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Abstract

Since the publication of Furst, Saxe, and Sipser’s seminal paper
connecting AC® with the polynomial hierarchy [FSS84], it has been
well known that circuit lower bounds allow you to construct oracles
that separate complexity classes. We will show that similar circuit lower
bounds allow you to construct oracles that collapse complexity classes.
For example, based on Hastad’s parity lower bound, we construct an
oracle such that P = PH C P = EXP.
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1 Introduction

Ever since Baker, Gill, and Solovay’s [BGS75] seminal paper on relativized
complexity class, the meaning and significance of oracle constructions has been
hotly debated [Imp88, For94].

By definition, oracles tell us the limits of what can be proved by relativiz-
able techniques. This is useful to researchers, because it tells us when not to
give up on relativizable techniques (e.g., [Imm88, Sze88, BRS95]|) and when an
utterly novel technique will be required (e.g., [LFKN92, Sha92, BFL91, AS92]).

We really want to know what happens in the real world, and oracles don’t
answer this question. People have studied special classes of oracles such as
random [BG81] and sparse [BBS86] but neither do these reflect what happens
in the real world in general [Kur83, BBS86].

Despite all this, researchers still rely on oracles to support their intuitions.
For example, many would say that Yao’s separation of the polynomial hier-
archy from PSPACE by oracles [Yao85, Has86] provides “circumstantial evi-
dence” for the conjecture that the polynomial hierarchy really is different from
PSPACE.

Imagine that Yao had instead constructed an oracle that makes P = PH
and PSPACE = EXP. Arguably, this would not have supported our intuitions
about the polynomial hierarchy. Such an oracle would make the polynomial
hierarchy implausibly tiny and PSPACE implausibly large. But then, by the
time hierarchy theorem, such an oracle would also make PH # PSPACE.
Would it still be “circumstantial evidence” for PH # PSPACE in the real
world?

Recall that Yao’s result builds on Furst, Saxe, and Sipser’s
paradigm [FSS84], which states that in general circuit lower bounds imply
oracle separations. We show that in general exponential circuit lower bounds
imply in fact a pair of collapses, which in turn imply Furst et al’s separa-
tion. Our approach is based on combining oracle construction techniques of
Beigel, Buhrman, and Fortnow [BBF98] with bounded-query techniques of
Amir, Beigel, and Gasarch [ABG90].

2 Preliminaries

We assume that the reader is familiar with the basic notions of complexity
theory. (See [Pap94|, for example.) In this section, we recall some definitions
that will be used in this article.

For any number r, a language L is in MOD,.P if there is a polynomial-time
nondeterministic Turing machine N such that for every input string x, x € L
if and only if the number of accepting computations of N on x is not congruent
to 0 modulo r. MOD,yP is usually denoted &P.
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A language L is in PP if there is a polynomial-time nondeterministic Turing
machine N such that for every input string x, x € L if and only if more than
half the computations of N on x are accepting.

A language is in EXP if it is recognized by a deterministic Turing machine
in time 277",

3 The Main Oracle Construction

This section is devoted to the proof of the following theorem.
Theorem 1 There is an oracle A such that P* = NP? and ®P* = EXP*.

Let M be a nondeterministic linear-time oracle Turing machine such that
for all A, M* accepts an NP complete language L*. Let N be a deterministic
oracle Turing machine that runs in time 2" and such that for all A, N accepts
an EXP# complete language K4.

Let ¢ be a constant whose value will be determined later. Let xy be the
first string (with respect to lexicographic ordering) whose length is at least c.
We will construct A such that for all > xg,

zeld & (05,174

and
reK* < |v:v] =z and (1,z,v) € A}| is odd.

The first condition will imply that P4 = NP“ by allowing a deterministic
Turing machine to recognize the NP complete language L* in polynomial
time. Similarly, the second condition will imply that @P* = EXP4.

Strings of the form (0, z, 1‘$‘2> are said to be of type 0. Strings of the form
(1,x,v) are said to be of type 1. By abuse of language, these strings are also
called queries.

To each query (1,z,v) of type 1, we associate a Boolean variable A,
whose value is the answer to the query, ie., Ay, = 11if (1,2,v) € A and
Ay = 0, otherwise. The set of queries {(1,z,v) : |[v| = |z|*} is called the
block of z. Denote by A, the string of variables corresponding to the block of
x. The condition on queries of type 1 can now be written as

ze K4 & MODy(A,) =1

Notice that the condition on queries of type 0 implies that these queries
are determined by shorter queries. Therefore, an assignment to the queries
of type 0 that satisfies the condition on queries of type 0 will automatically
follow from an assignment to the queries of type 1.



We therefore concentrate on the construction of an assignment to the
queries of type 1. This will be done by constructing an infinite sequence
(A@)),~,, of assignments such that for every z > z, for every y € [y, 2],

ye K4 o MOD,(AW) =1, (1)
An assignment A such that for every x > x,
e KY & MODy(A,) =1

can then be obtained by using a standard argument.

Consider an arbitrary = > xy. This string = will be fixed for the remainder
of the proof. Our goal is now to construct an assignment A(®) that satisfies
the above condition. For convenience, we will drop the superscript and simply
write A.

Consider the computation of M# on an arbitrary input string 2. This
computation can be simulated by first guessing the answers to all the oracle
queries and verifying them at the end. This implies that the computation
of M4 on z can be represented by a depth-two circuit B’ with an OR gate
of fan-in 2/ at the output, AND gates of fan-in |z| on level one, and whose
inputs are either answers to queries of type 1 or answers to queries (0, w, 1‘“"2)

of type 0 with |w| < 4/|z|. By the condition on queries of type 0, replace each

such query (0, w, 1‘“"2) by the circuit B], that represents the computation of
M4 on w. Repeat this recursively. The result is a circuit B, whose inputs are
only queries of type 1, whose size is at most 22/l and whose depth is at most
loglog |z|. And, of course, B, represents the computation of M4 on z.

Now consider the computation of N* on an arbitrary input string y. Again,
this computation can be simulated by first guessing the answers to all the oracle
queries and verifying them at the end. This implies that the computation of
N4 on y can be represented by a depth-two circuit C, with an OR gate of

fan-in 22" at the output, AND gates of fan-in 2/ on level one, and whose
inputs are either answers to queries of type 1 or answers to queries (0, w, 1‘“"2)
of type 0 with |w| < 2. Replace each query (0, w, 1‘w‘2> by the corresponding
circuit B,,. The result is a circuit C, whose inputs are only queries of type 1,
whose size is at most 22* 7 and whose depth is at most log |y|.

Since C), represents the computation of N4 on input v, (1) can be rewritten
as follows: for every y € [xg, ],

Cy(Aygs .- s Ay, ...) = MODy(A,). 2)

For every z > x, set A, = 0. Now, by contradiction, suppose that an as-
signment cannot be found to satisfy (2). In other words, suppose that for
every sequence of binary strings g, ..., q,, there is y € [zg,z]| such that



Cylagy, ..., a;) # MODy(ay,). The following lemma, adapted from a result
of Amir, Beigel and Gasarch [ABG90, Theorem 17|, states that this implies
the existence of a not too large circuit computing the MOD, function on |A,|
variables, for some z € [z, z].

Lemma 2 If for every ay,,...,ay, there is y € [xg, x| such that
Cylagy, ..., az) # Flay),

then there is a circuit of size 22VIEEY depth loglog N that computes the F
function on N wvariables, for some N > c.

Proof Let o, denote a string of Boolean variables of length equal to the size
of the block of z. We will first aim for a circuit that computes F(o,). For
this purpose, we will try to construct sets of advice Hy,, ..., H, 1 with the
following property: for every a,, there are 3,, € Hy,,..., 3,1 € H, 1 such
that for every w € [xg,z — 1],

C’LU(/BI()J - 7/82717 az) - F(ﬂw)

By the hypothesis in the statement of the lemma, this will imply that for every
o, there are 3, € H,,, ..., 3,—1 € H,_; such that

Co(Bags -y Ba1,n) # Flay).

This will be the basis for the construction of a circuit computing F'(o,).
So we proceed with the construction of the advice. This will be done in
stages, one for each of H,,,..., H, 1.

Begin Stage z. Notice that for every w < z, (', makes queries
of length at most 2'”l. So the value of every Cy(04,,...,0,), for
w < z, is determined by o, ...,09:, where 2% denotes the last
string of length 2/,

Say that 8, is advice for y € {0, 1}17=+FFlo2=l i there are 3, €
H,,...,B.1 € H, ; such that for every w € [xy, 2],

C’w(ﬂIoa L 7ﬁzflaﬁz1’y) - F(ﬁw)

Let advisees(3,) be the set of v € {0, 1117+ H72 for which g,
is advice.

Let T, = {0, 1}7=+ 4ol pet g, = 0.
While there is 3, such that |advisees(3,) N T%| > 1T |:

1. Choose such an (3,.



2. Let H, = H, U{3.}.
3. Let T, =T, — advisees(f3,).

If T, # (0, halt.
If T, =0 and z = 2 — 1, halt.
If T, =0 and z < x — 1, proceed to Stage 2+ 1. End Stage z.

Before we continue, let us bound the size of H,. We have that
|H,| < 4log|{0, 1}l7=+11FFloalp < 92555y particular, this implies that
|H$0‘ T |Hzfl‘ < 224‘z‘-

There are now two cases to consider. First, suppose that the construction
of the advice halted with T, = () and z = 2 —1. This means that we successfully
found an advice for every string of length |o,|. In other words, for every a,,
there are (,, € Hyy, ..., 3z-1 € H, 1 such that for every w € [xg,z — 1],

Cw(ﬁazoa s 7ﬁ$71a O/a:) - F(ﬁw)a

which implies that
C:L‘(ﬂ.’roa s aﬂmfla am) 7& F(am) (3)

The function F(o,) can now be computed with a depth-two circuit as follows.
For each sequence (3,, € H,,,...,[3,-1 € H, 1, construct an AND gate that
will test whether for every w € [zg, z — 1],

Cw(ﬁ:ﬂo; s ﬁ:sflao'z) = F(ﬁw)

These AND gates have fan-in 2/%/*1 and their inputs are instances of the circuits
Cyos - -+, Cp. Add to each of these AND gates the input Cy(Bygs-- -, Be_1,0z).
For every a,, by (3), each of these AND gates will output either 0 or F(«,).
Feed all of these AND gates into an OR gate of fan-in |H, | Hy ] < 92"l

0‘..

This OR gate clearly computes F'(o,). Therefore, F(0,) can be computed by

a circuit of size 22" and depth log |z| + 2. Since the length of the input is

N, = |o,| = 2 we have a circuit of size 22"V """ < 22V ™ 414 depth

%log log N, + 2 < loglog N,.

For the second case, suppose that the construction of the advice halted
with T, # (). Instead of aiming for a circuit that computes F'(o,.), we will now
aim for circuit that computes F/(0,). Every 3, is advice for less than § of the
v in the resulting T,. This means that for every f3,, at least % of the elements
v of T, satisfy the following: for every 3,, € Hy,,...,3.,1 € H, ; there is
w € [xg, 2] such that

Cw(ﬂzoa s 7ﬁzflaﬁza’7) 7é F(ﬁw)
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On the other hand, by the previous stage of the construction (Stage z — 1),
which terminated with 7, 1 = (), for every (3, and every v € {0, 1}‘”2+1‘+"'+‘(’22‘,

there are 8,, € Hyy, ..., 3,1 € H, 1 such that for every w € [xg,2z — 1],

Cw(ﬁ:ﬂo: s 7527175277) = F(ﬁw)

Therefore, for every 3, and for at least % of the elements v of T,, there are
Bay € Hyyy .., 8.1 € H,_1 such that

Cz(ﬂzoa s 7ﬁzflaﬁza’7) 7é F(ﬁz)

So given [3,, choose v uniformly at random in 7),. With probability at least %,
there are 3,, € Hy,,...,3, 1 € H, 1 such that

Cz(ﬂxoa - 7527175277) % F(ﬁz)

This implies that F'(o,) can be computed with probability of error no greater
than i by a probabilistic depth-two circuit with an OR gate of fan-in
|H,, |- |H, 1| < 22" at the output, AND gates of fan-in 2121 on level one
and whose inputs are instances of the circuits C,,,...,C,. Therefore, F(0,)
can be computed by a probabilistic circuit of size 22" and depth log |z + 2.
Since the length of the input is now N, = |o,| = Q‘Z‘z, we have a probabilistic
circuit of size 22°Y"* ™" and depth % loglog N,+2. By a technique of [ABO84],
this probabilistic circuit can be transformed into a deterministic circuit of size
92"VIEN: nd depth loglog N,.

Therefore, in both cases, we obtain a circuit of and depth
loglog N that computes the F' function on N variables, for some N >¢. O

. 54/log N
size 22

Returning to the proof of Theorem 1, we now choose the value of ¢ to be
at least the value of the constant in the following easy corollary of Hastad’s
AC" lower bound [Has86, Theorem 1]. The value of ¢ must also be larger than
some other small constant as required by some of the inequalities used in the
calculations in the proof of Lemma 2.

Lemma 3 There is a constant Ny such that if N > Ny, then there are no

circuits of size 22V N i depth loglog N that compute the MODy function

on N wvariables.

By combining the two lemmas, we get that there are a,,, ..., a, such that
for every y € [z, x],

Cylagy, - .., az) = MODg(ay).

This completes the proof of Theorem 1.



4 Generalizations

The following generalization of Lemma 3 is also an easy corollary of Hastad’s
AC" lower bound [Has86, Theorem 1].

Lemma 4 For every number r > 2, there is a constant Ny such that if N >

Ny, then there are no circuits of size 22 VIEN ond depth loglog N that compute

either the MOD,. function or the majority function on N wvariables.

Theorem 5 For every set of numbersrq,...,r, > 2, there is an oracle A such
that P* = NP* and MOD,,P* = ... = MOD,, P* = PP* = EXP".

Proof The proof is similar to the proof of Theorem 1. We will only indicate
the main differences.
The idea is to construct an oracle A such that for all x > x,

zel? o (0,177 ¢ A,
e K* o |{v:|v]=z]*and (1,z,0) € A}/2"" > 1/2
and for every i € [1, k],
reK* o |{v:|v|=|z|?and (1", 2,0) € A} #0 (mod r;).

Each input string = will have k£ + 1 blocks A, 1, A, ,,, ..., Az, so the con-
dition on strings of type 1 can be written as follows:

re K4 < majority(A,,) =1
and for every i € [1, k],
re€ K* < MOD,(4,,)=1.

As before, the goal is to construct, for an arbitrary x > xy, an oracle A that
works for all input strings y € [z, z].

Since () still represents the computation of N# on input y, the above
condition can be rewritten as follows: for every y € [zg,z] and every r €

{1,r,...,71},
Cy(AIo,la Axo,rla SRR Axo,rka SRR AI,la Aa:,rla - 7A1:,Tk7 - ) = Fr(Ay,r)

where F, = majority if r = 1, and F, = MOD, if r > 2.

Lemma 2 and its proof can be easily adapted to this new setting. The
proof initially aims at the construction of a set of advice H,, for each pair
(z,7) € [wg,x — 1] x {1, 71,..., 7%} O



The oracle construction can be generalized further by using the following
lemma which can be easily obtained from the proof Smolensky’s lower bound
for ACC[p] circuits [Smo87].

Lemma 6 For every power q of a prime p there is a constant N, such that for
every number r divisible by some other prime, if N > N,, then there are no

circuits of size 22V Y ind depth loglog N composed of AND, OR and MOD,
gates that compute either the MOD, function or the majority function on N
variables.

Theorem 7 For every power q of a prime p and for every set of numbers

1, ..., divisible by some other prime, there is an oracle A such that P4 =
NP* = MOD,P* and MOD,,P* = ... = MOD,, P* = PP* = EXP".

Proof To the proof of the previous theorem, we add an additional condition
on the oracle A:

relt < (042,17 € A

The rest of the proof is as before except that the circuit B,, and hence the
circuit Cy, may now contain MOD, gates. O

5 Conclusions and Related Work

Since the same underlying techniques that yield “expected” separations also
yield unexpected collapses, we believe that our work should shake up anyone’s
faith in oracles for providing circumstantial evidence about the real world.
We have also exposed a new and deep connection between upper bounds and
lower bounds. Similar connections have been noted in other contexts. See, for
example, [PSZ97] and [BI&7].
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