
Web Caching for Database Applications with
 Oracle Web Cache

Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parker, Zheng Zeng, Tie Zhong
Oracle Corporation

500 Redwood Shores, CA 94065
{jesse.anton, lawrence.jacobs, xiang.liu, jordan.parker, zheng.zeng, tie.zhong} @oracle.com

ABSTRACT
We discuss several important issues specific to Web caching for
content dynamically generated from database applications. We
present the techniques employed by Oracle Web Cache to address
these issues. They include: content disambiguation based on
information in addition to the URL, transparent session
management, partial-page caching for personalization, and broad-
scope invalidation with performance assurance heuristics.

Keywords
Caching, dynamic content, disambiguation, session,
personalization, partial-page caching, template, fragment,
consistency, performance, invalidation, heuristics.

1. INTRODUCTION
Caching has been used to speed up content delivery since the
early days of the World Wide Web, a prime example being proxy
caches deployed by many organizations. For many years, most of
the Web caching was done on static content, such as images and
text. Dynamic content in contrast is normally generated from
executing business logic in application servers and querying
business data in databases. A typical dynamic content Web site
configuration is shown in Figure 1.

Figure 1. Typical Dynamic Content Web Site Configuration
Only recently has dynamic content caching become available and
begun to attract attention. This coincides with the move of Web
content becoming more dynamic and personalized with the aim of

providing the users a more personal and rich Web experience.
Generating personalized content is computationally expensive.
This has driven the need for dynamic content caching that can
achieve higher cache hit ratios and thus improve performance and
scalability in today’s Web servers. The need for this scalability is
a result of the underlying framework of Java engines and
databases having been designed for tens to hundreds of concurrent
users rather than the hundreds of thousands of users the Web has
introduced.

From Web servers and databases to browsers, caching is done at
almost every stage of a request’s lifetime (Figure 2).

Figure 2. Caching on the Web
In the course of request, database caches can reduce database
query cost. Caches within application servers can eliminate
database queries and reduce application execution cost. Reverse
proxy caches can eliminate database queries and all application
execution cost. CDN (content delivery network) or eCDN
(enterprise content delivery network) caches not only eliminate
database queries and application execution cost, but also reduce
network transmission cost. Proxy caches and browser caches offer
further server and network cost reduction, but their cache content
is controlled by end users and tends to have a low cache hit ratio
for dynamic content.

Oracle Web Cache is one of the first reverse proxy caches
designed for dynamic content. Web Cache is also used within
CDNs/eCDNs and may also be used for caching application data
such as SOAP responses. Many customers have successfully
deployed it to address their performance issues with dynamic
content.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD 2002, June 4-6, 2002, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06 …$5.00.

Compared to static Web content caching, dynamic content
caching has many unique issues. This paper focuses on how
Oracle Web Cache addresses disambiguation, session
management, personalization, and consistency.

Disambiguating content is essential for properly storing and
delivering documents and maintaining high cache hit rates.
URLs, normally the unique identifiers for static content caches,

are often insufficient for dynamic content due to request-specific
content generated by applications. For example, a browser-aware
application may generate different responses for different
browsers for the same URL.

Web applications often need to maintain session state (such as
shopping carts) for every user. Some applications embed the
session state within the URL and hyperlinks as an alternative to
cookies. A naïve cache would interrupt the session establishment
during cache hits and prevent new session creation. Additionally,
pages with embedded session state become unique for each
session and defeat simple caches.

Personalized pages are often unique aggregations of common
content. A single page may combine content fragments with
different caching properties. Some are cacheable, some are not,
some expire soon, and some hardly expire. Some content expires
at prescribed intervals, while other content expires as the result of
an external event. The combination also creates “cache space
explosion” for traditional full-page caches due to the redundant
caching of common fragments. There is little value in caching a
personalized page as a whole page since the page can only be
delivered to the user or users for whom it was designed, and only
while all the content is valid. In addition, some personalized
pages contain personalized information such as personal greetings
or addresses, further limiting the hit rate for the page.

Compared to static content, dynamic content may change
unpredictably upon certain events, such as changes in the
underlying data. The dependencies between cached content and
the underlying data are complex and difficult to maintain
efficiently. Previous works ([1], [2], [3], [5]) have focused on
calculating, monitoring and maintaining such dependencies in
caches. However, the cost of analyzing ad hoc queries, triggering
on data updates, and integrating with third-party databases and
applications can often be prohibitively expensive. Therefore,
instead of making fine-grained but expensive data mappings, we
choose not to maintain data mappings at all, but to support coarse,
“dumb”, and conservative invalidation that is cheap and
optimized in both invalidation processing and cache update
penalty. This has proved the most scalable and convenient
approach in most of our commercial deployments.

2. DISAMBIGUATION
One of the challenges with dynamic content caching is identifying
the correct document to deliver to a particular request. Each
cached document requires a cache-wide unique key. If the key
matches multiple versions of a document, the cache will deliver
the wrong content. If multiple keys match the same document,
the effectiveness of the cache is diluted with unnecessary cache
misses and cache storage is wasted on duplicate content.

The primary component of the cache key is simply the URL
corresponding to the document. However, in many cases the
URL is either not sufficient or contains too much information to
be the key. Applications are capable of generating distinct
HTML content in response to requests with distinct header
content. HTTP headers that often affect content include
application-provided cookies and user agents (browser model and
version). All the HTML documents that can be generated from
such applications share the same URL, yet they need to be stored
as distinct objects and delivered to the appropriate recipients.

Some applications embed session-key or user-tracking data in
URLs as an alternative to cookies. This technique requires the
data be embedded in hyperlinks in the pages delivered, enabling
the application to identify the session or user in each interaction.
The result of this system is URLs with superfluous data for
generating a cache key.

With the above in mind, Oracle Web Cache composes the cache
document key by augmenting the URL with HTTP request header
data or stripping data from the URL as appropriate. When the
URL is augmented with header data, the Web Cache stores and
delivers different versions of the page in response to the same
URL.

One may instruct the Web Cache to use the existence of the
header data or the value of a portion of the header as the
disambiguating factor. With the existence option, the cache will
store and deliver one version of the page when the request
contains the header, and one version of the page when the request
does not contain the header. With the value option, the cache will
store and deliver a distinct version of the page for each header
value (including the absence of the header.)

The disambiguation factors can be statically configured for the
cache or dynamically specified in the response. With
configuration, Web Cache can be used with unmodified
applications. With the response specification, application content
is self-described for Web caching and obviates the need for
deployment-time cache configuration.

3. SESSION STATE MANAGMENT
Many Web applications utilize sessions to track users’ state and
collect user data. A session between an HTTP client and the
backend HTTP server typically involves some state information
of the client being stored on the server. The server sends the
response to a client’s request based on its current state.
Information about the state is sent between the client and the
server using either cookies or URL encoded parameters, usually
in the form of a unique session identifier.

We designed the Web Cache to support session management.
When required, requests lacking specified session keys pass
through the Cache to allow the application and application server
to perform unfettered session state establishment. The response
from the application will now contain the session key in either the
HTTP set cookie header or embedded within the hyperlinks of the
page. Subsequent requests contain the session key and may be
satisfied by the Web Cache.

If the application embeds the session key in URLs and hyperlinks,
each page becomes unique for each session. This leads to a cache
miss for every new session view of every page and a cache
populated with session-specific pages.

Oracle Web Cache can cache and deliver pages with session-
embedded data. The Cache stores the pages with placeholders
replacing the session-specific strings. When the cache receives
requests with a session-embedded URL, it composes the cache
key by removing the session string from the URL. The cache will
then substitute the incoming session information for the
placeholders in a cached response, and then deliver the page.
This preserves session state across multiple cache hits.

The Web Cache also employs this same string substitution
technique for some personalization, such as shopping cart
contents displayed on otherwise static catalog pages. We present
this in Section 4.2.

• The “include” tag: An include tag (<esi:include>) is a
reference to an independently obtained fragment. Web
Cache will insert the fragment, whose URL is specified
in the “src” attribute of the tag, when the cache
assembles the full response. A fragment itself may
contain other ESI tags, including the include tags.

Another example of Web Cache session support is a situation
where pages delivered for established sessions are not sharable
and not feasible to cache. However, content for “anonymous
users” without sessions is very much sharable, and a session is not
required to access such content. In this case, the cache does the
opposite of the above. If it detects the existence of the session in
a request, it passes it to the back end server for the non-cacheable
content; and if it does not find the session, it can then satisfy the
request with a cached, sharable, common page for the anonymous
users.

• The “inline” tag: This tag is intended for applications
that cannot support separate HTTP requests for each
fragment. The inline tag (<esi:inline>) demarcates a
fragment embedded in an HTTP response. The
embedded fragment does not need to be fetched or
assembled but will be cached separately from the
template enabling the fragment to be shared with other
pages, and reduce the fragment’s update frequency.

These are the primary examples of how Web Cache handles
session management. There are other variants on above scenario.
The objective is to perform the correct actions based on the
different session requirements/settings and to cache as much
shareable data as possible.

Note that ESI processing may be performed in numerous
locations. ESI processing is typically performed in a reverse-
proxy cache or a CDN cache. It may also be performed in an
application cache, a proxy cache, or even a browser cache.
Templates and fragments can be retrieved from the cache itself,
from an origin Web server, or from a downstream cache (Figure
3). The source and cacheability of fragments and templates are
orthogonal to their assembly, so that cacheable and non-cacheable
fragments can co-exist in any template.

4. PERSONALIZATION
Personalization is common in dynamic content. There are at least
three common challenges when caching personalized content.
First, many personalized pages cannot be cached for long or at all.
Personalization often creates pages that each consists of
“fragments” with different caching properties (volatility,
cacheability, etc.). For example, a Portal page may include stock
quotes that expire in 20 minutes, news that expires in 3 hours, and
rotating ad banners that should not be cached. To serve consistent
content, traditional caches need to update the entire page at the
highest change frequency of all its fragments. Second, the
customizable combination of fragments creates a vast number of
unique pages. Cache hit ratios will be low even if these unique
pages are all cacheable. Third, personalized information often
appears in Web pages, making them unique for each user.

Figure 3. ESI separates content delivery from content
generation for greater scalability and cost savings 4.1 PARTIAL-PAGE CACHING

To solve the first two challenges, Oracle Web Cache operates in a
partial-page model, in which each Web page can be divided into a
template and multiple fragments that can in turn be further
divided into templates and lower level fragments. Each fragment
or template is stored and managed independently; a full page is
assembled from the underlying fragments upon request.
Fragments can be shared among different templates, so that
common fragments are not duplicated to waste precious cache
space. Sharing can also greatly reduce the number of updates
required when fragments expire. Depending on the application,
updating a fragment can be cheaper than updating a full page. In
addition, each template or fragment may have its own unique
caching policies such as expiration, validation, and invalidation,
so that each fragment in a full Web page can be cached as long as
possible, even when some fragments are not cached or are cached
for a much shorter period of time.

4.2 REQUEST AND RESPONSE
VARIABLES
Another problem in caching personalized pages is the user-
specific information appearing in these pages, making them
unique at the full-page level. Although partial-page caching can
reduce the uniqueness of each page by sharing as many fragments
as possible, some small but personal strings in a page are still
unique to every user. For example, many Web pages contain tens
or hundreds of hyperlinks embedding application session IDs.
In order to avoid storing and retrieving too many small fragments,
we allow application developers to use variables in an ESI
template. Because variables can be resolved to different pieces of
request information or response information, the uniqueness of
templates and fragments can be significantly reduced when
personal information abounds.

Oracle Web Cache uses Edge-Side Includes, or ESI ([6]), with our
unique extensions ([8]) to achieve flexible partial-page caching.
ESI is a simple markup language for partial-page caching.
Applications can mark up HTTP responses with two different
kinds of tags to define the fragment-template structure in the
response:

There are two kinds of ESI variables: request variables and
response variables. When an ESI template is assembled, a request
variable is instantiated to a piece of request information such as a
query string parameter, a cookie, or an HTTP header. For
example, when a request for a dynamic page carries an
application session ID in a query string parameter, this page may

contain many hyperlinks with ESI request variables accessing this
session ID, so that generated hyperlinks can carry the session ID
into the next clicked page.

A response variable is similar to a request variable, except that its
value comes not from the request, but from a special fragment
called ESI environment. An ESI environment is essentially a
special type of fragment whose response defines a set of variables
that can be accessed by response variable occurrences in the
enclosing template. For example, a dynamic page with a calendar
may need to present personal appointments that cannot be stored
in browser cookies due to cookie size limits. The application can
instead reference a “profile” environment fragment in the
template, and refer to all appointments in the environment without
making separate requests and cache objects for each appointment.
In addition, an environment may be used to merge multiple small
fragments into one environment by which each fragment can be
referenced through response variable instantiation. This reduces
storage and retrieval overhead similarly.

4.3 PERSONALIZATION IN
ALTERNATIVE CACHES
ESI enables Oracle Web Cache to perform in-cache
personalization as a reverse-proxy cache or a CDN/eCDN cache.
Similar partial-page caching ideas have been explored in
alternative cache locations.
[2] and [3] describe an integrated Web publishing system that
uses a similar partial-page caching model. The primary difference
between their partial-page model and ours is that theirs requires
tight and proprietary application integration to define the
template-fragment relationship.
Chutney and BEA ([4]) built partial-page caches within
application servers that save partial application execution in cache
hits. The template-fragment definition is also through tags.
However, these caches depend on application integration on
different platforms such as servlet, JSP and ASP. Oracle Web
Cache communicates with any application through HTTP. The
performance gains of application caches also suffer more because
the cost to invoke expensive applications that need performance
improvements can never be entirely eliminated, while Oracle Web
Cache handles cache hits without contacting an origin Web server
or invoking a JVM. The independence from more expensive
application execution environments such as a JVM allows us to
develop a much more efficient and dedicated system.

4.4 PERFORMANCE IMPROVEMENT
We will use a simple example to illustrate the performance impact
of caching and assembling ESI templates and fragments. This
example also illustrates another component of ESI, ESI for Java
(JESI). JESI is a JSP tag library with two roles. First, JESI
generates the appropriate ESI tags and headers in the JSP output
that instruct ESI processors to cache (or not) templates and
fragments for the appropriate duration. Second, JESI facilitates
the partial execution of JSPs when an ESI processor requests
fragments and templates.
This application provides the user with a personalized page of
five stock quotes, three news topics, three sports scores, and the
weather forecast for one city. In Table 1, we present the quantity
and volatility of data we use in this example.

This application is a JSP and collection of EJBs. The JSP
performs all the HTML formatting while the EJBs provide a
simple access method for the data. The JSP would begin
processing by calling an EJB that provides the identity of the
user’s selection of five stocks, a city, three news topics, and the
sports teams. This EJB is essentially generating the template.
The JSP then calls a series of EJBs that provide the current data
for the JSP to present. Each EJB may obtain the source data from
an external stream, a database, or some other source, and the EJB
would likely cache the data in memory for optimal performance.

Table 1. Example Application Content Assumptions

Content Number of
Objects Time to Live

Stock
Quotes

10,000
Securities 15 minutes

Weather 1,000 Cities One Hour

Sports 500 Teams One Hour

News 50 Topics One Hour
The performance data assumes the application and Web Cache
run on a 933 MHZ Intel Pentium III processor running LINUX,
with enough memory to cache all the content. Without Web
Cache we assume the system has a capacity to generate 50 pages
per second. On such a system we have measured Web Cache
assembling and delivering 2140 pages per second of similar
content with a dozen ESI fragments. In Table 2, we present the
performance comparison of the application with and without a
populated Web Cache delivering a uniformly distributed million
pages per hour. The first row presents execution data for the
basic application. The second row presents data for the same
application where the JSP has been tagged with JESI tags and the
application is run with Web Cache.

Table 2. Web Cache and Application Execution Cost

 Web Cache Application

Without
Web

Cache

 1,000,000JSP
 1,000,000Template EJB
 5,000,000Stock EJB
 1,000,000Weather EJB
 3,000,000Sports EJB
 3,000,000News EJB
Requires 20,000 cpu seconds

With
Web

Cache

1,000,000 Pages

Requires 468
cpu seconds

 41,550JSP w/JESI
 0Template EJB
 40,000Stock EJB
 1,000Weather EJB
 500Sports EJB
 50News EJB

Requires <831 cpu seconds

With ESI processing, Web Cache delivers the bulk of the replies
without invoking the application. Web Cache only invokes the
application when it processes a request for an expired fragment.
In this example we present the worst-case scenario for caching,
where all 10,000 stock quote fragments are accessed throughout
the hour, requiring all the fragments to be replaced four times,
thus generating 40,000 JSP and EJBs invocations. The same
applies to all the other content. We assume each EJB invocation

requires a separate JSP request, so the total number of JSP
requests represents the sum of all EJB invocations: 41,550.
In this example Web Cache provides a performance gain greater
than a factor of 15. The application without Web Cache
consumes approximately five and one-half hours of CPU time in
the one-hour period. The application with JESI and Web Cache
needs less than 22 minutes of CPU time in the same period.

5. CONSISTENCY MANAGEMENT
On the Web, dynamic content is usually more volatile than static
content, changing more frequently and less predictably. Since
dynamic content is often based on underlying data stored in
databases, events external to the Web application can trigger
changes in the Web content. While we support expiration and
validation techniques to maintain consistency, invalidation is our
key technology in consistency management due to its ease of
control by applications.
The key challenge in invalidating dynamic Web content is to
establish mappings between underlying relational data and the
cached Web data. With such mappings, changes in the underlying
data can be translated to an invalidation of the affected cache
content. Previous works ([1], [2], [3], [5]) aim at maintaining
accurate mappings and calculating affected cached objects to
invalidate from such mappings ([1], [2]). The mappings are
maintained by monitoring traffic between databases and
applications and between applications and Web listeners, by
explicit API calls by applications ([2]), or by run-time and
compile-time query analysis ([5]). However, in large Web sites,
the cost of monitoring, triggering, and analysis can often be very
expensive. Although the goal is to invalidate less if possible so
that performance does not suffer, the dilemma is that maintaining
accurate mappings automatically can not only consume more
resources, but it also can lead to more frequent but narrower-
scoped invalidations, which may be much more expensive to
process than fewer, wider-scoped invalidations. Application
integration of such automatic maintenance is also complicated in
third-party applications and databases.
An alternative to fine-grained (e.g., a single cached object by its
exact URL) invalidation is coarse, broad-scope, conservative
invalidation (e.g., all cached objects matching a broad URL
prefix). While each ensures full consistency, the two methods
involve a trade-off between the cost and ease of generation, and
“cache choking” – the sudden cache hit ratio decrease after
invalidation. Fine-grained invalidations are hard and expensive to
generate with less cache choking, while coarse invalidations are
easy and cheap to generate with more cache choking.
However, if we control not only the granularity but also the
consistency of invalidations, we can have coarse invalidations
with loose consistency, which then allow us to achieve both minor
cache choking and easy-to-use invalidations. In Oracle Web
Cache, a user can request that invalidated objects be refreshed
within a grace period, during which the invalidated stale content
may still be served as cache hits. Because we measure the
popularity (from their access patterns) and the validity (from how
soon they will have to be refreshed) of all cached objects, our
Performance Assurance Heuristics prioritize all updates and only
select a small set of the most popular and least valid objects to
refresh first. Since most Web content access patterns follow the
Zipf 80-20 distribution, the percentage of fresh responses that the

Web Cache delivers increases quickly. There is very little cache
choking because stale content is being served from the cache
during the grace period. The loss of consistency is minor and
controlled within the grace period.
These different invalidation options have proved to be convenient
and efficient in many applications. Since deploying Oracle Web
Cache, Oracle’s online store has used coarse, high-consistency
invalidations and coarse, loose-consistency invalidations on
different occasions, and achieved dramatic improvements in
performance and ease of use.

6. SUMMARY
Oracle Web Cache is a reverse-proxy, partial-page Web cache
specializing in dynamic content caching. The Cache utilizes
flexible document identification, intelligent session management,
convenient and flexible invalidation messages, and fast page
assembly to drastically reduce application execution and database
query cost.

7. CONCLUSION
Dynamic content caches are providing performance boosts to
traditional data systems as well as enabling new distributed
computing paradigms to scale to levels once exclusive to esoteric
transaction processing systems.

The marriage of dynamic content caching with traditional
databases provides the manageability of the database with the
performance of a fast cache. Referential integrity is no longer
relegated to the raw data of financial applications as more data
may be managed in databases without a performance or scale
penalty.

HTTP has become the standard for computing communication,
for client-server application communication, for enterprise
application integration, and for enterprise-to-enterprise
communication with SOAP. Dynamic content caching of HTTP
traffic has the potential for broad impact on the performance and
scalability of many systems beyond the traditional Web sites
where Oracle Web Cache started. Systems built without similar
technology will scale poorly and cost an order of magnitude more
to run and develop. Once dynamic content caches become tightly
integrated with development environments, security
infrastructure, and network infrastructure, most applications will
benefit from the increased performance. Standards such as ESI
are essential for cross-industry interoperability.

8. ACKNOWLEDGMENTS
We would like to thank all members of the Oracle Web Cache
team, past and present, for their contribution to the ideas covered
here, and for successfully implementing all the techniques in this
product. Our thanks to Mark Tsimelzon and the rest of the
Akamai ESI team, for their contributions to ESI. We would like
to express our special thanks to Roger Bamford, Shehzaad
Nakhoda, Rajiv Mishra, and Sachin Desai for their original
contributions to the techniques discussed in this paper.

In Memoriam: We would also like to acknowledge the
contributions of Danny Lewin, founder of Akamai Technologies

and one of the pioneers of ESI. Danny perished tragically in the
attacks of September 11, 2001, but his inspiration lives on.

9. REFERENCES
[1] K. Candan, W. Li, Q. Luo, W. Hsiung, D. Agrawal.

Enabling Dynamic Content Caching for Database-
Driven Web Sites. In Proceedings of ACM SIGMOD
2001, Santa Barbara, California.

[2] J. Challenger, A. Iyengar, P. Dantzig. A Scalable
System for Consistently Caching Dynamic Web Data.
In Proceedings of IEEE INFOCOM'99, New York,
New York, March 1999.

[3] Jim Challenger, Arun Iyengar, Karen Witting,
Cameron Ferstat, Paul Reed. A Publishing System for
Efficiently Creating Dynamic Web Content. In
Proceedings of IEEE INFOCOM 2000, Tel Aviv,
Israel, March 2000.

[4] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, K.
Ramamritham, D. Fishman. A Comparative Study of

Alternative Middle Tier Caching Solutions to Support
Dynamic Web Content Acceleration. In Proceedings of
the 27th VLDB Conference, Roma, Italy, 2001.

[5] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and
Isabelle Rouvellou. A Middleware System Which
Intelligently Caches Query Results. In Proceedings of
ACM/IFIP Middleware 2000, Palisades, New York,
April 2000.

[6] Edge-Side Includes, http://www.esi.org.

[7] Inktomi Traffic Edge, http://www.inktomi.com.

[8] Oracle9iAS Web Cache Administration and
Deployment Guide, Release 2.0.0.
http://otn.oracle.com/docs/products/ias/content.html

[9] Server Accelerator, http://www.cacheflow.com.

http://www.esi.org/
http://www.inktomi.com/
http://otn.oracle.com/docs/products/ias/content.html
http://www.cacheflow.com/

	INTRODUCTION
	DISAMBIGUATION
	SESSION STATE MANAGMENT
	PERSONALIZATION
	PARTIAL-PAGE CACHING
	REQUEST AND RESPONSE VARIABLES
	PERSONALIZATION IN ALTERNATIVE CACHES
	PERFORMANCE IMPROVEMENT

	CONSISTENCY MANAGEMENT
	SUMMARY
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

