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Abstract— We construct a new family of linear space-time
block codes by the combination of rotated constellations and
the Hadamard transform, and we prove them to achieve the
full transmit diversity over a quasi-static or fast fading chan-
nels. The proposed codes transmit at a normalized rate of 1
symbol/sec. When the number of transmit antennae n = 1, 2
or n is a multiple of 4 we spread a rotated version of the in-
formation symbol vector by the Hadamard transform and
send it over n transmit antennae and n time periods; for
other values of n, we construct the codes by sending the
components of a rotated version of the information symbol
vector over the diagonal of an n×n space-time code matrix.
The codes maintain their rate, diversity and coding gains for
all real and complex constellations carved from the complex
integers ring Z[i], and they outperform the codes from or-
thogonal design when using complex constellations for n > 2.
The maximum likelihood decoding of the proposed codes
can be implemented by the sphere decoder at a moderate
complexity. It is shown that using the proposed codes in
a multi-antenna system yields good performances with high
spectral efficiency and moderate decoding complexity.

Index Terms— Block codes, diversity methods, maximum
likelihood decoding, MIMO systems.

I. Introduction

RECENTLY, many works have been done on signal pro-
cessing and modulation techniques for transmit diver-

sity over fading channels [1]-[5]. The motivation is the se-
vere attenuation of the wireless channel from one part (see
[6] and references therein) and the large capacity of a multi-
antenna system from another part [7], [8]. Since it is impos-
sible to recover a severely attenuated signal, it is necessary
to provide the receiver by less attenuated replicas of the
transmitted signal, which is done by diversity techniques
[6]. The first space-time (ST) code of a normalized rate of
1 symbol/sec was proposed by Alamouti over 2 transmit
antennae and 2 time periods in [1]. In [2], Tarokh et al.
gave the construction criteria, tradeoff between constella-
tion size, data rate, diversity advantage and complexity,
and some hand constructed trellis ST codes which satisfy
the proposed criteria. The generalization of the Alamouti
scheme to more than two transmit antennae by using the
theory of orthogonal design was done by Tarokh et al. in
[4]. The ST block codes proposed in [4] have a normalized
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rate of 1 symbol/sec over real constellations; over com-
plex constellations, ST block codes of normalized rates of
1/2 and 3/4 symbol/sec have been proposed for n = 3, 4.
Due to their orthogonal structure, the maximum likelihood
(ML) decoding of these codes can be implemented by a lin-
ear decoder [4]. In [9], DaSilva and Sousa proposed a diag-
onal scheme in order to achieve diversity over n = 2, . . . , 5
transmit antennae, where the components of rotated n-
dimensional BPSK modulations were transmitted over the
different transmit antennae. The scheme in [9] has a nor-
malized rate of 1 symbol/sec, and the ML decoding was
done by exhaustive search over all n-dimensional rotated
BPSK vectors, for n = 2, . . . , 5.

In this paper we construct a new family of linear
ST block codes by the use of rotated constellations and
the Hadamard transform; the so-called diagonal algebraic
space-time (DAST) block codes. The DAST block codes
have a normalized rate of 1 symbol/sec and achieve the
full diversity over n transmit and m receive antennae.
The DAST block codes maintain their diversity and cod-
ing gains over all real or complex constellations carved
from the ring of complex integers Z[i], with i =

√−1,
such as pulse-amplitude modulation (PAM) or quadrature-
amplitude modulation (QAM). Due to the lattice structure
of the DAST block codes, the ML decoding can be imple-
mented by the sphere decoder at a moderate complexity
independent of the transmission rate [10], [11]. The DAST
block codes outperform the ST codes from orthogonal de-
sign [4] for n > 2; at the same throughput and same SNR,
the DAST block codes have smaller error rates. The differ-
ence in performance is further enhanced when the spectral
efficiency of the used constellation or the number of receive
antennae increases.

The paper is organized as follows: in Section II, we re-
call the construction criteria of ST codes and discuss the
possibility of transmitting at high data rates along with
maximum transmit diversity in the light of the existence
Theorems in [2]. Section III gives a brief summary of the
theory of rotated constellations and the properties of the
Hadamard transform. The code construction, properties,
and decoding schemes are given in Section IV. Simulation
results and comments on the DAST block codes perfor-
mances are given in Section V. In Section VI we discuss
the obtained results.
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II. Transmit Diversity and Maximum Achievable

Rates

A. System Model

Consider a system of n transmit and m receive antennae,
where at each time we transmit n symbols simultaneously
from all the transmit antennae. The radiated power by
each transmit antenna is proportional to 1/n so that the
total radiated power is independent1 of n. The antennae
are supposed to be sufficiently spaced such that the fadings
are assumed uncorrelated. At each receive antenna the
received signal is the superposition of the n transmitted
symbols affected by independent fadings and disturbed by
additive white Gaussian noise. The transmission is done
by burst of length l over a quasi-static Rayleigh fading
channel changing randomly every l symbol durations. Let
H denote the m × n channel transfer matrix, with hkj

denoting the fading between transmit antenna j and receive
antenna k. The fadings hkj are modeled by independent
complex Gaussian random variables of variance 0.5 per real
dimension. Transmit diversity is obtained by ST coding
which encodes the information symbols over n antennae
and l symbol periods. A ST block code2 associates with
each information symbol vector x = (x1, . . . , xd), for d > 0,
an n×l matrix B(x) with entries bjt, j = 1 . . . n, t = 1 . . . l,
such that bjt is sent over transmit antenna j at time t. We
say that the ST code is linear if B(x1 + x2) = B(x1) +
B(x2) for any pair of information symbol vectors x1 and
x2. When there is no notational confusion, the ST code
is denoted by B. If the symbol period is normalized to 1
second then the normalized rate of the ST code B is d/l
symbol/sec. Over m receive antennae and l time periods,
the received signal can be written as

r = HB + ν (1)

where ν is the observation noise represented by an m × l
complex matrix which entries are independent Gaussian
distributed random variables of variance σ2 per real di-
mension.

B. Design Criteria

Assuming a perfect channel state information (CSI) at
the receiver, then over a quasi-static fading channel, the
pairwise error probability (PEP) of decoding the code-
word e given that the codeword x �= e was sent, is upper
bounded by [2]

Pr(x −→ e) ≤

 r∏

j=1

λj




−m(
Ēs

8σ2

)−mr

(2)

1In this paper, we adopt the equivalent power normalization given
in [5] by multiplying the noise variance by n at the considered SNR
(see Section V).

2In [4], the term ST block codes is used only for codes from orthog-
onal design.

where Ēs is the average energy per symbol, r is the min-
imum rank of the set of matrices B(x − e) for all pairs
of codewords x �= e, and λj , j = 1 . . . r, are the nonzero
eigenvalues of A(x−e) �= B(x−e)BH(x−e), with the su-
perscript H denoting the transpose conjugate. Thus, mini-
mizing the PEP is equivalent to the rank and determinant
criteria defined as [2]
• The rank criterion: the minimum rank r of B(x − e)
taken over all distinct codewords pairs (x, e), is the diver-
sity gain.
• The determinant criterion: the minimum of the ge-
ometric mean of the nonzero eigenvalues of A(x − e),
 r∏

j=1

λj




1/r

in (2), taken over all distinct codewords pairs

(x, e) is the coding gain.
Over a fast fading channel, the previous criteria become
• The distance criterion: In order to achieve the diver-
sity vm in a rapid fading environment, for any two code-
words x �= e the vectors xt = (x1t, x2t, · · · , xnt)T and
et = (e1t, e2t, · · · , ent)T must be different at least for v
values of 1 ≤ t ≤ l.
• The product criterion: Let V(x, e) denote the set of time
instants 1 ≤ t ≤ l, such that xt �= et. Then to achieve
the maximum coding gain in a rapid fading environment,
the minimum of the products

∏
t∈V(x,e)

|xt − et|2 taken over

distinct codewords must be maximized.
ST codes satisfying the criteria for both quasi-static and
fast fading channels were called ’smart and greedy’ in [2].

C. Maximum Achievable Rates

We note that [2, Corollary 3.3.1] states that for a con-
stellation Q ⊂ C, where C is the field of complex numbers,
if the size of Q is 2b elements, and if the diversity gain is
nm, then the transmission rate is at most b bits per second
per Hertz. Note that in this work, the authors supposed
that the ST code matrix belonged to the constellation Qnl,
which is true for the ST codes given in [1], [2], [4]. When
using rotated constellations in dimension d = n, the origi-
nal constellation Q is extended to Q1 defined by

Q1
�=

{
x, x =

n∑
i=1

mjiai, j = 1 . . . d
}

(3)

where ai ∈ Q, and mji are the elements of the jth row
of the rotation matrix Md. Since the rotations used in
this paper have the property that all their rows are equal
to the first one up to a permutation and multiplications
by ±1, one obtains the size of Q1 equal to (2b)d = 2db

elements. This makes the maximum achievable rate db bits
per second per Hertz according to [2, Corollary 3.3.1] when
using the rotated constellation Q1. Note that the increase
in the size of the used constellation, caused by the rotation,
induces no power neither bandwidth penalty. Also, there
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is no penalty in the decoding complexity caused by the
increase of the constellation size if the sphere decoder is
used at the receiver [10], [11]. We also note that the DAST
block codes are not concerned by [4, Theorem 5.4.2], which
states that the Alamouti scheme [1] is the unique linear
processing full diversity complex system transmitting at a
normalized rate of 1 symbol/sec. This is because the DAST
block codes do not have linear processing. Nevertheless,
their ML decoding has a moderate complexity as is shown
in subsection IV-C.

III. Rotated Constellations and the Hadamard

Transform

The idea of rotated constellations was first proposed
by Boullé and Belfiore in [12]. Rotations were proposed
based on the fact that given a constellation Q in dimen-
sion d, if any given vector x ∈ Q has its components
x1, . . . , xd different from all the other components of the
vectors in Q, then affecting (x1, . . . , xd) by independent
fadings −→ (α1x1, . . . , αdxd), allows the receiver to recover
(x1, . . . , xd) unless all the components fall in deep fading,
i.e., |αj | � 1, ∀j. The latter property is called full modula-
tion diversity of the constellation Q, and it can be measured
by the minimum product distance of Q [12].

Definition: The minimum product distance of the con-
stellation Q is given by

dd,min
�= min

y=x1−x2,x1 �=x2∈Q

d∏
j=1

|yj |. (4)

The optimal rotations in the sense of modulation diversity
are those that have full modulation diversity and maxi-
mize the minimum product distance. Number field theory
was used in [13], [14] in order to construct quasi-optimal
rotations in certain dimensions. The use of rotated con-
stellations was further extended to construct collision re-
sistant signal sets [16], and to construct T-user codes over
the QAM constellations [17]. Here we only report the
quasi-optimal rotations with the best values of the min-
imum product distance found in [13], [14]. In [13], the
construction of rotations Md in dimension d was done in
an iterative manner in a ’Hadamard’ way as follows

Md =
[

M1
d/2 −M2

d/2

M2
d/2 M1

d/2

]
(5)

where M1
d/2 is the optimal real rotation in dimension d/2

and M2
d/2 is an orthogonal transformation in dimension

d/2 depending only on one parameter [13]. Then, one
varies this parameter in order to choose the rotation that
maximizes the minimum product distance. This method
works very well for the dimensions d = 2, 3, 4 and 6. It
becomes less successful for d ≥ 8, since one excludes too
many parameters in the rotations in high dimensions. We
report in Table I the first row of the optimal real rota-
tions found in [13] along with dd,min for d = 2, 4 that we

use to construct our DAST block codes (the rest of the
rotation matrix can easily be obtained from (5)). For the
dimensions d = 2q, q ≥ 3, we use the rotations given in [14]
constructed on the real part of the cyclotomic number field
of degree 4d: Q

(
cos 2π

8d

)
, which relatively give good values

of the minimum product distance3 [14]

dd,min =
√

2
(2d)d/2

. (6)

Table II shows the MATLAB program4 which generates
the rotation matrix Md of any dimension d = 2q. This
method to generate full modulation diversity rotations is
appealing, especially for large d. Note that the best ro-
tations in [13] give better dd,min for d = 2, 4, while start-
ing from d = 8, the rotations given in Table II are bet-
ter. For example, take d = 8, then the rotation in [13]
gives d8,min = 3.69 10−6, whereas the rotation given in
Table II yields d8,min = 2.1579 10−5 (see [13, Table III]
for comparisons). We find appropriate here to give some
comments on the underlying principles of rotated constel-
lations. It is well known that in order to protect the trans-
mitted information symbols from noise one needs to add
redundancy [18]. In the geometric representation of the
transmitted signals, redundancy can be seen as an exten-
sion of the geometric dimension of the original space con-
taining the information symbols. When using rotated con-
stellations, instead of adding redundancy and increasing
the geometric dimension of the transmitted signal, we in-
crease the algebraic dimension [19] of the rotated constel-
lation, which is translated by the increase of the constel-
lation size. For example, in dimension two, let the infor-
mation symbols (a1, a2) belong to the BPSK constellation,
i.e., a1, a2 ∈ Q = {+1,−1} which can be seen as a subset of
the field of rational numbers Q. When we rotate (a1, a2)T

by the rotation M2 given in Table I, the resulted vector
(x1, x2)T = M2(a1, a2)T still has a geometric dimension of
2, but one has x1, x2 ∈ Q1 = {±0.5257 ± 0.8507} which
does not belong any more to Q but is now a subset of the
algebraic number field Q(

√
5) that can be seen as a vector

space of dimension 2 over Q. The increase in the algebraic
dimension can also be seen as the increase of the constel-
lation’s cardinal: one has #(Q) = 2 and #(Q1) = 4. This
can be seen as follows: each component of the rotated vec-
tor contains information about all the transmitted symbols.
The increase of the algebraic dimension could increase the
decoding complexity since one can not decode the different
components separately. Nevertheless, the sphere decoder
exploits the lattice structure of the rotated constellations
in a similar way a decoder exploits the algebraic structure

3In [14] dd,min was proved to be ≥ 1/(2d)(d/2) after normalization.
The values of dd,min in (6) are computed over d-dimensional 4-QAM

constellations with average energy per symbol Ēs = 1.
4The generated matrix �d is a rotation with �d�

T
d = �d for

any dimension d. But �d is proved to have full modulation diversity
only for d = 2q [14].
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of an error correcting code in order to reduce the com-
plexity. Even though the complexity of the lattice decoder
is, in general, larger than that of an error correcting code
decoder, the sphere decoder yields a very good tradeoff be-
tween the complexity and the allowed spectral efficiency
[10], [11].

The Hadamard transform is a real unitary transforma-
tion that exists for 1, 2 and all the dimensions multiple
of 4 [20]. In dimension n, the Hadamard transform, Hn,
satisfies HnHT

n = nIn, with In the identity matrix in di-
mension n.

IV. Codes Construction, Properties, and

Decoding

A. The Coding Algorithm

Let Mn be a rotation of dimensions n×n (with n = 1, 2
or n is a multiple of 4), which generates a full modula-
tion diversity lattice, we construct the DAST block code in
dimensions n × n as follows5.

Ξn
�= Hndiag(x1, . . . , xn), (7)

where x = (x1, . . . , xn)T = Mna, and a = (a1, . . . , an)T

is the information symbol vector. In the sequel, we denote
the entries of the Hadamard matrix Hn by h̄ij in order to
differentiate them from the entries of the channel transfer
matrix hij .

Examples: For n = 2 the corresponding DAST block
code is given by

Ξ2
�=

[
x1 x2

x1 −x2

]
, (8)

where x = (x1, x2)T = M2a, and M2 is the 2-dimensional
rotation matrix given in Table I. For n = 4 the correspond-
ing DAST block code is given by

Ξ4
�=




x1 x2 x3 x4

x1 −x2 x3 −x4

x1 x2 −x3 −x4

x1 −x2 −x3 x4


 , (9)

where x = (x1, x2, x3, x4)T = M 4a, and M 4 is the 4-
dimensional rotation matrix given in Table I.

B. Properties

Proposition 1: The DAST block code Ξn has a trans-
mit diversity equal to n under quasi-static fading assump-
tion. When n is a power of 2 and for the rotations given

5In a sense, the DAST block codes can be considered as a generaliza-
tion of the scheme proposed in [9] for BPSK and n = 2, . . . , 5, where
the rotations used in [9] were optimized either by exhaustive search
or by the gradient method over the BPSK constellation in order to
obtain modulation diversity. Here, we use rotations constructed on
algebraic number fields from [12]-[15] that guarantee the maximum
transmit diversity and coding gains for a large set of n, over all PAM
and QAM constellations.

in Section III, the coding gain of the DAST block code6,
equals

δn =




2
2
n√
5
, for n = 2, 4

1

2
n−1

n

, for n ≥ 8
(10)

Proof. Let y = x − e = Mn(a − b) such that a �= b. We
can write the DAST block code at the word y as (7)

Ξn = Hndiag(y1, . . . , yn).

Since Mn generates a full modulation diversity lattice, one
has yj �= 0 ∀j = 1 . . . n taken over all the vectors a �= b
in the considered constellation. It follows that the matrix
diag(y1, . . . , yn) is full rank, and also Ξn is full rank over
all the differences of codewords. For the coding gain one
computes

det(ΞnΞH
n ) =

det
(
Hndiag(y1, . . . , yn)diag(y∗

1 , . . . , y∗
n)HT

n

)
=

det
(
nIndiag(|y1|2, . . . , |yn|2)

)
= nn

n∏
j=1

|yj|2. (11)

By taking the minimum over y of the determinant above
and then taking the n-th root one obtains the coding gain
of the DAST block code

δn = n(dn,min)2/n. (12)

From Table I one has d2,min = 1√
5

which gives δ2 = 2√
5
,

and d4,min = 1
40 which gives δ4 =

√
2√
5
.

For n ≥ 8, and for the rotations given in Section III, Re-
placing (6) in (12) one obtains δn = 1

2
n−1

n

. �

Note that the coding gain given in (10) is greater than 0.5
and it approaches this value when n increases. For example
δ8 = 0.5453 and δ32 = 0.5109. We also note that one has
the multiplicative factor n in the coding gain expression
in (12) because in our model we normalize the radiated
power at a given SNR by the number of transmit antennae
n by multiplying the noise variance by n (see Section V).
If the normalization is done at the transmitter side then
the coding gain will be δn = (dn,min)2/n.

Proposition 2: The DAST block codes are also suit-
able for fast fading.
Proof. Let y = x− e = Mn(a− b) such that a �= b. The
DAST block code satisfies the distance criterion II-B, be-
cause yj �= 0, ∀j, thus the strings h̄1tyt, h̄2tyt, · · · , h̄ntyt are
�= 0 in v = n values for 1 ≤ t ≤ n, thanks to the Hadamard
transform, which also helps maximizing the product crite-

6The coding gain is defined as the minimum of det (ΞnΞH
n )

1/n
,

computed over all the differences between distinct codeword pairs
�− �, (2).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 3, MARCH 2002

rion given by

min
a �=b


 n∏

t=1

n∑
j=1

|h̄jtyt|2

 = min

a�=b

(
n∏

t=1

n|yt|2
)

= nnd2
n,min. (13)

Thus the DAST block codes realize the maximum coding
advantage in a fast fading environment. �

The proposed DAST block codes spread each component
xj of the rotated vector x by the Hadamard sequence Hn,j

which corresponds to the jth column of the Hadamard
transform Hn. The spread component is then sent over
n antennae at the time j. The following proposition shows
that the DAST block codes are quasi-optimum in the sense
of maximizing the coding gains in (11) and (13).

Proposition 3: For a given rotated constellation in di-
mension n with dn,min > 0, the DAST block code Ξn has
a maximum coding gain over the ST codes formed by the
conjunction of the rotated constellation and linear trans-
formations with entries from {+1, −1}.
Proof. Let S denote n × n matrix with entries sij ∈
{+1, −1}. Suppose that we use the columns of S to spread
the rotated vector x of dimension n. Then the proposed
code matrix is given by (7)

Sdiag(x1, . . . , xn). (14)

To maximize the coding gain over a quasi-static (11) or fast
fading (13) environment one should maximize the quantity

∆ �= det
(
SST

)
. (15)

Let A
�= SST , then the diagonal elements of A aii = n for

i = 1 . . . n. Let λ1 . . . λn denote the eigenvalues of A, then
it follows

n∑
j=1

λj = trace(A) = n2. (16)

We want to maximize

∆ =
n∏

j=1

λj . (17)

It is well known that the solution of this maximization7

yields

λ1 = λ2 = . . . = λn. (18)

Combining (18) with (16) gives

SST = nIn, (19)

7The solution can be obtained by the use of Lagrange multipliers
for example.

which is satisfied by the Hadamard transform. On the
other hand, it is proved that for n = 2q there is only n or-
thogonal sequences with entries from {+1, −1} [22], which
makes the Hadamard matrix the unique transform which
maximizes the coding gain of the DAST block codes. �

Remarks:
1. In general, if we do not restrain the entries of S to be-
long to {+1,−1}, i.e., we allow the antennae to have dif-
ferent transmit powers (like in beamforming) when keep-
ing the total power fixed to n, the solution of (19) is given
by S =

√
nU , where U is an n × n unitary matrix. In

this context, U = In is also helpful to maximize the cod-
ing gain over a quasi-static fading channel, and allows for
constructing the DAST block codes over any n transmit
antennae provided that a rotation matrix with full mod-
ulation diversity exists [24]. Nevertheless, the Hadamard
transform is useful for reducing the high peak-to-average
power ratio over different transmit antennae which makes
the power amplifiers operate in their nonlinear region. Un-
der fast fading, the Hadamard transform is useful to satisfy
the distance criterion, i.e., making the ST code column vec-
tors different in n positions over distinct codewords pairs;
however, maximizing the product criterion in eqn.(13) can
be done by any scaled unitary matrix, and in particular
the scaled identity matrix. Since the rotated components
are transmitted over the diagonal in space and time, affect-
ing them by independent fadings is guaranteed over quasi-
static or fast fading. Note that the “pure” quasi-static or
fast fading model is not realistic: first, sufficiently spaced
antennae is limited by the small space available in mobile
handsets, and second, the use of very long interleavers in or-
der to generate independent fading coefficients at each time
instant is not practical in systems with delay constraints.
Hence, the combination of spatial and temporal variations
of the fading coefficients in a realistic fading environment
is profitable for the DAST block codes.
2. Note that the DAST block codes keep their transmit di-
versity advantage with real constellations carved from the
cubic lattice like the PAM, and also for the complex con-
stellations like QAM. Because in (11) one has the product
of the absolute values of the entries yj , j = 1 . . . n. Which,
for a normalized constellation, has the same value whether
y1, . . . yn are real or complex.
3. During n periods of time the received signal is given by
an m × n matrix (1)

r = H (Hndiag(x1, . . . , xn)) + ν (20)

where the m×n complex matrix ν has independent Gaus-
sian distributed random variables of variance σ2 per real
dimension as entries. Equivalently, one has

r = (HHn) diag(x1, . . . , xn) + ν

vec(rT ) =




diag(H1Hn)
...

diag(HmHn)


x + vec(νT ) (21)
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where Hj denotes the jth row of H representing the jth
receive antenna, and vec(r) arranges the matrix r in a
one column vector by putting its columns one after the
other. If at each receive antenna 1 ≤ j ≤ m we write
diag(HjHn) = diag(αj1, . . . , αjn), then the received signal
is given by

r1
�= vec(rT ) =




α11 0 · · · 0

0 α12
. . .

...
...

. . . . . . 0
0 · · · 0 α1n

...
αm1 0 · · · 0

0 αm2
. . .

...
...

. . . . . . 0
0 · · · 0 αmn




Mna

+ vec(νT ) �= AMna + ν1. (22)

Since the Hadamard transform is an orthogonal transfor-
mation, the variables αij , i = 1 . . .m, j = 1 . . . n are inde-
pendent identically distributed (i.i.d.) complex Gaussian
variables with variance n

2 per real dimension. Writing the
received signal as in (22) allows one to understand how the
DAST block codes exploit the transmit diversity. Using a
DAST block code over n transmit antennae and m receive
antennae is equivalent to sending the word (x1, . . . , xn) over
one transmit antenna and m receive antennae during n
periods of time, where the channel changes randomly ev-
ery time instant (since the fadings between each transmit-
receive antenna pair are independent). The latter scheme
has a diversity of mn since the lattice from which we trans-
mit the words has a full modulation diversity [13].

C. Decoding

A perfect CSI is assumed available at the receiver. First
we perform maximum ratio combining of (22). This yields

r2 = AHr1 (23)

= diag


 m∑

j=1

|αj1|2, . . . ,
m∑

j=1

|αjn|2

Mna + ν2

where ν2 is an colored Gaussian noise with covariance ma-
trix E[ν2ν

H
2 ] = 2σ2AHA. In order to whiten the noise, we

multiply the received signal in (23) by (AHA)−1/2, giving

r3 = (AHA)−1/2r2 (24)

= diag



√√√√ m∑

j=1

|αj1|2, . . . ,
√√√√ m∑

j=1

|αjn|2

Mna + ν3

with ν3 an n × 1 additive white Gaussian noise. Then
we apply the sphere decoder [10], [11] on the real and

imaginary parts of (24). The sphere decoder takes ad-
vantage of the lattice structure of the received signals and
proceeds as follows. It searches the closest lattice points
to the received signal which are enclosed in a sphere of
radius C0 centered at the received signal. At each time
a lattice point of a norm less than C0 is found, we re-
duce the sphere radius accordingly and restart the search
until an empty sphere is reached. The choice of C0 de-
pends on the considered lattice, which is generated by

diag



√√√√ m∑

j=1

|αj1|2, . . . ,
√√√√ m∑

j=1

|αjn|2

Mn in (24), as well

as on the additive noise level [25]. The complexity of the
sphere decoder is polynomial in the lattice dimension n,
and independent of the transmission rate [11]. Recent re-
sults show that an efficient implementation of the sphere
decoder yields low complexity (roughly cubic in n) at mod-
erate and large SNR [25]. We also note that other sub-
optimal detection schemes based on successive interference
cancellation such as [26], [27] can be useful to decode (24),
especially when m > 1 [30].

Note that the use of rotations Mn with real entries [13],
[14] in the proposed codes design simplifies the decoding
process. In (24), the received signal is written as a combina-
tion of the information symbols a by the real-valued com-

bining matrix diag



√√√√ m∑

j=1

|αj1|2, . . . ,
√√√√ m∑

j=1

|αjn|2

Mn,

and disturbed by additive white Gaussian noise. Hence,
when the information symbols are complex, QAM for ex-
ample, one can decode separately the real and imaginary
parts of (24) using the sphere decoder or other sub-optimal
schemes. However, if we choose Mn with complex entries
[15, VI-C] then one can not separate the real and imaginary
parts of (24) because the combining matrix is complex. In
this case, one should represent the complex received sig-
nal in real dimensions in R2n where R is the field of real
numbers, which considerably increases the complexity of
the used decoder when n increases [11]. Complex rotations
were proposed in [15] to construct constellations matched
for both the Gaussian and the Rayleigh fading channels.
In a multi-antenna system where the channel is assumed
Rayleigh or Rice, the use of complex rotations could en-
hance the coding gain since one doubles the degrees of
freedom when using complex rotations compared to real
rotations. For example, the complex rotations constructed
over the cyclotomic number fields in [15, VI-C] give the
following minimum product distances: d2,min = 1/2 and
d4,min = 1/16 which yield a common coding gain of 1 for
n = 2 and n = 4 transmit antennae when used in the DAST
block codes. Comparing with (10), one expects a gain of
approximately 0.5 dB for n = 2 and a gain about 2 dB for
n = 4 when using complex instead of real rotations in the
DAST block codes; however, in simulations we noticed sim-
ilar performances for n = 2 and a less than 1 dB gain for
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n = 4 at large SNR. The explanation can be given by the
involvement of other parameters in the performances of the
DAST block codes, such as the kissing number [?], which is
under investigation. We noticed in simulations that the ob-
tained gain in performances when using complex rotations
is not worth the increase in complexity8.

V. Simulation Results

In simulations, we use normalized QAM constellations
with average energy per symbol Ēs = 1. The transfer ma-
trix H is modeled as in subsection II-A, and the additive
white Gaussian noise has a variance σ2 = n/(2SNR) per
real dimension. Error probability curves are plotted as a
function of SNR in dB. We simulate the DAST block codes
for the dimensions n = 2, 3, 4, 8, 16, 32, for different val-
ues of m and different size of constellations. Comparisons
with the ST block codes from orthogonal design [4] (de-
noted by Gn) are done for n = 2, 4, at the same spectral
efficiency. Fig. 1 shows the performances of the codes Ξn,
for n = 2, 3, 4, 8, 16, 32 transmit antennae and m = 1 re-
ceive antenna. The modulation used is the 4-QAM with
a spectral efficiency of 2 bits/sec/HZ. We also plotted the
performances of the uncoded 4-QAM over a Rayleigh fad-
ing channel and over a Gaussian channel [28]. At a symbol
error rate (SER) of 10−5, Ξ4 has a gain of about 7.5 dB
over Ξ2. The gain increases with n to attain 16 dB for
n = 32. Comparing the performances of the code Ξ32 and
the uncoded 4-QAM over the Gaussian channel shows only
about 1 dB of difference. The latter comparison confirms
the results of Foschini and Gans [8] concerning the capacity
of a multi-antenna system with n transmit antennae and
m = 1 receive antenna over a quasi-static fading channel

C = log2

(
1 +

ρ

n
χ2

2n

)
, (25)

where χ2
2n is a chi-squared random variable that has 2n de-

grees of freedom, formed by summing the squares of 2n in-
dependent Gaussian normalized and centered random vari-
ables, and ρ is the signal to noise ratio. When n is large,
the capacity in (25) tends in distribution by the strong law
of large numbers to the capacity of the Gaussian channel
[29]. Fig. 2 presents the performances of the codes Ξn, for
n = 2, 3, 4, 8, 16, 32 transmit antennae and m = 2 receive
antennae with 4-QAM. It is noticed that the gain obtained
by increasing n is less important than the case with one
receive antenna. For example at a SER of 10−5, Ξ4 has
slightly more than 3.5 dB of gain over Ξ2, whereas Ξ32

shows a gain around 7.5 dB over Ξ2. This is because much
of the diversity gain is already achieved using two transmit
antennae and two receive antennae [5]. In Fig. 3 we com-
pare the Alamouti code G2 [1] with the code Ξ2 for one
and two receive antennae with the 4-QAM modulation. At

8Note that in our scheme, the use of complex rotations doubles
the complexity of the encoder, but multiplies the complexity of the
decoder by a factor ≥ 8, since if the complexity of the decoder is O(n3)
with real rotations, it becomes O(23n3) with complex rotations.

the same spectral efficiency of 2 bits/sec/HZ, the Alam-
outi scheme shows almost 1 dB of gain over the code Ξ2.
For n = 2 transmit antennae it seems difficult to outper-
form the Alamouti scheme since it is the unique complex
orthogonal design transmitting at a normalized rate of 1
symbol/sec [4]. Nevertheless, when n increases, the DAST
block codes give better performances. Fig. 4 shows the
performances of Ξ4 of normalized rate 1 symbol/sec and
G4 of normalized rate 1/2 symbol/sec, with one receive
antenna and different spectral efficiencies. The two codes
are compared at the same spectral efficiency. For example,
at a spectral efficiency of 2 bits/sec/HZ, the code Ξ4 uses
the normalized 4-QAM modulation, and the code G4 uses
the normalized 16-QAM modulation. The code Ξ4 has a
gain of almost 1 dB over G4 at 2 bits/sec/HZ. This gain
is enhanced when increasing the size of the constellation.
For example it reaches almost 5 dB at 4 bits/sec/HZ, and
almost 16 dB at 8 bits/sec/HZ. The latter property is ex-
plained by the following: for a normalized constellation,
the ST codes Ξ4 and G4 keep their diversity advantage of
4m and their coding gains of

√
2/5 and 2 respectively. So

the ratio of their coding gain given in dB equals9 −5 dB.
On the other hand, when increasing the size of the con-
stellation, one looses approximately 3 dB per each added
bit10. Since at the same SNR Ξ4 transmits two times the
number of bits transmitted by G4, the difference in per-
formance is exacerbated when the size of the constellation
increases. Fig. 5 compares the performances of Ξ4 and G4

for m = 2 receive antennae and different spectral efficien-
cies. We notice that the gain of the DAST block code is
even enhanced when m increases. It attains more than 2 dB
at 2 bits/sec/HZ, and almost 19 dB at 8 bits/sec/HZ. Re-
cent results by Hassibi and Hochwald in [31], and Sandhu
and Paulraj in [32], offer more insight about the perfor-
mances of the linear ST block codes, and especially those
from orthogonal design when the number of receive anten-
nae increases. In summary, the ST codes from orthogonal
design do not exploit all the degrees of freedom offered by
the multi-antenna system due to the restrictions of the or-
thogonal structure. On the other hand, the DAST block
codes have higher data rates (for n > 2) than the ST codes
from orthogonal design; thus, it can be proved that the in-
formation loss (compared to the multi-antenna capacity) is
smaller for the DAST block codes, which implies a quanti-
fied gain proportional to the information loss incurred; the
latter gain increases when the number of receive antennae
m or the spectral efficiency increases (see [31] and [32] for
more details). Fig. 6 compares the performances of Ξ4

and G4 for m = 4 receive antennae. It confirms the remark
made above on Fig. 5. For example, Ξ4 outperforms G4

by almost 4 dB at 2 bits/sec/HZ. At the spectral efficiency
of 8 bits/sec/HZ, Ξ4 is more than 20 dB better than G4.

9The simulation results slightly differ from the coding gain expres-
sion since the latter is only an approximation for large SNR.

10This is also an approximation resulted directly from the capacity
formula [7].
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TABLE I

First row of the optimal real rotation matrices in

dimensions 2 and 4.

TABLE II

Full modulation diversity rotations in dimension d = 2q
,

constructed on the number fields Q
�
cos 2π

8d

�
.

VI. Conclusions

A new class of bandwidth efficient linear space-time
block codes has been constructed and studied in this pa-
per. The so-called diagonal algebraic space-time (DAST)
block codes are constructed by the conjunction of the ro-
tated constellations having full modulation diversity and
good minimum product distance values from one part, and
the Hadamard transform from another part. These codes
satisfy the construction criteria of space-time codes design
for the PAM and QAM constellations of any size, under
quasi-static and fast fading. The ML decoding can be im-
plemented by the sphere decoder at a moderate complexity.
At the same spectral efficiency, the DAST block codes im-
prove over the space-time codes from orthogonal design for
n > 2 and for complex constellations. This improvement
becomes larger when the size of the constellation or the
number of transmit and receive antennae increases. The
DAST block codes are proved to be quasi-optimal in the
sense of maximizing the coding gain over both fast and
quasi-static fading environment in the absence of multi-
path.
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TABLE I

dimension column dd,min

2 1-2 0.5257 0.8507 1√
5

4 1-4 0.2012 0.3255 -0.4857 -0.7859 1
40
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TABLE II

M = sqrt(2/d) ∗ cos (pi/(4 ∗ d) ∗ (4 ∗ [1 : d]′ − 1) ∗ (2 ∗ [1 : d] − 1)) ;
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