N � c.Proof Let �x denote a string of Boolean variables of length equal to the sizeof the block of x. We will �rst aim for a circuit that computes F (�x). Forthis purpose, we will try to construct sets of advice Hx0; : : : ; Hx�1 with thefollowing property: for every �x, there are �x0 2 Hx0; : : : ; �x�1 2 Hx�1 suchthat for every w 2 [x0; x� 1],Cw(�x0; : : : ; �z�1; �x) = F (�w):By the hypothesis in the statement of the lemma, this will imply that for every�x, there are �x0 2 Hx0; : : : ; �x�1 2 Hx�1 such thatCx(�x0 ; : : : ; �z�1; �x) 6= F (�x):This will be the basis for the construction of a circuit computing F (�x).So we proceed with the construction of the advice. This will be done instages, one for each of Hx0; : : : ; Hx�1.Begin Stage z. Notice that for every w � z, Cw makes queriesof length at most 2jwj. So the value of every Cw(�x0 ; : : : ; �x), forw � z, is determined by �x0 ; : : : ; �2z , where 2z denotes the laststring of length 2jzj.Say that �z is advice for  2 f0; 1gj�z+1j+���+j�2z j if there are �x0 2Hx0; : : : ; �z�1 2 Hz�1 such that for every w 2 [x0; z],Cw(�x0 ; : : : ; �z�1; �z; ) = F (�w):Let advisees(�z) be the set of  2 f0; 1gj�z+1j+���+j�2z j for which �zis advice.Let Tz = f0; 1gj�z+1j+���+j�2z j. Let Hz = ;.While there is �z such that jadvisees(�z) \ Tzj � 14 jTzj:1. Choose such an �z. 4



2. Let Hz = Hz [ f�zg.3. Let Tz = Tz � advisees(�z).If Tz 6= ;, halt.If Tz = ; and z = x� 1, halt.If Tz = ; and z < x� 1, proceed to Stage z + 1. End Stage z.Before we continue, let us bound the size of Hz. We have thatjHzj � 4 log jf0; 1gj�z+1j+���+j�2z jj � 222jzj+1. In particular, this implies thatjHx0j � � � jHz�1j � 224jzj.There are now two cases to consider. First, suppose that the constructionof the advice halted with Tz = ; and z = x�1. This means that we successfullyfound an advice for every string of length j�xj. In other words, for every �x,there are �x0 2 Hx0; : : : ; �x�1 2 Hx�1 such that for every w 2 [x0; x� 1],Cw(�x0; : : : ; �x�1; �x) = F (�w);which implies that Cx(�x0 ; : : : ; �x�1; �x) 6= F (�x): (3)The function F (�x) can now be computed with a depth-two circuit as follows.For each sequence �x0 2 Hx0; : : : ; �x�1 2 Hx�1, construct an AND gate thatwill test whether for every w 2 [x0; x� 1],Cw(�x0; : : : ; �x�1; �x) = F (�w):These AND gates have fan-in 2jxj+1 and their inputs are instances of the circuitsCx0; : : : ; Cx. Add to each of these AND gates the input Cx(�x0; : : : ; �x�1; �x).For every �x, by (3), each of these AND gates will output either 0 or F (�x).Feed all of these AND gates into an OR gate of fan-in jHx0j � � � jHx�1j � 224jxj.This OR gate clearly computes F (�x). Therefore, F (�x) can be computed bya circuit of size 224jxj+1 and depth log jxj + 2. Since the length of the input isNx = j�xj = 2jxj2, we have a circuit of size 224plogNx+1 � 225plogNx and depth12 log logNx + 2 � log logNx.For the second case, suppose that the construction of the advice haltedwith Tz 6= ;. Instead of aiming for a circuit that computes F (�x), we will nowaim for circuit that computes F (�z). Every �z is advice for less than 14 of the in the resulting Tz. This means that for every �z, at least 34 of the elements of Tz satisfy the following: for every �x0 2 Hx0; : : : ; �z�1 2 Hz�1 there isw 2 [x0; z] such that Cw(�x0 ; : : : ; �z�1; �z; ) 6= F (�w):5



On the other hand, by the previous stage of the construction (Stage z � 1),which terminated with Tz�1 = ;, for every �z and every  2 f0; 1gj�z+1j+���+j�2z j,there are �x0 2 Hx0; : : : ; �z�1 2 Hz�1 such that for every w 2 [x0; z � 1],Cw(�x0 ; : : : ; �z�1; �z; ) = F (�w):Therefore, for every �z and for at least 34 of the elements  of Tz, there are�x0 2 Hx0 ; : : : ; �z�1 2 Hz�1 such thatCz(�x0 ; : : : ; �z�1; �z; ) 6= F (�z):So given �z, choose  uniformly at random in Tz. With probability at least 34 ,there are �x0 2 Hx0; : : : ; �z�1 2 Hz�1 such thatCz(�x0 ; : : : ; �z�1; �z; ) 6= F (�z):This implies that F (�x) can be computed with probability of error no greaterthan 14 by a probabilistic depth-two circuit with an OR gate of fan-injHx0j � � � jHz�1j � 224jzj at the output, AND gates of fan-in 2jzj+1 on level oneand whose inputs are instances of the circuits Cx0 ; : : : ; Cz. Therefore, F (�z)can be computed by a probabilistic circuit of size 224jzj+1 and depth log jzj+2.Since the length of the input is now Nz = j�zj = 2jzj2, we have a probabilisticcircuit of size 224plogNz+1 and depth 12 log logNz+2. By a technique of [ABO84],this probabilistic circuit can be transformed into a deterministic circuit of size225plogNz and depth log logNz.Therefore, in both cases, we obtain a circuit of size 225plogN and depthlog logN that computes the F function on N variables, for some N � c. utReturning to the proof of Theorem 1, we now choose the value of c to beat least the value of the constant in the following easy corollary of H�astad'sAC0 lower bound [H�as86, Theorem 1]. The value of c must also be larger thansome other small constant as required by some of the inequalities used in thecalculations in the proof of Lemma 2.Lemma 3 There is a constant N0 such that if N � N0, then there are nocircuits of size 225plogN and depth log logN that compute the MOD2 functionon N variables.By combining the two lemmas, we get that there are �x0 ; : : : ; �x such thatfor every y 2 [x0; x], Cy(�x0; : : : ; �x) = MOD2(�y):This completes the proof of Theorem 1.6



4 GeneralizationsThe following generalization of Lemma 3 is also an easy corollary of H�astad'sAC0 lower bound [H�as86, Theorem 1].Lemma 4 For every number r � 2, there is a constant N0 such that if N �N0, then there are no circuits of size 225plogN and depth log logN that computeeither the MODr function or the majority function on N variables.Theorem 5 For every set of numbers r1; : : : ; rk � 2, there is an oracle A suchthat PA = NPA and MODr1PA = � � � = MODrkPA = PPA = EXPA.Proof The proof is similar to the proof of Theorem 1. We will only indicatethe main di�erences.The idea is to construct an oracle A such that for all x � x0,x 2 LA , h0; x; 1jxj2i 2 A;x 2 KA , jfv : jvj = jxj2 and h1; x; vi 2 Agj=2jxj2 > 1=2and for every i 2 [1; k],x 2 KA , jfv : jvj = jxj2 and h1ri; x; vi 2 Agj 6� 0 (mod ri):Each input string x will have k + 1 blocks Ax;1; Ax;r1; : : : ; Ax;rk so the con-dition on strings of type 1 can be written as follows:x 2 KA , majority(Ax;1) = 1and for every i 2 [1; k],x 2 KA , MODri(Ax;ri) = 1:As before, the goal is to construct, for an arbitrary x � x0, an oracle A thatworks for all input strings y 2 [x0; x].Since Cy still represents the computation of NA on input y, the abovecondition can be rewritten as follows: for every y 2 [x0; x] and every r 2f1; r1; : : : ; rkg,Cy(Ax0;1; Ax0;r1; : : : ; Ax0;rk ; : : : ; Ax;1; Ax;r1; : : : ; Ax;rk; : : :) = Fr(Ay;r)where Fr = majority if r = 1, and Fr = MODr if r � 2.Lemma 2 and its proof can be easily adapted to this new setting. Theproof initially aims at the construction of a set of advice Hz;r for each pair(z; r) 2 [x0; x� 1]� f1; r1; : : : ; rkg. ut7



The oracle construction can be generalized further by using the followinglemma which can be easily obtained from the proof Smolensky's lower boundfor ACC0[p] circuits [Smo87].Lemma 6 For every power q of a prime p there is a constant Np such that forevery number r divisible by some other prime, if N � Np, then there are nocircuits of size 225plogN and depth log logN composed of AND, OR and MODqgates that compute either the MODr function or the majority function on Nvariables.Theorem 7 For every power q of a prime p and for every set of numbersr1; : : : ; rk divisible by some other prime, there is an oracle A such that PA =NPA = MODqPA and MODr1PA = � � � = MODrkPA = PPA = EXPA.Proof To the proof of the previous theorem, we add an additional conditionon the oracle A: x 2 LA , h0q; x; 1jxj2i 2 A:The rest of the proof is as before except that the circuit Bz, and hence thecircuit Cy, may now contain MODq gates. ut5 Conclusions and Related WorkSince the same underlying techniques that yield \expected" separations alsoyield unexpected collapses, we believe that our work should shake up anyone'sfaith in oracles for providing circumstantial evidence about the real world.We have also exposed a new and deep connection between upper bounds andlower bounds. Similar connections have been noted in other contexts. See, forexample, [PSZ97] and [BI87].References[ABG90] Amihood Amir, Richard Beigel, and William I. Gasarch, Some con-nections between bounded query classes and nonuniform complex-ity, Proc. Fifth Ann. Structure in Complexity Theory Conf., 1990,pp. 232{243.[ABO84] Ajtai and Ben-Or, A theorem on probabilistic constant depth com-putations, Proceedings of the 16th ACM Symposium on Theory ofComputing, 1984.[AS92] Sanjeev Arora and Shmuel Safra, Probabilistic checking of proofs,Proceedings of the 33rd IEEE Symposium on Foundations of Com-puter Science, 1992, pp. 2{13.8
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