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Abstract  

 
Sensor networks are highly distributed networks of 
small, lightweight wireless sensor nodes, deployed in 
large numbers to monitor the environment or system by 
the measurement of physical parameters such as 
temperature, pressure, or relative humidity, sound, 
vibration, motion or pollutants, at different locations. A 
WSN [1] is composed of a large number of low-cost 
sensor nodes (SNs) and one or several base stations 
(BS) or destination nodes. SNs are typically small 
wireless devices with limited computational power, 
equipped with a radio transceiver or other wireless 
communications device, radio transmission range, 
storage size, a small microcontroller, battery power. 
Sink nodes or destination nodes are distinguishing 
devices with powerful computation capacity, large 
memory size, high power energy and long 
communication range so as to collect data from SNs. 
Sink nodes act as the gateway between WSNs and the 
end user..  
 

1. Introduction 
 

An ideal sensor network protocol should provide 
data authentication, confidentiality, integrity of data 
and protection from replay. The security and efficiency 
being the basic parameters used to design a new sensor 
network protocol. 

    A wireless sensor node integrates one or more 
sensors, a processor, a communication unit, a power 
supply and management unit and, if need be, a security 
and actuation unit [2]. Depending on the sensing task 
for which the network is deployed, there can be 
multiple sensors integrated within a single node.  
 
2. Background 
As wireless sensor networks have been used in a lot of 
applications, monitoring nodes in the networks are 
needed for some applications. The important functions 
which need to be monitored are the communicated data 

between each node, the movement of nodes, etc. In 
recent years, the sensor has made a great progress. 
Sensor networks have been gaining popularity as a low 
cost solution to the various applications. Their low cost 
gives an opportunity to exploit them in the military, 
industrial and home applications.  
          Sensors have started replacing the human factor 
in various industrial processes. These small embedded 
systems have become an integral part of large networks 
and participate in the distributed applications. As our 
daily life is getting more advanced, a variety of 
“sensitive” data used is stored, altered, manipulated, or 
communicated by the means of electronic systems. 
Hence, arises the need to deal with the security of these 
systems as an important aspect. Security has been the 
topic of research for cryptography, computing, and 
networking applications. As a matter of fact, security is 
a metric, which has to be, implemented at each 
increasing step in the system design, keeping in mind 
other factors such as development cost, performance, 
and power consumed.  
    Security is a requirement for an increasing number of 
growing embedded system applications ranging from 
low-end products such as PDAs, wireless handsets, 
smart id-cards, to high-end products such as routers, 
firewalls, gateways, storage and web-servers. A survey 
among internet users has rated security as a primary 
concern in the adoption of new services and 
applications. 
Sensor nodes are used in a variety of applications 
which require constant monitoring and detection of 
specific events. The three important application classes:  

 Environmental data collection,  
 Security monitoring, and  
 Sensor node tracking.  

The majority of wireless sensor network deployments 
will fall into one of these class templates.  
 
2.1. Environmental data collection: 
A basic environmental data collection application is 
one where a researcher wants to collect several sensor 
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readings from a set of points in an environment through 
a period of time in order to observe trends and 
mutualities [3]. In the area of environmental 
observation and forecasting, researchers aim at 
establishing an early warning system to protect the 
population, and on the other hand, provide researchers 
with the means to study certain phenomena. This is 
because instrumenting natural places, such as national 
parks, volcanos, riverbanks, rift zones, and woods with 
numerous networked sensor nodes can enable long-
term data collection at scales and resolutions that are 
difficult to obtain otherwise [2]. The researcher would 
be interested in gathering data over several months or 
years in order to look for long-term and seasonal 
trends. For the data to be meaningful it would have to 
be collected at regular intervals and the nodes would 
remain at known locations.  
2.2. Security monitoring: 
The second class of sensor network application is 
security monitoring. Security monitoring networks are 
composed of nodes that are placed at fixed locations 
throughout an environment that continuous monitor one 
or more sensors to detect an anomaly. A key difference 
between security monitoring and environmental 
monitoring is that security networks are not actually 
collecting any data. This has a significant impact on the 
optimal network architecture. Each node has to 
frequently check the status of its sensors but it only has 
to transmit a data report when there is a security 
violation. The immediate and reliable communication 
of alarm messages is the primary system requirement. 
These are “report by exception” networks. 
2.3. Node tracking scenarios: 
A third usage scenario commonly discussed for sensor 
networks is the tracking of a tagged object through a 
region of space monitored by a sensor network. There 
are many situations where one would like to track the 
location of valuable assets or personnel. Current 
inventory control systems attempt to track objects by 
recording the last checkpoint that an object passed 
through. However, with these systems it is not possible 
to determine the current location of an object. 
 
3. Secure Protocols  
3.1. SPINS  
Sensor Protocols for Information via Negotiation 
(SPINS) consists of a suite of security protocols that 
are optimized for highly resource constrained sensor 
networks [6]. SPINS consists of two secure building 
blocks SNEP and μTESLA, which run on top of 
TinyOS. TinyOS has been adopted by thousands of 
developers worldwide, on many platforms for a broad 
range of wireless sensor networks. TinyOS is based on 
an event-driven programming model instead of 

multithreading. Secure Network Encryption Protocol 
(SNEP) provides data authentication, protection from 
replay attacks, and semantic security (a property which 
prevents an adversary from learning even partial 
information about a transmitted message), which is an 
important security property, as it prevents 
eavesdroppers from inferring the message content from 
the encrypted message; achieved as the counter value is 
incremented after each message, implying that the 
message is encrypted differently each time. The counter 
value is sufficiently long enough never to repeat within 
the lifetime of the node. In addition to integrity it 
provides confidentiality through encryption and 
authentication using a message authentication code 
MAC.  This is similar to a checksum derived by 
applying an authentication scheme with a secret shared 
key to the message. The message can be decrypted only 
if the sane shared key is present. There are a number of 
unique advantages with SNEP. It has a very low 
communication overhead, adding only 8 bytes per 
message. Finally, it also provides data authentication, 
replay protection and weak message freshness [6]. To 
achieve data authentication, the same block cipher is 
used as in CBC-MAC mode.  
     μTESLA is the “micro” version of TESLA (Timed 
Efficient Stream Loss-tolerant Authentication) 
proposed in [8]. μTESLA ensures an authenticated 
broadcast, that is, nodes which receive a packet can be 
assured of its sender’s identity. It requires a loose time 
synchronization between base station and nodes, with 
an upper bound on maximum synchronization error. 
For an authenticated packet to be sent, the base station 
computes a MAC on the packet with the key that is 
secret at that point in time. When a node gets a packet, 
it can confirm that the base Station did not yet disclose 
the corresponding MAC key, using its loosely 
synchronized clock, maximum synchronization error 
and the time at which the keys are to be disclosed. The 
node stores the packet in a buffer, aware that the MAC 
key is only known to the base station, and that no 
adversary could have altered the packet during 
transmission. When the keys are to be disclosed, the 
base station broadcasts the key to all receivers. The 
receiver can then verify the correctness of the key and 
use it to authenticate the packet stored in the buffer [6].  
     TESLA relies solely on this delayed disclosure, 
unlike its predecessor, which authenticates the initial 
packet using the digital signature. It has been argued 
that while symmetric key techniques are attractive, due 
to their energy efficiency, limitations have been 
exhibited in the flexibility of these symmetric key 
exchange protocols [9].  The MAC keys are derived 
from a chain of keys, obtained by applying a one-way 
function F. All nodes have an initial key ܭ, which is 
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some key in the key-chain. The relationship between 
keys proceeds as  ܭ =  and, in (ଶܭ)ܨ ଵ ୀܭ ,ଵ(ܭ)ܨ 
general, the sender chooses the last key ܭଶ of the chain 
randomly, and applies F repeatedly to compute all other 
keys: ܭ  = F(ܭ +  1). Given K0, K1, …., ܭ , it is not 
possible to compute ܭ+1. The key to be used changes 
periodically, and since nodes are synchronized to a 
common time within a bounded error, they can detect 
which key is to be used to encrypt/decrypt a packet at 
any time instant. Applying the SNEP building block, 
each node can easily perform time synchronization and 
retrieve an authenticated key from the chain for the 
“commitment in a secure and authenticated manner” 
[6].  
    The BS periodically discloses the next verification 
key to all the nodes and this period is known to all 
nodes. There is also a specified lag of certain intervals 
between the usage of a key for encryption and its 
disclosure to all the receivers. When the BS transmits a 
packet, it uses a MAC key which is still secret. The 
nodes which receive this packet buffer it until the 
appropriate verification key is disclosed. But, as soon 
as a packet is received, the MAC is checked to ensure 
that the key used in the MAC has not yet been 
disclosed, which implies that the only the BS which 
knows that yet undisclosed key could have sent the 
packet. The packets are decrypted once the key-
disclosure packet is received from the BS. If one of the 
key-disclosure packets is missed, the data packets are 
buffered till the next time interval, and then 
authenticated. For instance, suppose the disclosure 
packet of ܭ  does not reach a node; it waits till it 
receivesܭାଵ, then computes ܭ  = F(ܭାଵ) and 
decrypts the packets received in the previous time 
interval. Schemes, like μTESLA, based on delayed key 
disclosure, can suffer from denial of service attacks 
(DOS). In the subsequent interval when the message is 
in the buffer and the receiver waits on the disclosure 
time, an attacker can flood the network with arbitrary 
messages, claiming that they belong to the current time 
interval. Only in the next time interval can the nodes 
determine that these messages are not authentic. This 
type of attack can lead to buffers overflowing in the 
nodes and battery exhaustion as all messages are 
forwarded to the nodes. The use of public key 
cryptography would eliminate the need for such 
complicated protocols, increasing the security of the 
system, and only requiring the public key of the base 
station to be embedded into all of the nodes [9].  
    SPIN has four types: SPIN-PP, SPIN-EC, SPIN-BC, 
and SPIN-RL [7]. In SPIN-PP, Nodes use three types 
of messages ADV, REQ and DATA to communicate. 
ADV is used to advertise new data, REQ to request for 

data and DATA is the actual message itself. The 
protocol starts when a SPIN node obtains new data that 
it is willing to share. It does so by broadcasting an 
ADV message containing meta-data. If a neighbour is 
interested in the data, it sends an REQ message for the 
DATA and the DATA is sent to this neighbour node. 
The neighbour sensor node then repeats this process to 
its neighbours as a result of which the entire sensor area 
will get a copy. It starts by advertising its data to one 
node from other Node. Node responds by sending a 
request message. After receiving the requested data, 
node then sends out advertisements to its neighbours. 
 
3.1.1. Secure-SPINS 
Notations 
With the limited computation resources available in 
sensor network, used symmetric key cryptography, 
which does not involve any cryptographic functions 
that require large memory and processing power to 
construct the Secure-SPIN protocols. The Secure-SPIN 
protocol is divided into three phases according to 
SPIN’s three messages. They will use the following 
notation: 
(a) AC: Authentication Code; 
(b)ܭ௦: sink’s privacy key; 
(c) ܭ௦௦: session key; 
(d) PSAC: Personal Sensor Authentication Code; 
(e) ܭ: sensor node’s privacy key; 
(f) H(): hash function to calculate the hash value; 
(g) MAC: Message Authentication Code. 
 
3.2. LEAP  
Localized Encryption and Authentication Protocol 
(LEAP) [10] as a key management protocol for sensor 
networks designed to support in- network processing, 
while restricting the impact of a compromised node to 
the network. At the time, pre-deployed keying was the 
most practical approach for bootstrapping secret keys in 
sensor nodes. This implies that the nodes were loaded 
into all of the sensors before they were deployed in the 
sensor field. This may seem primitive at this point in 
time, but is included to achieve thoroughness. Pairwise 
keys could be generated between two Nodes based on 
this pre-deployed keying information. The overhead is 
variable depending on the types of keys specified for 
use in the implementation. All four types may not be 
used for a particular application. 
    LEAP is a key management protocol intended for 
sensor networks based on symmetric key algorithms, 
that is, the same key is used by sender and receiver. In 
a network, requiring every pair of nodes to have a 
shared key to be used for communication between them 
is ideal for security, because an attack on any one node 
does not compromise the security of other nodes. 
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However, in sensor networks, the neighbours of a node 
may not be known in advance, hence this sharing of 
keys must take place after the network is deployed, 
which will cause a high overhead. Also, sensor 
networks may employ certain processing optimizations 
such as a node’s deciding not to report an event if it 
overhears its neighbor reporting the same. Such 
optimizations will be precluded by the usage of a 
separate key for all nodes in the network has lower 
overhead, but compromise of any node affects the 
entire system. 
    LEAP specifies four types of keys: individual keys, 
pairwise shared keys, cluster keys and group keys. 
Individual keys are symmetric keys which it shares 
with the base station and each of the nodes. For 
example, a node might use the individual key to notify 
the base station of a suspicious neighbor. The 
individual key is preloaded into the node before 
deployment, and is used for transmission of any special 
information between the BS and the node, such as 
exclusive instructions to a node, or report from a node 
to BS about the abnormal behavior of a neighboring 
node. Pairwise shared keys are symmetric keys shared 
between a node and each of its neighbors. Cluster keys 
are symmetric keys shared between a node and all of its 
neighbors. These cluster keys can be used for locally 
broadcast messages such as a routing protocol might 
use and are also used for updating the group key. The 
group key, a symmetric key shared with all nodes of 
the network and the base station, allows encrypted and 
authenticated messages to broadcast through the whole 
network.  
    It is assumed that the time required to attack a node 
is greater than the network establishment time, during 
which a node can detect all its immediate neighbours. 
A common initial key is loaded into each node before 
deployment. Each node derives a master key which 
depends on the common key and its unique identifier. 
Nodes then exchange Hello messages. The nodes then 
compute a shared key based on their master keys. The 
common key is erased in all nodes after the 
establishment, and by assumption, no node has been 
compromised up to this point. Since no adversary can 
get the common key, it is impossible to inject false data 
or decrypt the earlier exchange messages. Also, no 
node can later forge the master key of any other node. 
 
3.2.1. Key Establishment 
LEAP details how each of these keys are established. 
The key establishment protocols are meant to be 
lightweight and scalable. While keys may be preloaded 
prior to deployment in cases where the network 
architecture is known beforehand, many wireless sensor 
networks are deployed in environments where such 

prior knowledge is not possible and keys must be 
established either during an initial setup phase or on-
the-fly as the network architecture changes. In addition, 
preloaded keys must be updated to prevent 
cryptanalysis attacks.  
Notation 
They try to use consistent notation throughout this 
LEAP protocol. They specifically note any place where 
they deviate from the following meanings. 
A, B, C, S → communicating nodes in the network 
 NA → a nonce generated by node A 
M1.M2 → message M1 concatenated with message M2 
{M}K→ message M encrypted with key K 
KAB → symmetric key between nodes A and B 
{ ݂} →a family of pseudo-random functions 
 MAC (K, M) → a message authentication code (MAC)  
                             on message M using key K 
A→ B: M→ message M sent from A to B 
A→*: M → message M broadcast by A 
 Individual Keys: Because the base station and 

each of the nodes is generally known before 
deployment, the protocol specifies that the 
individual keys should be preloaded into the nodes. 
To save the base station's memory, each of these 
individual keys is generated using a master key, 
ܭ , and the node's unique ID. For example the 
key Kas shared between the base station (S) and a 
node (A) would be ܭ௦ = ݂(A). Thus, when the 
base station receives a message from or wishes to 
send a message to A, the base station can generate 
the individual key using the stored master key. 

 Pairwise Shared Key with Single-Hop 
Neighbour: Pairwise shared key are established 
between all immediate neighbours. A pairwise 
shared key with a single-hop neighbor requires 
four phases. First, each node calculates a master 
key from an initial key, Ki, preloaded into all the 
nodes and the nodes unique name. Second, nodes 
then exchange HELLO message with its name and 
a nonce, which are authenticated by the receivers. 
Then each neighbor replies to the message with a 
message authentication using the message 
authentication code (MAC) with its master key, 
which the initial node can check using the 
neighbor's identity and the initial key. Third, the 
two nodes calculate the pairwise shared key. 
Finally, once the initial setup timer has expired, the 
nodes erase both the initial key and their neighbors' 
master keys.  

 Pairwise Shared Key with Multi-Hop 
Neighbor: To establish a pairwise shared key 
with a multi-hop neighbor requires the use of 
shared neighbors, called proxies. If a node, A, 
wishes to establish a pairwise shared key with its 
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multi-hop neighbor, C, A would first broadcast a 
QUERY message to all its neighbors with its ID 
and the ID of the desired node. The n shared 
neighbors, Bi, which are single-hop neighbors of 
A and singe-hop neighbors of C, send a REPLY 
message authenticated with the pairwise shared 
key. Node A splits the new key KAC into n 
randomly generated shares Ki such that KAC = 
K1xorK2xor…..xor Kn. A sends these shares to 
the proxies encrypted with a pairwise shared key 
and a verification key ݂(0). The proxies then re-
encrypt the share with the pairwise key shared 
between the proxy and C, and the proxies forward 
the key and the verification key to C. Finally 
when C receives the shares from the proxies, C 
verifies the shares, recreates the new key by KAC 
 , and sends A. DONEܭ ଶxor….xorܭଵ xorܭ =
message encrypted with the new key. 

 Cluster Key. The cluster key is established by a 
node after the pairwise key establishment. A node 
generates a cluster key and sends it encrypted to 
each neighbour with its pairwise shared key. 

 Group Key. Group keys can be preloaded, but it 
should be updated once any compromised node is 
detected so that the intruder cannot send and read 
encrypted messages for the network. This could 
be done, in a naïve way, by the BS’s sending the 
new group key to each node using its individual 
key, or on a hop-by-hop basis using cluster keys. 
In addition, this key should be updated regardless 
of node revocation to prevent cryptanalysis. 

 
3.2.2. Problem of Pre-deployed Key Agreement 
 Compromise of a single node reveals the secret 

key shared by all the network nodes. This would 
in turn disclose all future communications as well 
as past recorded communication by a passive 
adversary.  

 It becomes cumbersome to add new nodes to the 
sensor network. Either newly added nodes should 
have the network-wide shared key loaded before 
being deployed, or all the network nodes should 
be securely instructed to use a new shared key. 

 
3.2.3. Security  
LEAP's goal is to satisfy the security properties of 
authentication and confidentiality in a wireless 
environment where the intruder may eavesdrop, inject 
packets, and replay messages [23]. The authors of 
LEAP also desire that the protocol will be robust and 
will survive in the face of security attacks and that the 
effects of any attacks be minimized (to a node's 
neighbours only). LEAP makes no claims as to 
defending against replay or denial of service attacks.  

Table 3.1 : LEAP Security Characteristics 
Protocol C F I Ava IA A 
LEAP Yes No No No Yes No 
C= Confidentiality, F=Freshness, I=Integrity, 
Ava=Availability, IA=Implicit Authentication, 
A=Authentication of User. 
 
3.3. TINYSEC 
Replacement for the unfinished SNEP, known as 
TinySec [11]. Inherently it provides similar services, 
including authentication, message integrity, 
confidentiality and replay protection. A major 
difference between TinySec and SNEP is that there are 
no counters used in TinySec.  
    Generally, the security of CBC-MAC is directly 
related to the length of the MAC. TinySec specifies a 
MAC of 4 Bytes, much less than the conventional 8 or 
16 Bytes of previous security protocols. In the context 
of sensor networks this is not detrimental [11].  
    TinySec, a lightweight, generic security package that 
developers can easily integrate into sensor network 
applications. TinySec will cover the basic security 
needs of all but the most security critical applications. 
    In conventional networks, message authenticity, 
integrity, and confidentiality are usually achieved by an 
end-to-end security mechanism such as SSH [12], SSL 
[13], or IPSec [14] because the dominant traffic pattern 
is end-to-end communication; intermediate routers only 
need to view message headers and it is neither 
necessary nor desirable for them to have access to 
message bodies. 
    This is not the case in sensor networks. The 
dominant traffic pattern in sensor networks is many-to-
one, with many sensor nodes communicating sensor 
readings or network events over a multihop topology to 
a central base station. However, neighboring nodes in 
sensor networks often witness the same or correlated 
environmental events, and if each node sends a packet 
to the base station in response, precious energy and 
bandwidth are wasted. To prune these redundant 
messages to reduce traffic and save energy, sensor 
networks use in-network processing such as 
aggregation and duplicate elimination [15, 16]. Since 
in-network processing requires intermediate nodes to 
access, modify, and suppress the contents of messages. 
End-to-end security mechanisms between each sensor 
node and the base station guarantee the authenticity, 
integrity, and confidentiality of these messages. End-to-
end security mechanisms are also vulnerable to certain 
denial of service attacks. If message integrity is only 
checked at the final destination, the network may route 
packets injected by an adversary many hops before they 
are detected. This kind of attack will waste precious 
energy and bandwidth. Link-layer security architecture 
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can detect unauthorized packets when they are first 
injected into the network. Link-layer security 
mechanisms have been proposed for wired networks to 
resist similar denial of service attacks [17]. 
    For the above reasons, they decided on link-layer 
security architecture for TinySec. Link-layer security 
mechanisms guarantee the authenticity, integrity, and 
confidentiality of messages between neighboring 
nodes, while permitting in-network processing. Despite 
the problems, end-to-end security mechanisms can still 
be useful in sensor networks and complement TinySec. 
 
Table 3.2 : TINYSEC Security Characteristics 
Protocol C F I Ava IA A 
TINYSEC Yes No No  Yes Yes 
C= Confidentiality, F=Freshness, I=Integrity, 
Ava=Availability, IA=Implicit Authentication, 
A=Authentication of User. 
 
3.3.1. TinySec Design 
There are two packet formats defined by TinySec. 
These are TinySec-Auth, for authenticated messages, 
and TinySec-AE, for authenticated and encrypted 
messages. For encryption, it uses CBC mode with 
cipher text stealing [11], and for authentication, CBC-
MAC is used. TinySec XORs the encryption of the 
message length with the first plaintext block in order to 
make the CBC-MAC secure for variably sized 
messages. With authenticated encryption, TinySec 
encrypts the data payload and authenticates the packet 
with a MAC. The MAC is computed over the encrypted 
data and the packet header. In authentication only 
mode, TinySec authenticates the entire packet with a 
MAC, but the data payload is not encrypted. 
 Encryption: Using semantically secure encryption 

typically requires two design decisions: selecting 
an encryption scheme and specifying the IV 
format. This design of TinySec uses a specially 
formatted 8 byte IV, and cipher block chaining 
(CBC) [18]. In this section, they introduce the 
structure of IV format and argue why CBC is the 
most appropriate encryption scheme for sensor 
networks [11]. 

 Message integrity: History has proven that using 
encryption without authentication is insecure [19, 
20, and 21]. For example, flipping bits in 
unauthenticated encrypted messages can cause 
predictable changes in the plaintext [20], and 
without an authentication mechanism to guarantee 
integrity, receivers are unable to detect the 
changes. Unauthenticated messages are also 
vulnerable to cut-and-paste attacks [19]. In a cut-
and-paste attack, an adversary breaks apart an 
unauthenticated encrypted message and constructs 

another message which decrypts to something 
meaningful. For example, if all the authorized 
nodes share a single key, an adversary can extract 
the encrypted data payload from a message to one 
node and send it to different node. Since the 
encrypted payload is unaltered, the second node 
will successfully decrypt and accept the message. 
To address these vulnerabilities, TinySec always 
authenticates messages, but encryption is optional. 
Message confidentiality is only necessary when 
there is something to keep secret. Consider a 
burglar alarm. The actual contents of an alarm 
message could be empty; receiving an alarm 
message signals an intrusion. Encryption is 
unnecessary and only increases latency, 
computation, and power consumption. However, 
most all applications require packet authenticity, 
meaning authorized nodes will not accept invalid 
messages injected by an adversary. In burglar 
alarm example, this means adversaries cannot 
trigger false alarms. 

TinySec uses a cipher block chaining construction, 
CBC-MAC [22], for computing and verifying MACs. 
CBC-MAC is efficient and fast, and the fact that it 
relies on a block cipher as well minimizes the number 
of cryptographic primitives. CBC-MAC is provably 
secure [22], however the standard CBC-MAC 
construction is not secure for variably sized messages. 
Adversaries can forge a MAC for certain messages. Ref 
[22] suggests three alternatives for generating MACs 
for variable sized messages.  
 
3.4. ZigBee  
3.4.1. ZigBee Security Architecture 
The concept of a “Trust Center” is introduced in the 
specification. Generally the ZigBee coordinator 
performs this duty. This trust center allows other 
devices to join the network and also distributes the 
keys. There are three roles played:  
 trust manager, whereby authentication of devices 

requesting to join the network is done 
 network manager, maintaining and distributing 

network keys, and  
 configuration manager, enabling end-to-end 

security between devices [24].  
    It operates in both Residential Mode and 
Commercial Mode. The Trust Center running 
residential Mode is used for low security residential 
applications. Commercial Mode is designed for high-
security commercial applications. In Residential Mode, 
the Trust Center will allow devices to join the network, 
but does not establish keys with the network devices. It 
therefore cannot periodically update keys and allows 
for the memory cost to be minimal, as it cannot scale 
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with size of the network. In commercial mode, it 
establishes and maintains keys and freshness counters 
with every device in the network, allowing centralized 
control and update of keys. This results in a memory 
cost that could scale with the size of the network [24]. 
    There are three types of keys employed, the Master 
Key, the Link Key and the Network Key. Master keys 
are installed first, either in the factory or out of band. 
They are sent from the Trust Center and are the basis 
for long-term security between two devices. The Link 
key is a basis of security between two devices and the 
Network keys are the basis of security across the entire 
network. Link and Network keys, which are either 
installed in the factory or out of band, employ 
symmetrical key-key exchange (SKKE) handshake 
between devices. The key is transported from the Trust 
Center for both types of keys. This operation occurs in 
commercial mode, as residential mode does not allow 
for authentication. 
 
3.4.2. ZigBee Security 
ZigBee security specification employes a simpler and 
unified mode of operation of CCM (this mode is an 
amalgamation of both the encryption and 
authentication) defines key types (Master, Link, 
Network) and describes key setup and maintenance 
(Commercial, Residential) [24]. Additionally, ZigBee 
provides freshness through the use of freshness checks. 
These checks prevent replay attacks, as ZigBee devices 
maintain incoming and outgoing freshness counters. 
Whenever a new key is created, the counters are reset. 
It is postulated that devices that communicate once per 
second will not overflow their freshness counters for 
136 years [24]. Message integrity and encryption are 
also provided under the ZigBee security specification, 
the operations of which are documented in [25] and 
[24]. Under the ZigBee specification, authentication is 
defined to provide assurance about the originator of a 
message. This prevents an attacker from mimicking the 
operation of another device in any attempt to 
compromise the network. Authentication is possible at 
both the network level and the device level. At the 
network level, authentication is achieved using a 
common network key, thus preventing outside attacks 
whilst adding very little in memory cost. Device level 
authentication is achieved by using unique link keys 
between pairs of devices. Insider and outsider attacks 
are now preventable, but there is a higher memory cost 
involved. Table 3 shows the various security 
characteristics of ZigBee protocol. 
 
Table 3.3: ZIGBEE Security Characteristics 
Protocol C F I Ava IA A 
ZIGBEE Yes Yes Yes No Yes Yes 

C= Confidentiality, F=Freshness, I=Integrity, 
Ava=Availability, IA=Implicit Authentication, 
A=Authentication of User. 
 
3.5. SM (Security Manager) 
A new method of key agreement, whereby, when a new 
device joins network, the Security Manager (SM) gives 
static domain parameters such as at the base station, the 
order of the curve and the elliptic curve coefficients 
[26]. After calculating a public key using the base point 
and a private key, the device sends a public key to the 
SM. Therefore the SM would have the public key list 
for all the devices in the network. They define two 
security levels (medium and high), based on the 
devices power and security policies. These two levels 
are defined by either normal or polynomial basis 
calculations. Elliptic Curve Cryptography (ECC) 
algorithms offer reasonable computational loads and 
smaller key lengths for equivalent security than other 
techniques. These smaller key lengths reduce the size 
of message buffers and reduce implementation cost of 
protocols. The EC-MQV (Menezes-Qu- Vanstone) 
scheme is more advanced than the Diffie-Hellman 
scheme, and the main idea is to prevent the man-in-the-
middle attack and perform authentication of key 
holders. Under this scheme, each side of the 
communication holds two keys [26]. Devices in the 
network use initial trust parameters (pre-deployed 
recognition function) to establish the public key and 
ephemeral public key, which are in turn used for secure 
communication of the data payloads [26]. The overhead 
here will depend on the number of bits chosen for the 
elliptic curve system. An elliptical curve algorithm 
provides the same security for 160 bit key lengths as a 
symmetric algorithm can for 128 Byte lengths [26]. 
This level of security can then be increased as security 
needs to be increased and, therefore, allowing a 
variable overhead. Table 4 shows the various security 
characteristics of SM protocol. 
Table 3.4: SM Security Characteristics 
Protocol C F I Ava IA A 
SM Yes No No  Yes Yes 
C= Confidentiality, F=Freshness, I=Integrity, 
Ava=Availability, IA=Implicit Authentication, 
A=Authentication of User. 
 
4. Conclusion 
 
SPINS is one of the secure and efficient sensor network 
protocol. LEAP is a protocol that survives in the face of 
security attacks and that the effects of any attacks may 
be minimized. TINYSEC is a stronger and energy 
efficient protocol. In ZIGBEE protocol, concept of a 
“trust center” is introduced. SM uses the EC-MQV 
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scheme for key establishment, that is more advanced 
and main idea is to prevent the man-in-middle attack. 
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