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ABSTRACT 
We discuss several important issues specific to Web caching for 
content dynamically generated from database applications. We 
present the techniques employed by Oracle Web Cache to address 
these issues. They include: content disambiguation based on 
information in addition to the URL, transparent session 
management, partial-page caching for personalization, and broad-
scope invalidation with performance assurance heuristics. 
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1. INTRODUCTION 
Caching has been used to speed up content delivery since the 
early days of the World Wide Web, a prime example being proxy 
caches deployed by many organizations. For many years, most of 
the Web caching was done on static content, such as images and 
text. Dynamic content in contrast is normally generated from 
executing business logic in application servers and querying 
business data in databases. A typical dynamic content Web site 
configuration is shown in Figure 1.  

Figure 1. Typical Dynamic Content Web Site Configuration 
Only recently has dynamic content caching become available and 
begun to attract attention. This coincides with the move of Web 
content becoming more dynamic and personalized with the aim of 

providing the users a more personal and rich Web experience.  
Generating personalized content is computationally expensive.  
This has driven the need for dynamic content caching that can 
achieve higher cache hit ratios and thus improve performance and 
scalability in today’s Web servers.  The need for this scalability is 
a result of the underlying framework of Java engines and 
databases having been designed for tens to hundreds of concurrent 
users rather than the hundreds of thousands of users the Web has 
introduced. 

From Web servers and databases to browsers, caching is done at 
almost every stage of a request’s lifetime (Figure 2).  

Figure 2. Caching on the Web 
In the course of request, database caches can reduce database 
query cost. Caches within application servers can eliminate 
database queries and reduce application execution cost. Reverse 
proxy caches can eliminate database queries and all application 
execution cost. CDN (content delivery network) or eCDN 
(enterprise content delivery network) caches not only eliminate 
database queries and application execution cost, but also reduce 
network transmission cost. Proxy caches and browser caches offer 
further server and network cost reduction, but their cache content 
is controlled by end users and tends to have a low cache hit ratio 
for dynamic content. 

Oracle Web Cache is one of the first reverse proxy caches 
designed for dynamic content.  Web Cache is also used within 
CDNs/eCDNs and may also be used for caching application data 
such as SOAP responses. Many customers have successfully 
deployed it to address their performance issues with dynamic 
content.   
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Compared to static Web content caching, dynamic content 
caching has many unique issues.  This paper focuses on how 
Oracle Web Cache addresses disambiguation, session 
management, personalization, and consistency. 

Disambiguating content is essential for properly storing and 
delivering documents and maintaining high cache hit rates.  
URLs, normally the unique identifiers for static content caches, 



are often insufficient for dynamic content due to request-specific 
content generated by applications. For example, a browser-aware 
application may generate different responses for different 
browsers for the same URL.  

Web applications often need to maintain session state (such as 
shopping carts) for every user.  Some applications embed the 
session state within the URL and hyperlinks as an alternative to 
cookies.  A naïve cache would interrupt the session establishment 
during cache hits and prevent new session creation.  Additionally, 
pages with embedded session state become unique for each 
session and defeat simple caches. 

Personalized pages are often unique aggregations of common 
content.  A single page may combine content fragments with 
different caching properties.  Some are cacheable, some are not, 
some expire soon, and some hardly expire.  Some content expires 
at prescribed intervals, while other content expires as the result of 
an external event.  The combination also creates “cache space 
explosion” for traditional full-page caches due to the redundant 
caching of common fragments.  There is little value in caching a 
personalized page as a whole page since the page can only be 
delivered to the user or users for whom it was designed, and only 
while all the content is valid.  In addition, some personalized 
pages contain personalized information such as personal greetings 
or addresses, further limiting the hit rate for the page.   

Compared to static content, dynamic content may change 
unpredictably upon certain events, such as changes in the 
underlying data.  The dependencies between cached content and 
the underlying data are complex and difficult to maintain 
efficiently.  Previous works ([1], [2], [3], [5]) have focused on 
calculating, monitoring and maintaining such dependencies in 
caches.  However, the cost of analyzing ad hoc queries, triggering 
on data updates, and integrating with third-party databases and 
applications can often be prohibitively expensive.  Therefore, 
instead of making fine-grained but expensive data mappings, we 
choose not to maintain data mappings at all, but to support coarse, 
“dumb”, and conservative invalidation that is cheap and 
optimized in both invalidation processing and cache update 
penalty.  This has proved the most scalable and convenient 
approach in most of our commercial deployments. 

2. DISAMBIGUATION 
One of the challenges with dynamic content caching is identifying 
the correct document to deliver to a particular request.  Each 
cached document requires a cache-wide unique key. If the key 
matches multiple versions of a document, the cache will deliver 
the wrong content.  If multiple keys match the same document, 
the effectiveness of the cache is diluted with unnecessary cache 
misses and cache storage is wasted on duplicate content. 

The primary component of the cache key is simply the URL 
corresponding to the document.  However, in many cases the 
URL is either not sufficient or contains too much information to 
be the key.  Applications are capable of generating distinct 
HTML content in response to requests with distinct header 
content.  HTTP headers that often affect content include 
application-provided cookies and user agents (browser model and 
version).   All the HTML documents that can be generated from 
such applications share the same URL, yet they need to be stored 
as distinct objects and delivered to the appropriate recipients. 

Some applications embed session-key or user-tracking data in 
URLs as an alternative to cookies.  This technique requires the 
data be embedded in hyperlinks in the pages delivered, enabling 
the application to identify the session or user in each interaction.  
The result of this system is URLs with superfluous data for 
generating a cache key. 

With the above in mind, Oracle Web Cache composes the cache 
document key by augmenting the URL with HTTP request header 
data or stripping data from the URL as appropriate. When the 
URL is augmented with header data, the Web Cache stores and 
delivers different versions of the page in response to the same 
URL. 

One may instruct the Web Cache to use the existence of the 
header data or the value of a portion of the header as the 
disambiguating factor.  With the existence option, the cache will 
store and deliver one version of the page when the request 
contains the header, and one version of the page when the request 
does not contain the header.  With the value option, the cache will 
store and deliver a distinct version of the page for each header 
value (including the absence of the header.)   

The disambiguation factors can be statically configured for the 
cache or dynamically specified in the response.  With 
configuration, Web Cache can be used with unmodified 
applications.  With the response specification, application content 
is self-described for Web caching and obviates the need for 
deployment-time cache configuration. 

3. SESSION STATE MANAGMENT 
Many Web applications utilize sessions to track users’ state and 
collect user data. A session between an HTTP client and the 
backend HTTP server typically involves some state information 
of the client being stored on the server.  The server sends the 
response to a client’s request based on its current state.  
Information about the state is sent between the client and the 
server using either cookies or URL encoded parameters, usually 
in the form of a unique session identifier.  

We designed the Web Cache to support session management.  
When required, requests lacking specified session keys pass 
through the Cache to allow the application and application server 
to perform unfettered session state establishment.  The response 
from the application will now contain the session key in either the 
HTTP set cookie header or embedded within the hyperlinks of the 
page.  Subsequent requests contain the session key and may be 
satisfied by the Web Cache. 

If the application embeds the session key in URLs and hyperlinks, 
each page becomes unique for each session.  This leads to a cache 
miss for every new session view of every page and a cache 
populated with session-specific pages. 

Oracle Web Cache can cache and deliver pages with session-
embedded data.  The Cache stores the pages with placeholders 
replacing the session-specific strings.  When the cache receives 
requests with a session-embedded URL, it composes the cache 
key by removing the session string from the URL.  The cache will 
then substitute the incoming session information for the 
placeholders in a cached response, and then deliver the page.  
This preserves session state across multiple cache hits. 



The Web Cache also employs this same string substitution 
technique for some personalization, such as shopping cart 
contents displayed on otherwise static catalog pages.  We present 
this in Section 4.2. 

• The “include” tag: An include tag (<esi:include>) is a 
reference to an independently obtained fragment. Web 
Cache will insert the fragment, whose URL is specified 
in the “src” attribute of the tag, when the cache 
assembles the full response. A fragment itself may 
contain other ESI tags, including the include tags. 

Another example of Web Cache session support is a situation 
where pages delivered for established sessions are not sharable 
and not feasible to cache.  However, content for “anonymous 
users” without sessions is very much sharable, and a session is not 
required to access such content.  In this case, the cache does the 
opposite of the above.  If it detects the existence of the session in 
a request, it passes it to the back end server for the non-cacheable 
content; and if it does not find the session, it can then satisfy the 
request with a cached, sharable, common page for the anonymous 
users. 

• The “inline” tag: This tag is intended for applications 
that cannot support separate HTTP requests for each 
fragment.  The inline tag (<esi:inline>) demarcates a 
fragment embedded in an HTTP response. The 
embedded fragment does not need to be fetched or 
assembled but will be cached separately from the 
template enabling the fragment to be shared with other 
pages, and reduce the fragment’s update frequency. 

These are the primary examples of how Web Cache handles 
session management.  There are other variants on above scenario. 
The objective is to perform the correct actions based on the 
different session requirements/settings and to cache as much 
shareable data as possible.  

Note that ESI processing may be performed in numerous 
locations. ESI processing is typically performed in a reverse-
proxy cache or a CDN cache.  It may also be performed in an 
application cache, a proxy cache, or even a browser cache. 
Templates and fragments can be retrieved from the cache itself, 
from an origin Web server, or from a downstream cache (Figure 
3). The source and cacheability of fragments and templates are 
orthogonal to their assembly, so that cacheable and non-cacheable 
fragments can co-exist in any template. 

4. PERSONALIZATION 
Personalization is common in dynamic content. There are at least 
three common challenges when caching personalized content. 
First, many personalized pages cannot be cached for long or at all. 
Personalization often creates pages that each consists of 
“fragments” with different caching properties (volatility, 
cacheability, etc.). For example, a Portal page may include stock 
quotes that expire in 20 minutes, news that expires in 3 hours, and 
rotating ad banners that should not be cached. To serve consistent 
content, traditional caches need to update the entire page at the 
highest change frequency of all its fragments.  Second, the 
customizable combination of fragments creates a vast number of 
unique pages. Cache hit ratios will be low even if these unique 
pages are all cacheable. Third, personalized information often 
appears in Web pages, making them unique for each user. 

Figure 3. ESI separates content delivery from content 
generation for greater scalability and cost savings  4.1 PARTIAL-PAGE CACHING 

To solve the first two challenges, Oracle Web Cache operates in a 
partial-page model, in which each Web page can be divided into a 
template and multiple fragments that can in turn be further 
divided into templates and lower level fragments. Each fragment 
or template is stored and managed independently; a full page is 
assembled from the underlying fragments upon request.  
Fragments can be shared among different templates, so that 
common fragments are not duplicated to waste precious cache 
space. Sharing can also greatly reduce the number of updates 
required when fragments expire. Depending on the application, 
updating a fragment can be cheaper than updating a full page. In 
addition, each template or fragment may have its own unique 
caching policies such as expiration, validation, and invalidation, 
so that each fragment in a full Web page can be cached as long as 
possible, even when some fragments are not cached or are cached 
for a much shorter period of time. 

4.2 REQUEST AND RESPONSE 
VARIABLES 
Another problem in caching personalized pages is the user-
specific information appearing in these pages, making them 
unique at the full-page level. Although partial-page caching can 
reduce the uniqueness of each page by sharing as many fragments 
as possible, some small but personal strings in a page are still 
unique to every user. For example, many Web pages contain tens 
or hundreds of hyperlinks embedding application session IDs. 
In order to avoid storing and retrieving too many small fragments, 
we allow application developers to use variables in an ESI 
template. Because variables can be resolved to different pieces of 
request information or response information, the uniqueness of 
templates and fragments can be significantly reduced when 
personal information abounds. 

Oracle Web Cache uses Edge-Side Includes, or ESI ([6]), with our 
unique extensions ([8]) to achieve flexible partial-page caching. 
ESI is a simple markup language for partial-page caching. 
Applications can mark up HTTP responses with two different 
kinds of tags to define the fragment-template structure in the 
response:  

There are two kinds of ESI variables: request variables and 
response variables. When an ESI template is assembled, a request 
variable is instantiated to a piece of request information such as a 
query string parameter, a cookie, or an HTTP header. For 
example, when a request for a dynamic page carries an 
application session ID in a query string parameter, this page may 



contain many hyperlinks with ESI request variables accessing this 
session ID, so that generated hyperlinks can carry the session ID 
into the next clicked page.   

A response variable is similar to a request variable, except that its 
value comes not from the request, but from a special fragment 
called ESI environment. An ESI environment is essentially a 
special type of fragment whose response defines a set of variables 
that can be accessed by response variable occurrences in the 
enclosing template. For example, a dynamic page with a calendar 
may need to present personal appointments that cannot be stored 
in browser cookies due to cookie size limits. The application can 
instead reference a “profile” environment fragment in the 
template, and refer to all appointments in the environment without 
making separate requests and cache objects for each appointment. 
In addition, an environment may be used to merge multiple small 
fragments into one environment by which each fragment can be 
referenced through response variable instantiation. This reduces 
storage and retrieval overhead similarly. 

4.3 PERSONALIZATION IN 
ALTERNATIVE CACHES 
ESI enables Oracle Web Cache to perform in-cache 
personalization as a reverse-proxy cache or a CDN/eCDN cache. 
Similar partial-page caching ideas have been explored in 
alternative cache locations. 
[2] and [3] describe an integrated Web publishing system that 
uses a similar partial-page caching model. The primary difference 
between their partial-page model and ours is that theirs requires 
tight and proprietary application integration to define the 
template-fragment relationship. 
Chutney and BEA ([4]) built partial-page caches within 
application servers that save partial application execution in cache 
hits. The template-fragment definition is also through tags. 
However, these caches depend on application integration on 
different platforms such as servlet, JSP and ASP. Oracle Web 
Cache communicates with any application through HTTP. The 
performance gains of application caches also suffer more because 
the cost to invoke expensive applications that need performance 
improvements can never be entirely eliminated, while Oracle Web 
Cache handles cache hits without contacting an origin Web server 
or invoking a JVM. The independence from more expensive 
application execution environments such as a JVM allows us to 
develop a much more efficient and dedicated system. 

4.4 PERFORMANCE IMPROVEMENT 
We will use a simple example to illustrate the performance impact 
of caching and assembling ESI templates and fragments.  This 
example also illustrates another component of ESI, ESI for Java 
(JESI).  JESI is a JSP tag library with two roles.  First, JESI 
generates the appropriate ESI tags and headers in the JSP output 
that instruct ESI processors to cache (or not) templates and 
fragments for the appropriate duration. Second, JESI facilitates 
the partial execution of JSPs when an ESI processor requests 
fragments and templates.  
This application provides the user with a personalized page of 
five stock quotes, three news topics, three sports scores, and the 
weather forecast for one city.  In Table 1, we present the quantity 
and volatility of data we use in this example. 

This application is a JSP and collection of EJBs.  The JSP 
performs all the HTML formatting while the EJBs provide a 
simple access method for the data.  The JSP would begin 
processing by calling an EJB that provides the identity of the 
user’s selection of five stocks, a city, three news topics, and the 
sports teams.  This EJB is essentially generating the template.  
The JSP then calls a series of EJBs that provide the current data 
for the JSP to present.  Each EJB may obtain the source data from 
an external stream, a database, or some other source, and the EJB 
would likely cache the data in memory for optimal performance. 

Table 1. Example Application Content Assumptions 

Content Number of 
Objects Time to Live 

Stock 
Quotes 

10,000 
Securities 15 minutes 

Weather 1,000 Cities One Hour 

Sports 500 Teams One Hour 

News 50 Topics One Hour 
The performance data assumes the application and Web Cache 
run on a 933 MHZ Intel Pentium III processor running LINUX, 
with enough memory to cache all the content.  Without Web 
Cache we assume the system has a capacity to generate 50 pages 
per second.  On such a system we have measured Web Cache 
assembling and delivering 2140 pages per second of similar 
content with a dozen ESI fragments.  In Table 2, we present the 
performance comparison of the application with and without a 
populated Web Cache delivering a uniformly distributed million 
pages per hour.  The first row presents execution data for the 
basic application.  The second row presents data for the same 
application where the JSP has been tagged with JESI tags and the 
application is run with Web Cache.   

Table 2. Web Cache and Application Execution Cost 

 Web Cache Application 

Without 
Web 

Cache 
 

 1,000,000JSP 
 1,000,000Template EJB 
 5,000,000Stock EJB 
 1,000,000Weather EJB 
 3,000,000Sports EJB 
 3,000,000News EJB 
Requires 20,000 cpu seconds 

With 
Web 

Cache 

1,000,000 Pages 
 
 

Requires 468 
cpu seconds 

 41,550JSP w/JESI 
 0Template EJB 
 40,000Stock EJB 
 1,000Weather EJB 
 500Sports EJB 
 50News EJB 

Requires <831 cpu seconds 
 
With ESI processing, Web Cache delivers the bulk of the replies 
without invoking the application.  Web Cache only invokes the 
application when it processes a request for an expired fragment.  
In this example we present the worst-case scenario for caching, 
where all 10,000 stock quote fragments are accessed throughout 
the hour, requiring all the fragments to be replaced four times, 
thus generating 40,000 JSP and EJBs invocations.  The same 
applies to all the other content.  We assume each EJB invocation 



requires a separate JSP request, so the total number of JSP 
requests represents the sum of all EJB invocations: 41,550. 
In this example Web Cache provides a performance gain greater 
than a factor of 15.  The application without Web Cache 
consumes approximately five and one-half hours of CPU time in 
the one-hour period.  The application with JESI and Web Cache 
needs less than 22 minutes of CPU time in the same period. 

5. CONSISTENCY MANAGEMENT 
On the Web, dynamic content is usually more volatile than static 
content, changing more frequently and less predictably. Since 
dynamic content is often based on underlying data stored in 
databases, events external to the Web application can trigger 
changes in the Web content. While we support expiration and 
validation techniques to maintain consistency, invalidation is our 
key technology in consistency management due to its ease of 
control by applications. 
The key challenge in invalidating dynamic Web content is to 
establish mappings between underlying relational data and the 
cached Web data. With such mappings, changes in the underlying 
data can be translated to an invalidation of the affected cache 
content. Previous works ([1], [2], [3], [5]) aim at maintaining 
accurate mappings and calculating affected cached objects to 
invalidate from such mappings ([1], [2]). The mappings are 
maintained by monitoring traffic between databases and 
applications and between applications and Web listeners, by 
explicit API calls by applications ([2]), or by run-time and 
compile-time query analysis ([5]). However, in large Web sites, 
the cost of monitoring, triggering, and analysis can often be very 
expensive. Although the goal is to invalidate less if possible so 
that performance does not suffer, the dilemma is that maintaining 
accurate mappings automatically can not only consume more 
resources, but it also can lead to more frequent but narrower-
scoped invalidations, which may be much more expensive to 
process than fewer, wider-scoped invalidations. Application 
integration of such automatic maintenance is also complicated in 
third-party applications and databases. 
An alternative to fine-grained (e.g., a single cached object by its 
exact URL) invalidation is coarse, broad-scope, conservative 
invalidation (e.g., all cached objects matching a broad URL 
prefix). While each ensures full consistency, the two methods 
involve a trade-off between the cost and ease of generation, and 
“cache choking” – the sudden cache hit ratio decrease after 
invalidation. Fine-grained invalidations are hard and expensive to 
generate with less cache choking, while coarse invalidations are 
easy and cheap to generate with more cache choking. 
However, if we control not only the granularity but also the 
consistency of invalidations, we can have coarse invalidations 
with loose consistency, which then allow us to achieve both minor 
cache choking and easy-to-use invalidations. In Oracle Web 
Cache, a user can request that invalidated objects be refreshed 
within a grace period, during which the invalidated stale content 
may still be served as cache hits. Because we measure the 
popularity (from their access patterns) and the validity (from how 
soon they will have to be refreshed) of all cached objects, our 
Performance Assurance Heuristics prioritize all updates and only 
select a small set of the most popular and least valid objects to 
refresh first. Since most Web content access patterns follow the 
Zipf 80-20 distribution, the percentage of fresh responses that the 

Web Cache delivers increases quickly.  There is very little cache 
choking because stale content is being served from the cache 
during the grace period. The loss of consistency is minor and 
controlled within the grace period. 
These different invalidation options have proved to be convenient 
and efficient in many applications. Since deploying Oracle Web 
Cache, Oracle’s online store has used coarse, high-consistency 
invalidations and coarse, loose-consistency invalidations on 
different occasions, and achieved dramatic improvements in 
performance and ease of use. 

6. SUMMARY 
Oracle Web Cache is a reverse-proxy, partial-page Web cache 
specializing in dynamic content caching.  The Cache utilizes 
flexible document identification, intelligent session management, 
convenient and flexible invalidation messages, and fast page 
assembly to drastically reduce application execution and database 
query cost.  

7. CONCLUSION 
Dynamic content caches are providing performance boosts to 
traditional data systems as well as enabling new distributed 
computing paradigms to scale to levels once exclusive to esoteric 
transaction processing systems. 

The marriage of dynamic content caching with traditional 
databases provides the manageability of the database with the 
performance of a fast cache.  Referential integrity is no longer 
relegated to the raw data of financial applications as more data 
may be managed in databases without a performance or scale 
penalty. 

HTTP has become the standard for computing communication, 
for client-server application communication, for enterprise 
application integration, and for enterprise-to-enterprise 
communication with SOAP.  Dynamic content caching of HTTP 
traffic has the potential for broad impact on the performance and 
scalability of many systems beyond the traditional Web sites 
where Oracle Web Cache started.  Systems built without similar 
technology will scale poorly and cost an order of magnitude more 
to run and develop.  Once dynamic content caches become tightly 
integrated with development environments, security 
infrastructure, and network infrastructure, most applications will 
benefit from the increased performance.  Standards such as ESI 
are essential for cross-industry interoperability. 

 

8. ACKNOWLEDGMENTS 
We would like to thank all members of the Oracle Web Cache 
team, past and present, for their contribution to the ideas covered 
here, and for successfully implementing all the techniques in this 
product. Our thanks to Mark Tsimelzon and the rest of the 
Akamai ESI team, for their contributions to ESI.  We would like 
to express our special thanks to Roger Bamford, Shehzaad 
Nakhoda, Rajiv Mishra, and Sachin Desai for their original 
contributions to the techniques discussed in this paper.  

In Memoriam:  We would also like to acknowledge the 
contributions of Danny Lewin, founder of Akamai Technologies 



and one of the pioneers of ESI.  Danny perished tragically in the 
attacks of September 11, 2001, but his inspiration lives on. 

9. REFERENCES 
[1] K. Candan, W. Li, Q. Luo, W. Hsiung, D. Agrawal. 

Enabling Dynamic Content Caching for Database-
Driven Web Sites. In Proceedings of ACM SIGMOD 
2001, Santa Barbara, California. 

[2] J. Challenger, A. Iyengar, P. Dantzig. A Scalable 
System for Consistently Caching Dynamic Web Data. 
In Proceedings of IEEE INFOCOM'99, New York, 
New York, March 1999. 

[3] Jim Challenger, Arun Iyengar, Karen Witting, 
Cameron Ferstat, Paul Reed. A Publishing System for 
Efficiently Creating Dynamic Web Content. In 
Proceedings of IEEE INFOCOM 2000, Tel Aviv, 
Israel, March 2000. 

[4] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, K. 
Ramamritham, D. Fishman. A Comparative Study of 

Alternative Middle Tier Caching Solutions to Support 
Dynamic Web Content Acceleration. In Proceedings of 
the 27th VLDB Conference, Roma, Italy, 2001. 

[5] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and 
Isabelle Rouvellou. A Middleware System Which 
Intelligently Caches Query Results. In Proceedings of 
ACM/IFIP Middleware 2000, Palisades, New York, 
April 2000. 

[6] Edge-Side Includes, http://www.esi.org. 

[7] Inktomi Traffic Edge, http://www.inktomi.com. 

[8] Oracle9iAS Web Cache Administration and 
Deployment Guide, Release 2.0.0. 
http://otn.oracle.com/docs/products/ias/content.html 

[9] Server Accelerator, http://www.cacheflow.com. 

 

 

http://www.esi.org/
http://www.inktomi.com/
http://otn.oracle.com/docs/products/ias/content.html
http://www.cacheflow.com/

	INTRODUCTION
	DISAMBIGUATION
	SESSION STATE MANAGMENT
	PERSONALIZATION
	PARTIAL-PAGE CACHING
	REQUEST AND RESPONSE VARIABLES
	PERSONALIZATION IN ALTERNATIVE CACHES
	PERFORMANCE IMPROVEMENT

	CONSISTENCY MANAGEMENT
	SUMMARY
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

