
 A Review of various security protocols in Wireless Sensor Network

Anupma Sangwan1, Deepti Sindhu2, Kulbir Singh3
1 NC Institute of Technology, Israna

anulathwal@gmail.com,
2 Singhania University, Rajasthan

deepti.sindhu@gmail.com,
 3Singhania University, Rajasthan

Kulbir99@gmail.com,

Abstract

Sensor networks are highly distributed networks of
small, lightweight wireless sensor nodes, deployed in
large numbers to monitor the environment or system by
the measurement of physical parameters such as
temperature, pressure, or relative humidity, sound,
vibration, motion or pollutants, at different locations. A
WSN [1] is composed of a large number of low-cost
sensor nodes (SNs) and one or several base stations
(BS) or destination nodes. SNs are typically small
wireless devices with limited computational power,
equipped with a radio transceiver or other wireless
communications device, radio transmission range,
storage size, a small microcontroller, battery power.
Sink nodes or destination nodes are distinguishing
devices with powerful computation capacity, large
memory size, high power energy and long
communication range so as to collect data from SNs.
Sink nodes act as the gateway between WSNs and the
end user..

1. Introduction

An ideal sensor network protocol should provide
data authentication, confidentiality, integrity of data
and protection from replay. The security and efficiency
being the basic parameters used to design a new sensor
network protocol.

 A wireless sensor node integrates one or more
sensors, a processor, a communication unit, a power
supply and management unit and, if need be, a security
and actuation unit [2]. Depending on the sensing task
for which the network is deployed, there can be
multiple sensors integrated within a single node.

2. Background
As wireless sensor networks have been used in a lot of
applications, monitoring nodes in the networks are
needed for some applications. The important functions
which need to be monitored are the communicated data

between each node, the movement of nodes, etc. In
recent years, the sensor has made a great progress.
Sensor networks have been gaining popularity as a low
cost solution to the various applications. Their low cost
gives an opportunity to exploit them in the military,
industrial and home applications.
 Sensors have started replacing the human factor
in various industrial processes. These small embedded
systems have become an integral part of large networks
and participate in the distributed applications. As our
daily life is getting more advanced, a variety of
“sensitive” data used is stored, altered, manipulated, or
communicated by the means of electronic systems.
Hence, arises the need to deal with the security of these
systems as an important aspect. Security has been the
topic of research for cryptography, computing, and
networking applications. As a matter of fact, security is
a metric, which has to be, implemented at each
increasing step in the system design, keeping in mind
other factors such as development cost, performance,
and power consumed.
 Security is a requirement for an increasing number of
growing embedded system applications ranging from
low-end products such as PDAs, wireless handsets,
smart id-cards, to high-end products such as routers,
firewalls, gateways, storage and web-servers. A survey
among internet users has rated security as a primary
concern in the adoption of new services and
applications.
Sensor nodes are used in a variety of applications
which require constant monitoring and detection of
specific events. The three important application classes:

 Environmental data collection,
 Security monitoring, and
 Sensor node tracking.

The majority of wireless sensor network deployments
will fall into one of these class templates.

2.1. Environmental data collection:
A basic environmental data collection application is
one where a researcher wants to collect several sensor

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

790

ISSN:2229-6093

readings from a set of points in an environment through
a period of time in order to observe trends and
mutualities [3]. In the area of environmental
observation and forecasting, researchers aim at
establishing an early warning system to protect the
population, and on the other hand, provide researchers
with the means to study certain phenomena. This is
because instrumenting natural places, such as national
parks, volcanos, riverbanks, rift zones, and woods with
numerous networked sensor nodes can enable long-
term data collection at scales and resolutions that are
difficult to obtain otherwise [2]. The researcher would
be interested in gathering data over several months or
years in order to look for long-term and seasonal
trends. For the data to be meaningful it would have to
be collected at regular intervals and the nodes would
remain at known locations.
2.2. Security monitoring:
The second class of sensor network application is
security monitoring. Security monitoring networks are
composed of nodes that are placed at fixed locations
throughout an environment that continuous monitor one
or more sensors to detect an anomaly. A key difference
between security monitoring and environmental
monitoring is that security networks are not actually
collecting any data. This has a significant impact on the
optimal network architecture. Each node has to
frequently check the status of its sensors but it only has
to transmit a data report when there is a security
violation. The immediate and reliable communication
of alarm messages is the primary system requirement.
These are “report by exception” networks.
2.3. Node tracking scenarios:
A third usage scenario commonly discussed for sensor
networks is the tracking of a tagged object through a
region of space monitored by a sensor network. There
are many situations where one would like to track the
location of valuable assets or personnel. Current
inventory control systems attempt to track objects by
recording the last checkpoint that an object passed
through. However, with these systems it is not possible
to determine the current location of an object.

3. Secure Protocols
3.1. SPINS
Sensor Protocols for Information via Negotiation
(SPINS) consists of a suite of security protocols that
are optimized for highly resource constrained sensor
networks [6]. SPINS consists of two secure building
blocks SNEP and μTESLA, which run on top of
TinyOS. TinyOS has been adopted by thousands of
developers worldwide, on many platforms for a broad
range of wireless sensor networks. TinyOS is based on
an event-driven programming model instead of

multithreading. Secure Network Encryption Protocol
(SNEP) provides data authentication, protection from
replay attacks, and semantic security (a property which
prevents an adversary from learning even partial
information about a transmitted message), which is an
important security property, as it prevents
eavesdroppers from inferring the message content from
the encrypted message; achieved as the counter value is
incremented after each message, implying that the
message is encrypted differently each time. The counter
value is sufficiently long enough never to repeat within
the lifetime of the node. In addition to integrity it
provides confidentiality through encryption and
authentication using a message authentication code
MAC. This is similar to a checksum derived by
applying an authentication scheme with a secret shared
key to the message. The message can be decrypted only
if the sane shared key is present. There are a number of
unique advantages with SNEP. It has a very low
communication overhead, adding only 8 bytes per
message. Finally, it also provides data authentication,
replay protection and weak message freshness [6]. To
achieve data authentication, the same block cipher is
used as in CBC-MAC mode.
 μTESLA is the “micro” version of TESLA (Timed
Efficient Stream Loss-tolerant Authentication)
proposed in [8]. μTESLA ensures an authenticated
broadcast, that is, nodes which receive a packet can be
assured of its sender’s identity. It requires a loose time
synchronization between base station and nodes, with
an upper bound on maximum synchronization error.
For an authenticated packet to be sent, the base station
computes a MAC on the packet with the key that is
secret at that point in time. When a node gets a packet,
it can confirm that the base Station did not yet disclose
the corresponding MAC key, using its loosely
synchronized clock, maximum synchronization error
and the time at which the keys are to be disclosed. The
node stores the packet in a buffer, aware that the MAC
key is only known to the base station, and that no
adversary could have altered the packet during
transmission. When the keys are to be disclosed, the
base station broadcasts the key to all receivers. The
receiver can then verify the correctness of the key and
use it to authenticate the packet stored in the buffer [6].
 TESLA relies solely on this delayed disclosure,
unlike its predecessor, which authenticates the initial
packet using the digital signature. It has been argued
that while symmetric key techniques are attractive, due
to their energy efficiency, limitations have been
exhibited in the flexibility of these symmetric key
exchange protocols [9]. The MAC keys are derived
from a chain of keys, obtained by applying a one-way
function F. All nodes have an initial key ܭ, which is

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

791

ISSN:2229-6093

some key in the key-chain. The relationship between
keys proceeds as ܭ = and, in (ଶܭ)ܨ ଵ ୀܭ ,ଵ(ܭ)ܨ
general, the sender chooses the last key ܭଶ of the chain
randomly, and applies F repeatedly to compute all other
keys: ܭ = F(ܭ + 1). Given K0, K1, …., ܭ , it is not
possible to compute ܭ+1. The key to be used changes
periodically, and since nodes are synchronized to a
common time within a bounded error, they can detect
which key is to be used to encrypt/decrypt a packet at
any time instant. Applying the SNEP building block,
each node can easily perform time synchronization and
retrieve an authenticated key from the chain for the
“commitment in a secure and authenticated manner”
[6].
 The BS periodically discloses the next verification
key to all the nodes and this period is known to all
nodes. There is also a specified lag of certain intervals
between the usage of a key for encryption and its
disclosure to all the receivers. When the BS transmits a
packet, it uses a MAC key which is still secret. The
nodes which receive this packet buffer it until the
appropriate verification key is disclosed. But, as soon
as a packet is received, the MAC is checked to ensure
that the key used in the MAC has not yet been
disclosed, which implies that the only the BS which
knows that yet undisclosed key could have sent the
packet. The packets are decrypted once the key-
disclosure packet is received from the BS. If one of the
key-disclosure packets is missed, the data packets are
buffered till the next time interval, and then
authenticated. For instance, suppose the disclosure
packet of ܭ does not reach a node; it waits till it
receivesܭାଵ, then computes ܭ = F(ܭାଵ) and
decrypts the packets received in the previous time
interval. Schemes, like μTESLA, based on delayed key
disclosure, can suffer from denial of service attacks
(DOS). In the subsequent interval when the message is
in the buffer and the receiver waits on the disclosure
time, an attacker can flood the network with arbitrary
messages, claiming that they belong to the current time
interval. Only in the next time interval can the nodes
determine that these messages are not authentic. This
type of attack can lead to buffers overflowing in the
nodes and battery exhaustion as all messages are
forwarded to the nodes. The use of public key
cryptography would eliminate the need for such
complicated protocols, increasing the security of the
system, and only requiring the public key of the base
station to be embedded into all of the nodes [9].
 SPIN has four types: SPIN-PP, SPIN-EC, SPIN-BC,
and SPIN-RL [7]. In SPIN-PP, Nodes use three types
of messages ADV, REQ and DATA to communicate.
ADV is used to advertise new data, REQ to request for

data and DATA is the actual message itself. The
protocol starts when a SPIN node obtains new data that
it is willing to share. It does so by broadcasting an
ADV message containing meta-data. If a neighbour is
interested in the data, it sends an REQ message for the
DATA and the DATA is sent to this neighbour node.
The neighbour sensor node then repeats this process to
its neighbours as a result of which the entire sensor area
will get a copy. It starts by advertising its data to one
node from other Node. Node responds by sending a
request message. After receiving the requested data,
node then sends out advertisements to its neighbours.

3.1.1. Secure-SPINS
Notations
With the limited computation resources available in
sensor network, used symmetric key cryptography,
which does not involve any cryptographic functions
that require large memory and processing power to
construct the Secure-SPIN protocols. The Secure-SPIN
protocol is divided into three phases according to
SPIN’s three messages. They will use the following
notation:
(a) AC: Authentication Code;
(b)ܭ௦: sink’s privacy key;
(c) ܭ௦௦: session key;
(d) PSAC: Personal Sensor Authentication Code;
(e) ܭ: sensor node’s privacy key;
(f) H(): hash function to calculate the hash value;
(g) MAC: Message Authentication Code.

3.2. LEAP
Localized Encryption and Authentication Protocol
(LEAP) [10] as a key management protocol for sensor
networks designed to support in- network processing,
while restricting the impact of a compromised node to
the network. At the time, pre-deployed keying was the
most practical approach for bootstrapping secret keys in
sensor nodes. This implies that the nodes were loaded
into all of the sensors before they were deployed in the
sensor field. This may seem primitive at this point in
time, but is included to achieve thoroughness. Pairwise
keys could be generated between two Nodes based on
this pre-deployed keying information. The overhead is
variable depending on the types of keys specified for
use in the implementation. All four types may not be
used for a particular application.
 LEAP is a key management protocol intended for
sensor networks based on symmetric key algorithms,
that is, the same key is used by sender and receiver. In
a network, requiring every pair of nodes to have a
shared key to be used for communication between them
is ideal for security, because an attack on any one node
does not compromise the security of other nodes.

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

792

ISSN:2229-6093

However, in sensor networks, the neighbours of a node
may not be known in advance, hence this sharing of
keys must take place after the network is deployed,
which will cause a high overhead. Also, sensor
networks may employ certain processing optimizations
such as a node’s deciding not to report an event if it
overhears its neighbor reporting the same. Such
optimizations will be precluded by the usage of a
separate key for all nodes in the network has lower
overhead, but compromise of any node affects the
entire system.
 LEAP specifies four types of keys: individual keys,
pairwise shared keys, cluster keys and group keys.
Individual keys are symmetric keys which it shares
with the base station and each of the nodes. For
example, a node might use the individual key to notify
the base station of a suspicious neighbor. The
individual key is preloaded into the node before
deployment, and is used for transmission of any special
information between the BS and the node, such as
exclusive instructions to a node, or report from a node
to BS about the abnormal behavior of a neighboring
node. Pairwise shared keys are symmetric keys shared
between a node and each of its neighbors. Cluster keys
are symmetric keys shared between a node and all of its
neighbors. These cluster keys can be used for locally
broadcast messages such as a routing protocol might
use and are also used for updating the group key. The
group key, a symmetric key shared with all nodes of
the network and the base station, allows encrypted and
authenticated messages to broadcast through the whole
network.
 It is assumed that the time required to attack a node
is greater than the network establishment time, during
which a node can detect all its immediate neighbours.
A common initial key is loaded into each node before
deployment. Each node derives a master key which
depends on the common key and its unique identifier.
Nodes then exchange Hello messages. The nodes then
compute a shared key based on their master keys. The
common key is erased in all nodes after the
establishment, and by assumption, no node has been
compromised up to this point. Since no adversary can
get the common key, it is impossible to inject false data
or decrypt the earlier exchange messages. Also, no
node can later forge the master key of any other node.

3.2.1. Key Establishment
LEAP details how each of these keys are established.
The key establishment protocols are meant to be
lightweight and scalable. While keys may be preloaded
prior to deployment in cases where the network
architecture is known beforehand, many wireless sensor
networks are deployed in environments where such

prior knowledge is not possible and keys must be
established either during an initial setup phase or on-
the-fly as the network architecture changes. In addition,
preloaded keys must be updated to prevent
cryptanalysis attacks.
Notation
They try to use consistent notation throughout this
LEAP protocol. They specifically note any place where
they deviate from the following meanings.
A, B, C, S → communicating nodes in the network
 NA → a nonce generated by node A
M1.M2 → message M1 concatenated with message M2
{M}K→ message M encrypted with key K
KAB → symmetric key between nodes A and B
{ ݂} →a family of pseudo-random functions
 MAC (K, M) → a message authentication code (MAC)
 on message M using key K
A→ B: M→ message M sent from A to B
A→*: M → message M broadcast by A
 Individual Keys: Because the base station and

each of the nodes is generally known before
deployment, the protocol specifies that the
individual keys should be preloaded into the nodes.
To save the base station's memory, each of these
individual keys is generated using a master key,
ܭ , and the node's unique ID. For example the
key Kas shared between the base station (S) and a
node (A) would be ܭ௦ = ݂(A). Thus, when the
base station receives a message from or wishes to
send a message to A, the base station can generate
the individual key using the stored master key.

 Pairwise Shared Key with Single-Hop
Neighbour: Pairwise shared key are established
between all immediate neighbours. A pairwise
shared key with a single-hop neighbor requires
four phases. First, each node calculates a master
key from an initial key, Ki, preloaded into all the
nodes and the nodes unique name. Second, nodes
then exchange HELLO message with its name and
a nonce, which are authenticated by the receivers.
Then each neighbor replies to the message with a
message authentication using the message
authentication code (MAC) with its master key,
which the initial node can check using the
neighbor's identity and the initial key. Third, the
two nodes calculate the pairwise shared key.
Finally, once the initial setup timer has expired, the
nodes erase both the initial key and their neighbors'
master keys.

 Pairwise Shared Key with Multi-Hop
Neighbor: To establish a pairwise shared key
with a multi-hop neighbor requires the use of
shared neighbors, called proxies. If a node, A,
wishes to establish a pairwise shared key with its

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

793

ISSN:2229-6093

multi-hop neighbor, C, A would first broadcast a
QUERY message to all its neighbors with its ID
and the ID of the desired node. The n shared
neighbors, Bi, which are single-hop neighbors of
A and singe-hop neighbors of C, send a REPLY
message authenticated with the pairwise shared
key. Node A splits the new key KAC into n
randomly generated shares Ki such that KAC =
K1xorK2xor…..xor Kn. A sends these shares to
the proxies encrypted with a pairwise shared key
and a verification key ݂(0). The proxies then re-
encrypt the share with the pairwise key shared
between the proxy and C, and the proxies forward
the key and the verification key to C. Finally
when C receives the shares from the proxies, C
verifies the shares, recreates the new key by KAC
 , and sends A. DONEܭ ଶxor….xorܭଵ xorܭ =
message encrypted with the new key.

 Cluster Key. The cluster key is established by a
node after the pairwise key establishment. A node
generates a cluster key and sends it encrypted to
each neighbour with its pairwise shared key.

 Group Key. Group keys can be preloaded, but it
should be updated once any compromised node is
detected so that the intruder cannot send and read
encrypted messages for the network. This could
be done, in a naïve way, by the BS’s sending the
new group key to each node using its individual
key, or on a hop-by-hop basis using cluster keys.
In addition, this key should be updated regardless
of node revocation to prevent cryptanalysis.

3.2.2. Problem of Pre-deployed Key Agreement
 Compromise of a single node reveals the secret

key shared by all the network nodes. This would
in turn disclose all future communications as well
as past recorded communication by a passive
adversary.

 It becomes cumbersome to add new nodes to the
sensor network. Either newly added nodes should
have the network-wide shared key loaded before
being deployed, or all the network nodes should
be securely instructed to use a new shared key.

3.2.3. Security
LEAP's goal is to satisfy the security properties of
authentication and confidentiality in a wireless
environment where the intruder may eavesdrop, inject
packets, and replay messages [23]. The authors of
LEAP also desire that the protocol will be robust and
will survive in the face of security attacks and that the
effects of any attacks be minimized (to a node's
neighbours only). LEAP makes no claims as to
defending against replay or denial of service attacks.

Table 3.1 : LEAP Security Characteristics
Protocol C F I Ava IA A
LEAP Yes No No No Yes No
C= Confidentiality, F=Freshness, I=Integrity,
Ava=Availability, IA=Implicit Authentication,
A=Authentication of User.

3.3. TINYSEC
Replacement for the unfinished SNEP, known as
TinySec [11]. Inherently it provides similar services,
including authentication, message integrity,
confidentiality and replay protection. A major
difference between TinySec and SNEP is that there are
no counters used in TinySec.
 Generally, the security of CBC-MAC is directly
related to the length of the MAC. TinySec specifies a
MAC of 4 Bytes, much less than the conventional 8 or
16 Bytes of previous security protocols. In the context
of sensor networks this is not detrimental [11].
 TinySec, a lightweight, generic security package that
developers can easily integrate into sensor network
applications. TinySec will cover the basic security
needs of all but the most security critical applications.
 In conventional networks, message authenticity,
integrity, and confidentiality are usually achieved by an
end-to-end security mechanism such as SSH [12], SSL
[13], or IPSec [14] because the dominant traffic pattern
is end-to-end communication; intermediate routers only
need to view message headers and it is neither
necessary nor desirable for them to have access to
message bodies.
 This is not the case in sensor networks. The
dominant traffic pattern in sensor networks is many-to-
one, with many sensor nodes communicating sensor
readings or network events over a multihop topology to
a central base station. However, neighboring nodes in
sensor networks often witness the same or correlated
environmental events, and if each node sends a packet
to the base station in response, precious energy and
bandwidth are wasted. To prune these redundant
messages to reduce traffic and save energy, sensor
networks use in-network processing such as
aggregation and duplicate elimination [15, 16]. Since
in-network processing requires intermediate nodes to
access, modify, and suppress the contents of messages.
End-to-end security mechanisms between each sensor
node and the base station guarantee the authenticity,
integrity, and confidentiality of these messages. End-to-
end security mechanisms are also vulnerable to certain
denial of service attacks. If message integrity is only
checked at the final destination, the network may route
packets injected by an adversary many hops before they
are detected. This kind of attack will waste precious
energy and bandwidth. Link-layer security architecture

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

794

ISSN:2229-6093

can detect unauthorized packets when they are first
injected into the network. Link-layer security
mechanisms have been proposed for wired networks to
resist similar denial of service attacks [17].
 For the above reasons, they decided on link-layer
security architecture for TinySec. Link-layer security
mechanisms guarantee the authenticity, integrity, and
confidentiality of messages between neighboring
nodes, while permitting in-network processing. Despite
the problems, end-to-end security mechanisms can still
be useful in sensor networks and complement TinySec.

Table 3.2 : TINYSEC Security Characteristics
Protocol C F I Ava IA A
TINYSEC Yes No No Yes Yes
C= Confidentiality, F=Freshness, I=Integrity,
Ava=Availability, IA=Implicit Authentication,
A=Authentication of User.

3.3.1. TinySec Design
There are two packet formats defined by TinySec.
These are TinySec-Auth, for authenticated messages,
and TinySec-AE, for authenticated and encrypted
messages. For encryption, it uses CBC mode with
cipher text stealing [11], and for authentication, CBC-
MAC is used. TinySec XORs the encryption of the
message length with the first plaintext block in order to
make the CBC-MAC secure for variably sized
messages. With authenticated encryption, TinySec
encrypts the data payload and authenticates the packet
with a MAC. The MAC is computed over the encrypted
data and the packet header. In authentication only
mode, TinySec authenticates the entire packet with a
MAC, but the data payload is not encrypted.
 Encryption: Using semantically secure encryption

typically requires two design decisions: selecting
an encryption scheme and specifying the IV
format. This design of TinySec uses a specially
formatted 8 byte IV, and cipher block chaining
(CBC) [18]. In this section, they introduce the
structure of IV format and argue why CBC is the
most appropriate encryption scheme for sensor
networks [11].

 Message integrity: History has proven that using
encryption without authentication is insecure [19,
20, and 21]. For example, flipping bits in
unauthenticated encrypted messages can cause
predictable changes in the plaintext [20], and
without an authentication mechanism to guarantee
integrity, receivers are unable to detect the
changes. Unauthenticated messages are also
vulnerable to cut-and-paste attacks [19]. In a cut-
and-paste attack, an adversary breaks apart an
unauthenticated encrypted message and constructs

another message which decrypts to something
meaningful. For example, if all the authorized
nodes share a single key, an adversary can extract
the encrypted data payload from a message to one
node and send it to different node. Since the
encrypted payload is unaltered, the second node
will successfully decrypt and accept the message.
To address these vulnerabilities, TinySec always
authenticates messages, but encryption is optional.
Message confidentiality is only necessary when
there is something to keep secret. Consider a
burglar alarm. The actual contents of an alarm
message could be empty; receiving an alarm
message signals an intrusion. Encryption is
unnecessary and only increases latency,
computation, and power consumption. However,
most all applications require packet authenticity,
meaning authorized nodes will not accept invalid
messages injected by an adversary. In burglar
alarm example, this means adversaries cannot
trigger false alarms.

TinySec uses a cipher block chaining construction,
CBC-MAC [22], for computing and verifying MACs.
CBC-MAC is efficient and fast, and the fact that it
relies on a block cipher as well minimizes the number
of cryptographic primitives. CBC-MAC is provably
secure [22], however the standard CBC-MAC
construction is not secure for variably sized messages.
Adversaries can forge a MAC for certain messages. Ref
[22] suggests three alternatives for generating MACs
for variable sized messages.

3.4. ZigBee
3.4.1. ZigBee Security Architecture
The concept of a “Trust Center” is introduced in the
specification. Generally the ZigBee coordinator
performs this duty. This trust center allows other
devices to join the network and also distributes the
keys. There are three roles played:
 trust manager, whereby authentication of devices

requesting to join the network is done
 network manager, maintaining and distributing

network keys, and
 configuration manager, enabling end-to-end

security between devices [24].
 It operates in both Residential Mode and
Commercial Mode. The Trust Center running
residential Mode is used for low security residential
applications. Commercial Mode is designed for high-
security commercial applications. In Residential Mode,
the Trust Center will allow devices to join the network,
but does not establish keys with the network devices. It
therefore cannot periodically update keys and allows
for the memory cost to be minimal, as it cannot scale

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

795

ISSN:2229-6093

with size of the network. In commercial mode, it
establishes and maintains keys and freshness counters
with every device in the network, allowing centralized
control and update of keys. This results in a memory
cost that could scale with the size of the network [24].
 There are three types of keys employed, the Master
Key, the Link Key and the Network Key. Master keys
are installed first, either in the factory or out of band.
They are sent from the Trust Center and are the basis
for long-term security between two devices. The Link
key is a basis of security between two devices and the
Network keys are the basis of security across the entire
network. Link and Network keys, which are either
installed in the factory or out of band, employ
symmetrical key-key exchange (SKKE) handshake
between devices. The key is transported from the Trust
Center for both types of keys. This operation occurs in
commercial mode, as residential mode does not allow
for authentication.

3.4.2. ZigBee Security
ZigBee security specification employes a simpler and
unified mode of operation of CCM (this mode is an
amalgamation of both the encryption and
authentication) defines key types (Master, Link,
Network) and describes key setup and maintenance
(Commercial, Residential) [24]. Additionally, ZigBee
provides freshness through the use of freshness checks.
These checks prevent replay attacks, as ZigBee devices
maintain incoming and outgoing freshness counters.
Whenever a new key is created, the counters are reset.
It is postulated that devices that communicate once per
second will not overflow their freshness counters for
136 years [24]. Message integrity and encryption are
also provided under the ZigBee security specification,
the operations of which are documented in [25] and
[24]. Under the ZigBee specification, authentication is
defined to provide assurance about the originator of a
message. This prevents an attacker from mimicking the
operation of another device in any attempt to
compromise the network. Authentication is possible at
both the network level and the device level. At the
network level, authentication is achieved using a
common network key, thus preventing outside attacks
whilst adding very little in memory cost. Device level
authentication is achieved by using unique link keys
between pairs of devices. Insider and outsider attacks
are now preventable, but there is a higher memory cost
involved. Table 3 shows the various security
characteristics of ZigBee protocol.

Table 3.3: ZIGBEE Security Characteristics
Protocol C F I Ava IA A
ZIGBEE Yes Yes Yes No Yes Yes

C= Confidentiality, F=Freshness, I=Integrity,
Ava=Availability, IA=Implicit Authentication,
A=Authentication of User.

3.5. SM (Security Manager)
A new method of key agreement, whereby, when a new
device joins network, the Security Manager (SM) gives
static domain parameters such as at the base station, the
order of the curve and the elliptic curve coefficients
[26]. After calculating a public key using the base point
and a private key, the device sends a public key to the
SM. Therefore the SM would have the public key list
for all the devices in the network. They define two
security levels (medium and high), based on the
devices power and security policies. These two levels
are defined by either normal or polynomial basis
calculations. Elliptic Curve Cryptography (ECC)
algorithms offer reasonable computational loads and
smaller key lengths for equivalent security than other
techniques. These smaller key lengths reduce the size
of message buffers and reduce implementation cost of
protocols. The EC-MQV (Menezes-Qu- Vanstone)
scheme is more advanced than the Diffie-Hellman
scheme, and the main idea is to prevent the man-in-the-
middle attack and perform authentication of key
holders. Under this scheme, each side of the
communication holds two keys [26]. Devices in the
network use initial trust parameters (pre-deployed
recognition function) to establish the public key and
ephemeral public key, which are in turn used for secure
communication of the data payloads [26]. The overhead
here will depend on the number of bits chosen for the
elliptic curve system. An elliptical curve algorithm
provides the same security for 160 bit key lengths as a
symmetric algorithm can for 128 Byte lengths [26].
This level of security can then be increased as security
needs to be increased and, therefore, allowing a
variable overhead. Table 4 shows the various security
characteristics of SM protocol.
Table 3.4: SM Security Characteristics
Protocol C F I Ava IA A
SM Yes No No Yes Yes
C= Confidentiality, F=Freshness, I=Integrity,
Ava=Availability, IA=Implicit Authentication,
A=Authentication of User.

4. Conclusion

SPINS is one of the secure and efficient sensor network
protocol. LEAP is a protocol that survives in the face of
security attacks and that the effects of any attacks may
be minimized. TINYSEC is a stronger and energy
efficient protocol. In ZIGBEE protocol, concept of a
“trust center” is introduced. SM uses the EC-MQV

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

796

ISSN:2229-6093

scheme for key establishment, that is more advanced
and main idea is to prevent the man-in-middle attack.

5. REFERENCES

[1] Y. Cheng, “Security mechanisms for mobile adhoc and

wireless sensor network”, Ph. D. thesis published in the
University of Cincinnati, OHIO, 2008.

[2] W. Dargie, M. Zimmerling, “Wireless sensor networks
in the context of developing countries”, International
journal of information and communication technology
education (To appear),2009.

[3] Jason L. Hill, “System architecture for wireless sensor
networks”, Ph. D. thesis published in the University of
California at Berkeley, Spring 2003.

[4] Chris Townsend, Steven Arms, MicroStrain, Inc.,
“Wireless sensor networks: principles and
applications”, Chapter 22 in sensor technology
handbook by Jon S. Wilson, pp. 575-587.

[5]
http://en.wikipedia.org/wiki/Wireless_Sensor_Networks.
[6] A. Perrig, R. Szewczk, J. D. Tygar, V. Wen and D. E.

Culler, “SPINS: Security Protocols for Sensor
Networks”, wireless networking, vol.8, pp. 521-534,
Netherlands, Sept 2002.

[7] J. Kulik, W. R. Heinzelman, and H. Balakrishnan,
“Adaptive protocol for information disseminating in
wireless sensor networks” In Proceedings of the 5th
annual ACM/IEEE international conference on Mobile
computing and networking, pp. 174-185, 1999.

 [8] A. Perrig, R. Canneti, J. D. Tygar, and D. Song, “The
TESLA broadcast authentication protocol”,
CryptoBytes, vol.5, no.2, pp. 2-13, 2002

[9] J.-P.Kaps, “Cryptography for ultra-low power devices”,
Ph. D. thesis, at Worcester Polytechnic Institute, 2006.

[10] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security
mechanisms for large-scale distributed sensor networks”,
In Proceedings of 10th ACM Conference on Computer
and Communications Security, pp. 62-72, New York,
USA, 2003.

[11] C.Karlof, N.Sastry, D.Wagner, “TinySec: A link layer
security architecture for wireless sensor networks”, In
Proceedings of the 2nd International conference on
embedded networked sensor systems, pp.162–175,
Baltimore, MD, USA, November 2004.

[12] I-H. Huang, W. J. Tzeng, S.-W. Wang, C.-Z. Yang,
“Design and implementation of a mobile SSH protocol”,
pp. 1-4, TENCON, Nov. 2006.

[13] OpenSSL. http://www.openssl.org.
[14] Security architecture for the Internet Protocol, RFC

2401, November 1998.
[15] Samuel Madden, Michael J. Franklin, Joseph M.

Hellerstein, and Wei Hong, “TAG: A tiny aggregation
service for ad-hoc sensor networks”, In Proceedings of
the 5th symposium on operating system design and
implementation (OSDI), pp. 131-146, December 9-11,
2002.

[16] Samuel R. Madden, Robert Szewczyk, Michael J.
Franklin, and David Culler, “Supporting aggregate
queries over ad-hoc wireless sensor networks”, 4th IEEE
Workshop on mobile computing and systems
applications, pp. 49, 2002.

[17] Lyes Khelladi, Yacine Challal, Abdelmadjid
Bouabdallah, Nadjib Badache, “On security issues and
challenges in embedded systems: challenges and
solutions”, International journal of information and
computer security 2, vol. 2, pp. 140-174, 2008.

[18] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A
concrete security treatment of symmetric encryption:
analysis of the DES modes of operation”, In Proceedings
of 38th annual symposium on foundations of computer
science, 1997.

[19] Steven M. Bellovin, “Probable plaintext cryptanalysis of
the IP Sec protocols”, IEEE, pp. 52-59, 1997.

[20] Nikita Borisov, Ian Goldberg, and David Wagner,
“Intercepting mobile communications: The insecurity of
802.11”, In 7th annual International conference on
mobile computing and networking , pp. 180-189, Rome,
Italy, 2001.

[21] Hugo Krawczyk, “The order of encryption and
authentication for protecting communications”, In
Proceedings of the 21st annual International cryptology
conference on Advances in Cryptology, vol. 2139, pp.
310-331, January 2001.

[22] Mihir Bellare, Joe Kilian, and Phillip Rogaway, “The
security of the cipher block chaining message
authentication code”, Journal of computer and system
sciences, vol.61, no.3, pp. 362-399, December 2000.

[23] D. Boyle, T. Newe, “Security protocols for use with
wireless sensor networks: A survey of security
architecture”, In Proceedings of the Third International
conference on wireless and mobile communications, pp.
54, 2007.

 [24] ZigBee Alliance ZigBee Security Specification
Overview [online], available:
http://www.zigbee.org/en/events/documents/december20
05_open_house
presentations/zigbee_security_layer_technical_overview
.pdf

[25] YueFeng Ma, “Application of SoC Zigbee technology in
the remote reading meter system”, In Proceedings of
world academy of science and technology , vol. 21, pp.
277-279, May 2007.

[26] Heo, J., Hong, “Efficient and authenticated key
agreement mechanism in low-rate WPAN environment”,
International Symposium on wireless pervasive
computing, pp. 1-5, Phuket, Thailand 16 – 18 January
2006, IEEE 2006

Anupma Sangwan et al, Int. J. Comp. Tech. Appl., Vol 2 (4), 790-797

IJCTA | JULY-AUGUST 2011
Available online@www.ijcta.com

797

ISSN:2229-6093

