University of Zagreb
Faculty of Electrical Engineering and Computing

DISSERTATION

Service Architecture for Content Dissemination to
Mobile Users

lvana Podnar

Zagreb, February 2004

The doctoral dissertation has been completed at the Department
of Telecommunications of the Faculty of Electrical Engineering
and Computing, University of Zagreb.

Advisor: Ignac Lovrek, Ph.D.
Professor, FER, University of Zagreb
Co-advisor: Mehdi Jazayeri, Ph.D.

Professor, Technische UniveeditVien

The dissertation has 148 pages.
Dissertation number:

The dissertation evaluation committee:
1. Branko Mikac, Ph.D., professor, FER, University of Zagreb
2. Ignac Lovrek, Ph.D., professor, FER, University of Zagreb

3. Mehdi Jazayeri, Ph.D., professor, Technische Uni\argifien

The dissertation defense committee:

=

. Branko Mikac, Ph.D., professor, FER, University of Zagreb
2. Ignac Lovrek, Ph.D., professor, FER, University of Zagreb
3. Mehdi Jazayeri, Ph.D., professor, Technische Uni\argifien
4, MarioZagar, Ph.D., professor, FER, University of Zagreb

5. Manfred Hauswirth, Ph.DEcoIe Polytechniqued¢éérale de Lausanne, Switzerland

Date of dissertation defense: May 7, 2004

iii
Acknowledgments

A number of people have supported me during the process that led to the completion of the thesis.
Firstly, I would like to thank my advisor Prof. Ignac Lovrek for his support, guidance, and patience
throughout my research. | thank my co-advisor Prof. Mehdi Jazayeri for teaching me the principles
of research, and impelling me to pursue my research interests. | am also grateful to Dr. Manfred
Hauswirth who has directed my research interests towards the area of publish/subscribe systems, and
supported my efforts with insightful comments and arguments.

The major ideas presented in the dissertation have been developed at the Distributed Systems
Group, Technical University of Vienna. | thank the members of the DSG for creating an inspiring
research environment, and for making my stay in Vienna a pleasant experience. | also thank my col-
leagues at the Department of Telecommunications, FER Zagreb, for their patience and understanding
to reduce my teaching obligations during the last frantic months of thesis completion. Furthermore,
special thanks go to FER students &irair Pripwzi¢, Matija Mi€in, and Branimir Turk for their par-
ticipation in the implementation of the &S system and the m-NewsBoard application.

And finally, | cordially thank my family for their constant support, and encouragement to always
do my best while pursuing my goals.

Abstract

The dissertation presents an architecture and an implementation of efficient and personalized
content dissemination service targeting mobile users. The service enables information publishers
to publish the content for numerous users based on the publish/subscribe interaction style. Service
personalization is achieved through subscriptions: Users define subscriptions to express their interest
in receiving certain content types. The published content contains non-realtime data of variable
bandwidth demands (short text messages, images or video clips) and the publishing time is usually
randomly determined. Furthermore, the service enables personal mobility, i.e., a user can receive the
content in various networks applying different terminals. The research is motivated by the increased
demand for the push-based dissemination of personalized content to mobile users that enables service
users to promptly receive important notifications.

The thesis investigates two aspects of content dissemination. Firstly, a mathematical model of
distributed publish/subscribe systems is presented, followed by the definition of routing algorithms
that support publisher and subscriber mobility. Secondly, we propose a software architecture for
content dissemination services that uses publish/subscribe middleware as its basic communication
component.

The proposed model presents distributed publish/subscribe systems as discrete event systems. We
propose a novel approach to routing in mobile environments that relies on notification persistency.
System brokers store persistent notifications until their validity period expires, and deliver valid no-
tifications to subscribers when they reconnect to the system. The prototype implementation and the
experimental results show validity of the proposed solution. In the second part of the thesis we propose
a component-based content dissemination service architecture that isadequate for mobile settings. e
have designed a generic Web-based solution for the publish/subscribe component that forms the basis
of the proposed architecture, and outline the solution for personal mobility. The implementation of
the m-NewsBoard system, a news dissemination service for mobile users, demonstrates applicability
of the proposed architecture.

Sazetak

Disertacija predlaZze arhitekturu i implementaciju usluge za Winkovitu i personaliziranu isporuku
sadrzaja pokretnim korisnicima. Usluga omogutuje objavljivanje sadrzaja na nacelu objavi-pretplati
namijenjenog velikom broju korisnika. Usluga je personalizirana jer korisnici pretplatom izra&avaju
interes za primanje odredene vrste sadrzaja. Sadrzaj Cine podaci koji se ne prenose u stvarnom vre-
menu, varijabilnih su prometnih karakteristika (kratke tekst poruke, slike ili video igé&ci), a trenutak
njihovog objavljivanja je lu¢ajni dogadaj. Usluga treba omogLEiti pokretljivost osobe, tj. moguénost
primanja sadrzaja u raznovrsnim mrezama i na razicitim terminalima. Motivaciju za njen razvoj
Cine potrebe korisnika za uslugom koja omogLEuje aktivnu isporuku personaliziranog sadrzaja i time
pravovremeni pristup vaznim informacijama, a podrzava pokretljivost korisnika.

Disertacija daje dva pogleda na uslugu za isporuku sadizaja. Najprije je predlozen matematicki
model koji opisuje distribuirane sustave objavi-pretplati, te su definirani algoritmi umjeravanja poruka
koji podrzavaju pokretljivost korisnika sustava. Potom je predid@ena arhitektura usluge za isporuku
sadrzaja temeljena na sustavu objavi-pretplati koji €ini osnovnu komunikacijsku komponentu usluge.

PredloZzeni model opisuje distribuirane sustave objavi-pretplati kao sustave vodene diskretnim
dogadajima. Predlozen je novi pristup usmjeravanju poruka u pokretnoj okolini temeljen na perzis-
tentnosti poruka. Posluztelji sustava objavi-pretplati Cuvaju perzistentne poruke dok ne istekne pe-
riod njihove valjanosti, te ih isporwuju pretplatnicima prilikom ponovnog spajanja u sustav. Imple-
mentacija prototipa i eksperimentalni rezultati pokazuju primjenjivost predidenog rjeSenja. U dru-
gomdijelu disertacije prediazena ja komponentna arhitektura sustava za isporuku sadrzaja pokretnim
korisnicima. Oblikovana je komponenta objavi-pretplati primjenom tehnologije Web servicekojacini
osnowvu arhitekture sustava, te opisan prijedlog rjeSenja za osobnu pokretljivost korisnika. Predldena
arhitektura je verificirana implementacijom sustava m-NewsBoardkoji se koristi za isporuku vijesti
pokretnim korisnicima.

Contents

1 Introduction 1
2 Content Dissemination and M obility 5
2.1 Introduction. e e 5
2.2 Classification of Distributed Interaction Models. 7
2.3 The Concepts of Publish/Subscribe 13
2.3.1 Publish/Subscribe Interaction Model 13
2.3.2 Subscription Schemes 15
2.3.3 Characteristics of Publish/Subscribe Systems. 19
2.4 Mobility 21
2.4.1 Mobility-Aware Content Dissemination 21
2.4.2 Mobility Management. 24
3 Related Work 29
3.1 Representative Publish/Subscribe Systems. 29
3.1.1 CORBA Event and Notification Service. 30
3.1.2 JavaMessage ServiCe i e e 32
3.1.3 TIB/ReNdezvous 33
3.1.4 JEDI . . . e 34
3.15 Siena e e e 35
316 DACS . . oo o e 36
3.1.7 Hermes 37
3.1.8 REBECA e 37
3.2 Mobility Support in Publish/Subscribe Systems 38
3.3 Related Approaches. e 42
3.3.1 ElectronicMail 42
3.3.2 UsenetNews. e 43
3.3.3 Short Message Service. 43
3.3.4 Multimedia Message Service e 43
3.3.5 Application-Level Multicast, 44

Vi

CONTENTS vii

3.3.6 PushSystems. 44
4 Publish/Subscribe System M odel 45
4.1 Basic Mathematical Model 45
4.1.1 Structural View L 46
4.1.2 Behavioral View 46
4.2 Mobility-Enabled Model 50
4.3 Distributed Model 57
5 Routing Algorithms Supporting M obility 65
5.1 Existing Approaches. 66
5.2 The Proposed Routing Algorithms Supporting Mobility 69
5.2.1 Routing Based on Subscription Equality 75
5.2.2 Routing Based on Subscription Covering. 76
5.3 Evaluation of the Routing Algorithms 86
5.3.1 The Prototype Systemd®d®PS, 86
5.3.2 Queuing Algorithm vs. Persistent Notification Algorithm 91
5.4 DISCUSSION i e e e e e 100
6 Content Dissemination Service Architecture 103
6.1 Requirements and Usage Scenarios« o v v i 104
6.2 Reference Architecture 108
6.2.1 CommunicationLayer. 110
6.2.2 ServiceLayer 110
6.2.3 Application Layer 111
6.2.4 Componentinteraction. 112
6.3 Publish/Subscribe as a Mobile Web Service 114
6.3.1 Architecture 115
6.3.2 Servicelnterface 117
6.4 Personal Mobility Management. 0 119
7 m-NewsBoard: A Case Study 122
7.1 m-NewsBoard - a News Dissemination Service 122
7.1.1 Usage SCenarios v v v i i e e e e e e e 123
7.1.2 Description of System Implementation 126
7.2 Publish/Subscribe Service Implementation. 130
7.3 A Solution for Personal Mobility. 133
7.4 DISCUSSION o e e 136

CONTENTS

8 Conclusion

8.1 Contributions e e e e e

8.2 Future Work
Bibliography
Summary

Curriculum Vitae

viii

138
138
140

141

149

151

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Contentdissemination 6
Remote method invocation 11
MeSSage-qQUEUING ... v v v v v v o e e e e e e 11
Process interaction through shared dataspace....... 12
The basic publish/subscribe interaction model..... 14
The extended publish/subscribe interaction madel. 15
Subject-based subscription scheme o oL 16
Content-based subscription scheme 17
Type-based subscription scheme 18
Decision tree for a content-based subscription. 19
An environment for service deployment. 23
Publish/subscribe interactioninJMS 33
An example of a publish/subscribe system 50
Automaton of the basicexample. oL 51
Automaton of the mobility-enabled example 56

An example of a distributed publish/subscribe system. 58

Proxy publisher and proxy subscriber 59
The model of the example system from Figure4.4. 60

Subscribing ina distributed modelo oL 62
Publishing in adistributed model. 62
Reverse path forwarding: Creating deliverytrees 68
Creatingacore-basedtree. 68
Algorithm forPS,: ConnectingPS, toPS, 72

Algorithm for the proxy subscribefy, 7 € PS,o 73

Algorithm for the proxy publishePy. " € PS, 73

Connecting local publishers and subscriber®& 74

Disconnecting local publishers and subscribersfash 74

Notification publishing 75

LIST OF FIGURES

5.9 Defining a new subscription using subscription equality

5.10 Terminating an existing subscription using subscription equality.
5.11 A method for updating a proxy subscriber’s covering setwigh

5.12 A method for removing;; from the covering sets of a proxy subscriber

5.13 Local subscription based oncovering. oL
5.14 Proxy subscription basedoncovering.
5.15 Terminating an existing subscription based oncovering

5.16 Classdiagramofeventclasses.
5.17 The implementation of methods for checking the coverage relationship... . . .

5.18 Class diagram of infrastructure classes...
5.19 Class diagram of routing classes.
5.20 Experimental network.
5.21 Number of connected subscribers perbroker
5.22 Rate of received and sent notifications
5.23 Rate of received and sent subscriptions...
5.24 Rate of received and sent unsubscriptions L.
5.25 Rate of received and sent controlmessages
5.26 Rate of received and sent notifications/subscriptions/unsubscriptions.

5.27 The average routing table size perbroker.
5.28 Delay for direct notifications.
5.29 Delay for stored (queued/persistent) notifications
5.30 Delay for all notifications

6.1 Stationary scenario. e e e
6.2 Nomadicscenario
6.3 Mobilescenario
6.4 Reference architecture
6.5 Registration of a new subscriber (UML sequence diagram).
6.6 Subscription update due to disconnection (UML sequence diagram)
6.7 Sequence diagram for publish and subscribe usecases
6.8 Web-based publish/subscribe service.....
6.9 Web-based publish/subscribe service with respect to reference architecture.. .
6.10 An example XML message requesting channel creation
6.11 An example XML message requesting subscriptiontoachannel
6.12 An example XML message initiating content publishing

7.1 m-NewsBoarduse cases i
7.2 Subscribingtoachannel
7.3 Publishingnewsonachannel
7.4 Reading the published news in a desktop browser.

LIST OF FIGURES Xi

7.5 The published message in a JMS desktop receiver 126
7.6 Publishing screen onamobilephone 126
7.7 m-NewsBoard architecture 127
7.8 Deploymentdiagram. 128
7.9 Sequence diagram that shows the interaction between NewsBoard’s components.

7.10 Class diagram of the Java RMI implementation 132
7.11 Sequence diagram for IMS-based delivery. 134

7.12 Sequence diagram for e-mail/JMS delivery. L. 135

129

List of Tables

2.1
2.2
2.3

3.1

5.1

6.1
6.2
6.3

7.1
7.2

Comparison of communication and cooperation patterns. 10
Classification of the existingmodels 12
Requirements for mobility management., 28
Comparison of the presented publish/subscribe systems....... 39

Input parameters e e e e 94
Services for stationary, nomadic and mobileusers. 108
Functionality offered by the publish/subscribe Web service. 117
Communication point definitions and examples 120
Mapping publish/subscribe methods to JMS and e-mail specific implementations. . . 131
A JMS message representation 132

Xii

Chapter 1

| ntroduction

The extensive headway of mobile networks and their expected convergence with the Internet has
been driven by the demand for higher rate wireless connectivity in support of terminal mobility, and
the need for novel services that can satisfy the requirements of mobile users. The development of
the network infrastructure with increased bandwidth and coverage has been the primary objective of
network operators [55]. The next challenge is the deployment of a variety of new services that will
become a necessity for mobile users, and utilize the provided bandwidth.

Personalized and flexible content dissemination has been recognized as a valuable service in the
environments that support user mobility [30, 62, 94]. Notification services for weather and traffic
reports, messaging systems for group discussions, and location-based information delivery services
are examples of applications that rely on content dissemination. Such services enable users to receive
relevant information while being mobile, and to define the type and customize the content delivered
to their terminals. The main characteristic of content publication is the event-driven and probabilistic
nature of content availability that cannot be predicted a priori.

Motivation. Information and notification services for communicating time-sensitive data have
proved their usability in the Internet domain [24, 69, 57]. The huge success of Short Message Service
(SMS) and the increased acceptance of Multimedia Message Service (MMS) advocate the extension
of the initial application domain to mobile environments, and encourage further efforts to implement
and deploy content dissemination services in mobile environments. However, mobile scenarios intro-
duce additional requirements regarding the service: Mobile users want to be served with relevant and
personalized content in a timely manner. Moreover, the content must be customized to their current
presence status, and directed to the terminal they are currently applying. Therefore, service flexibil-
ity and its ability to deliver personalized content that provokes no nuisance to end users is of major
importance for the wide acceptance of the service. Support for personal mobility is needed to assure
timely information dissemination in accordance with the user’s presence status.

Publish/subscribe content dissemination. Content dissemination service enables delivery of
content from information sources to numerous users across a wide area network. The content being

1

1. Introduction 2

distributed is non-realtime multimedia content such as plain text, images, or video clips. The service
involves two types of users: publishers and subscribers. Publishers define and structure the content
that is submitted to the service for subsequent delivery to subscribers. Subscribers define subscrip-
tions that describe the type of content they are interested in receiving. Content dissemination service
can, therefore, be visualized as an information bus that joins a publisher when publishing the content
with a group of subscribers interested in the published content. The publish/subscribe communication
middleware [42, 100] reflects the interaction style of content dissemination services. Communicating
parties, publishers and subscribers, interact asynchronously by generating and consuming notifica-
tions. The notifications are delivered to subscribers in the push-style. The available publish/subscribe
implementations [33, 24, 43, 90, 78] offer mechanisms for defining expressive subscriptions, and
enable content filtering according to the provided subscriptions.

Beneficial characteristics of publish/subscribe. Publish/subscribe interaction decouples the
communicating participants because they interact through an intermediary and need not to be active si-
multaneously to exchange messages. The decoupled, asynchronous, and persistent publish/subscribe
communication is adequate for highly dynamic mobile environments: A mobile network is faced with
a changing number of terminals that are often disconnected or unavailable, whereas a terminal needs
to adapt to connectivity and services offered by the network in which it currently resides. Furthermore,
the publish/subscribe model supports system extendibility. The addition of a new publisher or a sub-
scriber does not affect system functionality which is desirable when dealing with frequent changes in
the mobile environment. The problem of system scalability is solved by designing a distributed archi-
tecture that comprises a network of special servers, denoted as brokers in terms of publish/subscribe
systems. Lastly, publish/subscribe systems satisfy the requirement for context-awareness. The event-
based nature of the publish/subscribe interaction model offers the means for designing responsive
applications that are aware of publisher's and subscriber’s states, and adaptable to changes in the net-
work context. Consequently, we have decided to build a mobile content dissemination service using
the publish/subscribe middleware. However, the available publish/subscribe systems offer limited or
no support for publisher and subscriber mobility.

Shortcomings of current approaches. SMS- and MMS-based natification services from the
telecommunications domain are adjusted to mobile environments and offer push-based delivery of
content to mobile terminals. However, these services lack flexibility and expressiveness of subscrip-
tions, as well as content filtering found in publish/subscribe systems, and provide no support for
content customization according to the user’s presence status. On the other hand, notification services
from the Internet domain offer expressive and flexible subscription mechanisms for building highly
personalized content dissemination service, but offer limited support for user mobility.

We argue in [94] that the publish/subscribe middleware itself must offer mobility support and
ensure seamless client reconnections preserving notifications published during disconnection. The
authors in [125] agree that mobility-related issues should be addressed by the publish/subscribe
middleware itself, rather than being delegated to the application layer. However, the existing pub-

1. Introduction 3

lish/subscribe systems are designed and optimized for static environments where both publishers and
subscribers are stationary. The problems related to mobility have been addressed recently [21, 48,
125]. The proposed solutions for client mobility in publish/subscribe middleware are not optimized
for mobile environments, but they extend the existing stationary systems [48, 21]. The common solu-
tion is based on thequeuing approach” where a system broker — usually the last broker that served a
subscriber, or a special subscriber proxy — acts as a proxy subscriber during subscriber disconnection.
This proxy stores the natifications published during the subscriber disconnection in a special queue,
and delivers them to the subscriber upon reconnection. If the subscriber reconnects to the system
through a new system broker, a costly handover procedure is performed which transfers the stored
notifications to the subscriber and updates delivery paths in the broker network.

Contributions. The thesis focuses on two aspects of content dissemination. Firstly, we design
a solution for the mobility-enabled publish/subscribe middleware by defining a mathematical system
model and the corresponding routing algorithms. Secondly, we propose a software architecture for
content dissemination services that uses the publish/subscribe middleware as its basic communication
component.

The thesis proposes a mathematical model for distributed publish/subscribe systems. The model
describes publish/subscribe systems as discrete event systems that change the system state through a
sequence of events. The model is defined using the set theory notation following the approach in [27].
It is the basis for defining the routing algorithms for delivery of published notifications to subscribers
that are mobile, and potentially disconnected from the system.

We propose a novel approach to mobility in publish/subscribe systems. Rather than queuing notifi-
cations for disconnected users in special queues, the network of brokers stores persistent notifications
until their validity period expires. We argue that notification publishers need to define validity pe-
riod of published natifications, the system must assure naotification storage during the validity period,
and deliver valid notifications to subscribers when they reconnect to the publish/subscribe system. If
a subscriber connects to the system after notification expiry, the notification is not delivered to the
subscriber because it is reasonable to believe that it no longer holds valuable information. Notifica-
tion persistency is by no means a new characteristic of the existing publish/subscribe systems. For
example, JMS [108] defines notification persistency as one of the basic notification characteristics.
However, the existing approaches do not consider notification persistency as a possible solution to the
mobility problem in publish/subscribe systems.

To validate the proposed model and the routing solution we have implemented a prototype system
distinguishable from other publish/subscribe implementations by its inherent support for publisher
and subscriber mobility. Furthermore, we applied the prototype to evaluate the performance of the
proposed routing solution, and to compare our approach with the queue-based approach.

In the second part of the thesis we have designed a component-based content dissemination service
architecture. The architecture is composed of the components that have been identified through the
analysis of service usage scenarios following software engineering principles [54]. We have identified

1. Introduction 4

publish/subscribe and personal mobility as vital architectural components. We propose the design of
a publish/subscribe component as a Web-based service, and outline a solution for personal mobility
with the focus on communication patterns and security.

Finally, we present m-NewsBoard, a news dissemination service for mobile users. The m-News-
Board system enables users to publish and receive news of their interest, and to customize the service
regarding the means for news receipt. It has served as a proof of concept implementation to evaluate
the proposed content dissemination service architecture.

Thesis structure. The thesis is structured as follows: Chapter 2 explains the basic concepts of
content dissemination and mobility, and justifies the decision to apply publish/subscribe middleware
for the design and implementation of personalized content dissemination services supporting mobile
users. Chapter 3 gives an overview of the existing solutions and systems related to content dissemina-
tion. We analyze and compare the characteristics of the prominent publish/subscribe systems, and of
the related solutions, such as e-mail, Usenet news, SMS, MMS, application-level multicast, and push
systems. Chapter 4 introduces a mathematical model of distributed publish/subscribe systems used
as the basis for defining the routing algorithms for selective dissemination of notifications to mobile
subscribers. The proposed routing algorithms are defined and evaluated in Chapter 5. In Chapter 6
we propose the reference architecture for content dissemination services that comprises a Web-based
publish/subscribe middleware layer, and a component for personal mobility. The implementation of
a news dissemination service, m-NewsBoard, that is used to show the applicability of the proposed
reference architecture is presented in Chapter 7. Chapter 8 evaluates the thesis contributions and gives
guidelines for future work.

Chapter 2

Content Dissemination and Mobility

This chapter analyzes the applicability of publish/subscribe middleware for design and implemen-
tation of content dissemination services supporting user mobility. The publish/subscribe interaction
model reflects the content dissemination interaction style. Content sources are publishers that provide
the content to a content dissemination service which, in turn, distributes it to interested subscribers,
content destinations. Subscribers can personalize the received content through subscriptions by de-
scribing the type and properties of notifications of their interest. The inherent characteristics of pub-
lish/subscribe middleware, such as loose coupling between the communicating parties and system
extendibility, are suitable for the dynamic and volatile nature of mobile environments.

The chapter is organized as follows: Section 2.1 defines the content dissemination service and
describes the basic interaction pattern between service entities. Section 2.2 analyzes the existing in-
teraction models for distributed applications and classifies them across two dimensions, communica-
tion and cooperation. Section 2.3 gives a comprehensive analysis of the publish/subscribe interaction
style: It describes the communication pattern, defines the notion of notification and subscription, de-
scribes the existing subscription schemes, and gives an overview of publish/subscribe characteristics.
Section 2.4 defines the basic terms related to mobility and mobile networks. It presents the mobile
environment for the deployment of mobile content dissemination services. Mobility management is
essential for the implementation of services that support personal mobility. Section 2.4.2 gives an
overview of the existing solutions to mobility management, and discusses the requirements of a mo-
bility management solution that is adequate for content dissemination.

2.1 Introduction

The traditional request/reply model of distributed computation supports a demand-driven interaction
style between two communicating parties: A client sends a request to a server that performs the
computation, or hosts the requested information, and waits for a reply from the server. Information-
intensive applications for timely dissemination of content to a multitude of clients face a significant
performance deficiency if implemented using the request/reply approach. Clients that depend on time-

2. Content Dissemination and Mobility 6

content
publisher
content
subscriber

Figure 2.1: Content dissemination

sensitive information need to poll for data at regular intervals to check if the data has been updated.
Inefficiency is the main drawback of this approach: The sequence of requests and replies wastes
a lot of bandwidth which is particularly inadequate for mobile environments with limited wireless
bandwidth and power supply. Furthermore, servers offering time-sensitive information, e.g., sport
news or election results, are saturated with a multitude of requests [51].

The push-based approach which facilitates active dissemination of published information to in-
terested users has been proposed as a viable solution to the problem of timely and scalable content
dissemination. Acontent dissemination service enables the delivery of content from content sources
to a potentially large number of interested users, content destinations. Some authors use the term
notification service [23] to denote that the content, in most cases, carries time-sensitive information.
Others use the terpush service [57, 69] to indicate that the content is actively delivered to content
destinations, as opposed to the traditional user-initiated pull-style model. Timely content dissemina-
tion is the main service task. The publishing time and the time of content change is a probabilistic
event that cannot be predicted a priori. The content being distributed is non-real time multimedia
content, e.g., plain text, images, or video clips.

Figure 2.1 shows the basic interaction between content sources and content destinations on the top
service level. A content source publishes the content at a particular tiamel the published data is
delivered to destinations having declared interest in receiving it within a “reasonably” short time in-
terval At. Various scenarios for determining the set of destinations for each source and its publication
are possible. For example, irsiangle-source scenario each source can have a stationary group of des-
tinations that want to receive all of the content published by this particular sourcenulti pl e-source
scenario a number of sources can publish the content to a predefined group or receivers. Publishers
and receivers can either join or leave a predefined group which makes the subscription scheme rather
restricted and static. Group communication services [39] including the network-layer IP multicast
[35] are practical implementations of such static content dissemination services.

A dynamic and flexible subscription scenario is possible in which a group of receivers is formed

2. Content Dissemination and Mobility 7

per each publication. This approach incorporategthoi sh/subscribe interaction model [100]: Sub-
scribers declare the interest in certain content categories and notifications with particular properties,
and receive only publications that match their subscriptions. A dynamic scenario facilitates person-
alized content delivery guided by user subscriptions. The publish/subscribe interaction enables the
customization of a set of received notifications minimizing thus the amount of received content ir-
relevant to a subscriber. However, the gain in service flexibility and personalization complicates the
design and implementation of a content dissemination service: The service must provide the mecha-
nisms for describing the content that is of interest to subscribers, and implement the mechanisms for
delivering messages matching the descriptions.

The publish/subscribe model seems a natural choice for the design of a content dissemination
service since it reflects the interaction style for content dissemination. Recent solutions and mea-
surements show that the publish/subscribe infrastructure can substantially improve performance and
scalability of the traditional request/reply content dissemination services [15, 87]. Furthermore, the
loosely-coupled, asynchronous, and persistent publish/subscribe model is recognized as a suitable
paradigm for mobile applications requiring adaptation to highly interactive and changing conditions
of mobile environments [30]. In addition, Short Message Service (SMS) and Multimedia Message
Service (MMS), the prominent services from the telecommunications domain, are inherently push-
based: SMS delivers text messages directly to mobile phones, while MMS can first push the notifica-
tion about the receipt of a new multimedia message, and let a user request the message in the second
step.

2.2 Classification of Distributed I nteraction Models

Distributed systems comprise software components that run on different hosts in local or wide-
area networks: Distributed processes run concurrently in different operating systems virtual proces-
sors which leads to the need for process communication and coordination. Sockets, remote pro-
cedure call and its successor, remote object invocation, message-queuing, shared dataspaces, and
publish/subscribe are notable models and infrastructures used in distributed system implementations.
They enable data exchange between distributed processes and offer higher level operations to the ap-
plication programmer than the low-level message passing offered by the underlying transport network.
The models listed have different characteristics with respect to the underlying communication and co-
operation style, and offer different abstraction levels of functionality. For example, sockets are built
on top of the message-oriented model of the transport layer and act as an interface to transport services
provided by TCP and UDP [68]. Publish/subscribe middleware, on the other hand, offers higher level
of abstraction through its special interaction model. It can be built using other lower-level models for
process communication, e.g., datagram sockets, stream sockets, or even remote method invocation.
There are a number of classifications of the interaction models for distributed systems. Refer-
ence [51] classifies dissemination systems according to the following data delivery mechanisms: push
vs. pull, periodic vs. aperiodic, and point-to-point vs. multi-point. The authors in [42] compare the

2. Content Dissemination and Mobility 8

interaction models with respect gpace, time and synchronization decoupling. Reference [112] fo-

cuses on messaging models, i.e., on message-queuing and publish/subscribe messaging, and presents a
classification model for messaging middleware with three different modessage delivery model,

message processing model and message failure model. The authors in [100] propose a framework

for the publish/subscribe communication that comprises seven models: object model, event model,
naming model, observation model, time model, notification model, and resource model.

We propose a complementary classification of distributed interaction models based on the ap-
proach presented in [115] that analyzes the characteristics of the existing models with respect to
communication, interacting processes, and their coordination. We classify the models across two
dimensions:communication and cooperation. Communication enables the transport of information
between the interacting parties: A communication pattern defines the rules for message generation and
the sequence of messages between distributed processes. Cooperation deals with the joint operation
of distributed processes observed as a whole.

Communication. We classify the models according to the following communication patterns:
request/reply, put/get, andsubscribe/publish/notify. The listed communication patterns have different
characteristics with respect to temporal and referential coupling, communication persistency, commu-
nication initiation, and receiver multiplicity. Distributed processeserporally coupled if they need
to execute simultaneously to exchange the daéferential coupling denotes that a process initiating
the communication knows the globally unique identifier of a destination prodessistent com-
munication ensures that the submitted information is delivered to the receiver. In cortesstent
communication offers no guarantees regarding information receipt and provides best-effort delivery.
There are two approaches to communication initiation: pull and push. Two processes are communi-
cating inpull-style when a client process requesting information sends an explicit request followed
by a reply from the server process. Wijitish-style communication a process registers a handler and
passively waits for the incoming data. With respect to receiver multiplicity the communication can be
eitherpoint-to-point with two interacting parties, anulti-point with multiple data recipients.

Request/reply. Request/reply is a simple and widely used communication pattern based on the ex-
change of requests followed by replies. A client process issues a request and delivers it to a
server for processing. Then a server sends a reply to the client. The client is blocked while
waiting for the reply or an acknowledgment of request receipt from the server. The client and
server process attemporally coupled since they need to execute simultaneously to carry out
the communication. They ameferentially coupled because the client sends a request to the
known server with the identifier of the serving process. Request/reply is the representative of
pull-style point-to-point communication: The communication is initiated by an explicit request
for information. The World Wide Web, one of the widely-used applications in todays networks,
uses the request/reply interaction principle as its basic communication model.

Put/get. The main rationale behind the put/get communication pattezonisnunication persistency:
The information source — sender — puts the information in a well-known storage space, and

2. Content Dissemination and Mobility 9

the information destinations — receivers — get the information from the storage. Senders and
receivers argemporally uncoupled because the operation of storing a message is independent
from its retrieval. Put/get is the representative of a loosely-coupled mediated communication
pattern: Senders and receivers do not interact directly, but rather through an intermediary, the
data storage. The communication is performed in a pull-style because a receiver sends an
explicit request for a message from the storage.

There are two representative models that fall into the put/get category: message-queuing and
shared dataspaces. Message-queuing implements a point-to-point referentially coupled com-
munication pattern in which senders put messages into receiver’'s queues. Shared dataspaces
use a common data structure, an intermediary through which the processes exchange messages.
A process puts a message into a shared dataspace, and can retrieve it from that medium. Shared
dataspaces implement a one-to-many communication pattern and offer referentially uncoupled
communication because the destination processes are anonymous to a process that is the infor-
mation source.

Subscribe/publish/notify. Subscribe/publish/notify is push-style multi-point communication pat-
tern where the receivers of information — subscribers — $irlsscribe to a category of infor-
mation and register handlers that will receive the information when published by information
sources. Next, when a publishpublishes the content, anotify operation is invoked on the
subscriber’s side assuming that its subscription matches the published content. Publishers and
subscribers can interact directly. In that case they are temporally and referentially coupled.
However, most systems offer mediated solutions and use an intermediary for enabling referen-
tially and temporally uncoupled communication. The publish/subscribe infrastructure imple-
ments the subscribe/publish/notify interaction model.

Cooperation. Cooperation enables distributed processes to act jointly in order to provide a com-
mon service. With respect to cooperation we classify the modelddisss-based and content-based
to define the basic mode of interaction between distributed processes.

Address-based cooperation. The traditional approach to cooperation relies on the availability of the
address of a communicating party and is closely related to referential coupling. The interact-
ing parties can cooperate and communicate if they know the address of the parties they want
to interact with. The address-based cooperation relies on the traditional unicast and multicast
routing where messages are given explicit destination addresses that enable the transport of data
to defined destinations. For example, request-reply uses direct point-to-point address-based co-
operation between a client initiating a request to a well-known server. Group communication is
another example of the address-based cooperation: A group is a set of processes, group mem-
bers, and each group is associated with a logical name [27]. A logical name represents a group
address. |IP multicast [35] at the network level and application-layer multicast solutions [14]

2. Content Dissemination and Mobility 10

Table 2.1: Comparison of communication and cooperation patterns

temporal |referential | persistency | communication | receiver

coupling | coupling initiation multiplicity
request/reply coupled | coupled | transient pull point-to-point
address-based put/get |uncoupled coupled | persistent pull point-to-point
content-based put/get | uncoupled uncoupled| persistent pull multi-point
address-based coupled | coupled | transient push multi-point
subscribe/publish/notify
content-based uncoupled uncoupled| persistent push multi-point
subscribe/publish/notify

are practical implementations of group communication. Message-queuing is also an example
of the address-based cooperation where each receiver has an associated addressable queue.

Content-based cooperation. The content-based cooperation is driven by the content of messages
communicated among the interacting parties. Content destinations define the characteristics
or templates of the content they want to receive, and the messages matching their descrip-
tions are sent to them. This cooperation style is usually mediated and requires an intermediary
that performs matching. It enables anonymous communication since the content sources do
not necessarily know message recipients, and can remain anonymous to content destinations.
The content-based cooperation is more flexible than the address-based cooperation because the
binding between communicating parties is dynamic and data-dependent, as opposed to static
binding to fixed names or addresses. Shared dataspaces and publish/subscribe are the existing
models that support the content-based process cooperation.

Table 2.1 compares the defined communication and cooperation patterns. Request/reply is an
address-based highly-coupled communication pattern between two processes that execute simultane-
ously and cannot rely on the content-based cooperation. Conversely, put/get and subscribe/publish/noti-
fy that use the content-based cooperation offer a loosely-coupled process interaction. The address-
based variants are referentially coupled, and subscribe/publish/notify is also temporally coupled.

Next we give an overview of the models and infrastructures currently used in practice for the
development of distributed applications.

RPC and RMI. Remote procedure call (RPC) [16] and its successor, remote method invocation
(RMI), extend the principle of local method invocation into a distributed context and make the re-
mote method call transparent to the invoking process. The main design goal is location transparency
which hides the distribution of processes from the application programmer and simplifies distributed
programming. The invocation of a remote method call comprises the marshaling of procedure param-
eters on the client side, the transport of parameters to the server side, the unmarshalling of parameters
and the execution of the remote procedure on the server side. The results of procedure execution will

2. Content Dissemination and Mobility 11

Client object Server object

Skeleton

[Network channel]

Figure 2.2: Remote method invocation

Figure 2.3: Message-queuing

be returned to the client process following the same procedure of results marshalling, transmission and
unmarshalling. RMI uses the same principles adjusted to object-oriented contexts. In object-oriented
systems objects interact by invoking the object methods using the interfaces that define those methods.
Figure 2.2 depicts a client object that invokes a method on a remote object through a stub and skeleton
that perform parameter marshaling and unmarshalling. The client-side stub holds an interface that is
equal to the interface of the remote server object: From the client’s viewpoint a call to the remote
method is equal to a local method call.

RPC and RMI follow the request/reply communication and the address-based cooperation pattern.
A client invokes a remote procedure — a method on the remote object — in a synchronous mode and
blocks until the remote invocation returns. In this way, the client and the server are tightly coupled,
both temporally and referentially, and the communication is transient and synchronous.

M essage-queuing. The interaction style based on message-queuing follows the put/get address-
based pattern that supports persistent asynchronous point-to-point communication. Distributed pro-
cesses interact by putting messages into queues and by getting messages from the queues as shown in
Figure 2.3. Senders and receivers are referentially coupled since a sender needs to know the identifier
of the receiver's queue. Senders and receivers are temporally uncoupled because a message placed
into the queue remains stored until removed by a receiver. Therefore, there is no need for the sender
and the receiver to execute simultaneously.

Shared dataspaces. Shared dataspaces implement the put/get content-based interaction style.
Synchronization and communication between distributed processes is performed through operations

2. Content Dissemination and Mobility 12

-
1
look for tuple

;)ut \ that matches T

Figure 2.4: Process interaction through shared dataspace

Table 2.2: Classification of the existing models

H address-based ‘content—ba%d‘

request/reply RPC/RMI -
put/get message-queuing | shared dataspaces
subscribe/publish/notify || group communicatioppublish/subscribé

on the shared data. The shared dataspace is implemented as a distributed shared memory that stores
a set of ordereduples. A tuple is stored into the dataspace using the operagiion that creates a
tuple instance in the shared memory. A process that wants to read the data from the shared dataspace
defines a template for matching tuple instances and uses the opegaticie import the tuple from
the dataspace as depicted in Figure 2.4. If a tuple instance matching the template is found in the
dataspace, it is returned to the requesting process and optionally removed from the dataspace. JavaS-
paces [109], a service used in Jini, is an example implementation of shared dataspaces. There is no
distinction between clients and servers in tuple spaces. There are processes putting tuples into the
shared memory and processes extracting tuples from it. The communication is potentially multi-point
because a process can read a tuple without removing it from the dataspace and, thus, enable other
processes to read it afterward until one of the processes removes it from the dataspace.
Publish/subscribe. Publish/subscribe systems implement the content-based subscribe/publish/
notify interaction style and provide loose-coupling between the interacting parties. Notification pub-
lishers and subscribers are temporally and referentially uncoupled. The communication can be per-
sistent because the intermediary can store notifications until they are delivered to all subscribers. One
of the features that distinguishes publish/subscribe from other interaction styles is its inherent multi-
point communication style. A published notification is replicated and delivered to all interested parties
in the push-based style.
Table 2.2 classifies the existing models with respect to the presented communication and coordi-

2. Content Dissemination and Mobility 13

nation interaction styles.

2.3 The Concepts of Publish/Subscribe

The publish/subscribe interaction model enables asynchronous communication between information
publishers andsubscribers. Publishers and subscribers communicate by exchanmgitifications, of-

ten denoted aevents, that represent information items and carry the published content. The model
is event-driven because the act of publishing is aperiodic and guided by the availability of a new
or modified information item, or by a publisher’s state change. Publishers produce the information
and subsequently publish it for dissemination to interested subscribers: Publishers are notification
producers, while subscribers act as notification consumers that declare interest in receiving specific
categories of notification. When a notification is published, it is delivered to all the subscribers that
have declared interest in receiving such notification. Publishers and subscribers may interact directly:
However, most systems introduce an intermediary, an “information bus” [85] responsible for effi-
cient notification delivery from publishers to subscribers. The intermediary ensures anonymity of
communicating parties: Publishers and subscribers do not necessarily know of each other and the
infrastructure keeps track of their subscriptions and publications. Furthermore, the interaction style
enables one-to-many multicast-style communication because the published notification is delivered to
all interested subscribers.

The systems that implement the publish/subscribe interaction style fall into the categuig- of
dleware, software infrastructure built on top of the network operating system that offers generic ser-
vices for the development of distributed applications. The main purpose of middleware application
in practice is to simplify the implementation of distributed systems [40]. Publish/subscribe systems
are often classified aent-based middleware because of the event-driven communication and coop-
eration model that uses notifications for carrying the information passed among the communicating
parties [74, 100]. The authors in [115] classify publish/subscribe systewmoedination systems to
stress that the publish/subscribe interaction coordinates the activities between distributed processes.

2.3.1 Publish/Subscribe Interaction M odel

The publish/subscribe model involves two types of entities: publishers and subscifoktishers
are content sources that publish notifications autabcribes are content destinations that subscribe
to a number of notification types using tpablish/subscribe service. The publish/subscribe service
provides the management of subscriptions, and storage and dissemination of published naotifications.
It is an intermediary between the referentially uncoupled and anonymous publishers and subscribers.
The interaction between publishers and subscribers is achieved through the mechanism implemented
by the publish/subscribe service that matches subscribers’ subscriptions with published notifications,
and delivers the matching notifications to the interested subscribers.

Notifications are information items that are produced and published aperiodically. They usually

2. Content Dissemination and Mobility 14

LN /N @ RN
é 1 notify(O) @subscriber
publish(Q) publish(d) subscribe(.)i i unsubscribe(.)é
! v —» publish
---» subscribe
Publish/subscribe service @ | |- » unsubscribe
--% notify

Figure 2.5: The basic publish/subscribe interaction model

contain a set of properties in the form of attribute-value pairs, and a payload. Notification properties
describe the published notification and may be generic — e.g., unique identifier, timestamp, expiry
field, priority — or application specific, i.e., defined by the notification producer. Notification payload
carries the actual published content which can be a document of a Multipurpose Internet Mail Exten-
sion (MIME) type [52]. To transmit a notification across the network, an entity, either a publisher or

an intermediary service, must incorporate the notification inteessage. Messages are exchanged
between two parties, a source and a destination. They are generally composed of a header field, that
contains the source and destination addresses, and a payload field, which contains the transported
notification.

Publishers and subscribers interact according to the subscribe/publish/notify communication pat-
tern. Figure 2.5 shows the basic operations that enable the interaction between publishers and sub-
scribers through an intermediary publish/subscribe service. A subscriber expresses its interest in re-
ceiving notifications of a certain type by invoking the metlsadscr i be on the publish/subscribe
service. The methodnsubscr i be is used for subscription termination. For example, in Figure 2.5
subscriberS; subscribes to “circular” notifications by invoking the metteabscr i be of the pub-
lish/subscribe servicesS;’s subscription is defined by a property that is common to the notifications
of interest: Sy is interested in “circular” notifications. A subscription can be viewed as a notifica-
tion description or a template: The publish/subscribe service stores subscriptions and uses them for
comparison with the published notifications.

When generating a notification, a publisher invokes the mebhudid i sh of the publish/subscribe
service and supplies the notification. The notification contains some information or content that a
publisher has and wants to share with other interested parties. For example, in Figure 2.5 the pub-
lisher P, publishes the notificatio) and the publishe? publishes the notificatiom. Next, the
publish/subscribe service compares each published notification with the existing subscriptions, and
eventually deliverg) to the interested subscrib&y using the methodot i f y. The same notifica-
tion is not delivered t&; becauses; has terminated the subscription to “circular” notifications before
O notification is published. If a subscriber cannot be contacted, a published notification is discarded,
or stored to be delivered when the subscriber becomes available, depending on the persistence of the
published notification.

2. Content Dissemination and Mobility 15

/Pi\ @ @ A publisher
. ' notify(QO) @ subscriber
—>

|
advertise(@)

: publish(O) subscribe(@), unsubscribe(.)f publish
vy v v ---p subscribe
------ » unsubscribe
Publish/subscribe service --» notify

-- —» advertise

Figure 2.6: The extended publish/subscribe interaction model

The methodssubscri be, unsubscri be, publ i sh, andnoti fy comprise the methods
that are used in the basic publish/subscribe interaction model. The extended model incorporates the
methodadver t i se which allows a publisher to announce the intent of publishing notifications of a
defined type. Publishers can terminate their advertisements by invoking the nuietadderti se.
Figure 2.6 depicts a scenario in which the publisRdiirst advertises future publications of “circular”
notifications. Next, the subscribéf defines a subscription to “circular” notifications. Subsequently,
when P, publishes the notificatiot), the publish/subscribe service delivers itfo Advertisements
are used to define notification types that will be used in the publish/subscribe system. Additionally,
advertisements enhance the efficiency of the routing protocols in distributed architectures of pub-
lish/subscribe services.

2.3.2 Subscription Schemes

The publish/subscribe interaction model enables subscribers to specify the categories of notifications
they want to receive: Subscribers are usually interested in a subset of published notifications, and
subscriptions are used to filter out the published notifications according to individual subscriber’s
needs. Subscriptions can be regarded as notification templates: They contain the rules that enable the
publish/subscribe service to compare each published notification with the subscriber’s interest, and
to deliver only the notifications that match the defined subscription criteria. The publish/subscribe
service can thus be viewed as a notification filter that performs the process of matching notifications to
subscriptions. Currently, the publish/subscribe systems use three different schemes for subscriptions:
subject-based, content-based, andtype-based subscriptions.

Subject-based subscription. Subject-based, or topic-based subscriptions classify each notification
as belonging to a particular subject, i.e., topic. A subject is used to characterize and clas-
sify the published content and can be regarded as a logical connector between publishers and
subscribers. Subjects can be arranged in a hierarchy: A sub-subject can be derived from a
super-subject to further specialize the notifications published on the super-subject.

Subject-based subscriptions are an extension o€hibenel-based subscription model used in

2. Content Dissemination and Mobility 16

A ® ®

X P
1 notify(e;) i Inotify(e,)
publish(e,)| | publish(e,) subscribe! | !notify(e,) subscribe! !
A v ! P
X le-Auction v !
C le-Auction/Books)
(le-Auction/DVDs)

Figure 2.7: Subject-based subscription scheme

the first publish/subscribe systems, e.g. CORBA event service [82]. Channels are similar to the
notion of groups defined in the context of group communication [42]: When a subs6ritogr-

scribes to a channeh;, S; becomes a member of the group of subscribers to the chahnel

A notification published on channeh; is delivered to all subscribers of the channel. Channels

can be implemented efficiently using IP multicast because each channel can be mapped to a
multicast group: The Global Information Broadcast is a push system for information distribu-
tion that uses IP multicast or reliable multicast for the efficient data transport at the network
level [69]. However, the main disadvantage of the channel-based notification classification is
its limited expressiveness with a coarse level of notification classification.

The subject-based approach usdagect hierarchiesto offer finer granularity of notification cat-
egories. Subjects are usually specified using the URL-type format, e-qAuct i on/ Books

/ Sci enceFi cti on. Subscribers can subscribe to a particular subject, or refine their sub-
scription by subscribing to a sub-subject. It is even possible to use a more complex subscrip-
tion scheme, for examplé,e- Auct i on/ */ Sci enceFi cti on. Figure 2.7 illustrates the
subject-based subscription scheme for an auction site: The subsgriudascribes to the chan-

nel/ e- Auct i on/ Books and receives only the notificatien published on that channel. The
subscriberS; is subscribed to the channet- Auct i on and thus receives all notifications pub-
lished on that channel including the notifications published on chaheelguct i on/ Books

and/ e- Auct i on/ DVDs. Compared to channels, subjects offer better expressiveness, al-
though expressiveness is still limited because subjects offer a static view of notification cate-
gories. Secondly, a large number of subject subcategories may lead to the explosion of a subject
hierarchy tree which is a serious implementation problem, especially if the implementation is
based on IP multicast: Each sub-subject must be implemented as a special multicast group and
the number of multicast addresses is limited.

Content-based subscription. The alternative approach to the static channel-based scheme is the
content-based subscription which offers a more sophisticated and flexible subscription scheme

2. Content Dissemination and Mobility 17

e, = (category = “books”
& author = “D. Adams”
& title = “The Hitchhiker's Guide through the Galaxy”
& price = 9.99 EUR)
e, = (category = “books” sub, = (category == “books” &
& author = “J.R.R. Tolkien” sub, = (category == “books” author == "J.R.R. Tolkien”

& title = “The Lord of the Rings” & price < 20 EUR) & price < 20 EUR)
& price = 19.99 EUR)

Ao

publish(e,) notify(e,) I

i
publish(e,) subscribe(sub,)
\ AR v .

[/e-Auction j

Figure 2.8: Content-based subscription scheme

with increased expressiveness. It enables subscribers to define properties of notifications they
are interested in: Each subscription is a predicate which can test notification properties, i.e.,
attribute-value pairs. A subscription predicate consists of a sequence of patterns that com-
bine notification attributes with a subscription constraint that defines the attribute value. The
content-based subscriptions enable subscribers to describe the properties of notifications along
multiple dimensions ensuring flexible and subscriber-centric notification filtering. The filtering
minimizes the number of uninteresting notifications delivered to subscribers.

Figure 2.8 illustrates an example content-based subscription to the stibjestict i on. The
notification space is modeled as a single subject and subscription predicates are used to specify
subscriptions. For example, the subscrigeiis interested in books below 20 EUR. It spec-

ifies the subscription using the predicdteat egor y=="books" & price<20 EUR).

The subscribef; is also interested in books below 20 EUR, but only in those written by J.R.R.
Tolkien. It specifies the predicate @sat egor y=="hooks" & author=="J. R R

Tol ki en" & price<20 EUR).The content-based scheme offers increased expressiveness
when compared to the subject-based scheme: To offer the same type of subscription expressive-
ness in the subject-based scheme, new subjestf\uct i on/ Books/ LessThan20_EUR

and/ e- Auct i on/ Books/ Tol ki en/ LessThan20_EUR would be created making the
subject tree quite complex. Moreover, it is not possible to predict the preferences of all sub-
scribers and to create static subjects that match all their needs. The dynamic nature of the
content-based subscription scheme is obviously superior with respect to expressiveness. How-
ever, it complicates the implementation of the publish/subscribe system which has to deal with
subscription predicates [23]: The design of an efficient and scalable solution to the problem of
matching notifications to subscriptions is still an open problem under active research [20, 78].

Type-based subscription. The type-based subscription scheme is a static classification scheme which
resembles the subject-based approach. It uses types from object-oriented languages for distin-

2. Content Dissemination and Mobility 18

type hierarchy
P N \R
1
i | bvD | | Book |
Book e,; SFBook e,; i i notify(e,) R
publish(e,) publish(e,) b SFBook
! 2 subscribe ! 1 1 notify(e,) -
M I}
L
r T)
v e-Auction v'!
\ Book :
C SFBook)
[DVD]
_ _/

Figure 2.9: Type-based subscription scheme

guishing notification categories [45]. In type-based systems notifications are modeled as ob-
jects, and each notification object has a type. The notion of notification subject is matched to
the notion of natification type, and the notification hierarchy found in subject-based subscrip-

tions is mapped to the type inheritance tree found in object-oriented languages. Subscribing
to a type implies that a subscriber receives all notifications of the class implementing the type
and also all naotifications of its inheriting subclasses: In other words, a number of classes may
conform to a single type. For example in Figure 2.9 the subscspsubscribes to the type

Book and receives the notification, an instance of the clagook, and also the notification

ea, an instance of the clagBook which inherits the clasBook.

The main advantage of the type-based subscription over the subject-based scheme is that subject
hierarchy is naturally mapped to the inheritance tree found in object-oriented languages. The
process of matching a notification object to a type is performed by querying weather the noti-
fication object is an instance of a defined type. When compared to the content-based scheme,
the type-based approach ensures the encapsulation of data within notification objects which is
violated in content-based systems.

It is possible to combine either the subject-based or the type-based subscription scheme with the
content-based scheme: Static classification of the subject-based or the type-based scheme is extended
by the dynamic nature of the content-based scheme. Clearly, the matching problem — determining the
subset of all subscriptions with predicates that match each published notification [5] — is the major
bottleneck in the content-based systems used in realistic applications with a large number of published
notifications and subscriptions. A naive matching algorithm would match each published notification
against every existing subscription. This algorithm runs in time linear to the number of subscriptions
and becomes inefficient in environments with a large number of publishers and subscribers [5]. The
main rationale for improving this naive approach is that it is highly probable for several subscription

2. Content Dissemination and Mobility 19

category ==

Tolkien

Figure 2.10: Decision tree for a content-based subscription

predicates in a publish/subscribe system to share some common sub-expressions. Itis, therefore, rea-
sonable to exploit the commonality and check each expression only once. Subscriptions are combined
into decision trees that enable simultaneous matching of notification properties to subscriptions with
common constraints on notification attributes. Decision trees are updated with each new subscription
which is adequate for the environments in which the frequency of published notifications is very high
when compared to the frequency of subscription changes.

Two subscriptions from the example in Figure 2.8 can be combined into a decision tree illustrated
in Figure 2.10. The decision tree consists of three nodes, each representing an expression that tests
a notification attribute. The rectangles represent end states with a list of subscriptions that match a
published notification. When a notification is published, its attribute-value pairs are matched against
node expressions, until reaching the end state with a list of subscriptions that identify the subscribers
to which the notification must be delivered.

Construction of a decision tree is not a trivial task, especially when the number of subscriptions is
high. Reference [20] lists the requirements for building an efficient filtering engine, and proposes an
approach based on binary decision diagrams. A pragmatic solution for implementing a content-based
publish/subscribe service using structural reflection is presented in [43].

2.3.3 Characteristics of Publish/Subscribe Systems

In this section we summarize the important characteristics of publish/subscribe systems.

L oose coupling and system extendibility. One of the major characteristic of the publish/subscribe
interaction model is its inherent loose coupling. The communicating parties are temporally
and referentially decoupled since they interact through an intermediary. The communicating
parties can frequently be deactivated and reactivated, without affecting the functionality of the
system as a whole. Furthermore, the integration of additional components does not affect the
functionality of the existing components in the system which ensures system extendability.

2. Content Dissemination and Mobility 20

Filtering. Filtering of published notifications ensures that a subscriber receives only the notifications
that satisfy certain criteria defined in its subscription. This approach minimizes network traffic
and the processing done by a subscriber. It is attractive to perform the function of notification
filtering close to natification sources especially when network resources are scarce. This process
is usually performed by an intermediary.

Notification persistency. The employment of an intermediary which is usually operating perma-
nently on a stationary host can ensure notification persistency. The intermediary can store
the received notifications prior to their delivery to subscribers, and discard them after receiving
an acknowledgment from all notification receivers. If a subscriber is inactive, the notification
can be stored and delivered when the subscriber is activated. To ensure notification publish-
ing, a publisher can store a published notification locally until the intermediary acknowledges
notification receipt. Hence, the model is adequate for designing a system with delivery guaran-
tees: At-least-once andexactly-once delivery guarantees can be implemented by incorporating
acknowledgments into the basic communication protobtathlly-ordered notification delivery
may be ensured using notification sequence numbers per each publisher.

Scalability. The architecture of the notification service can be eitteatralized or distributed, de-
pending on the scope of the system, the number of publishers and subscribers, and the number of
published notifications. Centralized implementation might become a bottleneck for wide-area
systems. In such cases the distributed service architecture is applied.

The distributed publish/subscribe service usually comprises a numlbeolafs that form an

overlay network. Each broker is in charge of the publishers and subscribers that are connected to
it. Itis also responsible to submit the published notifications to other brokers having subscribers
interested in them, to accept the notifications coming from other brokers, and to deliver them to
their subscribers with the matching subscription. Brokers need to exchange control messages so
as to have a consistent view of advertisements and subscriptions in the system. They maintain
a routing table with the routing information for forwarding published notifications to interested
subscribers. For example, if a notification is published and its subscribers are connected only to
the local broker, this notification will not be delivered to other brokers in the system.

The distributed publish/subscribe service architecture solves the scalability problem and offers
the means to design a fault tolerant system. However, the design of a distributed architecture
is more complex than of a centralized solution, and it introduces significant communication
load due to the exchange of control messages between system brokers. Hence, it is necessary
to adjust the employed publish/subscribe system design to traffic requirements of the actual
application setting.

2. Content Dissemination and Mobility 21

2.4 Mobility

Mobility is the ability of moving readily in space. With respect to communication and data services,
it is the ability of an end user to move through different geographical locations and to use different
terminals in different networks, subnetworks and network domains while applying the service.

Firstly, the applied network, or a number of networks, need to support the mobility of terminals
while providing access to the Internet. The wireless part of the network assumes cellular topology.
A mobile terminal moves within radio cells and attains its network connection through a cell base
station using radio signals. The terminal can move between different cells and maintain a continuous
network connection using the mechanism know, as a handover, which transfers the connection from
the old base station to a new base station [47]. There are a number of solutions that provide wireless
IP access. Wireless LAN (WLAN) technology is based on the IEEE 802.11 LAN standard that defines
new physical and data link layers to provide wireless connectivity within IP-based LANs [63]. Mobile
networks from telecommunications domain, such as GPRS [103] and UMTS [60], rely on packet
switching technologies to support data services for mobile terminals. Wireless networks unlike wired
networks exhibit considerable constraints, such as lower bandwidth, higher latencies, and intermittent
connectivity.

Secondly, the used terminals need to be mobility-enabled, i.e. small, portable and capable of
preserving the connection to the network at different geographical locations. Mobile devices are
resource-scarce when compared to their stationary counterparts [104]. Computational resources, e.g.,
processor speed, memory size, disk capacity, and display size are inferior and costly because of the
size and weight limitations. Next, mobile terminals run on batteries with a limited power supply.
Furthermore, the wireless network bandwidth is always lower and more variable than in wired envi-
ronments.

Thirdly, the service placed in the network must be mobility-aware and flexible to support a con-
stantly changing number of terminals. The service should adjust to specific needs of applications
running on mobile terminals. Such applications should be context-aware and adaptive [73]. The ap-
plication must react to the changes in the environment and on the device, e.g., bandwidth variations,
frequent disconnections, and the status of resources on the terminal, and adjust its behavior based on
this knowledge.

2.4.1 Maobility-Aware Content Dissemination

We assume that the content dissemination service supports mobility of end users, both content pub-
lishers and subscribers, in diverse networks. The service is placed in an IP-based network and ex-
ecutes in an extremely dynamic context. Publishers and subscribers change network access points,
network domains, and terminals in different networks. The characteristics of network domains and
network access points differ significantly. The availability of services in different networks varies,
and the availability of terminal resources such as memory, bandwidth, or battery power is constantly
changing. Therefore, the service must be capable of adapting to the changes in both the network and

2. Content Dissemination and Mobility 22

terminal context, and has to deal with different types of mobility.

Figure 2.11 depicts an environment for the deployment of a content dissemination service. Pub-
lishers and subscribers may roam in a network domain which uses WLAN as a radio access network
(RAN), or in a GPRS/UMTS wireless domain. The WLAN domain is IP-based and adequate for the
packet-based transport of the published content with theoretical maximum bit rate of 54 Mbps for
IEEE 802.11a WLAN and 11 Mbps for IEEE 802.11b WLAN. The GPRS network provides packet
data transport at the rates from 9.6 to 115 kbps (theoretical maximum 171 kbps), while UMTS of-
fers theoretical maximum bit rate of 2 Mbps, which in reality falls down to 384 kbps or 144 kbps
for mobile terminals moving at high speed. WLAN enables wireless broadband access over smaller
geographical areas, the so-called “hot spots”, while GPRS and UMTS networks offer mobility over
wide coverage areas.

In GPRS/UMTS the base stations are grouped and controlled by a base station controller (BSC) —
radio network controller (RNC) in UMTS — that comprises a RAN. GPRS enables mobile terminals
to communicate with terminals located in the external IP networks. GGSN is a gateway used as an
interface to an external packet data network such as the Internet. The tendency is to introduce IP-
based data transport close to a mobile terminal, and to build all-IP networks. For example, GPRS
uses IP in its backbone network that connects serving GPRS support nodes (SGSN) with a gateway
GPRS support node (GGSN). However, IP is not used in its native mode for routing data packets
between SGSN and GGSN: A special protocol, GPRS Tunneling Protocol (GTP), built on top of
UDP/IP tunnels the packets between SGSN and GGSN nodes. The major difference between GPRS
and UMTS architectures is in their RANs: Time division multiple access (TDMA) is used for air
interface transmission in GPRS networks, while wideband code-division multiple access (WCDMA)
is applied in UMTS networks. In its packet switched core network, UMTS release '99 architecture
uses the elements that have evolved from GPRS networks. The next UMTS releases, release 4 and
5, are gradually evolving UMTS networks into a converged packet based network [71]. The main
reasons for the all-IP approach are lower infrastructure and maintenance costs of a single converged
network and easier deployment of novel services in IP-based networks. The aim is to provide real-
time multimedia services that impose strict QoS requirements on network performance with respect
to packet loss and delay. This is still a challenge in packet-based networks where network resources
are not reserved ahead of a multimedia session.

Service environment is highly dynamic due to mobility of terminals and users, intermittent net-
work connectivity, variable bandwidth, and the inherent probabilistic nature of the content publishing
service itself. It is dynamic from the service point of view because publishers deliver the content for
publication at random, and subscribers change subscriptions. Furthermore, they move across the net-
work, and change access points and network domains. Publishers and subscribers are also affected by
the dynamic nature of the environment. As they move between networks and domains, the available
services change, and they need to be aware of service availability in the particular visiting domain.
Service architecture must deal with the constant changes in the number, location, and properties of the
participating publishers and subscribers and operate in a heterogeneous environment with a diversity

2. Content Dissemination and Mobility 23

MT

wireless LAN

% wireless LAN 7 Dbase station controller
access point BSC/ | | (BSC)/
RNC radio network controller|

mobile terminal (RNC)
gateway GPRS N
GGSN | support node base station /

de B
_’ serving GPRS node
SGSN support node

GPRS/UMTS

Figure 2.11: An environment for service deployment

of wireless access technologies and terminals.

Distribution transparent interaction models, such as RPC/RMI, are inadequate for highly dynamic
and heterogeneous mobile environments. Temporal coupling and transient communication style can-
not be applied in environments where communicating parties are often disconnected and unreachable.
Furthermore, transport protocols, such as TCP and UDP, expose weaknesses in mobile environments,
because the characteristics of wireless links can significantly affect their performance. TCP assumes
that packets are dropped due to network congestion, and forces senders to lower the transmission
speed which deteriorates TCP performance. UDP packets are often dropped in wireless environments
and the application or middleware using UDP must deal with the unreliability of data transport.

The traditional requirement for distribution transparency is found unsuitable for distributed inter-
actions that are unreliable and introduce significant latency frequently found in mobile settings [73].
Loose coupling of communication parties andcontext-awareness are promoted as key characteristics
of mobile middleware. Temporally and referentially uncoupled systems offering persistent communi-
cation can deal with intermittent connections, terminal unavailability, and changes of terminal network
access points. Context-aware middleware makes the information about the execution context available
to higher layers, and enables applications and end users to take actions when the context changes.

Communication patterns put/get and subscribe/publish/notify offer persistent and temporally de-
coupled communication adequate for mobile environments. The put/get interaction style is designed
for point-to-point communication, while publish/subscribe is inherently multi-point, and suitable for
the implementation of content dissemination services. Asynchronous, anonymous, time-independent,
and persistent characteristics of the publish/subscribe interaction model make it adequate for highly
dynamic mobile environments [30]. Publishers and subscribers are fully decoupled: They inter-
act with the service without the knowledge about other information sources and sinks. The pub-
lish/subscribe model supports system extendability: The addition of a new publisher or subscriber
does not affect system functionality which is desirable when dealing with frequent disconnections.

2. Content Dissemination and Mobility 24

Publish/subscribe systems also satisfy the requirement for context-awareness: The event-based nature
of the publish/subscribe interaction model offers means for designing responsive applications aware
of publisher’s and subscriber’s states, and adaptable to the changes in network context.

2.4.2 Mobility Management

Content dissemination services require the transport of non-realtime data and do not impose strict
real-time QoS requirements on the network infrastructure. The service can benefit from higher data bit
rates, for example, those offered by WLAN or UMTS, however, the existing GPRS networks can offer
sufficient bandwidth for the transport of published notifications. Nevertheless, a higher bit rate alone
is not sufficient for the deployment of mobile content dissemination services that support personal
mobility of end users. The network needs to provieieninal and personal mobility management to

ensure the mobility of terminals and people in different networks, and to deliver the content to mobile
terminals that are at a particular moment used by service subscribers. Various mobility management
procedures are used in telecommunication networks and in the Internet. Mobile telecommunication
networks offer efficient solutions for seamless terminal mobility and handover [6]. The Internet, on the
other hand, was not originally designed to support mobility of terminals and users. Mobile IP [88] is
currently a prevalent solution for terminal mobility in the Internet domain. It is necessary to combine
the mobility management solutions from both domains, and to design a solution for personal mobility
management since it is not available in the existing networks.

Mobility management is a network service that enables a mobile network to locate users applying
mobile terminals across different network domains, and to maintain an active session when mobile
terminals change service domains. Mobility management is essential for services that initiate a com-
munication session to a user, such as a voice call, a multimedia session, or a push-based content
delivery. A current network access point of a mobile terminal, such as an IP address, or the identifier
or a wireless cell, is needed to deliver data packets or to set up a multimedia session with a user. The
network needs to store the up-to-date information that can enable quick and efficient localization of
users and terminals. Mobility management comprises two distinct senioestion management
andhandover [7]. Location management stores and updates the information about current network
access point of a mobile terminal or a user. Handover enables a mobile user and terminal to roam
across different network cells and domains, and maintain an active session regardless of terminal or
user movements.

With respect to the type of mobile entity, mobility management schemes are applied for different
types of mobility, such aserminal, personal, or session mobility [106]. Terminal mobility enables
mobility of a single terminal within a mobile network. Personal mobility deals with mobility of end
users who apply different terminals in various networks. Session mobility enables seamless transfer
of an ongoing communication session from one terminal to another without the loss of information.
Terminal mobility management is an essential service in today’s mobile and wireless networks. Prob-
lems and solutions related to terminal mobility are widely explored in the literature [6, 7, 88]. The

2. Content Dissemination and Mobility 25

need for personal mobility management that regards a user, rather than a terminal, as an end commu-
nication point, extends the concept of terminal mobility from a single terminal and network, to various
terminals in different networks [101]. Currently, there are no standard solutions for personal mobility
that are widely applied in today’s networks. Session mobility has been addressed recently.

Terminal mobility. Terminal mobility deals with the mobility of a single terminal in a mobility-
enabled network. A terminal can seamlessly move and attain the connection to the core network,
despite changed location and the applied network access point. We distinguish between nomadic and
truly-mobile terminal mobility.

Nomadic terminal mobility enables network connectivity from arbitrary and changing locations,
but there is no network connectivity during the move procedure. A nomadic user may disconnect from
a network access point, move to another network domain, and reconnect through another access point.
Terminals may change access points only between successive data sessions. The handover procedure
for nomadic mobility does not impose demanding requirements on the network infrastructure. It is
even possible to use a wired network connection for this mobility scenario.

Mobile IP [88] is nowadays a prevailing solution for nomadic mobility in IP-based networks. It
is a network layer protocol that supportgcro-mobility across the Internet. The essential problem
when dealing with mobility in IP-based networks is that IP-based protocols are designed for stationary
terminals. An IP address is used to identify a terminal and its location in the Internet. When a mobile
terminal connects to another network domain, it needs to use a new address from the new domain to be
addressable in the Internet. Mobile IP enables a mobile terminal to be uniquely addressable through
a permanent home address, regardless of its position in the network. When a terminal migrates to
a new network domain, it acquires a temporary care-of-address from a new domain and registers it
with its home agent in the home network. The home agent intercepts the packets sent to a mobile
terminal and tunnels them to the new care-of-address. Mobile IP usémrieebased approach to
location management [91]: The home agent maintains a mapping between a mobile terminal and its
current IP address. The problem with this approach is that the assignment of a home agent to a mobile
terminal is permanent, and it introduces performance overhead due to triangular routing. Moreover,
packet tunneling between a home agent and a mobile node adds overhead which is significant for
bandwidth-constrained wireless links. This overhead and the registration of each new care-of-address
with the home agent introduces high latency during the handover, and makes mobile IP inadequate for
real-time handover of quickly moving terminals. Mobile IPv6 offers a solution to triangular routing
using dynamic binding between a terminal’s permanent and temporary address at the correspondent
host, which decreases the bandwidth consumption and communication latency.

Truly-mobile terminal mobility assures network connectivity during terminal movements between
wireless cells and offers greater movement flexibility than nomadic mobility. The essential infras-
tructure for truly-mobile terminal mobility is the availability of a mobile network that offers seamless
handover support. The network enables a mobile terminal to change a network access point during a
session in real time and to perform the handover procedure that is not observable by an end user.

Mobility management mechanisms for mobile networks have been designed to support seamless

2. Content Dissemination and Mobility 26

terminal mobility [70]. Their key advantage over the approach found in IP networks is in the concept
that separates the identifier of a mobile terminal from its location in the network, and the applied
network access point. A network maps the unique terminal identifier to its current location in the
network using théwo-tiered scheme for location management [91], a Home Location Register (HLR)

and a Visitor Location Register (VLR). HLR maintains the current location of a mobile terminal
together with a user profile. VLR is associated with a predefined area and maintains the information
about the terminals currently visiting its area. In the mobile-controlled handover, a mobile terminal
monitors the signals of the surrounding base stations, and initiates the handover when a signal from
the currently serving base station deteriorates. It can perform location update either periodically, or
each time it enters a new predefined location area comprising a set of base stations. The change
of location area is reported to VLR, and if the mobile terminal enters the area associated to a new
VLR, the change is reported to HLR. The two-tiered scheme found in mobile networks resembles the
home-based approach of mobile IP because of the home entity that stores the information about the
whereabouts of mobile terminals. The main difference between the two approaches is that the location
query in mobile IP is always directed through a home agent, while in HLR/VLR approach the search
for a mobile terminal starts with a local VLR, and if the local VLR has no entry about the mobile
terminal, the query is directed to HLR.

To use data services in GPRS/UMTS networks, a mobile terminal needs to register with the net-
work using theattach procedure [103]. The terminal sends an attach request to SGSN responsible
for current terminal location area, SGSN checks the terminal’s subscription data stored by HLR, and
grants access to network services. FurthermorePDie context activation procedure enables a mo-
bile terminal to acquire an IP address that is used for routing data packets to the terminal from the
external packet data networks. GGSN maintains the mapping between the terminal’'s address and
its serving SGSN, and tunnels the packets received from the external network to SGSN that delivers
them to the mobile terminal. The handover procedure is cgiéelet rerouting: It occurs when the
mobile terminal changes its serving SGSN and causes the rerouting of packets from GGSN to the
new SGSN. The correspondent host from an external network is not aware of the handover since the
terminal maintains its external identifier. Mobility management in GPRS networks is also based on
the two-tier scheme: GGSN is a gateway that maintains the mapping between the external terminal
identifier and its current location in a GPRS network.

Micro-mobility solutions for IP-based networks have been designed to solve the problem of sig-
nificant handover delay of mobile IP [99]. The main idea of micro-mobility is to use mobile IP for
inter-domain mobility, but to apply a different procedure when a mobile terminal moves within a sin-
gle administrative domain. The change of the location within the domain causes the change of the
terminal care-of-address, but this information is maintained within the domain, and is not propagated
to the home agent that remains unaware of terminal movements within a domain. This approach fol-
lows the ideas used in GPRS networks since a domain root router supporting micro-mobility is the
only visible element from external networks that keeps the identifier of a mobile terminal fixed while
it moves within its domain, and maintains a current mapping to the location of the mobile terminal

2. Content Dissemination and Mobility 27

with the domain.

Per sonal mobility. Personal mobility regards end users as end communication points. A user can
employ various terminal devices in different networks and stay uniquely addressable within the scope
of a service. Personal mobility reflects the need to locate people and establish a session to a user
through a terminal. For example, a unique user identifier is mapped to one of the temporary terminal
addresses, e.g., email address, mobile phone number, or service-specific address, such as ICQ number.
The mapping enables a service to adjust the communication means to the current application, terminal,
and user preferences that define conditions under which certain communication means are adequate.
Personal mobility management can be regarded as a layer on top of the existing terminal mobility
schemes. It requires support for terminal mobility within the existing networks, and extends it by a
location management procedure that maintains a dynamic binding between a uniquely addressable
user and its current network attachment point.

Mobile People Architecture (MPA) [72] is a solution for personal mobility that aims at enabling
person-to-person communication while preserving mobile person’s privacy and communication pref-
erences. It proposesrson layer on top of the application layer found in traditional networks by
adding a new entity to the network,parsonal proxy. Personal proxy tracks current application and
the means for user reachability, intercepts incoming communication sessions and data, and directs and
adjusts them to currently used application. For example, a voice message can be converted into an
e-mail message if a user is currently reading mail and has decided not to accept phone calls.

Personal mobility is closely related to theesence service specified in the context of instant mes-
saging [34]. A presence service accepts, stores, and distributes presence information about mobile
users - presence entities. The presence information describes the current status of a presence entity
regarding its communication capabilities, for example, a user can be “online” or “offline”. Presence
information is given in the form of XML documents that contain the information about communica-
tion means, user preferences, and current geographical location. Presence services are event-based:
Presence entities provide their presence information to the presence service. Presence service accepts,
stores, and distributes the presence information to everyone subscribed to get the notifications about
presence changes.

Session mobility. Session mobility enables users to maintain an active session while changing
terminals. A session is moved from one terminal in one network to another terminal in another net-
work while preserving an ongoing session. This concept requires migrating current service execution
related information, including service context and service data, from one terminal to another.

Session Initiation Protocol (SIP) [105] is a signaling protocol for multimedia services that enables
setup and management of multimedia sessions. The network must primarily locate an end user to
setup a session. SIP is an application layer approach that offers the means for terminal, personal, and
session mobility. SIP binds a user-specific identifier to a temporary IP address of a terminal that is
currently applied by a user and inherently provides means for personal maobility. Users can maintain
the same identifier as they change network attachment points or use different devices. Users register
their temporary location in the network to a home SIP redirect server or leave a pointer to other servers

2. Content Dissemination and Mobility 28

Table 2.3: Requirements for mobility management

‘ nomadic ‘ mobile
singleterminal | terminal mobility terminal mobility
o mobile IP o micro-mobility for 1P networks
o mobility management in GPRSYUMTS
variousterminals| personal mobility terminal & personal mobility
o MPA o 9P

where the information about the user location may be found. The distributed network of SIP registrars
and redirect servers implements a home-based mobility management procedure. A home registrar
receives a request for session setup, and initiates the process for locating the user following pointers at
a number of redirect servers. On top of personal mobility, SIP offers the support for session mobility
by enabling a redirection of an active multimedia session.

Terminal and personal mobility management are vital for the operation of content dissemination
services. Session mobility is not an issue because the service disseminates non-real time content. A
number of scenarios for service usage are possible. A user may be either nomadic or truly mobile,
and apply a single or various terminals for content receipt. Different mobility management solutions
are needed for the four usage scenarios as listed in Table 2.3.

For a single device moving across domains we can assume the usage of mobility management
protocols for terminal mobility. Mobile IP is adequate for nomadic users, while micro-mobility so-
lutions for IP-based networks and terminal mobility management procedures found in GPRS/UMTS
can be used for truly mobile terminals. In usage scenarios where users apply a number of terminals for
content receipt, the support for personal mobility is required. If a user is nomadic a personal mobility
service is required to authenticate the user and track the current identifier of the applied terminal,
similar to the MPA approach. In a mobile scenario with multiple terminals both terminal and personal
mobility management are needed. SIP is currently the only service providing such support. However,
SIP is primarily designed to support multimedia services and its scalability and performance need fur-
ther investigation if applied as a terminal and personal mobility management solution. The argument
in favor of applying SIP for personal mobility is that SIP has been selected as the main signaling pro-
tocol in future all-IP mobile networks [2]. It might become widely available and extended to support
non-realtime traffic.

Chapter 3

Related Work

Scalable and efficient dissemination of content to users residing in wide area networks has been
an area of active research for many years. Different approaches have been designed ranging from
network-level to application-level solutions. IP multicast is a network-level solution for the efficient
group communication. Services like electronic mail and Usenet news are the established applications
used for communication and exchange of content in everyday life. Recently, push systems and pub-
lish/subscribe systems have been introduced to provide active content dissemination with increased
content customization through user subscriptions. The listed systems are mainly designed for sta-
tionary environments. However, the development of higher bandwidth mobile networks promotes the
deployment of content dissemination services in mobile environments. The widespread use of SMS,
and the increased interest in MMS clearly indicate the demand for information delivery that enables
user mobility.

This section gives an overview of the concepts and systems related to content dissemination
services. In section 3.1 we analyze the existing publish/subscribe systems, and explore the pub-
lish/subscribe concepts related to mobility in Section 3.2. Section 3.3 considers the related ap-
proaches. First, we briefly discuss electronic mail and Usenet news, the established applications
from the Internet domain. Next, we analyze SMS and MMS, services for information dissemination
in mobile networks. Finally, we list the basic properties of application-level multicast systems and
push systems.

3.1 Representative Publish/Subscribe Systems

A number of solutions and systems based on the publish/subscribe interaction model are in use today.
CORBA event service [82] and CORBA notification service [83], as defined by OMG, are imple-
mented in a number of CORBA systems. Sun has developed the Java Message Service [108] spec-
ification that incorporates the publish/subscribe principles. TIBCO’s TIB/Rendezvous [116] is an
example of a commercial system widely used in business applications. There are also a number of
research projects, e.g., JEDI [19, 32, 33], Siena [23, 24], DACs [44, 45, 43], Hermes [89, 90], and

29

3. Related Work 30

REBECA [49, 78], that are designed and implemented using the publish/subscribe concepts.

The research in the area of publish/subscribe systems has thus far concentrated on the design of
an adequate subscription language with an efficient filtering engine [5, 20], topology and routing for
distributed architecture [24], or the quality of service mechanisms for reliable and ordered content
delivery [126]. Reference [42] offers a systematic analysis of the publish/subscribe characteristics.
Reference [33] classifies and compares the existing publish/subscribe systems. We present a short
overview of the established publish/subscribe systems. A detailed discussion and comparison is given
in [92].

3.1.1 CORBA Event and Notification Service

Common Object Request Broker Architecture (CORBA) incorporates the support for the event-based
publish/subscribe interaction between CORBA objects. CORBA event service [82] defines a set of
publish/subscribe service interfaces and describes the underlying infrastructure: Objects can publish
notifications or be interrupted upon the occurrence of a particular notification. The notification service
specification [83] extends the event service by advanced facilities, such as quality of service and
notification filtering.

Event service. CORBA event model [82] follows the channel-based publish/subscribe communi-
cation pattern: Objects communicate ef@mnnels that allow multiple suppliers to communicate with
multiple consumers in an asynchronous wayppliers connect to a channel to publish natifications,
denoted events in the context of CORBA event service, a@mdumers connect to the channel to
receive the notifications.

In a simple scenario consumers and suppliers can interact directly, without a channel, by invoking
each other’s interface methods. A mediated scenario involves a channel that acts as both a supplier
and a consumer of events. Event channels enable anonymous many-to-many communication between
suppliers and consumers. However, event channels offer no means for event filtering: All channel
consumers receive all events published on the channel.

CORBA event service supports batbsh andpull approaches to communication initiation: The
push model allows suppliers to initiate the distribution of notifications to consumers. The pull model
allows consumers to request notifications from suppliers. Push suppliers actively send natifications to
the event channel, while pull suppliers wait for requests coming from the channel. Push consumers
passively wait for events that are eventually sent through the channel, while pull consumers regularly
check if new events are available on the channel.

CORBA notifications are associated with a single data item, such as an object reference, or an
application-specific value, but they are not objects, since CORBA does not support passing objects
by values. Two orthogonal approaches to notification communication are defined: generic, and typed.
Generic notifications carry messages with an undefined structure. In the typed case, notification data
is passed by means of typed parameters that are defined by the Interface Definition Language (IDL).
Accordingly, event channels can also be generic or typed: Generic event channels only support generic

3. Related Work 31

communication, while typed event channels support both typed and generic communication. One of
the major constraints of the approach is that suppliers and consumers need to agree beforehand on the
structure of notifications so as to be able to process them in a meaningful way.

The event service defines simple means for event propagation and has a number of drawbacks. It
is not adequate for maobile scenarios because consumers must be connected to the channel at the time
of event publication because CORBA event service does not support event persistence. The second
drawback is that event channels offer no means for event filtering: If various event types are needed,
it is necessary to use separate channels for each event type. Finally, the specification does not dictate
the reliability requirements for the communication service and offers no guarantees concerning the
delivery of events. It can have either “at-most-once” or “exactly once” semantics, depending on the
particular service implementation.

Notification service. CORBA notification service [83] deals with the mentioned drawbacks of the
event service and extends it with new capabilities, such as filtering and configurability, according to
various requirements for quality of service (QoS). The notification service preserves the semantics of
the event service and ensures interoperability between the basic event service clients and notification
service clients. One of the extensions offered by the notification service are content-based subscrip-
tions and event filtering using filter objects: Filter objects define a set of constraints that affect the
forwarding of an event. For example, naotification service consumer can subscribe to events of interest
by associating a filter object to the proxy through which it connects to an event channel. When an
event that matches the filter object is published, the proxy will forward it to the consumer.

The notification service introduces a new type of evestisictured events with a well-known data
structure into which a wide variety of event types can be mapped. Structured events consist of a header
and a body: Aheader is further decomposed into a fixed and a variable part. The fixed event header
consists of @lomai n_nane which identifies a particular domain (e.g. telecommunications, finance),
atype_name which categorizes an event, and ement _name which can uniquely specify an
event. A variable header part is composed of a list of optional name-value ga@rst. body carries
the content of an event. The filterable portion of the body contains the most interesting event fields
(name-value pairs) used when matching the event with a filter object. The remainder of the body is of
typeany and can be used to transmit large data items.

Another enhancement introduced by the notification service are standard interfaces for controlling
QoS characteristics for event delivery. The notification service enables each channel, each connection,
and each message to be configured so as to support the desired quality of service with respect to deliv-
ery guarantees, event persistence, and event prioritization. OMG defines a set of QoS properties, their
permitted types, and the range of values. This is an open list of parameters, and service implementers
can add their own properties. OMG has defined the following properties:

e Reliability is related to the event delivery policy, such as best effort, or persistent delivery.

e Priority; by default, the notification channel will attempt to deliver messages according to their
priority level.

3. Related Work 32

e Expiry times indicate the time interval within which an event is valid.
e Earliest delivery time specifies the time after which an event can be delivered.

e Maximum events per consumer defines the maximum number of events a channel can queue on
behalf of a consumer. This property prevents malicious users from overloading a channel.

The list of supported properties provides flexible QoS configuration of a notification channel.
However, meaningless properties are not prevented which creates a serious vulnerability that could
be exploited by malicious consumers or suppliers. End-to-end delivery policy can only be guaranteed
with the cooperation of all parties, i.e., consumers, suppliers, and the notification channel.

The OMG event and notification service specifications offer no guidelines regarding the architec-
ture and routing strategy for distributed event systems.

3.1.2 JavaMessage Service

Java Message Service (JMS) [108] is a message-oriented specification for the Java programming lan-
guage that defines a set of interfaces and their semantics, thus enabling JMS compliant clients to access
the services offered by a JIMS messaging server. JMS target application area is enterprise messaging
for asynchronous Business-to-Business communication over the Internet. JMS provides two types
of messaging models, point-to-point messaging and publish/subscribe [76]. The point-to-point mes-
saging model relies on the classical message-queuing communication pattern. The publish/subscribe
model incorporates two types of JMS clients, publishers and providers, that communicate by exchang-
ing messages through an intermediary server, called JMS providé¥SYprovider is a messaging

server that implements JMS interfaces and provides administrative and control fedigdients

are programs or components written in the Java programming language that produce and consume
messages. Notifications are referred toressages in JIMS: Messages are Java objects that commu-
nicate information between JMS clients.

The concept of natifications is circumvented in JMS and used implicitly in messages. Message
properties and its payload represent a notification, i.e., information submitted to message subscribers.
Messages consist of message headers, message properties, and message data called the payload, or
message body. Message headers carry message routing information, and control information about
the message, such as message id, timestamp, priority, and delivery mode. Message properties consist
of attribute-value pairs and can be defined by the application using JMS, or by the messaging server.
Message payload contains the information that message publishers communicate to message receivers.

Publishers publish messages tdMStopic, which is one of JMS destinations. Topics are created
by an administrator using the administrative tools offered by the applied JMS provider. It is assumed
that publishers will publish messages on the established topics. This approach is static and is aug-
mented bytemporary topics: Publishers can dynamically create new temporary topics. Subscribers
subscribe to a particular topic by registering their message listeners with the topic, as depicted in Fig-
ure 3.1. Whenever a message is published on a topic, the listener's method is invoked, signaling the

3. Related Work 33

Publisher Subscriber

p.publish(m) l.onMessage(m)

TopicSubscriber s;

TopicPublisher p; Messagelistener [;

s.setMessagelListnener(l);

Figure 3.1: Publish/subscribe interaction in IMS

receipt of a new message for the subscriber.

JMS offers delivery guarantees using the conceptducdble subscriptions and persistent mes-
sages. Subscribers can define durable subscriptions to a topic. While a durable subscriber is discon-
nected from a JMS server, the server stores the published messages matching its subscription. When
the subscriber reconnects, the server sends all stored and unexpired messages to the subscriber in the
store-and-forward delivery style. Publishers can define either persistent or non-persistent delivery
mode for their messages. In case of the non-persistent mode, the server offers at-most-once message
delivery. Persistent messages are first stored by the server, and then delivered to subscribers. Sub-
scribers need to confirm the receipt of a persistent message. If the acknowledgment is missing, the
server resends the message assuring at-least-once message delivery.

JMS definesnessage filtering on the subscriber side using message selectors. Message selectors
are expressed as Java strings that define conditions on message properties and headers. Message
selectors need to comply with the defined subscription grammar which supports the conditions as
complex boolean expressions with equality, comparison, or range operators. The JMS specification is
a pure API specification. It does not define the rules for building the architecture of JMS server with
respect to distribution.

3.1.3 TIB/Rendezvous

TIB/Rendezvous is a commercial messaging system for application-to-application integration that is
based on the publish/subscribe communication pattern [116]. It is originally described in terms of
an information bus [85] that offers application independent communication through self-describing
messages. TIB/Rendezvous is a widely used messaging system applied for integrating diversity of
applications, e.g., various financial and banking applications.

TIB/Rendezvous adopts the subject-based approach to subscriptions. A subject name is a se-
quence of strings separated by dots (en@ws. conp. t heory. books) that arrange subjects in
a subject tree. A subscriber can subscribe to a single subject, or use wildcard characters, such as
“*¥" (substitutes a single string) or=” (substitutes a number of strings) to specify a range of sub-
jects. Messages communicated between publishers and subscribers are composed of a set of typed
data fields. A field is a record with the following attributesmne specifies the name of the fieldD
defines a message-unique field identife@arz e gives the total size of the field,ount contains the
number of elements if the field consists of an artaygpe indicates the type of field data, and, finally,

3. Related Work 34

dat a contains the actual data stored in the field [115].

TIB/Rendezvous employs a distributed architecture to offer reliable and scalable distribution of
notifications using different transport mechanisms, such as link-level network multicasting, IP mul-
ticasting and point-to-point communication. Each host running a client, either a publisher or a sub-
scriber, must run a speciagndezvous daemon which is responsible for handling the subject-based
communication. TIB/Rendezvous applies receiver-side filtering of messages. Whenever a message is
published, it is sent to each host on the local network running a rendezvous daemon that delivers the
message to the subscribers residing on the same host in case of a matching subscription. In case of a
distributed architecture expanded over a wide-area netwemllezvous router daemons are used for
communicating with router daemons on remote networks. Router daemons are aware of the overlay
network topology and compute a multicast tree for publishing messages to other remote networks. A
router daemon multicasts the messages published on its local network to remote networks, and for-
wards the messages coming from other remote networks. Note that the receiver-side filtering might
cause significant bandwidth consumption: The overlay network can be flooded by unneeded messages
because subscription information is not distributed between router daemons, and notifications might
be forwarded to remote networks that host no subscribers for these messages.

3.1.4 JEDI

The Java Event-based Distributed Infrastructure (JEDI) [19, 32, 33] is a lightweight middleware in-
frastructure that supports the development of event-based applications. JEDI is based on the concept
of active objects (AO) and event dispatchers (EDs). An AO is a special kind of object that interacts
with other AOs by producing and consuming events. Thus, an AO can perform the activities of both
an event publisher and a subscriber to a particular event type. ED is a special component responsible
for delivering events from publishing AOs to AOs that have expressed the interest in receiving such
events.

JEDI events and event patterns. JEDI event is an ordered set of attributes that describes an
event characteristic. An attribute is a name-value pair: Both name and value are strings and, as a
consequence, an event is a sequence of strings. JEDI supports the content-based event filtering that
applies pattern matching based on regular expressions when comparing events to subscriptions. AO
can either subscribe to a specific event, or to an event pattern. Event patterns are ordered set of strings
that represent a simple form of regular expressions over events. An event pattern is identified with
a sequence of pairsnane, regul ar expressi on), where name and regular expression are
both strings. A pattern-matching algorithm is used to verify compatibility between an event instance
and an event pattern. For example, the event paftSour ce_| D, 12*); (Signal _Type, *)
is compatible with all events with a value for attribueur ce_| D starting with 12, and with any
value of attributeSi gnal _Type.

ED stores all event patterns received from the subscribing AOs. When ED receives an event, it
verifies compatibility between the received event and each event pattern using the pattern-matching

3. Related Work 35

algorithm, and delivers the event to each AO with the matching subscription connected to it.

Distributed ED architecture. ED is a logically centralized component that needs the global
knowledge about AOs, their subscriptions, and published events. However, a centralized implementa-
tion of an ED would be a critical bottleneck for a distributed system. To solve the scalability problem,
JEDI offers a distributed implementation of ED. The distributed version of ED consists of a set of dis-
patching servers (DSs). DSs are connected to form a tree topology. Each DS is located at a different
network node and is connected to one parent DS, and to zero or more descendant DSs. A DS with no
parent DS is the root of the tree, while DSs with no descendant DSs are the leaves of the tree. AOs
can connect to all DSs that form the ED.

DSs use a coordination protocol that distributes the information about subscriptions and events
among them. The distribution protocol is designed to minimize the network load generated by control
messages exchanged among the DSs. JEDI uses the hierarchical strategy to distribute events, sub-
scriptions, and unsubscription messages between DSs: Subscriptions are propagated upwards in the
tree, so that all ancestors of a DS receive it. When a DS receives a new event, it must send it to its con-
nected AOs with a matching event pattern, to its descendant DSs that have subscribed with a matching
pattern, and to its parent. This strategy ensures that all relevant nodes and the connected AOs receive
the published event messages. However, this strategy has significant weakness since events are always
sent upward to the root DS which may become a serious performance bottleneck.

3.15 Siena

Siena (Scalable Internet Event Notification Architecture) [22, 23, 24] is a middleware infrastructure
that supports the implementation of publish/subscribe-based applications, with the main objective to
provide a scalable Internet-scale notification service. Siena is implemented as a distributed overlay
network of servers that provide clients with access points to a publish/subscribe interface. Notifica-
tions are produced by objects of interest and consumed by interested parties. Siena offers an advertise-
ment mechanism that enables objects of interest to announce the type of notifications they intend to
publish. The interested parties subscribe to naotifications by defining an event pattern. Siena servers are
responsible for selecting the notifications of interest and for delivering them to the interested parties.
Notifications, filters, and patterns. Siena notifications are untyped set of typed attributes. Each
attribute is a triple consisting of a type, a name, and a value. A filter selects notifications by specifying
attributes and constraints on the values of these attributes. Constrains are expressed by equality and
ordering relations, substring, prefix, and suffix operators for strings, and the opangtanatching
any value. A filter is matched against a single notification based on the natification’s attribute val-
ues. Additionally, Siena offers limited support for composite events. It is possible to investigate a
combination of notifications through the use of patterns. A pattern is defined as a sequence of filters
matched against a temporally ordered sequence of notifications. For example, if two notifications are
received in a consecutive order, and if they match two filters that compose the client's pattern, these
notifications are delivered to the client.

3. Related Work 36

Distributed architecture. Siena is designed to offer scalable event distribution in wide area
networks: A network of interconnected Siena servers builds the service infrastructure. Reference [24]
defines and analyzes four different server topologies: centralized, hierarchical, acyclic peer-to-peer,
and general peer-to-peer. A control algorithm, based on the principle of reverse path forwarding, is
applied in hierarchical and peer-to-peer topologies. The main idea behind the routing algorithm is to
send notifications only to the servers that have clients interested in receiving such notifications. The
algorithm is based on the principles found in IP multicast:

e Downstream replication; a naotification is routed in one copy as far as possible and replicated
only downstream, as close as possible to the parties interested in it.

e Upstream evaluation; filers are applied and assembled upstream, as close as possible to the
sources of natifications.

The forwarding of advertisements decreases the number of control messages that update sub-
scription information, since subscription update is sent only to those servers that intend to generate
matching notifications. Advertisements set the routing path for subscriptions, which in turn set the
path for notifications. Every advertisement is broadcasted to all Siena servers. When a server receives
a subscription, it propagates the subscription in the opposite direction along the path to the advertiser,
and activates the path for notification forwarding.

3.1.6 DACs

Distributed Asynchronous Collections (DACs) are object-oriented abstractions for expressing differ-
ent publish/subscribe styles and qualities of service [43, 44, 45]. A single DAC represents a distributed
collection of objects, e.gset, bag, queue, extended by publish/subscribe communication primitives.
A client can subscribe to a DAC by registering a spec#lback object. When a new object is in-
serted into the DAC, it triggers the invocation of the client’s listener method which delivers the inserted
object to the client. Thus, DACs enable asynchronous interaction between the communicating parties.

DAC events are objects. An event can be any object with a single constraint that the object is
serializable in terms of the Java programming language because serialized objects can be transported
through the network. DACs offer subject-based publish/subscribe communication by using object
types as the basic subscription criterion: [45] introduces the notidypefbased subscription. The
content-based subscription scheme relies on structural reflection to implement filter objects for ex-
pressing subscription patterns [43]. Reflection offers increased modularity and flexibility compared
to standard approaches that use subscription languages and patterns. However, it causes performance
degradation of the filtering engine which is considerable for systems with high frequency of published
events.

DACs are inherently distributed. Messages are sent to all DAC processes using various QoS
such as unreliable delivery, guaranteed delivery, guaranteed delivery without duplicates, and ordered
delivery [41]. A special topic membership protocol maintains the information about the running

3. Related Work 37

processes and the state of channels between themTopreReliable Broadcast protocol is defined
to offer efficient and reliable message delivery resilient to channel failures.

3.1.7 Hermes

Hermes is a distributed publish/subscribe middleware system that uses peer-to-peer techniques to build
and maintain a scalable overlay network of brokers for notification dissemination [89, 90]. Clients are
lightweight components that can act both as notification publishers and as subscribers. They connect
to system brokers that are responsible for routing notifications in the form of messages to interested
subscribers. Notifications are instances ofeaant type. An event type has a type name and a list of
attributes, and all event types are organized in an inheritance hierarchy.

Brokers form an overlay network that uses the principles of peer-to-peer routing algorithms, sim-
ilar to the routing algorithm used in Pastry [102]. Every broker has a unique node identifier and the
overlay network provides the operation of routing a message to the broker with a given node identi-
fier. The routing of messages in the peer-to-peer layer is efficient. A messagéiékesV) hops on
average to reach a destination broker, or a broker with the closest identifier, Whgtbe number of
brokers in the system.

Hermes usesendezvous nodes, similar to core nodes in the core-based multicast trees [13], for
setting up delivery paths for notifications. A rendezvous node exists in the broker network for each
event type. A node identifier of a rendezvous node for a given type is determined by calculating a hash
value of the event type name. Hermes supports two variants of content-based rtypirtgased and
attribute-based. In the type-based variant, subscribers receive all notifications of a certain type and
its subtypes. Attribute-based routing allows filtering of notifications according to type’s attributes as
close as possible to a publisher. The routing algorithm works as follows: First, advertisements that de-
note publisher’s intent to publish notifications of a certain type are routed to the type rendezvous node.
Next, subscriptions are routed to the rendezvous node to set up delivery paths for notifications. In case
of the attribute-based subscriptions, subscriptions follow reverse paths of type advertisements to set
up filtering state as close to the publishers as possible. Finally, a naotification is routed following the
advertisement message to the rendezvous node, and in the reverse direction of subscription messages
from the rendezvous node. In case of attribute-based routing, notifications just follow the reverse
path of subscriptions and are filtered by brokers using the information received through subscription
messages.

3.1.8 REBECA

REBECA natification service [49, 78] is a content-based publish/subscribe infrastructure comprising
a set of interconnected brokers that allow clients to publish notifications for interested users. Brokers
are divided into two categoried:ocal brokers serve as access points for publisher and subscriber
processes, whileouters are used for forwarding messages between their neighboring brokers.

A notification in REBECA is a message that contains information about an event that has occurred.

3. Related Work 38

A notification consists of a set of attributes where each attribute is a name-value pair. Notification
filters are defined as boolean functions that can be applied to notifications. Filters can be either simple
atomic predicates or compound filters. Simple atomic predicates contrast attributes to values using
the operators, such as equality, comparison, set operators, or string operators. A compound filter is a
conjunction of simple filters.

The notification service is distributed and relies on a set of routing algorithms for delivering noti-
fications: simple routing, identity-based routing, covering-based routing, and merging-based routing.
All algorithms are based on the reverse path forwarding approach and can apply advertisements to
avoid subscription flooding. In simple routing, all active filters are added to the broker routing tables
with the identity of the link they originate from. This approach is not optimal because the size of the
routing tables grows linearly with the number of subscriptions. The straightforward improvement of
the approach is to combine equal filters in routing tables, the approach used in identity-based routing.
Further improvement is the covering routing strategy which considers covering among filters to de-
crease the size of the routing tables. Finally, the most complex approach is merging applied to create
new filters that cover the existing filters [77]. REBECA working prototype has been used to evaluate
and compare the listed routing strategies in [79].

Comparison of the presented publish/subscribe systems. Table 3.1 summarizes and compares
the features of the presented representative publish/subscribe systems.

3.2 Mobility Support in Publish/Subscribe Systems

Most of the existing publish/subscribe systems have been designed and optimized for stationary envi-
ronments where publishers and subscribers are static, and the infrastructure itself stays fixed. The
mobility-related operation is dealt with at the application layer through a sequenasafibe-
unsubscribe-subscribe requests: A subscriber from the application layer first defines new subscrip-
tions and unsubscribes prior to disconnecting from the publish/subscribe system. After reconnecting
to the system, the subscriber needs to re-subscribe to make the system aware of its subscriptions.
However, the subscriber will not receive notifications that have been published during the time of
disconnection.

We have argued in [94] that the publish/subscribe middleware itself must offer the mobility sup-
port by ensuring seamless reconnection to a new broker and by preserving notifications published
during disconnection. The authors in [125] agree that mobility-related issues should be addressed by
the publish/subscribe middleware, and not delegated to the application layer. Some publish/subscribe
systems incorporate solutions to the problem of client mobility: The common solution stores notifica-
tions published during disconnection in a special subscriber queue and delivers the notifications after
subscriber reconnection. The existing solutions extent the established stationary publish/subscribe
systems to cope with client mobility while keeping the infrastructure stationary [21, 48]. The posi-
tion paper [59] takes an orthogonal approach: The authors analyze the requirements of mobile pub-

39

3. Related Work

Buipaemioy Buipsemio) | Buipremiol
yred soan payoads yred yred Buipooyy Buipooy} payioads payinads ABore ais
9sIanal | paseq-a109 10U aslanal aslanal 10U j0u Bunno.
(ydeuab (ydeub ydeub a1jphoe (ydeub suoneuawajdwi
2119Aoe) [elouab) |painguisip|/edlyatelaly) | [ealyaielaly) | painguisip painquisip paioads pauoads 21Ny Je
painquisip | panguisip painguisip | pawnguisip /pazifenuad 0U 10U
Aouassied
soh ou ou ou ou ou L soak ou uolredljou
suoIssaldxa| suoissaidxa | uonospyal | abenbue| |suoissaldxe | pauloads S10]09]9S abenbueg| paiioads BRI
punodwod 18y [eJn1onns | urensuod Je|nbal 10U abessaw JureISu0? 10U Buleiy
sanguie | adAliusna s108lgo saingune sangue sangue sabfessaw safessaw Auy a.InpnJs
J018S UeJo saoueisul| eAer padA1 jo18s padAwun joias|padAljoi1as | paimonis painonns padAy uoledljiou
paseq paseq paseq paseq paseq paseq paseq paseq paseq elloIIID
-usoo [-ainquue/adAl| -adA -JUL1u0d -JUL1u0d -103lgns -JuLu09 -JUL1u0d -|]auuey? uondiiosgns
snoAzapuay 90IAJBS 90IAJBS
vO3g3d SSweH sova euwIS iaac /a1l SIAC uoI1edjIou Vg OO | 1UeMe Ygd 0O

swalsAs aquosqgns,ysiignd pajuasaid ay) Jo uosiiedwo) :

T°€3lgel

3. Related Work 40

lish/subscribe systems, and discuss centralized and distributed system architectures tailored to mobile
environments.

Mobility support in CEA. The Cambridge Event Architecture €8) [10] uses a mediator which
receives notifications on behalf of a subscriber during disconnections. The mediator acts as a sub-
scriber proxy, and can register interest in subscriber’s location: When the subscriber reconnects to the
system, the mediator will get a notification with the new subscriber’s location, and then deliver the
queued messages to the subscriber. The proposed solution is indeed interesting because it relies on
the publish/subscribe infrastructure itself to transmit the information about the changing subscriber
locations. However, it involves a serious security risk: A malicious party could take the role of a
mediator, track subscribers which jeopardizes location privacy, and deliver bogus notifications after
subscriber reconnection.

Mobility support in JEDI. JEDI [33] offers two mobility-related operationsrovel n, and
noveQut . A subscriber usespveQut to disconnect from a broker antbvel n to reconnect
possibly to a new broker. A client can detach from the system, serialize its current state, and later on
reconnect. The old broker stores events on behalf of the subscriber during the disconnection period
and transmits them to a new broker upon reconnection. The approach solves the queuing problem,
however, no details regarding the handover procedure from the old to the new broker, or the change of
the delivery path is given. Reference [31] proposes a rather complex solution that updates the deliv-
ery tree in a hierarchical distributed architecture: It uses a dynamic dispatching tree that has a leader
responsible for subscribers with the same subscription. This solution requires a complex protocol and
further analysis is needed since no evaluation study is currently available.

Mobility in Siena. The authors of Siena present a support service for mobile, wireless clients
of a distributed publish/subscribe system in [21]. The mobility service enables the movement of
subscribers between different access points of a publish/subscribe system. The servidienises
proxies and a speciatlient library to manage subscriptions and notifications on behalf of a subscriber,
both while the subscriber is disconnected and during the handover between different access points. A
client proxy runs as a special component at an access point and stores messages for a disconnected
subscriber in a special queue. The client library mediates subscriptions, and initrade®aout
procedure: It submits subscriptions to the client proxy that subscribes using the client’'s subscriptions
and stores incoming messages in a special buffer. The client uses\tiee i n function to reconnect
to the system: It contacts the local client proxy and submits the address of the old proxy. The old and
the new proxy start a special handover procedure that transfers messages from the old proxy to the
new one and then to the subscriber.

The mobility service implements a specshchronization mechanism to avoid lost notifications.

The main principle is quite simple: When transferring subscriptions frbto be active onB, the
system needs to make sure that subscriptions are activelmefore terminating subscriptions oh

It is possible that during the procedure botrand B will receive the same messages. The mobility
service implementation permits that a subscriber receives duplicate messages.

The presented system is independent from the underlying publish/subscribe middleware: The

3. Related Work 41

portability of the mobility service has been proved through an implementation on top of three dif-
ferent publish/subscribe systems (Siena, JMS, and Elvin). The client library wraps the target pub-
lish/subscribe APl and needs to be implemented specially for each API by addimgylee i n and

nove- out functions, and by overriding the subscribe function of the original API.

Reference [21] offers results of an experiment that proves the applicability of the implementation.
The evaluation is limited since the experiment has been performed on a broker network consisting
of three broker nodes, a single publisher, and a single mobile subscriber that moves only once. The
experiment includes the performance evaluation if a subscriber uses a GPRS network - which has been
simulated — to access the publish/subscribe service.

Mobility in REBECA. The approach taken within the project REBECA is to extend and modify
the existing publish/subscribe system to support mobile and location-dependent applications [48, 125].
The mobility service aims to support two different types of mobilipjtysical mobility andlogical
mobility. Physical mobility is similar to terminal mobility: A client is physically mobile and roams
between different network domains. It can disconnect from the system and later on reconnect possibly
to another broker in a different network. Its subscriptions are valid and the system stores notifications
published during the disconnected period. Logical mobility is related to geographical location: As a
client changes its geographical position, its subscriptions dynamically change because the published
information is location-dependent.

The algorithm that is developed for physical mobility is designed for a distributed network of
brokers. It applies the “queuing” approach: The old broker stores notifications for a disconnected
subscriber. When the subscriber connects to a new broker, it re-issues its subscriptions, but keeps no
record of the old broker address. The algorithm finds the old broker by locating a broker that is at
the junction of delivery paths for the new and the old broker. It is clear how this junction broker is
found if simple routing is used: Each broker stores active subscriptions for all subscribers with the
subscriber identifier, and since the subscription from the old broker is still active in the system, it is
simple to find the junction broker leading to both the old and the new broker. The notifications stored
by the old broker are routed through the junction to the new broker and delivered to the subscriber.
With simple routing the routing tables can become rather large because all brokers have the knowledge
about all subscriptions. Routing algorithms that use covering and merging are better suited for mobile
environments where subscriptions change more often than in static scenarios. The proposed algorithm
needs further extensions in case routing based on covering or merging is applied since the process of
finding a broker junction is not straightforward. The designed algorithm appears to be rather complex
and there are currently no evaluation results that shows it's applicability and performance.

Mobility in Elvin. Mobility support for Elvin [111] is one of the first implementations offer-
ing mobility to subscribers in a publish/subscribe system. It enables subscriber’s nomadic mobility
without modifying the original Elvin server: The proposed solution puts a proxy server between the
original Elvin server and a mobile device. The central proxy server queues messages for disconnected
subscribers and delivers them upon their reconnection. The presented solution implements a queu-
ing strategy with a time-to-live expiry. A subscriber must always connect to the central proxy server

3. Related Work 42

which can become a performance bottleneck and induce significant network traffic due to triangular
routing if a subscriber connects to the system from another network.

JM S-based systems supporting mobility. Recently, some of the systems that implement the
JMS specification offer support for mobility [107, 84, 123]. Such systems offer a lightweight JMS-
compliant API for Java-enabled mobile terminals that can be used to implement JIMS-based publishers
and subscribers. iBus//Mobile [107] is a commercial IMS-compliant implementation. It integrates a
special gateway that serves as a mediator between a JMS provider, and JMS clients. It offers support
for native clients with no JMS support: Native clients can publish and receive SMS or MMS mes-
sages that are transformed into JMS messages that can interact with the JMS provider. iBus//Mobile
supports TCP, UDP, HTTP, and HTTPS as transport protocols for JIMS messages. JORAM [84] is an
open source project that has recently published a client API called kJORAM that adjusted to J2ME
devices. Pronto [123] is an academic project: It provides a JMS-compliant middleware system that
supports mobility of IMS publishers and subscribers, and implements a mobile JMS API that can run
on resource-limited devices. It incorporates a mobile gateway that supports JMS in wireless networks
and employs SMS, or mail as transport mechanisms for native devices that do not support Java and
JMS.

3.3 Related Approaches

3.3.1 Electronic Mail

Electronic mail [113] is one of the first services on the Internet for distributing messages with ar-
bitrary content. The introduction of mailing lists provides a powerful tool for one-to-many content
dissemination: Tools for creating and maintaining mailing lists facilitate users to subscribe to and
unsubscribe from mailing lists automatically, and enables topic-based publish/subscribe interaction.
The main disadvantage of using mail for disseminating content to large mailing lists is resource con-
sumption: The typical mail distribution method creates a separate mail copy for each receiver from
the mailing list and sends each copy separately to the receiver even if several receivers use the same
mail server. This approach can cause considerable computing load and bandwidth consumption which
can lead to significant delivery delays.

Contrary to the huge success and primacy on the Internet, electronic mail is currently not widely
used in the mobile domain. The main reasons for its poor acceptance are bandwidth limitations and
scheduled pull-style retrieval of mail messages which requires permanent network connection. Malil
readers for mobile devices that apply standard Internet protocols (POP3 and IMAP) are currently
available. To solve the problems related to the pull-style operation, proprietary solutions that employ
push-style message retrieval are recently being deployed: Such solutions send notifications to a user’s
mobile terminal when a new mail message arrives at the mail server.

3. Related Work 43

3.3.2 Usenet News

Usenet news [114], one of the most popular applications in computer networking, is a worldwide
distributed blackboard for disseminating news. News are grouped around specific topics, called
newsgroups, which are organized in a hierarchical topic tree similar to subject-based subscriptions
in publish/subscribe systems. The basic interaction model found in Usenet news is similar to the
publish/subscribe approach: A user may post an article to a newsgroup, and another user who has
subscribed to this newsgroup will eventually receive a copy of the article. Users can access the arti-
cles posted to newsgroups via a news reader that manages the interaction with the news server. The
news infrastructure consisting of news servers ensures the worldwide distribution of posted news.
The Network News Transfer Protocol (NNTP) is used to propagate articles among news servers. The
exchange of news between the news servers may be performed in either pull or push style, while a
news reader receives the articles for user topics via client-side pull. The protocol offers no delivery
guaranties: messages may be lost, duplicated, and delivered without order.

3.3.3 Short Message Service

Short Message Service (SMS) is a simple messaging service widely used in today’s mobile net-
works [67, 86]. SMS transports alphanumeric messages usirgiotieeand forward paradigm: Mes-

sages are temporarily stored if users cannot retrieve them at the time of message publication. A stored
message is delivered to the user terminal when it reconnects to the network. SMS qitént- a
to-point service that enables person-to-person and machine-to-person message exchange carrying at
most 140 bytes of payload, either 160 7-bit characters, or 140 8-bit characters. In addition to the point-
to-point communication, SMS offers the so-callatl broadcast service for transmitting messages to

all active terminals in a cell that have subscribed to the particular information service. This feature
enables the deployment of information services carrying for example weather updates and financial
reports that are examples of machine-to-person SMS usage scenarios. SMS is an extremely popular
messaging service, but limited by the low bandwidth communication channels.

3.34 Multimedia Message Service

Multimedia Message Service (MMS) is an enhanced messaging service that exploits the access to
higher bandwidth in 2.5G and 3G networks [67]. MMS enables the exchange of multimedia mes-
sages carrying text, audio, and pictures in the context of person-to-person and machine-to-person
scenarios. MMS supports interoperability with electronic mail which gives rise to various usage
scenarios. The concept of message natification allows deferred retrieval of messages and relies on
persistent network-based storage of messages: Messages can be stored persistently in the network
and controlled remotely via mobile terminals. Value-added services such as weather notifications,
news updates, or location-based information are typical content dissemination applications that can
be deployed using MMS as a transport mechanism. Those services lack the flexibility of subscription
found in publish/subscribe systems: The subscription to value-added services is static and currently

3. Related Work 44

offers no means for adjusting the service to user preferences and up-to-date needs. It would be useful
to extend the MMS architecture with publish/subscribe interaction principles.

3.3.5 Application-Level Multicast

Due to the lack of widespread deployment of network-level IP multicast [35], application-level multi-
cast has emerged as an alternative solution for the efficient distribution of content to many users across
wide area networks [14, 39]. The basic idea in application-level multicast is to route and replicate the
content using network end-host, rather than routers. Naturally, application-level multicast solutions
are less efficient than IP multicast since they may send data packets several times over the same link.

Application-level multicast systems can be regarded as distributed publish/subscribe systems of-
fering topic-based subscription to topic, i.e., group members. The existing solutions propose different
algorithms for scalable group management, and reliable message propagation through the overlay
network. Systems such asx®IBE [25], CAN [98] and Bayeux [127] build a multicast tree over a
peer-to-peer network that is responsible for scalable and fault-tolerant message routing.

3.3.6 Push Systems

Push systems [57, 69] offer timely delivery of possibly large amounts of content to many subscribers
in wide area networks. These systems use channels to classify the content that is published to sub-
scribers, and the teripush service is used to stress that the content is actively pushed to subscribers.
Push systems and publish/subscribe systems are closely related: The basic interaction model is the
same: Subscribers subscribe to the service and receive the published content in push style. The main
difference between the two types of systems is that push systems offer services to end users, while
publish/subscribe systems are middleware. Push systems offer channel-based subscription criteria to
their users, while publish/subscribe systems provide flexible and expressive subscription capabilities.
The extensive comparison of push systems and publish/subscribe middleware can be found in [58].

Minstrel [57] is a Java-based push system developed at the Technical University of Vienna. The
main goal is to provide flexible and secure content delivery in the area of e-commerce, and to ensure
system scalability. Minstrel has a distributed architecture and employs a proprietary application-layer
protocol for efficient content distribution to numerous users across a wide area network. The main
Minstrel components are a broadcaster and a receiver. A broadcaster is responsible for managing
channels and sending information along channels. A receiver component is responsible for subscrib-
ing a user to available channels and for receiving the content. The current receiver implementation is
designed for desktop computers, and the system does not support receiver mobility.

LoL@ is a prototype location-based service offering tourist information to mobile users [96].
It has been designed using the push principle for data transfer to terminals, and relies on the SIP
architecture for user mobility management.

Chapter 4

Publish/Subscribe System M odel

This chapter presents the mathematical model of distributed mobility-enabled publish/subscribe sys-
tems. The model reflects the observation that publish/subscribe systems exhibit the characteristics of
discrete event systems, and that their behavior is guided by a sequence of events. We use set theory no-
tation to define the model and the rules specifying valid event sequences that cause changes to system
state. The main contribution of the proposed model is the introduction of proxy subscribers and proxy
publishers that enable the communication and interaction between distributed publish/subscribe bro-
kers. The approach facilitates the description of each publish/subscribe broker with a separate basic
model, and the description of interactions between brokers with the publish/subscribe communication
primitives. In addition to offering a formal system definition, the publish/subscribe system model
enables the design of routing algorithms for disseminating notifications to subscribers in a distributed
system that will be presented in Chapter 5.

The section is organized as follows: In Section 4.1 we present the basic mathematical model and
extend it with mobility-related events in Section 4.2. Section 4.3 defines the distributed model which
is based on the basic mathematical model, and introduces proxy publishers and proxy subscribes for
modeling connections between system brokers.

4.1 Basic Mathematical M odel

We present the mathematical model of a publish/subscribe system that describes the basic publish/sub-
scribe interaction. The model involves two types of actors, publishers and subscribers, and two types
of objects, notifications and subscriptions: Subscribers define subscriptions, while publishers publish
notifications. Notifications matching subscriptions are delivered to subscribers. We use set theory
notation to state our definitions and describe system properties following the approach used in [27]
for modeling group communication systems.

45

4. Publish/Subscribe System Model 46

41.1 Structural View

We define a 4-tupls = (P, S, N, M) comprising a set of publishefB, and a set of subscribers
S that interact by using notifications from the set of notificati?disand subscriptions from the set
of subscriptionsM. B gives thestructural view of a publish/subscribe system and determines the
boundaries of the system’s state space: It defines the type and the number of entities that can exist in
a publish/subscribe system.

P is afinite set of publisher® = { P, %, ..., P,}, wherep > 0is the total number of publishers
in the system. A publisheP, € P is an actor that publishes notifications from the finite set of
notifications/\V.

S is a finite set of subscribers; = {51, 5o, ..., S5}, wheres > 0 is the total number of sub-
scribers in the system. A subscrib€r € S is an actor that defines subscriptions from the finite set
of subscriptionsM. WhenPE, € P publishes a naotificatiom;, € N, n;, is compared to the set of
S;’s active subscriptiongm;i, m;o, ..., mj }. If ny, matches at least one 6f's subscriptions, the
system delivers;;, to S;. Otherwise, no action is taken.

4.1.2 Behavioral View

Publishers, subscribers, and the system interact by performing actions. The occurrence of an action
is anevent that changes a system state. Publish/subscribe systems exhibit the propedisesetsf
event systems. A discrete event systems is a dynamic system that evolves in time in response to the
occurrence of events at discrete points in time [124].

We defined = {a1,aq,...,a,...}, a possibly infinite set of events that provides liebavioral
view of a publish/subscribe system. An evenbccurs at a discrete point in timégs;). We assume
that two events cannot occur simultaneously, i.€.(df) = t(a;) = a; = a;. Therefore, we have an
ordered sequence of events in the system whevecurs before;, iff ¢(a;) < t(a;), andi < j.

In the basic model the following types of events can occur:

e publish - publisher publishes notification,

e subscribe - subscriber activates a subscription,

e unsubscribe - subscriber cancels subscription, and
e notify - subscriber receives notification.

Publish. Publishers perform the action of publishing notifications. We define the publith as
pub(P;,nij) | P, € P,nij € N (4.1)

where a publisheF; publishes a notification;;. The publishing event adds a new notification to the
set of notifications published by. If we assume that each publisher can publish the same natification
ni; from the finite set of notificationd/ multiple times, the number of eveniab(R, n;;) occurring

4. Publish/Subscribe System Model 47

in the system is possibly infinite. Such events occur at different points in time and are therefore not
considered equal, i.¢a, = pub(P;, n;;)] # [ar = pub(P;, ngj)l, k # L.
Published notifications. N (P;) is the set of notifications published By. N(F;) is initially an
empty set that is updated whéhpublishes a new notification;; € N. For example, the occurrence
of the evenpub(F;, n;;) addsn;; to the setV (F;). We define the set of notifications published By
as
N(P;) = {n;; € N'| 3ay € A(ay = pub(P;, nij))}, (4.2)

and the set of all published notifications H$P) = J_, N(P,).
Subscribe. Subscribers perform the action of subscribing and unsubscribing. We define the event
subscribe as
sub(Sj,mji) | S5 € S,mji, € M,mj, & Ma(Sj) (4.3)

where a subscribe$; subscribes tan;;,. The subscribing event adds a new subscription to the set of
Sj’s active subscriptiond/4 (S;) iff M(S;) does not already contain subscriptiog,.
Unsubscribe. We define the eveninsubscribe as

unsub(S;,m;i) | Sj € S,mji € Ma(S;) (4.4)

whereS; terminates a subscriptiom;;. The unsubscribing event removes an existing subscription
from the set 0fS;’s active subscriptiond/,(.S;).

Active subscriptions. M(S;) € M is the set ofS;’s active subscriptionsi4(.S;) is initially
an empty set that is updated each tifelefines a new subscription;;, € M or cancels an existing
subscription from\/4(S;). For example, the occurrence of the evemt(S;, m ;) addsmy,, to the
setM4(S;). Conversely, the occurrence of the evenkub(S;, mji) | mji € Ma(S;) removesn
from M4 (S;). We define the set of;’s active subscriptions as

Ma(S;) = {mjr € M | Ja; € A(a; = sub(Sj,mji)), Ba; € A(a; = unsub(S;, mji)),l > 1)},
(4.5)
and the set of all active subscriptionseg = [Jj_; Ma(S}).
Matching. We define a boolean functiomatch over the set of notificationd/ and the set of
subscriptionsM as
match : N x M — {true, false} . (4.6)

A notificationn matches a subscriptian iff match(n, m) evaluates terue. We use the follow-
ing simplified notation to denote thatmatchesn

n < m = match(n,m) = true, 4.7)

and
n A m = match(n,m) = false (4.8)

to denote that does not matchn.

4. Publish/Subscribe System Model 48

Notify. Subscribers are notified about the publication of a notification through the potifyt
which is defined as follows

notify(Sj,nij) ‘ Sj S S,nij S N, Nij §é N(Sj),nij = Mk (49)

wherem;, € Ma(S;), i.e., the published notification matches an active subscriptiof;,oénd
N(S;) is the set of notifications received By, i.e., S; has not previously received;. The number
of eventsnotify occurring in the system is finite becausend.\ are finite sets.

Received notifications. N(S;) is the set of notifications received 8. N(S;) is initially an
empty set that is updated each tirffiereceives a new notification;; € A. For example, the oc-
currence of the eventotify(S;,n;j) addsn;; to the setN(S;). We define the set of notifications
received by a subscriber as a consequence of an autfitas

N(S]) = {nij eN ’ Jay, € A(ak = notify(Sj,nij))} . (4.10)

and the set of all received notifications 8$S) = U;_; N (5;).
To summarize, in a publish/subscribe system with a defifi@tie following events can occur:

o pub(Pi,nij),i € 1...p,Vn;; € N,

o sub(Sj,mji),j €1...5,Ymj, € M,

o unsub(S;,mji),j € 1...5,YVm;, € M, and
e notify(Sj,nij),j€l...s,Vn;; € N.

Some event types can possibly occur an infinite number of times, but in a different point in time which
makes each event € A unique.

Publish/subscribe system. A publish/subscribe system is a tuphS = (B, A) consisting of a
4-tupleB = (P, S, N, M) that defines the structure of a publish/subscribe system, and a set of events
A that defines system behavior.

We model the behavior of a publish/subscribe system as a sequence of events that cause changes
of system states. System state is affected by the states of system publishers and subscribers. Event
occurrences cause transitions between states of individual publishers and subscribers, and cause the
change of the entire system state. We observe the state change of a publistargh the change of
N (F;), which in turn changes the set of all published notifications in the syst¢m). We observe
the state change of a subscrilsgthrough the change d/4 (S;) and N (S;). The change of/4(S;)
changes the set of all active subscriptions in the systémThe change oV (.S;) changes the set of
all delivered notifications in the systeM(S).

Finite automata are used to describe the behavior of discrete event systems as a sequence of
discrete events causing the change of system states. We may model a publish/subscribe system as a
finite state automatiof@, A, ¢, d) consisting of a finite set of system stat@sa set of events that
cause system transitions, an initial statey C @, and a transition functiod : Q@ x A — Q. An

4. Publish/Subscribe System Model 49

eventa;, causes the transition from system state @ to ¢; € @, which we write as(¢;, ax) = gj,
org; =% gqj.
The behavior of a publish/subscribe syst®& = (B, A) can be modeled by an automaton with
a finite set of states because the $etss, N/, and M that determine the system state space are finite.
The sequence of events in the automaton is possibly infinite. A single event trace from an automaton
defines a possible valid sequence of events and state changes of the modeled publish/subscribe system.

sub(S,m) pub(P,n) notify(S,n)
Ga — 42

For example, a trac%qo — q3| is a valid event trace ifi < m. It

comprises three eventsb(S, m), pub(P, n), noti fy(S,n) that change the system state represented

Np(P) =90 Np(P) = {n}
bygo=1{ Ma(S)=0 ptogs=1 Ma(S)={m}
N(S) = 0 N(S) = {n)

We define rules that govern the definition of valid event sequences in publish/subscribe systems.
The rules define the change of a system state caused by the occurrence of an event, and the generation
of a new event as a consequence of a system state change.

Rule 1.1. Publishing rule. Eachublish event adds a notification to the set of publisher’s notifica-
tions N (P;) if the notification has not previously been published by the same publisher. Formally we
write this rule as

pub(Pi,nix) = N(P;) « N(FP;) Un. (4.11)

Rule 1.2. Subscription rule. Eactubscribe event adds a subscription to the set of subscriber’s ac-
tive subscriptions\/4 (.S;) if the subscription has not previously been defined by the same subscriber.
Formally we write this rule as

sub(Sj,mjk) = MA(Sj) — MA(Sj) Umg. (4.12)

Rule 1.3. Unsubscription rule. Eaalmsubscribe event removes an existing subscription from the
set of subscribers’s active subscriptial# (.S;). In case no such subscription exists, the/sg{(.S;)
does not change. Formally we can write this rule as

unsub(Sj, mji) = Ma(S;) — Ma(Sj)\m;g. (4.13)

Rule 1.4. Delivery rule. Everypublish event is followed by aotify event if the set of subscribers
with an active subscription matching a published evgnis non-empty. If a subscriber has previously
receivedn;;, or in case none of the active subscriptions matekgesho action is taken. A publishing
event can possibly be followed by a number of notify events depending on the number of subscribers
with an active subscription matching the published notification. Formally we write this property as

[pub(P;, ni), IS5, nix. & N(S;), Imy € Ma(S;), nix < mj| = notify(S;, ni). (4.14)

Rule 1.5. Notification rule. Eachnotify event adds a notification to the set of subscribers’s notifi-
cationsN (.S;). Formally we write this rule as

notify(S;,n) = N(S;j) «— N(S;) Un. (4.15)

4. Publish/Subscribe System Model 50

A/pub(nl) asub(m

pubn;)y notify(n,)

©

Figure 4.1: An example of a publish/subscribe system

An example of the basic model. Figure 4.1 shows an example publish/subscribe system with a
single publisher and a single subscribBr= ({P},{S},{m,na},{m}) defines the system struc-
ture. If we assume that; < m andns 4 m, the list of events that can occur in the system is
pub(P,ny), pub(P,n2), sub(S,m), unsub(S, m), andnotify(S,ny).

We show the finite state automaton of the example publish/subscribe system in Figure 4.2. This
is the minimal automaton of the system represented by four states. The state changes of subscriber
S are observed through changes of skfs(S) and N(S). The state changes of publish&ris
observed through the change of the &tP). The state changes 6fare significant to state changes
of the whole system, while the change of the 5€tP) does not significantly influence system state.

The stategy = { Ma($) =10

N(S)=10
and has not received any natification. Whg&rsubscribes ton, the system enters the staje=
{ My(S) = {m}

N(S) =10
cannot be delivered t§. When ing, the occurrence of eveptb(P, n;) will invoke another event
Ma(S) = {m}
N(S) =A{m}
or ny Will not cause the change of system state bec#&lisas already receiveg and can not receive

Ma(S) =0 }
N(S) = {m} |

} represents the initial state in which has not subscribed tm,
}. Eventpub(P, ne) will not cause the change of system state since m and

notify(S,n1) and the system enters the state= { } Further publications o

it again. WhenS unsubscribes fromm, the system enters the final stgte= {

4.2 Mobility-Enabled M odel

We assume that either publishers or subscribers can be mobile, and the publish/subscribe service is
deployed in a wired part of the network. Publishers and subscribers can disconnect from the pub-
lish/subscribe system willingly or unwillingly, and the system must accommodate such disconnec-
tions. Publisher's disconnections do not pose a significant requirement: Disconnected publishers
cannot publish notifications during disconnections. The application running on publisher’s terminal
should store the defined notifications for further publication when it resumes the connection to the
publish/subscribe service. On the other hand, subscriber’'s disconnections need to be supported by

4. Publish/Subscribe System Model 51

pub(P, n) pub(P, n,)

sub(S, m)

M($=0 oo™
NS =0 N(©S)=0
unsub(S, m)
pub(P, n,),
notify(S, n,)
pub(P, n) sub(S, m)
M($)=0 b g,) NS
NS) = {n,} A NO=ind
unsub(S, m) pub(P, n)

Figure 4.2: Automaton of the basic example

the publish/subscribe system: The system must enable subscribers to receive notifications that have
been published during their disconnections from the system. The system must store the published
notifications matching subscriber’s subscription for future delivery after subscriber’s reconnection to
the system.

The basic mathematical model must be extended to accommodate subscriber and publisher mobil-
ity. When a subscriber is disconnected from the system, it cannot receive the published notifications
matching its subscriptions because the ewetify immediately followspublish as defined in eq. 4.14.

We introducepersistent notifications: Publishers define validity periods for notifications and the sys-
tem stores such notifications until their validity period expires. A disconnected subscriber can receive
persistent notifications matching it's subscription that are still valid when it reconnects to the system.

We redefine the eventaublish, subscribe, unsubscribe, and notify defined in the basic model,
and define new eventspnnect, disconnect, and unpublish, that are characteristic to the mobility-
enabled model. The original event definitions for publish, subscribe, unsubscribe, and notify need
to be modified since only connected publishers can publish notifications in the system, and only
connected subscribers can subscribe, unsubscribe, and receive notifications in the system.

We extend the basic model with the following events:

e connect - a publisher or a subscriber connects to the publish/subscribe system,
e disconnect - a publisher or a subscriber disconnects from the publish/subscribe system, and
e unpublish - a publisher or the system removes a persistent notification from the system.

Connect. Publishers and subscribers can connect to the system using the@waatt. \We define
the eventonnect as
conn(P;) | P, € P,P € B, (4.16)

4. Publish/Subscribe System Model 52

where a publisher connects to the system describefl. bsind
conn(S;) | S;€S8,S € B, (4.17)

where a subscriber connects to the system defineB, byrhe eventonnect adds a publisher to the
set of connected system publishers, or a subscriber to the set of connected system subscribers.

Disconnect. Publishers and subscribers can disconnect from the system using thaliseent
nect. We define the everdisconnect as

disconn(P;) | P; € P,P € B, (4.18)
where a publisher disconnects from the system describd8, jgnd
disconn(S;) | S; € S,S € B, (4.19)

where a subscriber disconnects from the system define,byThe eventdisconnect removes a
publisher from the set of connected system publishers, or a subscriber from the set of connected
system subscribers.

Connected publishers. P~ C P is the set of publishers that are connected to the sy&en?-
is initially an empty set that is updated each time a disconnected publisher connects to the system, or
when it disconnects from the system. We define the set of connected publishers as

Po ={P;, € P|3aj € A(aj = conn(F;)), Aa, € A(ay, = disconn(P;)),j < k)} (4.20)

Connected subscribers. S € S is the set of subscribers that are connected into the system.
B,.. Sc¢ is initially an empty set that is updated each time a disconnected subscriber connects to the
system, or when it disconnects from the system. We define the set of connected subscribers as

Sc ={5; € S| Jay € A(ar, = conn(S})), Aa; € A(a; = disconn(S;)),k < 1)} (4.21)

Only connected publishers can publish naotifications. Such notifications are by default declared
persistent and stored in the system until they are declared invalid, i.e., until an unpublish event causes
their removal from the system. This is similar to the subscribe-unsubscribe pattern that defines and
subsequently cancels active subscriptions.

Publish. We redefine the evempublish based on the eq. 4.1 as:

pub(P;,n;;) | P; € Po,ng; € Nynij ¢ Np(P;) (4.22)

The evenpub(F;, n;;) adds a notificatiom;; to the set of persistent notifications publishedmy
Unpublish. We define the eveninpublish as

unpub(P;,n;;) | P; € Po,nij € Np(FP;) (4.23)

whereP; or the system removes a previously published persistent notificatitom the set ofF;’s
persistent notifications.

4. Publish/Subscribe System Model 53

Persistent notifications. Np(P;) C N(P;) is the set ofP’s published persistent notifications.
Np(P;) is initially an empty set that is updated each tifigublishes a new notification;; € N,
or cancels a previously published notification frava(P;). For example, the occurrence of the event
pub(P;, n;;) addsn;; to the setNp(P;). Conversely, the occurrence of the evenipub(F, n;;) |
ni; € Np(P;) removesy;; from Np(F;). We define the set aP)’s persistent notifications as

Np(F;) = {ni; € N | Jap € Alay, = pub(P;,n;j)), Ba; € Aa; = unpub(P;,ngj), k <1)},
(4.24)

and the set of all persistent notificationsis = J!_, Np(P;).

We assume that each persistent notificatios N is characterized by a validity perioNT'(n)
that defines the time point of notification expiry. Persistent notifications Rel/én) > 0, and
if AT(n) = 0 the notification is non-persistent. Notifications defined in the basic mathematical
model are non-persistent and become invalid immediately after their publication. Notifications in the
mobility-enabled model are persistent and stored by the system until they become invalid, i.e., their
validity period expires, or their publisher explicitly generates an unpublish event. A publtskehe
source of eventpublish andunpublish, but if it defines the validity period\7'(n) when publishing
n, then the system itself can invoke the evempublish and purge invalid naotification from the set of
persistent notificationd/p (P).

Subscribe. We redefine the evestibscribe based on the eq. 4.3 as

sub(Sj,mjk) | Sj S Sc,mjk; S /\/l,mjk Q_f MA(SJ'). (4.25)
Unsubscribe. We redefine define the evemsubscribe based on the eq. 4.4 as
unsub(Sj, m;) | S; € Sc,mji € Ma(S;) (4.26)

As with persistent notifications, each active subscriptiore M can be characterized by a va-
lidity period AT'(m) that defines the active period of a subscription. A subscitbéefinesAT (m)
when defining a new subscription. WhenAT' (m) expires, the system can remowefrom the set
of active subscriptiond/4(S), as if the subscriber has generated an unsubscribe evéngelfierates
unsub(S,n) prior tom’s expiry, the system removes from the set of active subscriptiond, (.5)
regardless ofn’s validity period. The default value for subscription validity periodxds

Notify. We redefine define the evemitify based on the eq. 4.9 as

notify(Sj,nij) ’ Sj S Sc,nij S Np,nij §é N(Sj),nzj < Mk (4.27)

To summarize, in a publish/subscribe system that is mobility-enabled, the following events can
occur:

e conn(P;),i€l...p,conn(S;),j€1l...5,

e disconn(P;),i € 1...p,disconn(S;),j €1...s,

4. Publish/Subscribe System Model 54

e pub(P;,ni;), P; € Po,Vn;; € N,

o unpub(P;,ni;), P; € Po,Vni; € N,

o sub(Sj,mj),S; € Sc,Vmj, € M,

o unsub(S;,mji), S; € Sc,Vm;, € M, and
e notify(S;, nij),S; € Sc,¥ni; € N.

Here we redefine the rules that are used to model the behavior of a mobility-enabled system.
Rule2.1. Connectrule. Each eveabnnect adds a publisher or a subscriber to the set of connected
publishersP- or subscribersS. Formally we write this rule as

conn(P;) = Po «— PocUP;, (4.28)

and
conn(S;) = Sc «— Sc U S;. (4.29)

Rule 2.2. Disconnect rule. Each evedisconnect removes a publisher or a subscriber from the
set of connected publishef$; or subscriberss:. Formally we write this rule as

disconn(P;) = Po «— Pc\P;, (4.30)

and
disconn(S;) = Sc «— Sc\S;. (4.31)

Rule 2.3. Persistent publishing. Eagiublish event adds a notification to the set of publisher’s
persistent notificationsVp(F;) if the same notification is not already stored and valid\is(P;).
Formally we write this rule as

pub(P;,nix) = Np(P;) « Np(P;) Unj. (4.32)

Rule 2.4. Unpublishing rule. Eachinpublish event removes an existing notification from the set
of publishers’s persistent notificationg (F;). If the notification is not an element &fp(P;), the set
Np(P;) does not change. Formally we write this rule as

unpub(P;,n;;) = Np(FP;) < Np(P;)\n. (4.33)

Rule 2.5. Subscription rule. Eactubscribe event adds a subscription to the set of subscriber’s ac-
tive subscriptions\/4 (.S;) if the subscription has not previously been defined by the same subscriber.
Formally we write this rule as

sub(Sj,mjk) = MA(Sj) — MA(Sj) Umg. (4.34)

4. Publish/Subscribe System Model 55

Rule 2.6. Unsubscription rule. Eaalmsubscribe event removes an existing subscription from the
set of subscribers’s active subscriptialig (.S;). If the subscription is not an element s (S;), the
setM 4(S;) does not change. Formally we write this rule as

unsub(Sj, mji) = Ma(S;) — Ma(Sj)\m;g. (4.35)

Rule 2.7. Delivery rule for connected subscribers. Evenplish event is followed by aotify
event if the set of connected subscribers with an active subscription matching a publisheg.esent
non-empty. If a subscriber has previously receiuggd or if none of the active subscriptions matches
n;k, NO action is taken. Formally we write this rule as

[pub(Pi,nik),HSj € So,n ¢ N(Sj),ﬂmﬂ S MA(SJ'),nik < mjl] = nOtify(Sj,nik). (4.36)

Rule 2.8. Persistent delivery afteconnect. Every eventconn(S;) is possibly followed by a
number of notify events if the set of persistent notificatidvis is non-empty, and if notifications
from this set match any of;’s active subscriptions. If a subscriber has previously receiygd
or in case none of the active subscriptions matahgsno action is taken. This rule ensures that
subscribers receive valid notifications that have been published while they were disconnected from
the system. Formally we write this rule as

[conn(S;), Ini, € Np,ni & N(S;), Imj € Ma(S;), ni < mj)] = notify(S;, nig). (4.37)

Rule2.9. Persistent delivery afteubscribe. Every eventubscribe(S;, mj;) is possibly followed
by a number of notify events if the set of persistent notificatidjass non-empty, and if any notifica-
tion from this set matches;;. If a subscriber has previously receivegd no action is taken. This rule
ensures that new subscribers receive valid notifications that have been published prior to definition of
a new subscription. Formally we write this rule as

[sub(Sj,mj1),Sj € Sc, Ing € Np,nig & N(S5), ni < mjp)] = notify(S;,ng). (4.38)

Rule 2.10. Notification rule. Eachmotify event adds a notification to the set of subscribers’s
notificationsV (S;). Formally we write this rule as

notify(S;,n) = N(S;j) «— N(S;) Un. (4.39)

An example of the mobility-enabled model. In the mobile example we analyze the behavior or a
publish/subscribe system with a single publisher and a single subsdibe({ P} ,{S},{n},{m})
defines the system structure. If we assume that m, and thatP is constantly connected to the
system, the list of events that can occur in the systetwis(S), disconn(S), pub(P,n), sub(S, m),
unsub(S,m), andnotify(S,n).

The finite state automaton of the example system is shown in Figure 4.3. We observe the change
of the system state through four sets: the set of connected subsckibdre set of persistent no-
tifications in the systeniVp, the set ofS’s active subscriptiong/4(.S), and the set of’s received
notificationsN (.5).

4. Publish/Subscribe System Model

pub(P, n) conn(S) S.=1{S}
C

S.=0 S~
Np= -
WS Q unpub(P, n) V-0
N($)=0 N(S)=0
conn(S) disconn(S) pub(P, n) unsub(S, m)
S.= {S} unpub(P, n) sub(S, m)
NP = {n} SC — {S}
M,($)=0 N,=0
NH=0 M(S)= tm}
pub(P,) NS =0
sub(p, m) conn(S)
Se=18} disconn(S)
Np={n} S.=0
M(S) = {m} N,=0
N&=0 M(S) = (m)
NE©S)=0
nodAS; 7) unpub(n)

S.= {8} conn(S) pub(n)
N, = {n} \w S.=0
- N, = {n}
conn(S) @ A/;;(S) = {m}

N(S)=0
disconn(S) Q zc =(?{n} ©)
M ()= tm)
N(S) = {n}
unpub(n) publn)
S.=
() g
unsub(m) M (S)= {m}
N(S) = {n}

unsub(m)

I SR 5.t
N publP,) =0
disconn(s) " disconn(s) <™
A;/P(SS_: {ng unpub(P, n) @ [Ej ;_ S?) y
NS) = (n} pub(P, m) 1 -0

Figure 4.3: Automaton of the mobility-enabled example

56

4. Publish/Subscribe System Model 57

Sc =10
N =
In the initial stateqy = p=10 , P has not published a persistent notifications
Ma(S)=10
N(S)=0
is not connected to the system, and has not subscribed té@/hen the automaton enters the state
Sc = {S}
q5 = , all the conditions are met to deliverto S which causes the transition
Ma(S) = {m}
N(S)=10

ify(S, .
0 notify(Sn) q7. There are four valid event sequences that leag.toThe event sequencg —

q2 — q4 — q5 describes the most obvious event sequence leadiggwderesS first connects to the
system and subscribes o, so that wherP publishesn it can be delivered t&. The event sequence
qo — q1 — q3 — g5 describes the situation whenfirst publishes:, the systems storesin Np, and
when.S connects and subscribesng n can be delivered t&. The sequencg — ¢ — g3 — ¢5
describes the sequence of events wheneceives a previously published persistent notification
after defining a subscriptiom. The sequencey — ¢ — q1 — ¢ — ¢q9 — ¢5 describes the
sequence of events that enalsléo connect to the system, define its active subscriptigrand to
disconnect from the system. Whéhpublishesn, it is stored and delivered t§ after it reconnects to
the system.

4.3 Distributed Model

The basic mathematical model presented in Section 4.1, and the extended model dealing with mobility
presented in Section 4.2 describe publish/subscribe system as a black-box and show no details of the
inner service architecture. We assume that the system has a centralized architecture dealing with all
system publishers and subscribers that interact via the publish/subscribe service. However, the cen-
tralized approach has significant drawbacks with respect to scalability and fault-tolerance particularly
if publishers and subscribers are scattered in a wide-area network. Therefore, it is advisory to design
the service with a distributed architecture composed of a network of brokers. Each broker is a server
that manages a subset of publishers and subscribers, for example, those that roam in its domain. A
broker communicates with the neighboring brokers to deliver notifications from its publishers to re-
mote subscribers residing on other brokers in the system, and to inform the neighboring brokers about
subscriptions generated in its domain. The exchange of information between brokers is needed to
maintain a distributed consistent view of the system as a whole.

Figure 4.4 shows an example distributed publish/subscribe system that employs three brokers
for distributing notifications to subscribers. From the publisher's and subscriber’s point of view, the
publish/subscribe system is a black-box, while the network of brokers deals with distribution and
maintains a consistent distributed system state. Assuming that publishers can pulaisth sub-
scribers can subscribe to, the structure of the system in Figure 4.4 is definedPby: { R, P», P53},

4. Publish/Subscribe System Model 58

Subscriber

Publisher

Figure 4.4: An example of a distributed publish/subscribe system

S = {51,52}, N = {n}, and M = {m}. Each broker maintains a partial view of the system:
For example B, is aware ofP(B;) = {P1, P,} and its neighboring brokeB,. B, acts as groxy
subscriber for its local subscribes;, and enable$3; to route notifications published by its local pub-
lishers P, and P, through Bs to S;. From theBy's perspectiveP(Bs) = {3} andS(Bz) = {S1}.
B, is aware of it's neighbor#3; and B3, and regardd3; as aproxy publisher for its local subscriber
S1. Consequently, each broker can be regarded as a publisher for the set of its local subscribers, and
as a subscriber to notifications published by the set of its local publishers. We use this observation
to design a distributed publish/subscribe model that includes proxy publishers and proxy subscribers
that enable the communication between system brokers.

We propose a novel approach to modeling connections between brokers in a distributed pub-
lish/subscribe system. Each connection betwBeand B; is modeled as an edgg; connecting a
proxy subscriber and a proxy publisher as depicted in the upper part of Figure 4.5. It gives the model
view of the system consisting of two separate publish/subscribe mpdeEndPS ;. The lower part
of Figure 4.5 shows the underlying system architecture, i.e., the network of brokers with connected
publishers and subscribers. A proxy subscr'@e“g;y represents all subscribers B)’'s domain, i.e.,
Bj’s local subscribers and recursively remote subscribers on its neighboring brgkgis. a proxy
subscriber for domain in ¢, is part of PS; where it represents subscribers frgds;. A proxy
publisherPi—J represents all publishers i’s domain, i.e.,B;’'s local publishers and recursively

proxy
remote publishers on its neighboring brokefgﬁj a proxy publisher foPS; in PS;, is part of

roxry?

PS; where it represents publishers frdas;. When a subscriber fror®S; defines a new subscrip-

tion, 7%, must accordingly subscribe iRS;: 5., will receive notifications published iRS;

and forward them to the proxy publishqﬂ that publishes notifications for subscribersAs;.

ory

The described approach enables the division of a single system model into two separate models
connected by a directed edge = (SJ.¢, . Pi>i). The direction of the edge; shows the direction

proxy’ * proxy

4. Publish/Subscribe System Model 59

_ -~ - -
~ ~
- ~

s\ () P

v | /) AN Ko}
A proxy // \ proxy
AN subscriber, # \ publlSher d

A A ORS

Figure 4.5: Proxy publisher and proxy subscriber

System view

of the notification flow betwee®S; andPS;. In case there are publishersAs;, and subscribers in
PS;, we need to add a proxy publisher®s;, and a proxy subscriber 18S;. The second directed
edgee;; = (S;,T—g,zy,Pg,;’;y) would connect publishers iRS; with subscribers irPS;. The process
of dividing the system model into two separate models around an existing link between two brokers
can be applied recursively to all links connecting system brokers. In the end of such process, we
obtain a single model per each broker that consists of local subscribers and publishers connected to
the broker, and proxy subscribers and publishers representing neighboring brokers.

Figure 4.6 shows the model view of the example system depicted in Figure 4.4. It is composed
of three basic model®S;, PS,, andPS3. Edgee;s corresponds to the link between brokdss
and By, and models the flow of notifications published?®; and forwarded tdPS,. There is no
edgees; in the system because there are no subscribef®Sn Edgesess andess correspond to
the link between broker®, and Bs. Proxy subscribesgggy represents subscrib&s from PSs in

PS,. Proxy subscribes?, 3 represents subscribst from PSs in PS3, andS>,; 1, represents both

subscriberss; and.S, in PS;1. When publishers, or P, publish a notlflcatlonsg,;’;y forwards it to

their proxy publisher iPS,, P2 . P23 is a proxy publisher fory, and also forP; and P, that

publish notifications viab) ;2 . Py.2 is a proxy publisher fo; in PS,.
Distributed publish/subscribe model. We model a distributed publish/subscribe system as a

connected directed grapi = (V, E), |V| = z. A graph vertex represents a publish/subscribe

systemv; = PS; = (B;, A;), whereB; = (P;,S;, Ni; M;). PS; C PS models a part of the

entire publish/subscribe system, i.e., it models publishers and subscribers that interact through a sin-

gle broker. In other words, we regard each broker as a separate publish/subscribe system. Graph

edgesE C {(Sg;;y e PS;, P;,,—O’g,y eEPS;)|1<i<21<5< z} represent directed connections

between publish/subscribe systefs; andPS;. An edgee;; = (Si0L . Pi->i) models a commu-

proxy> + proxy

4. Publish/Subscribe System Model 60

Figure 4.6: The model of the example system from Figure 4.4

nication link that enables notifications publishedAs; to be transmitted t@S;. 570 € PS; is a
proxy subscriber representing subscribers residirl§sh while P, 7 € PS is a proxy publisher
representing publishers frofsS;.

The distributed model uses the mobility-enabled model presented in Section 4.2 for modeling
vertices of distributed publish/subscribe system. To model a bidirectional connection between two
brokers represented ByS; and PS;, a proxy publisherr’, ., and a proxy subscribe$) . are
created inPS;, and a proxy publishef) >/, and a proxy subscribe$; ., are created inPS;.

When brokers disconnect, either willingly of unwillingly, proxy subscribers and proxy publishers
are removed fronPS; andPS;. Consequently, it is straightforward to build a distributed system
architecture consisting of a network of brokers, and to implement a simple procedure for connecting
two brokers. When a brokes; wants to connect to another brokBy, B; must create and connect

a proxy publisherlgg;;y representing the publishers of the remote broker in its own domain, and
initiate the process of creating a proxy subscrifg}’,,, and connecting it to the remote broksy.

This enables; to forward its subscriptions t8; and receive and republish notifications published in

the remote domain. The same procedure must be performé tyenable the flow of notifications

from B; to B;.

We assume that the broker network is stationary, while publishers and subscribers are mobile
entities that may change the location in the network and connect to different brokers. For example,
in Figure 4.4 can disconnect from and reconnect to the system through Therefore, in a truly
mobile distributed system that allows both publishers and subscribers to connect to the service via
different system brokers, the following statements h@ldh P; # 0 andS;NS; # 0,1 < i < j < z.

If P,NP;=0andS;NS; =0,1 <i < j <z the system supports disconnected operation only, but

4. Publish/Subscribe System Model 61

not true mobility of publishers and subscribers.
Proxy subscribers for PS;. We define the set of proxy subscribers @86; as the set of sub-
scribers residing in neighboring publish/subscribe systems that represent subscribePsyfrom

Sout(PS:) = { Shrchy | Feji = (St Phrogy)i 1 Si < 2,1 <5 < 2}, (4.40)

whereS;, 27 € S;and Py, i, € P;.
Proxy subscribersin PS;. We define the set of proxy subscribers residingPif; as the set of
subscribers representing subscribers from neighboring publish/subscribe systems
Sin(PS:) = {Shroty | Feis = (Shroty Ppriy) 1 S i < 2,1 <j < 2}, (4.42)

proxy

whereSi i ¢ Si, Pizioc Pj, andSm(PSZ) CcS;.

proxy proxy

The following statements holds}, 7., € S,u(PS;) andS}), %, € Sin(PS;).
Proxy publishersfor PS;. We define the set of proxy subscribers fas; as the set of publishers

residing in neighboring publish/subscribe systems that represent publisherg from

proxy proxy’ ~ proxy

Pout(PSs) = { Pirsl, | Bes = (Shoty ity)1 i< 2,1 < j < 2}, (4.42)

whereP! 7 € P;andS) ol € ;.
Proxy publishersin PS;. We define the set of proxy publishers residingAt; as the set of
publishers representing publishers from neighboring publish/subscribe systems

Pin(PSi) = { Phroty | 3esi = (S Phrogyhs 1 S i< 21 S j < 2}, (4.43)

wherePJ. o1, € P;andS;.5, € S;.

The following statements hold?., 27 € P (PS;) and P}l € Pi(PS;).

The behavior of publishers and subscribers in the distributed model follows the rules of the
mobility-enabled model defined in Section 4.2. Proxy publishers and proxy subscribers follow the de-
fined rules, and additionally, rules specific to distribution. The difference between proxy subscribers
and ordinary subscribers is in the nature of generagingcribe and unsubscribe events: Ordinary
subscribers generate such events at random, while proxy subscribers generate them as a consequence
of a subscribe or unsubscribe event generated by one of subscribers that they represent. The simi-
lar property holds for publishers: Ordinary publishers generate publish events at random, while proxy
publishers publish notifications as a consequence of the publish event generated by one of the publish-
ers that a proxy publisher represents. We assume that each broker-related publish/subscribe system
periodically removes expired persistent notifications, i.e., notifications with expired validity times-
tamps, from the set aVp, without requiring a special unpublish event coming from the publisher.

Figure 4.7 illustrates the process of subscribing in a distributed model. Subs§ribes, de-
fines a new subscription and generates the evehS;, m). PS, forwards the subscriptiom to
its proxy subscriberss?1 “and S%.3 . Each proxy subscriber generates a new subscribe event:

ProTy proxy*
sub(S22L m) addsm to M4(S%;L), andsub(S223 . m) addsm to Ma(S2..2). In case of an

proxy> proxy proxy’ proxy

4. Publish/Subscribe System Model

tforward(m)
7

\
' / sub(m)
~_ -

Figure 4.7: Subscribing in a distributed model

Figure 4.8: Publishing in a distributed model

62

4. Publish/Subscribe System Model 63

unsubscribe evenR S, forwards the unsubscriptionm to proxy subscribers, which causes the gen-
eration of eventsnsub(S5,,,,m) andunsub(Ss,.o3,, m).

Figure 4.8 illustrates the process of publishing in a distributed model. \litherP; publishesn,
PS1 generatesioti fy(S% 2L .n) becauseVs(S%.1) = {m}, andn < m. WhenS2! receives

proxy? proxy proxy
n, it forwardsn to its neighboring proxy publishe’ ;2 . When P, > receivesn, it generates a

new eventub(PL 2 n) which invokesnoti fy(S;,n) becauséV/4(S;) = {m} andn < m.

proxy?

Here we define rules specific to the distributed environment. We assume that rules 2.1. to 2.10.
defined in Section 4.2 are valid.

Rule 3.1. Forward local subscriptionPS; forwards a subscription generated by its local sub-
scriberS;; € S;\Si (PS;) to proxy subscribers in neighboring domains defined by th§,sgtPS;).
Formally we write this rule as

[sub(S;j,m) | Sij € S;\Sin(PS;)] = forward(Si_’k m), (4.44)

proxy>

whereS:>k ¢ S,.+(PS;).

proxy
Rule 3.2. Forward local unsubscriptionPS; forwards an unsubscription generated by its local

subscriberS;; € S;\Si(PS;) to its proxy subscribers in neighboring domains defined by the set
S,ut(PS;). Formally we write this rule as

[unsub(Sij, m) | Sij € S\Sin(PS:)] = forward(Si2k, —m), (4.45)

proxyr

whereS:>k ¢ S,.:(PS;).

proxy
Rule 3.3. Forward remote subscriptionPS; forwards a subscription generated by a proxy

subscribersg;;y € Sin(PS;) to its proxy subscribers in neighboring domains defined by the set

Sout(PS;), except to its proxy subscribef, >/ € S;, if such exists, becausgs; is the domain

TOXTY

from which the subscription has been received. Formally we write this rule as

{sub(Sj_’i m) | Sit € Sm(PSi)} = forward(S52k m), (4.46)

proxy? proxy proxy’

whereSi >k ¢ S,.:(PS;)\Si—i

proxy proxy*
Rule 3.4. Forward remote unsubscriptio?S; forwards an unsubscription generated by a proxy

subscribersg;;y € Sin(PS;) to its proxy subscribers in neighboring domains defined by the set

Sout(PS;), except to its proxy subscribed, 7 € S;, if such exists, becausks; is the domain

TOTY
from which the unsubscription has been received. Formally we write this rule as
{unsub(SjHi m) | St € Sm(PSZ-)} = forward(S;;,];y,—‘m), (4.47)

proxy’ proxy

whereSi >k € S,.:(PS;)\Sid

proxy proxy*

Rule 3.5. Proxy subscribe. Proxy subscrib%;y € §; that receives a subscription from the

remote domain subscribes#te. Formally we write this rule as

forward(S%2t m) = sub(S¢ m). (4.48)

proxry’ proxy’

4. Publish/Subscribe System Model 64

Rule 3.6. Proxy unsubscribe. Proxy subscribgf,. < S; that receives an unsubscriptienn
from the remote domain unsubscribes frem Formally we write this rule as

forward(S%,7E —m) = unsub(ngoiy, m). (4.49)

proxy>

Rule 3.7. Forward notification. Proxy subscribé(g—’i € S, that receives a notification

TOxTY

forwards it using the edge; to the proxy publishef;f';’,gy € P;. Formally we write this rule as

proxy’ proxy’ - proxy

[notify(Sj_’i n) | Jei; = (S40% PLd)} = forward(Pgr_o’%y,n). (4.50)

Rule 3.8. Proxy publish. Proxy publisheng;,;y € P; publishes a notification as a consequence

of receiving a notification frons},, 7. . Formally we write this rule as

forward(P2.Jt .n) = pub(Pg;;y,n). (4.51)

proxy’

The defined rules identify the allowed sequence of events in a distributed publish/subscribe sys-
tem. It is possible to model a distributed system by a number of automata where each automaton
describes &S; modeling a system brokes;.

Chapter 5

Routing Algorithms Supporting Mobility

This chapter defines the routing algorithms for distributed publish/subscribe systems that support
mobility of system publishers and subscribers. The routing algorithms are based on the mobility-
enabled distributed publish/subscribe model presented in Chapter 4. We introduce a novel approach
to storing notifications for disconnected users. The system stores persistent notifications until their
validity period expires, and delivers such notifications to subscribers with a matching subscription as
they reconnect to the system. This approach prevents the storage of notifications in special queues
per each subscriber, and avoids the usage of proxy subscribers, or queues, representing disconnected
subscribers in the system, which is the usual practice in the existing systems.

To prove the applicability of the proposed routing solution in a mobile setting, we have imple-
mented a prototype system,d®S (M obile Publish Subscribe), that is designed based on the defined
distributed publish/subscribe model. The system is distinguishable from other publish/subscribe pro-
totype implementations by the inherent support for publisher and subscriber mobility, as opposed to
solutions that extend an existing system optimized for stationary clients. The prototype has served
as an evaluation environment for assessing the performance of the proposed routing scheme based on
notification persistency, and for comparing it with the standard queuing approach.

The chapter is structured as follows: Section 5.1 analyzes the existing routing algorithms for sta-
tionary systems and contrast them to the routing principles found in multicast systems. The design of
routing algorithms supporting mobility based on the principle of notification persistence is presented
in Section 5.2. Two different routing strategies are investigated: routing based on subscription equal-
ity (Section 5.2.1) and routing based on subscription covering (Section 5.2.2). Section 5.3 gives an
evaluation of the proposed approach. A brief description of the prototype systeRENs given in
Section 5.3.1, and we give evaluation results that compare the queuing algorithm with the persistent
notification algorithm in Section 5.3.2. Finally, we examine the characteristics of the proposed routing
solution and discuss the evaluation results in Section 5.4.

65

5. Routing Algorithms Supporting Mobility 66

5.1 Existing Approaches

Routing algorithms for delivering notifications to subscribers in distributed publish/subscribe systems
rely on the principles found in multicast routing. Each subscription can be regarded analogous to a
multicast group, where subscribers with the same active subscription represent multiple destinations
that have joined a subscription-defined group. A published notification should reach each subscriber
with minimal dissemination delay and network utilization: Each notification is routed in a single copy
as further as possible, and multiplied when reaching a junction connecting subscriber groups along
two or more network branches. The main difference between distributed publish/subscribe systems
and IP multicast is in different utilization scenarios: Publish/subscribe is provided at the application
layer offering sophisticated means for expressing subscriptions, while IP multicast is a network layer
solution with limited subscription expressiveness, but superior to publish/subscribe systems from the
point of network bandwidth consumption.

Both multicast and distributed publish/subscribe systems can be represented as graphs: Graph
nodes represent routers, and graph edges physical links for IP multicast, while for publish/subscribe
systems nodes model brokers and edges represent logical links between brokers. There are several
routing techniques used in multicast that have influenced the design of the routing algorithms for
publish/subscribe systems. These are flooding, reverse path forwarding, and core-based trees [61].

Flooding is the simplest multicast algorithm: When a network node receives a multicast packet,
it ensures that it has not received it previously, and transmits a copy of the packet to all neighboring
nodes, except to the one from which the packet has been received. Flooding needs to test the first
reception of the packet to avoid graph loops. In case the graph is acyclic, the test in not needed.

Reverse path forwarding [35] computes a spanning tree per each multicast source using the fol-
lowing principle: When a multicast packet is received, test if it has arrived following the shortest path
from the packet source. If this is the case, forward the packet to all neighboring nodes, except to the
one from which the packet has been received. If it did not arrive through the shortest path, discard the
packet. The described principle enables the forwarding of packets along a graph’s spanning tree. A
spanning tree is an acyclic and connected graph that connects all nodes of a given graph. The forward-
ing of a packet along the spanning tree will flood the netwétkuning is used to stop forwarding to
nodes without packet recipients, i.e., pruning enables the management of group membership. Leaf
nodes without packet recipients send a prune message in the reverse direction of the incoming packet.
As aresult of this procedure the tree will include only the nodes and edges leading to packet recipients.
Some authors describe reverse path forwarding as a “flood-and-prune” algorithm.

Core-based tree algorithm [13] proposes the usage of a single tree per multicast group: A core-
based tree has a core node that represents the center of a multicast group. Packet recipients send a join
message to the core node to mark the path from recipients to the core node. To reach the interested
recipients, each packet is first routed to the core node, and from there it follows the reverse path of join
messages. The core tree approach results in a single multicast tree per group opposed to the reverse
path forwarding approach which determines a different tree per each multicast source. The main

5. Routing Algorithms Supporting Mobility 67

problem of the core-based tree algorithm is the choice of a core node that optimizes the dissemination
delay and network load for a given group of recipients. Since the group of recipients can be dynamic,
the choice of an optimal core node becomes even more challenging.

Routing algorithms in distributed publish/subscribe systems. The simplest approach that can
be used for routing notifications to subscribers in publish/subscribe systems is notification flooding:
Each published notification is sent to all system brokers, and brokers perform the matching of notifi-
cations to subscriptions of their local subscribers. This approach wastes a lot of bandwidth especially
in cases with few or no subscribers interested in a particular published notification. Both reverse
path forwarding and the core-based tree approach can be applied to disseminate the information about
subscriptions in the broker network, and thus enable the routing of notifications only to interested
subscribers. For examplaeiA [23], JEDI [33], and RBECA [78], use the principle of reverse path
forwarding in their routing protocols, while the routing algorithm applied in Hermes [89, 90] uses the
core-based tree approach. We explain both approaches using an example acyclic connected graph that
models nine brokers and logical links between the brokers. We use an acyclic graph to simplify the
algorithm and to avoid the explanation of the procedure for determining a minimal spanning tree of
a general graph. A spanning tree of an acyclic graph is equal to the graph itself. In case of a general
graph, a distance-vector protocol can be applied to create a spanning tree [29].

Figure 5.1 shows the construction of a delivery tree per each publisher using reverse path forward-
ing. In the example network there are two publishers and two subscriers:connected ta3,
Ss is connected td3s, P is connected td3y, and P is connected td3;. When a subscriber defines
a new subscription, it is first submitted to the connecting broker, and further on flooded through the
network of brokers. For example, whefh subscribes ton, this information is noted by3,. By
sends a subscription request to its neighboring brdke3; forwards it to its neighboring brokers
B, and By, and so on, until the information about the subscriptiomeaches all brokers. Whe$
subscribes ton, this information also needs to flood the network: Frénit reachesB, throughBg.
B, will forward it to B3, but not toBs or By becauseBs; has previously subscribed ta at B; and
B7; as a consequence 8f’s subscription. Each broker maintains the information about a subscriber,
or a neighboring broker that has sent a subscription to it. For exafp¥e]l store a recordm, S;)
indicating thatS; has subscribed tov. Bs will store a recordm, By, B4) indicating that it needs to
send a notification matching to both 3, and By, except if the notification has not previously arrived
from eitherB; andB,. The flooding of network with subscriptions enables the definition of a delivery
tree connecting all subscribersie. The delivery tree is computed per each publisher following the
reverse direction of previously flooded subscriptions. For example, the delivery trBectimprises
brokersBy, B7, B4, B3, By, andBg. It is computed using the local knowledge about subscriptions
stored by each broker.

Figure 5.2 shows the application of a core tree for routing notifications to interested subscribers.
In the example network the brokél, has been chosen as the core node. Each subscription is routed
to the core: For example, whe¥y subscribes ton, B; will route it to B, through B; and create a
path from B, to S; for notifications matchingn. Each notification is also routed to the core which

5. Routing Algorithms Supporting Mobility

Figure 5.1: Reverse path forwarding: Creating delivery trees

Figure 5.2: Creating a core-based tree

68

5. Routing Algorithms Supporting Mobility 69

transmits it along the reverse path defined by subscriptions. For example Bvpeblishesh < m,

n is routed toB, through Bs. B, will duplicate the notification and send it along two paths, one

of them leading taS;, and the other ta5,. From this example it is obvious that the core-based
approach is superior to the reverse path forwarding with regards to network utilization. However,
the core-based approach is complex to implement: The choice of an optimal core node is proved
to be an NP-complete problem. Further on, it is challenging to design an algorithm that will route
each subscription or notification to the core node using only the local knowledge of each broker.
Hermes [89] relies on the peer-to-peer network for routing messages to a core node. The simulation
results provided in [90] prove that the core-based approach is superior in terms of network utilization
and the sizes of broker’s routing tables, but causes substantial notification delay when compared to
the minimum spanning tree solution.

5.2 TheProposed Routing Algorithms Supporting Mobility

This section presents design of the routing algorithms for distributed publish/subscribe systems based
on the distributed model presented in Section 4.3. The algorithm is specially tailored to support mobile
publishers and subscribers that can connect to the publish/subscribe service using different brokers as
they change the location in the network. It can be assumed that the “closest” broker, the broker
residing in the same domain as a mobile publisher or subscriber, is the most suitable for providing
access to the publish/subscribe service.

The common practice in publish/subscribe systems is to deliver notifications to active available
subscribers as they are published. Usually, notifications are not stored by the system: It is assumed
that the application using the service will provide notification storage if it is needed. However, mobile
subscribers that disconnect and unsubscribe from the system, and later on reconnect and resubscribe,
will not receive the notifications that have been published during the period of disconnection. There-
fore, the system must store notifications on behalf of disconnected subscribers and deliver them as
soon as subscribers reconnect to the system. In addition, mobile subscribers can reconnect to the
system through a new broker which requires the update of the delivery path for notifications match-
ing subscriber’s subscriptions. In stationary systems the update of a delivery path occurs only when a
subscriber changes its subscription, while in mobile systems such reconfigurations occur also as a con-
sequence of subscriber's movements and reconnections through different system brokers. In mobile
systems the number of control messages exchanged between system brokers is significantly increased
when compared to static environments. Thus, itis vital that the routing algorithm used in mobile envi-
ronments requires minimal system reconfiguration overhead added by subscriber’'s mobility to enable
efficient, scalable, and low-delay notification delivery.

The common approach used in systems that support subscriber's mobility is to employ the last
broker that has served a subscriber prior to disconnection as it’'s proxy: The proxy broker stores no-
tifications in a speciatubscriber’s queue. When the subscriber reconnects, possibly through another
broker, a special handover procedure is performed. Firstly, the system updates the routing tables ac-

5. Routing Algorithms Supporting Mobility 70

cording to the existing subscriber’s subscriptions to route notifications directly to the subscriber, and
secondly, the queued notifications are delivered to the new broker that delivers them to the subscriber.

The “gueuing” approach requires that the system stores notifications in a special queue per each
disconnected subscriber, and performs the handover procedure which is an additional overhead. Fur-
thermore, special care must be taken that notifications are not lost or duplicated. The described ap-
proach is used for the design of a mobility service built on top iI@gN& [21]: The mobility service
adds proxies between system brokers and subscribers. Proxies take the role of subscribers during
subscribers’ disconnections. The usage of new components that act as stationary subscribers adds
considerable overhead to the system as a whole. In addition, a complex procedure is performed when
disconnecting and reconnecting a subscriber to the system. Another solution build on BpeafR
uses border brokers as proxies for disconnected subscribers [48]. The proposed algorithm floods the
broker network with subscriptions afl system subscribers and requires that each broker has a copy
of all subscriptions in the system which makes this approach inefficient in a system with a large num-
ber of subscriptions that often change. Furthermore, it proposes a complex procedure for modifying
a delivery path from the old to a new border broker. A comprehensive performance and complexity
evaluation of the proposed algorithm is needed to prove its applicability.

We propose a novel approach to deal with disconnected subscribers: It relies on the characteristic
of notification persistency to ensure that disconnected subscribers receive the published naotifications.

It is important that the system stores notifications until their validity period expires which enables
subscribers to receive such notifications when they reconnect to the system. If the validity period
of a natification has expired, the notification is removed from the system, and disconnected users
will not receive it since it is no longer relevant. A publisher, the creator of a notification, defines its
validity period. Additionally, the approach enables users to receive persistent notifications after they
define a new subscription, although such notifications are published prior to the definition of the new
subscription.

We usereverse path forwarding for creating delivery trees connecting each publisher to active sub-
scribers. When a subscriber disconnects from the system, the broker will terminate its subscriptions to
invalidate the delivery path leading to the subscriber. When a subscriber reconnects, the system will re-
initiate its subscriptions and create a delivery path that will enable the transmission of newly published
notifications, as well as persistent notifications stored in the system. To re-initiate a subscription, a
new broker needs the information about the subscriber’'s subscriptions, and received persistent noti-
fications to avoid duplicate notifications. The straightforward approach is to store subscriber-related
information on the subscriber’s terminal. However, this solution prevents subscriber’s personal mobil-
ity: A better solution is that the system stores the subscriber-related information. When a subscriber
reconnects providing its credentials, the new broker first searches the system to find the information
about its active subscriptions and received persistent notifications, and subsequently reactivates the
subscriber’s subscriptions to create a new delivery path for notifications matching the subscriptions.
The system can store the information in a distributed broker network, e.g., on the last broker that
served a subscriber as the access point to the publish/subscribe system. To locate the broker storing

5. Routing Algorithms Supporting Mobility 71

the information, alistributed hash table approach can be used that finds the required information us-

ing a unique key defining the subscriber. The existing algorithms enable efficient search for data items
in a distributed hash table. Data items are found by specifying a unique data key for which the algo-
rithm finds the node storing the data associated with a given key [12]. The distributed approach offers
robustness and reliability compared to the centralized solution, and seems a natural design choice for
storing the information in a distributed publish/subscribe system.

The routing algorithm is based on the presented distributed model. It uses the rules 2.1 to 2.10,
and 3.1 to 3.8 when defining the behavior of system brokers modeled as mobility-enabled pub-
lish/subscribe systems connected by proxy publishers and proxy subscribers. We assume that the
communication in the system is remote, it is implemented by asynchronous message passing: For
example, the eventotify(S,n) is implemented asend message “ notify(n)” to S.

We consider two different routing strategies: routing based on subscription equality, and routing
based on subscription covering. The two principles define when a broker-related B&témorms
its proxy subscribers that the active subscription®#) have changed, and that they need to issue a
new subscription or unsubscription request. Next, we define the algorithms that are independent of the
applied routing strategy: These are the algorithms for building a distributed publish/subscribe environ-
ment, the algorithm enabling mobility in a distributed environment, and the algorithm for publishing
notifications. The algorithms that are essential for building a distributed system are the algorithm
for connecting two brokers defined in Figure 5.3, and the two algorithms describing the operation
of proxy publishers and subscribers defined in Figure 5.4 and Figure 5.5, respectively. The mobility
of publishers and subscribers in a distributed system is enabled by the algorithm for connecting lo-
cal publishers and subscribers to a system broker, and the algorithm for disconnecting them from a
system broker that are defined in Figure 5.6 and Figure 5.7, respectively. The procedure performed
after the event of publishing a new notification is independent of the applied routing strategy because
notifications follow delivery paths that are defined by a sequenesebstribe andunsubscribe events.

The algorithm for publishing notifications is defined in Figure 5.8.

Connecting two brokers. The process of connecting two brokers modeledAsy, and PS,
creates a communication link between the two brokers. Figure 5.3 shows the algorithm for connecting
PS, to PS, executed byPS,.. PS, stores the list of its proxy subscribers outsi@s, in S,,;, and
the list of proxy subscribers and proxy publishers residin@& in setssS;,, and P;,,, respectively.

PS. updates the list of connected publishers and subscribers using thg smtsl S. Persistent
notifications are stored iVp.

SincePS, wants to receive notifications coming fromS,, it creates a proxy publishery >
that publishes notifications frorRS, (line 10), and adds the created proxy to the Bgtand Fc.

Next, PS, sends a message S, initiating the creation of its representative proxy subscriber
Sprosys @nd adds a reference to the proxy publisRgr” that forms an edge,, with S; ¥ (line

proxy’ proxy

14). PS, adds a reference &, ;¥ into the setS,,:, and initiates the list of;;, ¥ 's active subscrip-
tions.

The method presented in lines 19 to 23 defines the sequence of actions performe@&vhen

5. Routing Algorithms Supporting Mobility

Sout =0 1/ proxy subscribers ¢ PS,
Sin =0 I/ proxy subscribersePS,
¢ //proxy subscribersePS,

) //connected publishers
Sc=0 [//connected subscribers
¢ //persistent notifications

upon receiving a messageohn(PS,)" {
10 create(PY 0% PSy)

proxy>
Py, — Pip U P;)!r:zxy
Po «— Po U Ppyr:ai}y
Np(PYas,) =0
send messageteate(S;, v, Py or,) 10 PS,

15 Sout — Sout U Sgggy

Ma(Syrot,) =0
upon receiving a messagertate(Sy o5, Porod)” {
20 create(Syo%s Porody)
S’in — Sin) Sg;;'y

Sc «— Sc U Sgﬁ;;y

Figure 5.3: Algorithm forPS,: ConnectingPS,, to PS,,

5. Routing Algorithms Supporting Mobility 73

defineP;, 2,
upon receiving a messagedti fy(n)" from PS,
send messageforward(n;)" to P>y
5 upon receiving a messagg¢drward(m ;)" from PS,,
send messagestib(m;;)" to PS,

upon receiving a messagg¢drward(—m ;)" from PS,,
send messageihsub(m;;)” to PS,

Figure 5.4: Algorithm for the proxy subscribgf, ;7 € PS,

oxy

defineS;, v,
upon receiving a messagg¢drward(n;)” from SZ Y

proxy
send messag@tib(n;)" to PS,

Figure 5.5: Algorithm for the proxy publishé? " € PS,

receives a message requesting the creation of a proxy subscriber for another brokgrse.dt,
creates a new proxy subscribsf " (line 20) and adds a reference to the proxy publi Y

oxy Ty

through whichPS,. publishes its notifications i®S,. S¥.07, is added to the setS;,, and Sc.

Proxy subscriber SY07 € PS.. Figure 5.4 shows the algorithm performed by a proxy sub-

scriber residing inPS, that represents subscribers frdas,. Sy 7, stores a reference to its pair

publisher inPS,, P70y . WhenSyoF receives a messagedtify(ni,)” from PS,, it forwards

nik to Pk, that will publish it inPS,. WhenSy % receives a new subscription;; from PS,, it
subscribes ton;; in PS,. After receiving an unsubscription requesty; from PS,, Sy 00 sends
the messageunsub(m;;)” to PS,.

Proxy publisher Py.0" € PS,. The role of a proxy publisher is quite straightforward: When it
receives a notification from its pair proxy subscrilsgrry, , Py publishes the notification iRS,.
The algorithm is defined in Figure 5.5.

Connecting local publishers and subscribers to PS,. Figure 5.6 defines the algorithm per-
formed when a local publisher or a local subscriber conneci830 When a local publisher con-
nects toPS,, it is added to the set of connected publish&rs(line 2). When a local subscriber
connects td?S,,, the publisher, or the system, provides a list of its active subscriptions, and the list of
persistent received notificationsnge 4). The subscriber is added to the set of connected subscribers
Sc, and if the subscriber has active subscriptions, they are reactivated: The messgagg ;)"
for all m;; € M4 (S;) (line 9) subscribesS; to mj; at PS, and the system creates a delivery path
for notifications matching alin;; € M4(S;) leading to the subscribes;. The actions following the

receipt of a messagestib(S;, m;;)” depend on the routing strategy. They are defined in Figure 5.9,

5. Routing Algorithms Supporting Mobility 74

upon receiving a messagechn(P;)”
Pe — PoUP;

upon receiving a messagechn(S;, Ma(S;), Np(S;))" {
5 Sc «— Sc U Sj
/linitiate existing subscriptions
if Ma(S;)#0
forall mj; € Ma(S;)
send messagestib(S;, mj;)" to PS,

0}

Figure 5.6: Connecting local publishers and subscribef3So

upon receiving a messagéisconn(P;)”
PC “— PC\Pi

upon receiving a messagéisconn(S;)" {
5 Sc — Sc\S;
//term nate existing subscriptions
if Ma(S;)#0
forall mj; € Ma(S;)
send messagefisub(S;, m;;)" to PS,

0}

Figure 5.7: Disconnecting local publishers and subscribers fPain

Figure 5.13, and Figure 5.14.

Disconnecting local publishers and subscribers from PS,. Figure 5.7 defines the algorithm
performed when a local publisher or a local subscriber disconnectsP®mWhen a local publisher
disconnects fronPS,, it is removed from the set of connected publish&sgline 2). When a local
subscriber disconnects frofsS,, it is removed from the set of connected subscrilfgrslits active
subscriptions are terminated using the messaggib(S;, m;;)” for all m; € M(S;) (line 9) that
unsubscribesS; from all mj; € M4(S;) at PS,. The actions following the receipt of a message
“unsub(S;j, m;;)” depend on the routing strategy. They are defined in Figure 5.10 and Figure 5.15.

The two algorithms for connecting and disconnecting local publishers and subscribers define the
basic principle or mobility. When a subscriber disconnects, the system terminates its active subscrip-
tions, and re-initiates them when the subscriber reconnects. The approach gives no solution to the
storage of natifications published during the period of disconnection and needs to be solved else-
where: We define the algorithm for activating new subscriptions to enable the delivery of persistent
notifications stored in the system.

Notification publishing. Figure 5.8 defines the actions performedBg, when a publisher,

5. Routing Algorithms Supporting Mobility 75

/I new publication froma local or proxy publisher
upon receiving a messagpub(n)" from P; € Pc
if Nik ¢ NP(PL') {
Np(P;) < Np(P;) Un
5 Np «— Np Un;g
for all connected local subscribe$s € [Sc\ Sy,
if Nik ¢ N(SJ)
forall mj; € Ma(S;)
if nge < m;i {
10 send messageidtify(n;,)" to S;
N(S;) — N(S;) U nik
}

for all connected proxy subscribe$y, 7', € S,

5 it i & Np(PYo?,) andng, ¢ N(SU28))
forall mj; € Ma(S;)
if Nik < M| {
send messagendti fy(n)" to Yo%,
N(SU22) N(SY=7) U

proxy proxy

20 }

Figure 5.8: Naotification publishing

either a local publisher, or a proxy publisher, publishes a notificatjonPS,. stores the published
notification in the set of persistent notifications. Next, it tests active subscriptions of all connected
local subscribers, and forwards the notification to the subscriber with an active subscription matching
n;, IN case the subscriber has not previously received the same notification (lines 6 to 12). The
notification is also forwarded to connected proxy subscribers with a matching subscription using an
additional test: If the notification comes from the direction of a broker the proxy subscriber represents,
i.e., ifitis published byFy " , the notification is not delivered t§f, 7", since the subscribers 1AS,

proxy’ TOXTY

have already received;, (lines 14 to 20).

5.2.1 Routing Based on Subscription Equality

The routing algorithm based on subscription equality uses the principéeeste path forwarding and

takes into consideratiosubscription equality when flooding the network with new subscriptions. The
principle of subscription equality denotes that a subscriptionoriginating from different subscribers

in PS, is considered equal by proxy subscribsys,(PS..) representing®S,’s subscribers in neigh-
boring brokers, since: originates from the samBsS,.. In casem is currently an active subscription

of one of PS,’s subscribersm has already flooded the network and has set up a delivery path for
notifications matchingn. A new subscription event occurring 1S, that defines a subscription to

m by either a local subscriber, or a proxy subscriber, is not forwarded to proxy subscribers from the

5. Routing Algorithms Supporting Mobility 76

setS,.:(PS,) if proxy subscribers are already subscribeadrto

Defining a new subscription. Figure 5.9 defines the actions performed By, when a sub-
scriber, either a local subscriber, or a proxy subscriber, defines a new subsaripti®s . checks if
a subscriber is not already subscribeditg (lines 3 and 21). lfn;; is not one of subscriber’s active
subscriptions, it is added to the set of its active subscriptioh§S;). mj is forwarded toPS,’s
proxy subscribers i, if there is no active subscription te;; issued previously by one ®S,’s
local subscribers (lines 5 and 23). Since some of the proxy subscribers may already be subscribed
to m;; as a consequence of a subscription by a proxy subscriliBSin we perform an additional
test (ine 7) and forwardm;; only to proxy subscribers without an active subscriptiom#g which
prevents forwarding of identical subscriptions. In case of a new subscription by a proxy subscriber,
mj; is forwarded to all proxy subscribers without an existing active subscription;;toexcept to
Sprowy € PSy, becausen;; has been received frofS, (lines 24 to 28).

Next, the definition of a new subscription will cause the delivery of persistent notifications stored
in PS, that matchm;; and are not already in the set of persistent notifications received by the sub-
scriber (lines 11 to 16, and 30 to 35). In case of a proxy subscriber, an additional check in needed:
A proxy subscriber does not receive notifications published’by;, since they have already been
published inPS, and delivered to subscribers th#f 7" represents.

Terminating an existing subscription. Figure 5.10 defines the actions performedhy, when a
subscriber, either a local subscriber, or a proxy subscriber, unsubscribes:frdfrst, PS, checks
if a subscriber is already subscribeditg (line 3). If the test returngrue, mj; is removed from the
set of subscriber’s active subscriptions (line 4). If there is no other local of remote subscrier to
in PS,., the unsubscribe message is propagated to all proxy subscriberfroftines 5 to 10). If
there are no local subscribersstg; (line 12), and there are remote subscribers:g we count the
number of proxy subscribers fros),, that are subscribed ta; (lines 13 to 16). In case of only
one such proxy subscriber residing S, e.g.,S%.% . an unsubscription message is sent to the

proxy subscribeis; ¥ in PS, (lines 17 to 20) beI::auyse there are no other subscribers; i the
domain of PS,, and a proxy subscription ta;; is no longer needed. This follows the basic principle

of flooding, a subscription is forwarded to all neighboring brokers, except to the one from which the
subscription originates. If there are two proxy subscribers;ian S;,,, no subscription cancellation

can be performed because all neighboring brokers need to be aware of the subscription.

5.2.2 Routing Based on Subscription Covering

The routing algorithm based on subscription covering explodigering among subscriptions, the
characteristic that is inherent to type-based and content-based subscriptions. The algorithm uses the
principle ofreverse path forwarding for selective forwarding of subscriptions: The covering relation-

ship between subscriptions determines whether a new subscription should be forwarded to neighbor-
ing brokers or not. The concept of subscription covering was first defined in [22] and is denoted in
literature as content-based routing. The algorithm for routing based on filter covering presented in [78]

5. Routing Algorithms Supporting Mobility 77

10

15

25

30

35

/I new subscription froma | ocal subscriber
upon receiving a messageub(m ;)" from S; € [Sc\Sin] or “sub(m;i, S;)”
if mj & Ma(S;) {
M4(S;) — Ma(S;)Umg
if mj & Ma(Sc\Sin)!/subscription equality
for all Sproey € Sout
if mj & Ma(Sproxy) {
send messageforward(m;;)" t0 Sprozy
Ma(Sprozy) — Ma(Sprozy) Umyi

if Np #0 //deliver persistent notifications
forall n;, € Np
if g ¢ NP(S]) andn;, < mji {
send messageidtify(n;;)" to S;
N(S;) < N(S;) Unik

}

/I new subscription froma proxy subscriber representing subscribers inPS,
upon receiving a messageub(m ;)" from Sy=% € Sy,
it mj & Ma(SE05,) {
Ma(SYrony) — Ma(Shrory) Um;i

if mj; ¢ Ma(Sc\Sin) !/ subscription equality
for all Sprowy € (Sout\Spromy)
if mji ¢ MA(Sp'r‘oxy) {
send messageforward(m;)” t0 Sproxy
) M4 (Sprowy) < Ma(Sprozy) Umyi
//deliver persistent notifications except those published in PS,
if Np#0
for all nix € [Np\Np(PYos,)]
if Nik < M| {
send messagewdtify(n;;)"to SY*

proxy
N(sy—>:c) —]\T(Sy_’ac) Unik

proxy proxy

Figure 5.9: Defining a new subscription using subscription equality

5. Routing Algorithms Supporting Mobility

/ lunsubscription fromeither a | ocal or proxy subscriber
upon receiving a messagesub(m ;) fromS; € Sc or “unsub(m;i, S;)”
if mj; € MA(S]) {
Ma(8S;) < Ma(S;)\mj
5 if mj; ¢ Ma(Sc)//no other subscriber tomg
/lterm nate delivery path
forall Sproey € Sout {
send messageforward(—m;;)" 10 Sprozy
Ma(Sproxy) «— Ma(Sprozy)\mji
10 }
else
if mj; ¢ Ma(Sc\Sin)// no other |ocal subscriber tom; {
proxySubs =0//no. of proxy subscribers tomg
forall Sprony € Sin
15 if mj; € Ma(Sprowy)
proxySubs + +
if proxySubs ==11
send messageforward(—m;;)"to S50V wheremj; € Ma(Sho%,)
Ma(Spoty) — Ma(Sgrody)\mi

proxy proxy

20 }

Figure 5.10: Terminating an existing subscription using subscription equality

78

5. Routing Algorithms Supporting Mobility 79

exploits the covering of subscriptions, to avoid unnecessary forwarding of subscriptions and unsub-
scriptions among neighboring brokers. The presented algorithm is used in stationary publish/subscribe
systems. We use a similar approach in our algorithms for subscription and unsubscription covering.

The covering-based approach aims at removing covered redundant subscriptions from the system
to reduce the number of subscription entries, and improve the routing performance. The main idea in
covering-based routing is the following:

e A subscription request is not forwarded to neighboring brokers if a subscription covering the
subscription is already active on the broker. An unsubscription request is not forwarded to
neighboring brokers if a subscription covering the expired subscription is still active on the
broker.

e When a subscription covering an existing subscription is defined on a broker, the broker for-
wards the new subscription request to its neighbors, and cancels all covered subscriptions.
When the covering subscription is canceled, the broker forwards the unsubscription request
for the covering subscription together with a number of subscription requests that will initiate
previously covered subscriptions.

Subscription covering. A subscriptionmn, covers another subscription, if m, matches all noti-
fications that matcn,,. We define the set of all notifications matchimg asN (m,) = {n | n < m,},
and the set of all notifications matchimg, as N (m,) = {n | n < m,}. Formally,m, coversm,,
denoted bym, >~ m, iff N(m,) 2 N(my). If m, > m, thenn € N(m,) impliesn € N(m,), and
n < my impliesn < my.

We define the boolean functiavers between a set of subscriptiong according to the eq. 4.6
as

cover : M x M — {true, false} . (5.2)

Subscription covering sets. We define a subscription covering set of a proxy subsciher, €
Sout(PS;) as a set of active subscriptions/s, that are covered by an existit$,.,'s subscription
Mprozy € Ma(Sprozy). FOrmally,

Mcov(mpromya Sprozy) = {mjl ’ Mproxy > Mg, Mjp S MA(SC)amprozy € MA(Sproa:y)} . (52)

We use subscription covering sets for each proxy subscfhgr, € S..: of a broker modeled
by PS.. to denote covered subscriptions that are currently activaSn but that are not at the same
time active for proxy subscribers,, .., € Sou:. Proxy subscribers are not aware of their subscription
covering sets: The broker stores and updates, (1mprozy, Sprozy) TOr all Mmyrory € Ma(Sproxy)-
Subscription covering sets track changes to subscriptions that are not propagated to proxy subscribers:
They are needed for optimization purposes introduced by subscription covering. The covering sets
enable a broker to decide whether to forward a new subscription or unsubscription request to a proxy
subscriber.

5. Routing Algorithms Supporting Mobility

10

15

20

25

30

35

[lupdate the Sy...y S covering set withmg
updateCoveringSets(m;i, Sprozy) {
proxyCovered = false
if mj € MA(Sproa;y)
proxyCovered = true
else{
for all mprozy € Ma(Sprozy)
if mji < Mproxy {
proxyCovered = true; added = false
for all meow € Meow (mproa:yv Sprozy)
if Meow = My
added = true
if Mcov(mcova Sproxy) 7& 0
Mo (mcov; Sproxy) — Mcov(mcova Sproxy) Umy
else
Mcov(mcom Sproa:y) - {mjl}
else ifmj; > meow
added = true
Moy (mproxy; Sproxy) — Mcm)(mproxyv Sp'r‘o:cy) Umy
Mo (mproxy; Sproxy) — Mcm)(mproxyv Sp'r‘o:cy)\mcm)
if Mcov(mjl; Sproa:y) 7& 0
Mcov (mjlv Sprozy) — Mcov (mjlv Sprozy) U Moy
else
Mcov(mjh Sp'r‘o:cy) = {mcov}
if added = false
Mo (mpro:vy; Sproa:y) — Moy (mproa:yv Sprozy) U mji
¥
if proxyCovered = false {
Mcov(mjh Sp'r‘o:cy) =0
for all myrony € Ma(Sprozy)
if mji > Mprozy
Mcov (mjlv Sprozy) — Mcov(mjl; Sproa:y) U Mprozy
}
}

returnproxyCovered

Figure 5.11: A method for updating a proxy subscriber’s covering setmwith

80

5. Routing Algorithms Supporting Mobility 81

[lrenmove mj fromSy..., S covering sets
updateCoveringSets(—mi, Sprozy) {
O MCO’U(mjl) Sp'r‘owy) 7é (Z)
MCO’U(mjl) Sp'r‘owy) = (Z)
5 for a" MCO’U (mprozy; Sproxy)
if mjl S Mcov(mprozya Sprozy)
Mcov (mprowy; Sp'r‘owy) — Mcov (mp7‘oa;y7 Spro;cy)\mjl

Figure 5.12: A method for removing,;; from the covering sets of a proxy subscriber

Updating a proxy subscriber’s covering set with a new subscription. We define the method
for updatingS,,,..,,'s subscription covering set with a new subscriptiop in Figure 5.11. The new
subscriptionn;; is compared to the set of active subscriptidds(S,,..,), and the existing subscrip-
tion covering setsVf.o, (Mprozy, Sprozy). We use the variablgrozyCovered to denote whether the
new subscriptionn;; is already covered by an active subscription from the\getS,,...,), and use
the value ofprozyCovered as the method return parameter.

If mj; is already an active subscription 4 (Syroxy), proxyCovered is set totrue (line 5)
and no updates of the covering sets are needed. Conversely, i not an active subscription in
M A(Sprozy), We check whether an existing active subscriptiomin(.Sy,..,) already coversn;;
(lines 7 and 8). If an active subscription, €.9y,.o.y, COVersm;;, proryCovered is set totrue
and we update the covering sets with; (lines 10 to 26). Subscriptions form a hierarchy: It is not
sufficient to simply addn;; to the covering set of an active subscription that covegssincem;
must be put into the suitable hierarchical level of the subscription covering tree. For example,
might be covered by an element that is already an element of tl€. €t 02y, Sprozy), €.9-Mcov-

m;; should therefore become an elementef,,'s coverage set to form the appropriate hierarchy
(lines 11 to 16). Note thatn.,, is not an active subscription fd,, .. Lines 17 to 24 define the
update of coverage sets if the new subscriptignis covered by an active subscriptiomn,,...,, and
whenm;; covers one of the elements of the,..,,,'s coverage set, i.81,,0zy < Mj; < Meop. IN this
casemy; is put into them,,,...,,'S coverage set, anah.,, becomes an element of the;;’s coverage
set. Ifm;; does not cover any of the elements from thg,.,'s coverage set, ana;; is not covered

by any element from the same set;; can be added td/..,,(7prozy, Sprozy) (line 26).

If none of the active subscriptions covers, i.e.,proxyCovered = false, Spyoqzy SUDSCribES tO
m;;, and a coverage set fai;; is created (lines 28 to 33). All active subscriptions that are covered by
the new subscriptiom; become members of the sek.,,, (M1, Sprozy). The subscriptions from this
set will be inactivated whes),,...., subscribes ton;;.

Removing a subscription from proxy subscriber’s covering sets. Figure 5.12 defines the algo-
rithm for removingm,;; from the proxy subscriber’s covering sets. Firstly, the elements from the set
Meov(mij1, Sprozy) are removed, and secondlyy; is removed from all othes,,...,'s covering sets.

5. Routing Algorithms Supporting Mobility

10

15

20

25

30

/I new subscription froma | ocal subscriber
upon receiving a messageub(m ;)" from S; € [Sc\Sin] OF “sub(m i, S;)"
if mj & Ma(S;5) {

MA(Sj) — MA(S]') Umg
covered = false
if mj & Ma(Sc\Sin) {
for all mipcar € Ma(Sc\Sin)
if mji < Miocar {
covered = true [| covered by | ocal subscription
forall Sprowy € Sout
updateCoveringSets(m;ji, Sprozy)

if covered = false
forall Sproey € Sout {
proxyCovered = updateCoveringSets(m;i, Sprozy)
if proxyCovered = false {
/I not covered by proxy subscriptions
send messageforward(m;;)” t0 Sproxy
Ma(Sproy) = Ma(Sprosy) Umj
for all Meov € Mcov(mjlv Sprozy) {
send messageforward(—meoy)" 10 Sproxy
MA(Sproa:y) — MA (Sprozy)\mcov

}
} else
covered = true// equal to a |ocal subscription
if Np #£0 //receive persistent notifications
forall n;, € Np
if ngg §é Np(Sj) andn;, < mj {
send messageidtify(n;;)" to S;
N(8j) — N(S;) U nik

Figure 5.13: Local subscription based on covering

5. Routing Algorithms Supporting Mobility 83

Defining a new subscription by alocal subscriber. Figure 5.13 defines the algorithm performed
when a local subscriber defines a new subscriptign If S; is not already subscribed ta;;, m;; is
added to the set &f;’s active subscriptions (line 4), and, if needed, the new subscription is propagated
to proxy subscribers from the s&,;. In casem;; is already an active subscription issued by another
local subscriber, there is no need for subscription propagation (line 27). Conversely, we check whether
m;; is covered by an existing active subscription of a local subscriber (lines 7 and 8). If a covering
subscription is active, there is no need to propagajeto proxy subscribers. We only update the
covering sets of proxy subscribers by calling the methpdateCoveringSets(m;, Sproxy) (lines
10 and 11). In case:;; is not covered by a local subscription, we check whether each proxy subscriber
from the setS,,; already has an active subscription covering. Only if such subscription is not
active for aSy,..y € Sout, @ subscription request fat;; is propagated t6),,.,., (lines 18 and 19). We
also cancel subscriptions coveredy from the setM.,, (m i, Sprozy) DY sending unsubscription
requests ta5,,.., (lines 20 to 23). Lines 28 to 33 ensure that a local subscriber receives persistent
notifications as in the case of subscription based on equality (Figure 5.9).

Defining a new subscription by a proxy subscriber. The algorithm for defining a new subscrip-
tion by a proxy subscriber as defined in Figure 5.14 is similar to the algorithm for a local subscriber.
The only difference between the two algorithms is in the fact that a subscription by a proxy subscriber
SYony 18 NOt forwarded to the proxy subscribgf ¥ since it originated fron’S,, while a new
subscription by a local subscriber is forwarded to all proxy subscribers from ti$g, set

Terminating an existing subscription. We define the algorithm for unsubscribing a local or a
proxy subscriber fromn;; in Figure 5.15. The algorithm relies on the information in the covering
sets that is maintained by a broker.nif; is S;’s active subscription, it is first removed from the set
of active subscriptions. In case there are no other subscribenrs tonnected to the broker, either
local or proxy subscribers, the subscriptiomip can be canceled (lines 5 to 18). The unsubscription
is propagated to a proxy subscriber from theS$gt only in casen;; is also an active subscription of
the proxy subscribes,,.., € Sou: (line 8). Otherwise, no action is taken becausgis covered by
another subscription an$},,...., should not change its subscriptions. To cancel an active subscription
of a proxy subscribes),..,, we first removen; from the set ofS,,.,’s active subscriptions (line
9), next we initiate subscriptions to all covered subscriptions from th&/setm i, Sproxy) (lines 10
to 14), and finally, we cancel the active subscriptiomipby sending a messag¢ drward(—m;j;)”
to Sprozy (line 15). The broker updates the covering sets for each proxy subscriber by invoking the
methodupdateCoveringSets(—myi, Sprozy)-

If there are still active subscribers ta;; connected to the broker, we check whether there is a
single proxy subscriber, e.gby 77 , with an active subscription ta; connected to the broker (lines
21 to 24). In this case the active subscription by it's pair proxy subscfpgl, is canceled (lines 25
to 34). In all other cases, i.e., if there is a local subscribenjpor two proxy subscribers ta;;, no
actions are needed.

5. Routing Algorithms Supporting Mobility

10

15

20

25

30

35

/I new subscription froma proxy subscriber
upon receiving a messageub(mj;)” from SY>7 € S;,

proxy
if mj & Ma(S;) {
Ma(S;) — Ma(S;) Umyy
covered = false
if mji & Ma(Sc\Sin) {
for all mipear € Ma(Sc\Sin)
if m;i = Myocal {
covered = true /[covered by | ocal subscription
forall Sproay € [Sout\Sirad,]
updateCoveringSets(m;ji, Sprozy)

if covered = false
forall Sprory € [Sout\Siad,] {

proxyCovered = updateCoveringSets(m;i, Sprowy)

if proxyCovered = false {

/I not covered by proxy subscriptions
send messageforward(m;;)" t0 Sprozy
for all mcoy € Meow(mj1, Sprozy) {

send messageforward(—meey)" 10 Sproxy

} MA(SPTOJ«"!J) — MA (Sp’!‘o:cy)\mcov
MA(Sprozy) — MA(Sprozy) U mji

}
} else
covered = true// equal to a | ocal subscription
/lreceive persistent notifications except those published in?PS,
if Np #0
forall nyx € [Np\Np(PY o2)]
if Nik < Mg {
send messagewdtify(n;;)"to SY*

proxy
N(sy—>:c) —]\T(Sy_’ac) Unik

proxy proxy

Figure 5.14: Proxy subscription based on covering

5. Routing Algorithms Supporting Mobility 85

/ lunsubscription fromeither a | ocal or proxy subscriber
upon receiving a messagesub(m ;) fromS; € Sc or “unsub(m;i, S;)”
if mj; € MA(S]) {
Ma(8S;) < Ma(S;)\mj
5 if mj; ¢ Ma(Sc)//no other subscriber tomg
/lterm nate delivery path
forall Sprowy € Sout {
if mji € Ma(Sproxy) {
Ma(Sprozy) — Ma(Sprozy)\mj1
10 if Mcov(mjla Sprozy) 7& Q]
forall meoy € Meoy (mjh Sp’r‘o:cy) {
send messageforward(meey)” t0 Sprozy
MA(Sproxy) — My (Sp'r'o:cy) U Meow

15 send messageforward(—m;;)" 10 Sprozy
}
updateCoveringSets(—mi, Sprozy)
}
else
20 if mj; ¢ Ma(Sc\Sin)// no other |ocal subscriber tom; {
proxySubs = 0//no. of proxy subscribers tomy
forall Sprozy € Sin
if mj € MA(Spwxy)
proxySubs + +
25 if proxySubs ==1{
Ma(Sproty) — Ma(Sproty)\mji
if Mcov(mjh S;;gy) # 0
forall meo, € Meow(mji, Spromy) {
send messageforward(meo,)"to SpoY,
30 Ma(Sproty) — Ma(Sprody) Umeoy
send messageforward(—m; ;)" to Sy 0¥ wherem; € Ma(Sy57,)
updateCoveringSets(—myji, Spo¥,)
}
35 }

Figure 5.15: Terminating an existing subscription based on covering

5. Routing Algorithms Supporting Mobility 86

5.3 Evaluation of the Routing Algorithms

We use the implementation of the prototype systemP\% (M obile Publish Subscribe) to investigate

the applicability of the proposed routing algorithms in mobile scenarios. The implementation shows
that mobile subscribers receive notifications published during the period of their disconnection that
are still valid when subscribers reconnect to the system, possibly through another broker. Subscribers
do not receive duplicate notifications because of the mechanism that compares already received no-
tifications that are still valid to those that should be sent to a subscriber. Undelivered notifications
are possible because of the delay introduced by a broker network and subscriber mobility which can
lead to notification expiry prior to it's delivery to the subscriber. We evaluate the performance of the
routing algorithm based on subscription covering with persistent notifications (PN-alg), and compare
it to the same algorithm that uses queues (Q-alg). We define the metrics to assess the performance of
publish/subscribe systems in mobile scenarios.

5.3.1 ThePrototype System MoPS

MoPS has been designed and implemented to prove the concept, and evaluate the proposed pub-
lish/subscribe distributed model, and routing algorithms supporting client mobility. The system has
been implemented in the Java programming language. Itis distinguishable from other publish/subscribe
prototype implementations by the inherent support for publisher and subscriber mobility that has been
integrated into the system design, rather than added as an extension to an existing system supporting
stationary clients. Furthermore, the current system implementation can be configured to use either
queues for storing notifications on behalf of disconnected subscribers, or persistent notifications that
are maintained by the brokers until their validity period expires.

The MoPS infrastructure comprises a set of interconnected brokers that form an acyclic commu-
nication graph. There is a single spanning tree for notification delivery connecting a publisher to a
group of subscribers, and each broker is a single point of system failure. The system currently does
not provide mechanisms for fault tolerance: We assume that brokers cannot fail and that the commu-
nication links between brokers are error-free bidirectional point-to-point links. The broker network is
built by incrementally connecting a new broker to an active broker, and can be extended during system
operation. Clients, i.e., publishers and subscribers, are mobile entities that can connect to different
brokers. The communication between a pair of brokers, and a client and a broker is implemented in
the form of messages that are serialized Java objects transported using TCP.

The MoPS system supports typed notifications that carry a list of attributes. It offers type-based
and attribute-based subscriptions, and implements type-based routing with support for subscription
covering in the broker network. Natification filtering according to attribute-based subscriptions is
performed only on the edge broker prior to notification delivery to subscribers. Publishers can publish
notifications of an already defined type that is defined in the broker network, and subscribers can only
subscribe to recognized types. The set of recognized types is defined prior to system startup using a
file containing a serialized list of Java classes, and can be updated during system operation. The file is

5. Routing Algorithms Supporting Mobility 87

Event

#eventld : String

D#originld : String 4
#timestamp : long

#validity Timestamp : Iongﬂi

+equals() : boolean

|

UnsubscriptionEvent SubscriptionEvent SysEvent

-subscription : Subscription -subscription : Subscription -eventProps : Hashtable
-uncovered : HashSet -name : String

Subscription NotificationEvent
-type : Class -userProperties : Hashtable

-subProperties ,: Hashtable +matchesSubscription() : boolean
+coversSubscription() : boolean
+coversNEvent() : boolean
+equals() : boolean

Figure 5.16: Class diagram of event classes

used only when starting the first broker: All added brokers and connected clients will receive the list
of recognized types when connecting to an active broker. The type restriction represents no limitation
with respect to other publish/subscribe systems. For example, JMS topics are administered objects
that need to be defined by an administrator on the JMS server prior to being used by JMS clients.

Basic Classes

The vital system class is the abstract clagent that models events of the proposed publish/subscribe
model. AnEvent object is uniquely identified by the fieldvent | d; its creator is specified by
ori gi nl d; it carries the timestamp declaring the time of its creation, and the validity timestamp
that announces when the event expires. Clalieés f i cat i onEvent ,Subscri pti onEvent,
Unsubscri pti onEvent ,andSysEvent extend the clasEvent as depicted in the UML class
diagram in Figure 5.16. The cla®®ti fi cati onEvent models the eventpublish, andnotify
from the publish/subscribe model, and carries the information published by publishers, either be-
tween a publisher and a broker, two brokers, or a broker and a subscribet.if i cat i onEvent
object can contain a list of user-defined attributes that are stored in theufieldPr operti es.
Note that eaciNot i fi cati onEvent object has aval i di t yTi nest anp field that determines
its persistence in the system. All notifications published in the system need to extent the class
Noti fi cati onEvent, either directly, or indirectly through parent classes.

ClassesSubscri pti onEvent andUnsubscri pti onEvent model eventsubscribe, and
unsubscribe, respectively. They contain a fielslubscri pti on that defines the characteristics
of user’s subscription modeled by the cle&sbscri pti on. A Subscri pti on object deter-
mines the type of subscribed notifications as specified in the figlge, and carries an optional

5. Routing Algorithms Supporting Mobility 88

publ i c bool ean coversSubscription(Subscription sub) {
if (this.type.isAssignabl eFronm(sub. getType())) {
//check attributes

return true
}

return fal se

}

publ i c bool ean coversNEvent (Notificati onEvent nEvent) {
if (this.type.islnstance(nEvent)) {
/I check attributes

return true;

return fal se

}

Figure 5.17: The implementation of methods for checking the coverage relationship

list of attributes §ubPr oper ti es) that further refine the subscription. The matching relation-
ship between a natification and a subscription (defined in eq. 4.6) is implemented in the method
mat chesSubscri ption() of the classEvent Noti fi cati on, andcover sNEvent () of
the classSubscri pti on. The covering relationship between subscriptions as defined in eq. 5.1 is
implemented in the methazlover sSubscri pti on() of the classSubscri pti on. Figure 5.17
shows code fragments implementing the methods of the 8abscr i pti on that test the cover-
ing relationship. We use the methods provided lya. | ang. Cl ass:i sAssi gnabl eFr on()
checks the inheritance relationship between the two classes, st ance() tests whether an
object is an instance of a given class. After checking the type, the methods compare the attributes, both
attribute names and values, and in case all attributes of the covering subscription are present in the
covered subscription, or notification event, the method returnse. Theval i di t yTi mest anp
for Subscri pti onEvent andUnsubscri pti onEvent is set to0 by default: However, an
option is given to initiate unsubscription to an active subscription after its validity period expires.

The classSysEvent models eventgonnect, and disconnect of the publish/subscribe model,
and enables a client to connect to, and disconnect from a broker. Connection to a broker does not
mean a constant TCP connection between the two entities to preserve network resources. A new
connection is initiated when itis needed. We use TCP instead of UDP to ensure reliable data transport.
Therefore, eaclsysEvent object declaring a connection between a client and a broker carries a
val i di t yTi nest anp, and maintains the client in the set of broker's connected clients until the
timestamp is valid.

The infrastructure classes aki ent andBr oker that extend the cladgsnt i t y as depicted in
the UML class diagram in Figure 5.18. The cld&s# i t y is identified by its unique d. It uses an
instance of the cladsncom ngThr ead that implements a TCP server socket listening on a defined
port and accepting incoming messages from offr@ri t y objects. The flag nSyst emdeclares
whether the entity is connected to the broker network or nottamik contains type definitions that

5. Routing Algorithms Supporting Mobility 89

| Entity

#id : String

#incoming : IncomingThread
#inSystem : boolean

#types : Class[]
#sendMsg()

4| S{+init() K |7
+startup()
+shutdown()

Client

-brokerHost : String
-brokerPort : int
-subscriptions : HashSet
-connectionTimestamp : long

Broker

-connectedEntities : EntityDatal[]

-notificationsContainer : PersistentNotificationsContainer|
-subscriberQueues : Hashtable[]

-routing : Routing

+connect()
+cgnnect() +disconnect()
+disconnect() +publish()

+subscribe()
+unsubscribe()

+notify()

+subscribe()
+unsubscribe()
+addToReceivedNotifications()

[JAN

ProxySubscriber|

_proxyPublisher ProxyPublisher

+forward() -proxySubscriber|
+subscribe() 1 1 [+publish()
+unsubscribe()

Figure 5.18: Class diagram of infrastructure classes

are used in the system.

The classCl i ent models both publishers and subscribers: It contains the information about
the broker to which the client is connected. The fietthnect i onTi nmest anp defines whether the
connection is still valid or not. The set of active subscriptions is stored in thesfidddcr i pti ons,
while the list of received and valid notification identifiers is recorded in the fieldi f i cat i ons-

Cont ai ner. The clas<Cl i ent defines methodsonnect () anddi sconnect () that enable a
client to send a message to a broker requiring connection or disconnection. The metiiadsh()

is used for publishing a notification event that is an instance of one of the defined notification types.
Methodssubscri be() andunsubscri be() enable a client to specify and send a subscrip-
tion event or an unsubscription event to the broker. Special clientPravgy Subscri ber and

Pr oxyPubl i sher that implement the corresponding entities from the distributed publish/subscribe
model.

The classBr oker maintains a list of connected clients in the fieldnnect edEnti ti es.
Connected clients can be either publishers, subscribers, or proxy publishers, and proxy subscribers
that enable the communication between brokers. The information about the connected entities is
described by a special clagat i t yDat a. Persistent notifications are stored in a special container
noti fi cati onsCont ai ner,queued notifications can be stored in a list of queudsscri ber -
Queues. Note that persistent naotifications are used only if the PN-alg is applied. Queues are used for
the Q-alg. Methods of the clags oker enable brokers to connect to, and to disconnect from other

5. Routing Algorithms Supporting Mobility 90

Routing

BrokerWorker -brokerSubscriptions : Hashtable RoutingTable
-adjacentEntities : Hashtable

+getTargetsFor(in nEvent : NotificationEvent)
+getTargetsFor(in sEvent : SubscriptionEvent)
+getTargetsFor(in usEvent : UnsubscriptionEvent)

T

RuotingSubEquality/| RoutingSubCovering

-routing : Routing
+processMsg() 1 1

-subscriptionEntities : Hashtable|
1 1 |*+getEntitiesForSubscription()

Figure 5.19: Class diagram of routing classes

brokers, to send subscriptions and unsubscriptions to their proxy subscribers, and to send notification
to clients with matching subscriptions.

Implementation of the Routing Algorithms

The routing decisions regarding incoming messages received by brokers are made using the classes de-
picted in Figure 5.19. Each incoming message is processed in a new thread implemented by the class
Br oker Wor ker . It implements methods for processing messages carrying the defined events. It
uses the clasRout i ng, i.e., the classeBout i ngSubEqual i t y andRout i ngSubCoveri ng
that implement the corresponding routing algorithms, to make decisions about the neighboring en-
tities to which the incoming message must be forwarded. Note that the system can be extended
by new routing algorithms implemented by classes that extent the base routing class, and that the
classRout i ng is a singleton [53], i.e., there can be at most one object instantiating the class in
a running process. The claBsut i ng maintains a list of active broker subscriptions in the field
br oker Subscri pti ons, and a list of neighboring entities adj acent Enti ti es. Routi ng
is associated with the claB®ut i ngTabl e that maintains a mapping of each active subscription to
a list of neighboring entities, either brokers or subscribers, that are subscribed to the particular sub-
scription.Rout i ngTabl e is updated by each new subscription or unsubscription event, and speeds
up the process of finding neighboring entities with matching subscriptions for incoming notifications.
The usage of a routing table reduces the processing time needed to find subscriptions matching a
published notification by avoiding program loops (for all subscribers, and for all their active subscrip-
tions) and maintains a list of entities for each defined subscription. The routing table is updated with
each subscription and unsubscription event.

The difference between the Q-alg and the PN-alg is not in the implementation of th®alatss
i ng and its subclasses, but in the procedures that are performed when a subscriber connects to a
broker. In case of the Q-alg, the subscriber first activates its subscriptions to update the delivery path
in the broker network, and later on retrieves the notifications stored in its queue maintained by the old
broker. In case of the PN-alg, the subscriber also activates the subscriptions, and the broker network
answers by routing persistent valid notifications matching the subscriptions to the subscriber. Prior

5. Routing Algorithms Supporting Mobility 91

to notification delivery, the edge broker checks whether the subscriber has already received some
notifications using the list of received and valid subscriber notifications. The next difference is in the
notification storage: In case of the Q-alg, brokers store queues per each disconnected subscriber, while
for the PN-alg, brokers maintain persistent notifications, and subscribers maintain a list of received
and valid notifications.

The described set of classes builds the core of the publish/subscribe infrastructure. The application
using the infrastructure needs a mechanism to use the infrastructure in a simple and transparent way.
This is achieved through special interfacésppl i cati onl nt er f ace, and its extending inter-
facesBr oker Appl i cati onl nterface andC i ent Applicationlnterface. The inter-
faces define the methods that need to be implemented by application programmers usigPiBe M
infrastructure. The methods are invoked if an entity, either a broker or a client, receives an event.
They notify the application layer about event occurrences. The detailed description of the application
interfaces and an example application is presented in [75]. The detailed description of the system
implementation based on the PN-alg is given in [117].

5.3.2 Queuing Algorithm vs. Persistent Notification Algorithm

This section presents experimental results that assess the performance of the PN-alg, and compares
the PN-alg to the Q-alg. The main differences between the Q-alg and the PN-alg are in the following:

¢ Notification storage. In case of the Q-alg, system brokers store queues per each disconnected
subscriber. For the PN-alg, brokers maintain persistent notifications, and the list of valid notifi-
cations sent to subscribers and neighboring brokers.

e Subscriber’s reconnection to the system. When applying the Q-alg, a reconnecting sub-
scriber first reactivates its subscriptions at the new broker to update the delivery path in the
broker network, and next, the new broker retrieves the notifications from the subscriber’'s queue
maintained by the old broker and delivers them to the subscriber. In case of the PN-alg, the
subscription reactivation will initiate the delivery of valid notifications along the new delivery
path to the subscriber. Prior to notification delivery to the client, the edge broker checks whether
the subscriber has already received a valid notification by comparing it to the list of received
notification ids.

e Subscriber’sdata. A subscriber in the system applying the Q-alg needs to know the identifier
of the old broker together with the list of active subscriptions to reconnect to the system. In case
of the PN-alg, a list of received and valid notification ids, and the list of active subscriptions is
needed.

e Perceived number of system subscribers. Subscriber queues act as proxy subscribers for dis-
connected clients which gives the impression that subscribers are constantly active in a system
that uses the Q-alg. The PN-alg maintains no active subscriptions for disconnected subscribers.

5. Routing Algorithms Supporting Mobility 92

The evaluation results are obtained using a working prototype which emulated the real working
environment, instead of model simulation. There are some differences in the implementation of the
two approaches that cause the increased processing load for system brokers and clients in case of the
PN-alg: The main reason is the implementation of a garbage collector that purges expired notifications
from notification containers. Therefore, we have decided to define the metrics that are not largely
influenced by the processing latency to enable a just comparison of the two approaches.

Metrics. The performance of a publish/subscribe system in a dynamic environment with mobile
clients is largely influenced by its efficiency: minimal processing load on the brokers, minimal band-
width consumption, and minimal notification delay. We propose the usage of the following metrics
for mobile publish/subscribe system evaluation:

e Broker processing load. The processing load experienced by a broker can be measured by
the rate of processed messages. Messages carrying notifications transport the actual informa-
tion, while subscription and unsubscription messages represent control load that creates and
updates delivery paths. We differentiate between received and sent messages, and classify them
according to the type of events they transport.

e Bandwidth consumption. A desirable property of a distributed pub/sub system is to consume
minimal bandwidth. The rate of processed messages, as in the case of broker processing load,
gives a good estimate of the physical bandwidth consumption.

¢ Notification delay. Efficient notification delivery requires minimal delay, i.e., the period be-
tween notification publication and receipt. In case of mobile subscribers, the delay is increased
due to subscriber disconnections from the system, and it depends on the duration of disconnec-
tion periods and notification validity periods.

Best to the author's knowledge, this is the first evaluation of publish/subscribe system perfor-
mance in a mobile setting that provides performance measures regarding the broker load, notification
delay, and bandwidth consumption. The results presented in [21] evaluate the mobility implementa-
tion within the project Siena. The results show that the extended mobility-enabled system functions
correctly, i.e., that notifications published during the disconnected period reach subscribers as they re-
connect to the system. The authors investigate the number of duplicate and lost messages, but define
no other metrics to evaluate system performance.

Experimental Setup

The experiment investigates the broker’'s processing load, and bandwidth consumption of the Q-alg
and the PN-alg in terms of the rate of processed messages, and the number of stored notifications.
Furthermore, we investigate the implementation efficiency in terms of delay. We ran the experiment
under the same initial conditions for the Q-alg and the PN-alg. After forming a network of brokers,
we initiated stationary publishers, and the defined set of mobile subscribers. Each experiment run
lasted 15 minutes, and we conducted 5 runs with the same initial setting. Therefore, each data point in

5. Routing Algorithms Supporting Mobility 93

Figure 5.20: Experimental network

the given charts is an arithmetic mean of 5 runs. The experiment was conducted using two computers
(Celeron 2.2 GHz, 512 MB of RAM) running Windows XP. The first computer was used to set up the
network of brokers, while the second one hosted both publisher and subscriber processes.

Input parameters. The experiment is conducted using a stationary network of seven brokers
forming a tree as depicted in Figure 5.20. The number of publishers is copstant7, and each
publisher is stationary and connected to one of the brokers. Each publisher publishes notifications at
a constant rate giubRate = 0.5 notifications/s. We use a complex type hierarchy consistirzf) of
types, and publishers generate notifications of a randomly chosen type with uniform probability. Each
notification carries a payload @b0 bytes. The validity period for notifications in case of the PN-alg
is set to5000 ms to avoid potential undelivered notifications.

We varied the number of subscribers in the systems 1, 5,..., 30. Subscribers are mobile
and can connect to all system brokers excepbtbecause it is the root node of the broker network,
and therefore the system bottleneck. We use the random mobility model [66] in the experiment:
A subscriber chooses the next broker randomly from the set of available brokers. Each subscriber
connects to a new broker with a constant connection rate in the range)f2aim0.6 connections/s.
Connection duration i50% of the connection period. For example, whemnRate = 0.21/s and
connPeriod = 0.5, a subscriber is connected to a broker 205 s, then it disconnects from the
system, and afte2.5 s reconnects to a new broker. Figure 5.21 shows the measured average number
of subscribers connected to a broker as the total number of subscribers in the system changes. It is
visible that subscribers do not connect2g and that other brokers evenly share the subscriber load.

In case of the total of 15 subscribers in the system, there is on average one subscriber connected to
each broker. All subscribers subscribe to the top subscription type, and should receive all published
notifications. The overview of input parameters for the experiment is given in Table 5.1.

Experimental Results

The rate of received and sent messages. Figure 5.22 shows the average rate of received and sent
notification messages per each broker. The rateasived notification messages for both the Q-alg

5. Routing Algorithms Supporting Mobility

Average Number of Subscribers

22 4

18

I157I10I15m]20|:|25l30|:|35‘

|

1.6
14

1.2

0.8
0.6
0.4 4
0.2 4

Figure 5.21: Number of connected subscribers per broker

3 4

Broker

Table 5.1: Input parameters

Publishers| | subscribers

D 7 s 1, 5, 10, 15, 20, 25, 30
pubRate |0.51/s connRate 0.2 — 0.6 1/s
loadSize |100 bytes|| connPeriod|0.5

validity |5000 ms ||brokers | Bu, Bs, Ba, Bs, Bs, Br

94

5. Routing Algorithms Supporting Mobility 95

—— Q-alg (received) — -x- — PN-alg (received) —a— Q-alg (sent) — ¢ — PN-alg (sent)
20
18 -
16 -
14
12 -

0 5 10 15 20 25 30
Number of Subscribers

Figure 5.22: Rate of received and sent notifications

and the PN-alg increases until = 15 when there is on averagesubscriber per each broker, and
reaches the maximum value determined by the number of system publishers, and their publishing
rates, e.g., fop = 7andpubRate = 0.5, the maximum rate of received notifications for each broker
equals3.5 when each broker receives all published natifications. Clearly, the rasmtofhotification
messages increases as the number of subscribers in the system increases, because the number of
message destinations increases accordingly. The rate of sent notifications is not significantly different
for both approaches in the experiment. However, the Q-alg generates a slightly larger number of
notification messages than the PN-alg wheh 15, because in case of the Q-alg, notifications are
sent to subscriber queues during the disconnection period, while in case of the PN-alg, notifications are
cached on brokers they traverse, and from there delivered to reconnecting subscribers. The notification
rate in case of the Q-alg is further increased by notification exchange during the handover procedure.
The difference is not significant for 30 subscribers in the system, but the trend shows that it would be
substantial in case of a large number of subscribers.

Figure 5.23 shows the average rate of received and sent subscription messages per each broker.
As expected, the rate oéceived subscription messages increases for both algorithms as the number
of subscribers in the system increases, and the rasenbfsubscription messages decreases due to
the existence of covered subscriptions in the system as the number of subscribers increases. The
graph shows that there are no significant differences between the two approaches as the number of
subscribers in the system increases.

Figure 5.24 shows the average rate@tfeived and sent unsubscription messages per broker. As
expected, the Q-alg generates less unsubscription messages than the PN-alg because the Q-alg does
not generate unsubscription messages in case the old and the new broker are the same, which is the
case for the PN-alg. The rate of sent unsubscription messages decreases as the number of subscribers

5. Routing Algorithms Supporting Mobility 96

—— Q-alg (received) —a— Q-alg (sent) — - — PN-alg (received) — -¢- — PN-alg (sent)
1.8

1.6

1.4 +
1.2 1

14
0.8 ~

Rate

0.6

0.4 +

0.2
0

Number of Subscribers

Figure 5.23: Rate of received and sent subscriptions

increases, because there is no need to propagate unsubscriptions since there are other subscribers with
an active matching subscription that are connected to brokers.

Figure 5.25 shows the average ratecofitrol messages per each broker that create and update
delivery paths in the broker network. We refer to both subscription and unsubscription messages as
control messages. Although it would be reasonable to assume that the rate of control messages in case
of the PN-alg is substantially larger than for the Q-alg due to the increased number of unsubscriptions,
the experiment shows that as the number of subscribers in the system increases, the difference between
the PN-alg and the Q-alg decreases.

Finally, Figure 5.26 depicts the average rate of all received and sent messages per broker and can
be used to asses the broker processing load. The messages that are taken into account are natifications,
subscriptions, and unsubscriptions. It is visible that the Q-alg poses less load on a broker for a smaller
number of subscribers, but that the performance of the PN-alg improves as the number of subscribers
in the system increases.

The number of stored notifications. Figure 5.27 shows the average number of routing table
entries on a broker as the number of subscribers in the system increases. The size of routing tables
are important as they directly influence the routing efficiency and delivery delay for published notifi-
cations. As expected, the number of routing table entries is larger for the Q-alg than for the PN-alg
because the Q-alg experiences a larger number of subscribers in the system because disconnected
subscribers are represented by queues and require routing table entries. It can be concluded that the
PN-alg is superior when compared to the Q-alg with respect to the number of routing table entries
especially if we assume that the number of subscribers in the system is large, and if disconnection
periods are frequent and long.

Notification delay. Figure 5.28, Figure 5.29, and Figure 5.30 show the experienced delay per

5. Routing Algorithms Supporting Mobility 97

—— Q-alg (received) —aA— Q-alg (sent) — > — PN-alg (received) — =% — PN-alg (sent)
1.8
1.6 -
1.4
1.2

1
0.8
0.6 -
0.4 1
0.2

0

Rate

i
0 5 10 15 20 25 30
Number of Subscribers

Figure 5.24: Rate of received and sent unsubscriptions

—— Q-alg (received) —a— Q-alg (sent) — -x- — PN-alg (received) — -x- — PN-alg (sent)
3.5

3

2.5 1

Rate

Number of Subscribers

Figure 5.25: Rate of received and sent control messages

5. Routing Algorithms Supporting Mobility 98

—— Q-alg (received) —a— Q-alg (sent) — > — PN-alg (received) — -¢- — PN-alg (sent)
20

18 -
16 A
14
12

Rate
5

Number of Subscribers

Figure 5.26: Rate of received and sent notifications/subscriptions/unsubscriptions

O Queued
3 I _I m Persistent

Number of entries

1 5 10 15 20 25 30
Number of subscribers

Figure 5.27: The average routing table size per broker

5. Routing Algorithms Supporting Mobility 99

—aA—Q-alg — - — PN-alg

150

50

Number of Subscribers

Figure 5.28: Delay for direct notifications

—a— Q-alg — - — PN-alg

1000

900 ~

800 ~

Delay [ms]

700 ~

600

Number of Subscribers

Figure 5.29: Delay for stored (queued/persistent) notifications

received notification in ms asvaries. Notifications taken into account in Figure 5.28 were directly
delivered to subscribers without being stored in the system. The delay of stored notifications, either
queued, or persistent, is depicted in Figure 5.29. Figure 5.30 shows the average delay for all published
and delivered notifications. The figures show that the PN-alg causes smaller delay than the Q-alg as
a consequence of smaller routing tables. The delay is also influenced by the differences in broker
implementations: PN-alg brokers are burdened by special processing threads for updating the list of
unexpired notifications, and therefore the difference between the two approaches is less significant.

To conclude, the PN-alg is superior when compared to the Q-alg with respect to the routing ef-
ficiency as it generates smaller routing tables and introduces smaller notification delay. The PN-alg
introduces less processing load on brokers for the conducted experiment as the number of subscribers
in the system increases, and therefore consumes less bandwidth on links connecting the brokers. The

5. Routing Algorithms Supporting Mobility 100

—a—Q-alg — ¢ - PN-alg

600

500 -

Delay [ms]

400

Number of Subscribers

Figure 5.30: Delay for all notifications

preliminary results show that the load introduced by control messages for the PN-alg is acceptable
when compared to the Q-alg.

5.4 Discussion

Mobility and persistent notifications. The usage of persistent notifications stored by the system,
and the algorithm that requires the delivery of such notifications after subscriber’s reconnection to the
system, is a novel approach that assures the delivery of notifications published during subscriber’s
disconnections. When a subscriber reconnects to the system, possibly through a new broker, the new
broker reactivates its subscriptions. The subscriber needs to provide a list of its active subscriptions,
and a list of subscriber’s valid received notifications. The broker can alternatively retrieve the list
of subscriptions and received notifications from the broker network. The list of active subscriptions
is needed to reactivate subscriptions, and the list of subscriber’s valid received notifications prevents
delivery of duplicate notifications. The reactivation of subscriptions causes the creation of a new
delivery tree to the subscriber using the new broker as the root node of the delivery tree. The rule that
requires the delivery of persistent valid notifications after each subscription reactivation assures that
the subscriber receives persistent notifications stored by the broker network that it has not previously
received.

A persistent notification is stored by a subset of network brokers until its validity period expires. It
is maintained by a single broker if, at the time of its publishing, there were no remote subscribers for
the notification. The notification will eventually reach a reconnecting subscriber following a newly-
created delivery path, and be stored on each broker it traverses. The subscriber might have already
received the notification if it has previously resided on the broker through which the notification has
been published: The notification will be routed to the new broker, however, it will not be delivered
to the subscriber since its id is in the list of subscriber’s received notifications. This in the known

5. Routing Algorithms Supporting Mobility 101

overhead of the approach that causes superfluous traffic in the broker network, and increases the usage
of broker memory and processing time. At the other extreme is the situation in which all brokers have

a notification copy. A reconnecting subscriber will receive a notification copy from the access broker
without causing extra traffic in the broker network.

If we assume reliable communication in the system, the system is resilient to duplicate notifica-
tions. The mechanism that compares the list of subscriber’s received notifications that are still valid to
those that should be sent to a subscriber prevents the possibility of delivering duplicate notifications.
However, a notification can be undelivered because a broker network may introduce the delay that can
lead to natification expiry prior to it's delivery to the subscriber.

Comparison with the “queuing” approach. Potential advantages of the proposed approach
when compared with the Q-alg are the following: avoidance of the handover procedure that transfers
notifications from the old to the new broker, reduced size of broker routing tables due to decreased
number of perceived subscribers in the system, and memory consumption related to the storage of no-
tifications in the system. The expected disadvantage is related to control traffic.: The PN-alg generates
an increased number of subscriptions and unsubscriptions for terminating the old and creating the new
delivery paths. The Q-alg suffers from the same problem if the probability that a subscriber reconnects
to the same broker is low. If subscribers frequently connect to the same broker, the number of control
messages is reduced because there is no need to update an existing delivery path. The maintenance of
the list of received and valid notification ids is an additional broker overhead in case of the PN-alg.

Advertisements. In the presented algorithms we utilize only subscription and notification mes-
sages: Subscriptions create delivery paths for notifications. Some systems, for example SIENA [24]
and Hermes [89] use advertisements to decrease the number of control messages exchanged between
system brokers. Advertisements are published by notification publishers to declare the intent of pub-
lishing notifications with certain characteristics. Advertisements set routing paths for subscriptions:
Every advertisement is broadcasted to all brokers, and subscriptions follow reverse paths set by ad-
vertisements to set delivery paths from potential publishers to subscribers. A subscription is routed
to a neighboring broker only if it advertises notifications matching a subscription. The forwarding
of advertisements decreases the number of control messages that update subscription information
since subscription update is sent only to those brokers that can generate matching notifications. The
algorithms presented in the thesis can be extended to use advertisements for decreasing the rate of
subscription and unsubscription messages in the system.

Reverse path forwarding vs. core-based trees. The algorithms use reverse path forwarding for
creating minimal delivery trees for notifications and offer minimal dissemination delay, but increase
the number of control traffic in the broker network. It is possible to adjust the presented algorithms
to rely on the core-based tree approach for routing notifications to mobile subscribers. Subscribe and
unsubscribe requests would be routed to the core node creating and updating delivery paths from the
core node to subscribers. Each published notification would be routed to its core node, and from there
it would follow delivery paths to subscribers. The notification would be stored at least by the core
node until it is valid.

5. Routing Algorithms Supporting Mobility 102

A comparison of the routing algorithm using the core-based tree approach that is applied in Her-
mes and the reverse path forwarding algorithm similar to the one used in Siena is given in [90].
The comparison considers environments with stationary clients. The algorithms are compared with
respect to the following cost metrics: delay, bandwidth consumption, and routing table sizes. The ex-
periments show that the reverse path forwarding approach using minimal spanning tree is superior to
the core-based approach with respect to notification delay, i.e., the average time between notification
publication and delivery. The core-based tree approach uses less space for storing routing tables be-
cause the routing information is not flooded through the network, but rather forwarded to core nodes.
The bandwidth consumption is measured in terms of the number of messages exchanged between net-
work brokers: The core-based tree approach generates less notification and advertisement messages,
but creates more subscription-related traffic because of additional messages sent to the core node.
The performance of the core-based tree routing approach needs further performance investigation,
especially in mobile settings.

An outline of a distributed JMS implementation. The current JMS-based distributed imple-
mentations, e.g., JORAM [84], use the flooding technique for disseminating notifications between
JMS servers. This is a costly technique that causes significant bandwidth consumption and processing
load, and may interfere with system scalability. The proposed distributed publish/subscribe model
and the routing algorithms with persistent notifications are adequate for transforming centralized JMS
solutions into scalable distributed JMS implementations: Firstly, the extension of an existing server
can be implemented by adding a pair of proxy publishers and proxy subscriber on top of two JMS
servers in order to enable equality-based or covering-based routing between the two JMS servers.
Secondly, the JMS specification defines message persistency, and it has been integrated into the avail-
able JMS implementations. Thirdly, JMS uses open connections for its publishers and subscribers:
It is therefore possible to update the set of connected subscribers which is needed for the algorithm
implementation.

The available JIMS benchmark tests [50] show that JMS implementations are largely influenced by
the number of connected subscribers, and the publishing rate. The extension of the existing server im-
plementation would improve the performance of the distributed solution, and enable the deployment
of scalable distributed solutions that can satisfy requirements for large-scale notification systems. Fur-
ther work is needed to implement and evaluate the performance of distributed JMS implementations
based on the presented model and routing algorithms.

Chapter 6

Content Dissemination Service
Architecture

The increasing popularity of information services that rely on content delivery in mobile environ-
ments motivates the need fomaobile content dissemination service—an efficient and scalable in-
formation service that enables the delivery of personalized and customized content to mobile users.
Publish/subscribe middleware offers mechanisms for content personalization: Subscribers define the
characteristics of content that is of interest to them, and get notified when such content becomes
available. The distributed architecture of publish/subscribe systems and efficient routing algorithms
solve the scalability requirement. However, the diversity of usage scenarios and the varying nature
of mobile environments requires additional services that need to cooperate with the publish/subscribe
middleware to offer a flexible service customized to particular user presence status.

This section lists and analyzes the requirements of a content dissemination service supporting
mobile users, and present representative usage scenarios that illustrate the features of the system
offering customized content dissemination to mobile users. The analysis of service usage scenarios
has enabled the identification of the supporting software components that need to collaborate with the
mobility-aware publish/subscribe middleware to address the dynamics of mobile environments. The
set of identified components forms the proposed content dissemination service architecture.

The chapter is structured as follows: Section 6.1 investigates usage scenarios that have guided the
design of the reference architecture which we present in Section 6.2. The reference architecture has a
layered structure comprising a set of components: We outline the features of the identified components
and describe their interaction in Section 6.2.4. We focus on two particular components that are crucial
for service implementation and deployment: publish/subscribe middleware, and personal mobility
management. We provide a detailed design description of a Web-based publish/subscribe component
in Section 6.3. Section 6.4 illustrates our solution for personal mobility management.

103

6. Content Dissemination Service Architecture 104

6.1 Requirementsand Usage Scenarios

Even though content dissemination services can be useful, their wide acceptance depends on the pre-
condition that the service delivers only highly personalized and customized content in accordance
with user preferences and current presence status. This gives the opportunity to create a “branded”
dissemination service invulnerable to spam. The service would become a trusted intermediary be-
tween content publishers and subscribers that filters the wealth of information according to user’s
needs. We identify the following requirements that need to be satisfied by service design:

Push-based content delivery. Service users must be able to define the type of content they want to
receive, and be served with the published information as soon as it is available. The push-style
content delivery eliminates the burden of querying for information at regular intervals and is in
accordance with the stochastic nature of content creation and publication.

Content filtering and personalization. Content filtering is enabled through user subscriptions to
minimize the number of received message that are not of interest. This feature enables service
personalization and adaptation to user context. It reduce the information overload on a user by
associating and comparing each published piece of information to user context and preferences.

Per sonal mobility. Service users must be able to publish and receive the content using various ter-
minals in different networks. This feature enables true personal mobility and offers usage flex-
ibility.

Scalability. The service must scale well to a large number of potential users, and must be optimized

for the particular application area with respect to the number of publishers and subscribers in
the system, and the size and frequency of published content.

We describe a number of usage scenarios for content dissemination services in mobile environ-
ments: We start the analysis with the simplest scenario that offers no mobility support and gradually
extend it to introduce more flexibility for service users. In the first scenario a user employs a sta-
tionary terminal with a permanent network attachment point to publish and receive the content. The
second scenario enables nomadic users to access the service from different networks using desktop or
portable computers via dial-up modem lines or (wireless) LANSs. In the third scenario a user can apply
various devices ranging from desktop and laptop computers to less powerful devices such as handheld
computers and mobile phones in different networks. We consider the content dissemination system as
a black box and put the user, either a content publisher, or a subscriber, in the focus of our discussion.

We use the following underlying scenario to motivate the discussion and illustrate the usage sce-
narios: Alice lives in the suburbs of Zagreb and commutes each day to her downtown office. She uses
the traffic notification service which informs her about the current traffic situation. The up-to-date
traffic reports enable Alice to decide whether to rely on public transportation or to drive to work. The
service can assist her in finding the best driving route.

6. Content Dissemination Service Architecture 105

O A

Gateway e .

Internet

Content
Dissemination

@
& O A

Figure 6.1: Stationary scenario

Stationary users. Alice accesses the traffic notification service from her office desktop computer
on a LAN. Before leaving the office, she checks the list of received traffic reports to be informed
about the current traffic situation. If she needs additional information and driving instructions, she
can request a detailed map of the particular area with approximate waiting times for the traffic jam
areas.

Figure 6.1 depicts a stationary scenario showing an environment hosting the traffic dissemination
service. The service is deployed in the IP-based network, while service publishers and subscribers
apply stationary terminals for publishing and receiving the traffic reports. In this scenario Alice is a
stationary subscriber to the channel “Zagreb traffic.” Whenever traffic problems in the area of Zagreb
are reported, for example by Bob who has just arrived to the office, the traffic service initiates the
delivery of a new traffic report to all subscribers with a matching subscription. This is a standard
push-style service operation, while the use case in which Alice requests additional information using,
for example, an URL from the received report, relies on the request/reply interaction style.

In the stationary scenario all subscribers apply a single static terminal for receiving the published
content: If a terminal has public stationary |P address, the broker hosting the traffic dissemination
service can initiate connections to the content receiver running on the terminal to deliver a published
report. For this purpose the broker must know the address of the terminal and whether the receiver
application is running on the terminal. In case the terminal is behind a firewall, i.e., itdnaste |P
address, the broker cannot initiate a connection to the receiver: The receiver must initiate a connection
to the broker and maintain it active. The broker can deliver the published content using the active
connection to the terminal behind a firewall.

In case a traffic report cannot be delivered to a subscriber’s receiver application, the undelivered
report must be stored by the service for subsequent delivery. The service needs to provide a strategy for
temporary content storage that will preserve undelivered content for disconnected users according to

6. Content Dissemination Service Architecture 106

(s)——e
Foreign Network
(s) Content

- Dissemination
PN Service
Internet

f \ ,x"/ //:/,—‘\ /
(S f % § (S ;.
A _/ A _/

Figure 6.2: Nomadic scenario

the defined priority rules. Furthermore, the service enables publishers to define the topics for content
classification, and to define and store the content for publishing usiagtent management service.

We have identified personalization as one of the major requirements of a dissemination service.
For example, Alice might define several routes between her home and office. In this case the traffic
service would filter the messages for the “Zagreb traffic channel” and deliver only those that match
her personal routes. Clearlyontent-based filtering is needed to provide such a personalized service
and Alice must also be able to express her preferences as a set of rules/filters. Her subscriptions and
preferences are stored and managed bseaprofile service.

Nomadic users. In the previous scenario Alice was restricted regarding the usage of the traffic
notification service since she was bound to one location. Naturally, she wants to use this service at
home before driving to the office. At home she connects her laptop to the Internet via dial-up and thus
becomes a nomadic service user.

This feature puts an additional requirement on the service: The service must be aware of the end
communication point, e.g., a terminal address and a port number, to deliver the content to a subscriber.
In case a nomadic user applies a single terminal with support for mobile IP, the mapping remains
stationary as in the case of stationary users. However, if the user applies a terminal without mobile IP
support, or various terminal, the service needs an up-to-date information that uniquely defines the end
communication point because if the content is sent to an invalid address it might reach the incorrect
subscriber or the service might assume that a subscriber is off-line. Further on, a subscriber may
apply various applications for receiving the content, e.g. a JMS-based receiver, or a mail reader, and
the service should be able to deliver it using the most appropriate and preferred delivery mode.

A nomadic user can frequently change its location in the network even though the service is not
used between the movements. Figure 6.2 depicts a nomadic scenario in which the terminal changes
the network, or a subscriber changes both the device and network. A subscriber can use the service

6. Content Dissemination Service Architecture 107

Content

Dissemination
Service

Gateway

Internet GPRS/UMTS

o mobile
el . @ R phone

/ PDA

-

Figure 6.3: Mobile scenario

from a dynamically configured home network, or move to a foreign network and connect to the In-
ternet via wireless LAN. A subscriber can also use the service from home via dial-up. By changing
its attachment point, the terminal address and the subscriber's communication point will change ac-
cordingly. The same problem arises if a network (LAN, PPP) is configured using the Dynamic Host
Configuration Protocol (DHCP). To track the change of the subscriber’'s current destination address,
a personal mobility management service must map a unique subscriber identifier to the current sub-
scriber's communication point. We assume that the communication point identifies both the terminal
and the application for content receipt.

Mobile users. In this scenario Alice would like to use the traffic notification service while in
motion. Figure 6.3 depicts an environment where she can use both a handheld computer and a mobile
phone to receive traffic reports. She can use a handheld computer with wireless LAN connectivity
while within the reach of a wireless LAN base station or her mobile phone during outdoor activities.

In this setup, as well as in the nomadic scenario, we ngaetsanal mobility management service
that will map a user to the identifier of the currently applied end communication point. This is a one-
to-many mapping: A user might register a number of devices and receiver applications, e.g., a mobile
phone with MMS, a handheld computer with a mail reader, a desktop, or a laptop computer with a
JMS-based receiver. In case a user is applying a single terminal with multiple network interfaces and
a single receiver application, the network should prowieltical handover [18], a smooth transition
between different networks. For example, when a user exits the wireless LAN coverage, the terminal
automatically switches to the mobile network.

Service personalization amdntent-based filtering are vital in this scenario because a user must be
able to define his/her preferences according to the currently used communication point. For example,
Alice may want to receive traffic reports regarding the area in which she is currently residing when
using her mobile phone, while in case she is in the office, she would need all the published information
about the Zagreb area.

6. Content Dissemination Service Architecture 108

Table 6.1: Services for stationary, nomadic and mobile users

Stationary‘ Nomadic ‘ M obile‘

content-based filtering + + +

temporary content storage

+
content management +
+

user profiles

+l+ |+ |+

personal mobility management -

content adaptation - -

+ 4|+ 4|+ 4+

content presentation - -

Due to the variations in network and end-devicentent adaptation and presentation is essential
in this scenario. The content is delivered through various networks that differ in the available band-
width, and it is displayed on devices with different computational capabilities and screen sizes. For
example, Alice can receive high quality maps only on a computer with a high bandwidth connec-
tion. When driving home from the office she can re-check the text reports about the changing traffic
conditions on her mobile phone. The published content depends on the terminal and the network
both publishers and subscribers are applying. Similarly, the presentation of the received content will
depend on the characteristics of the subscriber’s terminal. The content must therefore be adapted to
match the capabilities of both terminal and network.

Table 6.1 summarizes the required services for each of the described usage scenarios. Content-
based filtering is needed for service personalization in all usage scenarios. Temporary storage of
undelivered content must be provided to guarantee the delivery of valid and possibly vital reports to
disconnected users in all usage scenarios. Content publishers define topics for content classification
and the content for publishing using the content management service, while subscriber’s subscriptions
and preferences are managed by the user profile service. Both content management and user profile
service are needed in all scenarios. Personal mobility management is required in nomadic and mobile
scenarios, while solutions for content adaptation and presentation become important in mobile sce-
narios with different devices and networks. It is desirable to design and implement generic services
that can accommodate the requirements of different scenarios and therefore be applied in all presented
scenarios.

6.2 Reference Architecture

Based on the discussion in Section 6.1, we propose a content dissemination service architecture for
mobile environments that is based on the publish/subscribe communication infrastructure. Figure 6.4
depicts the proposed architecture that consists of the components providing the features listed in Ta-

6. Content Dissemination Service Architecture 109

application content content
layer management presentation
service (publish/subscribe personal mobility) content)
user profile .
layer L management management adaptatlon)
T (: :)
communication publish/subscribe
layer L middleware)
()
:;a';fpm TCP] [UDP
y L J

Figure 6.4: Reference architecture

ble 6.1. We denote the proposed architecturesiesence architecture because it identifies a complete
set of components needed to provide a personalized and adaptable content dissemination service for
mobile environments. This section gives an overview of component characteristics and describes their
functionality.

The components are logically divided into the following layers:

e The communication layer enables the publish/subscribe interaction between system users and
other services that require event-based communication. It employs publish/subscribe middle-
ware that provides push-based content delivery, content-based filtering according to defined
subscriptions, and temporary content storage for disconnected subscribers.

e The service layer contains utility services needed by a content dissemination service. These
are publish/subscribe management, personal mobility management, user profile service, and
content adaptation.

e Theapplication layer is a service-specific layer that deals with content presentation, and enables
publishers to define and manage device-dependent content.

The presented architecture adopts the approach used in the Open Service Access (OSA) stan-
dard [1]. OSA specifies an open standard API for third party service providers that enables them
to design and deploy value-added services using the network infrastructure controlled by mobile op-
erators. OSA offers abstractions of the core network functionality through OSA services, e.g., user
location service, user status service, call control, user interaction service, terminal capabilities service,
presence and availability management. OSA services are deployed in a layer above the network infras-
tructure: They rely on the network communication and management services that have traditionally
been unavailable to third party service providers. Security and authenticated access to network ser-
vices is obviously the major requirement that needs to be fulfilled for OSA-based service deployment
in real networks.

6. Content Dissemination Service Architecture 110

Following the OSA approach, we define generic services in the service layer of the reference
architecture. The identified services use the publish/subscribe communication capabilities of the un-
derlying layer: The publish/subscribe middleware may be deployed as a Web service and offered
and managed by a third party. We propose the design of such a publish/subscribe service in Sec-
tion 6.3. Some of the OSA services correspond to services in our reference architecture: Personal
mobility management corresponds to the OSA presence and availability management service, and
user status service; user profile can be mapped to the OSA interaction service. Assuming that the
OSA implementation is available and deployed in the existing mobile networks, service providers can
use OSA services to implement and offer content dissemination: OSA services would enable access
to the infrastructure and data of the mobile network. However, OSA services are still not supported
and offered in the existing networks. Furthermore, the service that is missing in the OSA standard is
the publish/subscribe-style communication which is required for the presented content dissemination
solution.

6.2.1 Communication L ayer

Publish/subscribe is the basic interaction style in the proposed architecture. It enables the push-based
delivery of content from publishers to subscribers, and event-based interaction between other archi-
tecture components. Subscribers can define subscriptions to channels and refine their subscriptions
using the set of rules for content-based filtering. We use the thamnel for content classification
to avoid implying the subscription scheme of the applied publish/subscribe system: The underlying
publish/subscribe middleware may implement either subject-based, content-based, or type-based sub-
scription schemes.

To offer support for mobility, the publish/subscribe middleware should provide temporary storage
of published content for disconnected subscribers using either the “queuing” approach, or the storage
and delivery of persistent notifications. In addition, it serves as a distribution media for notifications
produced by a mobility management component, and environment-related events that guide service
adaptation. We assume that the publish/subscribe system has a distributed architecture to cope with
scalability-related problems and propose that it is designed and implemented using the distributed
mobility-enabled model presented in Chapter 4. The detailed description of the communication layer
design is given in Section 6.3.

6.2.2 ServiceLayer

The publish/subscribe management component is a mediator between the application layer and the
publish/subscribe middleware. It is used to coordinate other services: Firstly, it activates and de-
activates user subscriptions according to user presence status and defined preferences. Secondly, it
manages content adaptation to the characteristics of the applied user device. The component cooper-
ates with personal mobility management, user profile, and content adaptation component, and relies
on the publish/subscribe middleware for receiving and disseminating information relevant to service

6. Content Dissemination Service Architecture 111

coordination.

Thepersonal mobility management component is responsible for maintaining up-to-date informa-
tion about the current subscriber’s presence mode. It defines a mapping of a unique user identifier
to an end communication point where the subscriber is currently reachable. An end communication
point identifies uniquely the terminal and the application that is used for receiving the content. It
can be extended to track and store the user’s geographical position for location-based services as de-
scribed in [36]. The detailed description of the personal mobility management component is given in
Section 6.4.

The user profile component stores and manages user profiles and enables a subscriber to define
rules to customize the service. It stores user’s subscriptions and the information about subscriber’s
communication points. It is closely related to the personal mobility management component because
it stores the information about subscriber’s default communication points such as e-mail addresses, or
mobile phone numbers, that represent an active communication point stored by the personal mobility
management component.

A subscriber can decide which subscriptions apply to a particular end communication point, cur-
rent location, or time of day. Content can thus be queued for later delivery to a suitable device
according to user preferences. A user profile can contain device capability data following the Com-
posite Capability/Preference Profile (CC/PP) recommendation [28]. There are already a number of
solutions that define the type of data that are stored in user profiles. Exampjesfarence registry
designed within thedeBERGproject [122], and the “data recharging” profiles that evaluate the utility
of certain content for a specific user [26]. The open problems are related to security and privacy: will
the profile be stored on user devices, or will a broker store a copy, and who can access and change a
user profile.

Content adaptation deals with the problem of client and network variability in mobile environ-
ments. Data compression and data conversion are standard techniques for client and network variabil-
ity adaptation [81]. For example, an image must be transformed into a new format to be displayed on a
mobile phone, or a smaller and lower quality image is sent over a low-bandwidth connection. Dynamic
adaptation [11] can be used for content dissemination services: The system monitors the environment,
and acts upon changes, such as low bandwidth, or battery consumption. The publish/subscribe mid-
dleware can be used for distributing the data about environment changes.

6.2.3 Application Layer

The application layer contains components that are specific to a particular content dissemination ser-
vice: It is affected by the type of content that is distributed to subscribers, and the particular appli-
cation purpose. Theontent management component enables a publisher to define the channels, and
create and manage device-dependent content which will be published on different channete The
sentation component is responsible for device-dependent content representation: The content must
be adjusted to applied terminals in order to suit different display sizes and deal with terminal input

6. Content Dissemination Service Architecture 112

i :Pub/Sub :User :Personal . . i
:GUI Mn Profile Mobilit :Adaptation :Pub/Sub
Subscriber
I register()

I
newUser()

initProfile(uid)

I

I

I

I

: <—-—---- init(uid)

: subscribe(presence, uid)

I

I Kemmmm oo H-mm e

: init(uid)

I

| subscribe(env, uid)
I

| K—=—------- 4===---=---q Bl

[SRE—— A

| T T T T T T

Figure 6.5: Registration of a new subscriber (UML sequence diagram)

limitations. Currently, XML and related technologies are used to create and manage flexible user
interfaces [65]. The presentation-related problems, such as content structuring and partitioning, and
simple input techniques are still open research topics.

6.2.4 Component Interaction

We show the interaction between the components of the proposed reference architecture using Unified
Modeling Language (UML) sequence diagrams [17] that describe the following use cases: registration
of a new subscriber in the system, subscription update due to subscriber disconnection, and the process
of subscribing and content publishing.

The sequence diagram in Figure 6.5 depicts the component interaction when a new subscriber
registers with the system for the first time. The subscriber uses a graphical intesfaigedq define
his/her user profile.GUI directs the request for registration of a new user to the publish/subscribe
management componeritub/Sub Mng): Firstly, Pub/Sub Mng initializes a user profile with a unique
user identifier id) using the data provided by the subscriber. Secondly, it registers the user with
the personal mobility management componéd®drgonal Mobility). This component uses the pub-
lish/subscribe infrastructure to receive notifications regarding user connections to, and disconnections
from the system: It subscribes to a special chanmekence, usinguid as a filtering constraint. Each
time the subscriber connects to or disconnects from the system, the relevant information will be pub-
lished on the channelsonnect anddisconnect. Therefore, thePersonal Mobility component will be
able to react to such occurrences and update the subscriber’s presence status.Plbislis Mng
contacts the adaptation componeatidptation) that in turn subscribes to a special charg®l that
transports the information about the changes in service environment related to the user perception of

6. Content Dissemination Service Architecture 113

X :Pub/Sub :User :Personal .
LUl Mng Profile Mobility :Pub/Sub
Subscriber
: disconnect()
— unsubscribe(subscriptions)
[
publish(disconnect, uid)

notify(presence, uid, presenceData)

getDefaultContact(uid

getSubscriptions(defaultContact, uid)

subscribe(subscriptions, uid)
|

. .

|
|
|
|
|
|
|
|
|
|
|
| updateSub(defaultContact, uid)
|
|
|
|
|
|
|
|
|
|
|
|

Figure 6.6: Subscription update due to disconnection (UML sequence diagram)

the service.

The sequence diagram in Figure 6.6 presents a scenario that causes subscription update due to
subscriber disconnection. We assume that the subscriber has defined a default communication point
that is stored in the user profile. When the subscriber decides to close an application used for receiving
the published contenGUI), GUI sends an unsubscription request to the publish/subscribe middleware
(Pub/Sub) and notifies @ersonal Mobility component about user disconnection throughptiesence
channel. ThePersonal Mobility component requests the data about the default user communication
point from theUser Profile component, and informs thub/Sub Mng about the new subscriber status.

To activate subscriptions that the subscriber has chosen as valid in case of disconnedtob/Sihie
Mng first retrieves the information about default subscriptions fidgsar Profile, and subsequently
activates the default subscriptions.

The sequence diagram in Figure 6.7 shows the component interaction for two representative use
cases: publish (a publisher releases content to a channel) and subscribe (a subscriber subscribes to the
channel). We assume that a subscriber uses a special application for receiving the published content
(Receiver) that is independent of theul for defining and modifying subscriptions. The subscriber
sends the subscription request fr@ul to the Pub/Sub Mng component which in turn updates the
user profile. When the user activateRexeiver that is used for receiving the content, the receiver must
first get the information about valid subscriptions frosser Profile, and activate the valid subscription
by sending a subscribe request to Eud/Sub component.

To publish content, the publisher defines a message usaty hich updates the content storage

6. Content Dissemination Service Architecture 114

I

I

I

I

notify(message) :
I

L I

I

I

) U o0 U [

:GUI :Receiver PubiSub :US‘?F :Pub/Sub :Content :GUI
— — Mng Profile —
[
|
Subscriber : Publisher
' |
subscribe(aChannel) : |
:— subscribe(aChannel) :
|
| | |
: | updateProfile(uid, aChannel) :
| : e— I
5 N VR I B Sttt |
Ko==mmm— R : ”””””” I
| . |
: getSubscriptions(contact, uid) :
| |1 N} |
; PR N |
| subscribe(aChannel) publish(message, aChannel)
| | | | 1
: update(message, aChannel) !
|
R
: publish(message, aChannel)
I
I
I
I
I

Figure 6.7: Sequence diagram for publish and subscribe use cases

of theContent component, and chooses a channel on which the message should be publishedl The
submits the published message to Bue/Sub, andPub/Sub notifies the receiver about the published
message.

6.3 Publish/Subscribe asa M obile Web Service

We propose the design of a Web-based publish/subscribe component which implements the commu-
nication layer of the proposed reference architecture [93]. The proposed component facilitates the im-
plementation of content dissemination services for mobile users who apply various types of terminals
for content receipt: It offers a general set of methods for the implementation of publish/subscribe-
based interaction and uses other components, such as mail, SMS, MMS, or JMS for the actual content
transmission. The service is mobility-enabled: The components used for content transmission are
applicable in mobile scenarios and facilitate the receipt of published content on various subscriber’s
devices.

Web service. Although publish/subscribe interaction style has been recognized as a valuable
service in a number of application domains, no Web services that offer the generic publish/subscribe
functionality are available so far. We argue that publish/subscribe is a generic service that is required
in various application domains such as content dissemination, notification services, instant messaging,
or groupware and collaboration systems. Publish/subscribe has indeed been recognized as one of the
basic services in the Web services architecture for groupware systems proposed in [38].

Web service, an emerging model for distributed computing on the Web, can be regarded as soft-

6. Content Dissemination Service Architecture 115

ware system providing a well-described functionality accessible over the network. Service descrip-
tion specifies its interface in a machine-processable format and facilitates the interaction between
various Web services to enable their integration in order to provide more complex value-added ser-
vices [37, 121]. Web services are designed as self-contained software components that can be pub-
lished, discovered, and invoked over the Internet. They apply XML-based standards for the transport
of messages and service description. Simple Object Access Protocol (SOAP) [120] is used as the com-
munication protocol for invoking service methods and conveying processing results. Web Services
Description Language (WSDL) [119] is an XML-based language used for describing Web services.

The publish/subscribe systems that are in use today offer a proprietary set of interfaces and APIs
for integration into other systems which burdens an application programmer with the details of each
specific implementation. Therefore, we design a generic publish/subscribe component as a Web ser-
vice to facilitate simple and efficient integration of publish/subscribe functionality into other systems.

It generalizes the common publish/subscribe constructs and can be regarded as a layer above the
existing publish/subscribe infrastructures.

A Web-based publish/subscribe service should offer a set of basic services for publishing, sub-
scribing, and creating channels for content classification. It should be remotely accessible, and accept
XML messages that define the information needed to perform the requested functionality. We assume
that the generic publish/subscribe service will rely on a number of other components, such as mail,
SMS, MMS, JMS, or other publish/subscribe middleware components that will perform the actual
transport of the published content.

6.3.1 Architecture

Figure 6.8 depicts the architecture of the proposed Web-based publish/subscribe service. We employ
the layered approach in which the publish/subscribe service is an intermediary between other services
that require publish/subscribe, such as content dissemination services, instant messaging, or group-
ware services, and specific components that provide the transport of data for the publish/subscribe ser-
vice. The publish/subscribe service offers a well-defined interface and generalized means to invoke
the dissemination services regardless of the actual transport mechanism provided by, for example,
mail, SMS, MMS, or JMS component. It enables a user of the publish/subscribe service to specify
the preferred transport mechanism for the particular request. Further on, it is open and extendible by
available transport components suitable for publish/subscribe content dissemination.

The Web-based publish/subscribe service implements the communication layer of the reference
architecture and is used as a binding between higher-level services of the service layer and compo-
nents providing publish/subscribe communication. Figure 6.9 shows the correspondence between the
reference architecture and the proposed Web-based publish/subscribe service.

6. Content Dissemination Service Architecture 116

content instant groupware | . Web
dissemination messaging service service

XML over SOAP,
HTTP, RMI...

Web-based publish/subscribe service

component-specific
protocols
SMS MMS JMS ren

publish/
subscribe
component

communication

mail
components

Figure 6.8: Web-based publish/subscribe service

application content content
layer management presentation

service publish/subscribe personal mobility user profile conteqt
layer management management adaptation
————————————— [Web-based publish/subscribe service] ————-

communication

o o) (s) (e) (e) ()

Figure 6.9: Web-based publish/subscribe service with respect to reference architecture

6. Content Dissemination Service Architecture 117

Table 6.2: Functionality offered by the publish/subscribe Web service

publish Publishing the content on a channel using a defined transport component.

subscri be Subscribing to a channel with a specified preferred mechanism of cgntent
receipt for this subscription.

unsubscri be Unsubscribing from a channel.

cr eat eChannel | Defining a new channel for content classification with a predefined

mechanism for content delivery.

del et eChannel |Deleting a specified channel.

6.3.2 Servicelnterface

There are two basic functions a publish/subscribe content dissemination service needs to provide:
publishing andsubscribing. Channel definition and creation is needed since the content is published

on a channel, and a subscription is to a channel. Therefore, we propose a simple interface which offers
the methodpubl i sh,subscri be,unsubscri be,cr eat eChannel ,anddel et eChannel

listed and defined in Table 6.2. We find the listed methods sufficient for the publish/subscribe-based

interaction implementation. These methods are requested in pull-style by submitting an XML message

to the publish/subscribe service. On the other hand, the process of receiving the published content is
independent from the generic publish/subscribe service: It is performed by a receiving process, for

example, a mail reader or a JMS receiver, running on a subscriber’s terminal. The receiving process
must be transport specific since the natification is always sent in push-style through a specific transport
component without an intermediary.

XML messages carry the parameters needed to perform the requested action: The mandatory
parameter for each request is the information about the transport component that will subsequently
perform content delivery. Figure 6.10 shows an example XML message that requests the creation of
a new weather channel. The parameters that are needed to create a new channel are the information
about the channel creator and the definition of the new channel. The channel creator in the example is
a user, but it is possible that another Web service sends such a request. The channel is defined by it's
name, unigue id, and anrl that uniquely identifies the transport component and it's channel. For
examplej nms: // al oha.tel.fer. hr/topi c=weat her specifies that IMS is used for content
disseminational oha. t el . f er. hr is the name of the JMS server host, avht her is the name
of the JMS topic.

Figure 6.11 shows an example XML message that requests subscription to an existing channel.
The required parameters are subscriber’s contact information and a subscription. The subscriber’s con-
tact information uniquely identifies the subscriber and can be obtained from a user profile component.
The subscription is composed of the channel data and an XPath expression refining the subscription.
XPath is a language for addressing parts of an XML document [118]: It offers simple and expressive

6. Content Dissemination Service Architecture 118

<?xm version="1.0"?>
<ps:createChannel xnlns:ps="http://ww.tel.fer.hr/webservices/pubsub/">
<ps:creator>
<ps:user nane="l|vana Podnar"
enmi | ="i vana. podnar @er. hr"
nobi | e="+3859991234567"
i d="uni que_id_for_ivana" />
</ ps:creator>
<ps: channel nane="Weat her channel "
url ="jns://aloha.tel.fer.hr/topi c=weather" />
</ ps: cr eat eChannel >

Figure 6.10: An example XML message requesting channel creation

<?xm version="1.0"?>
<ps:subscribe xm ns:ps="http://ww.tel.fer.hr/webservices/pubsub/">
<ps: subscri ber>
<ps:user nane="|vana Podnar"
enmi | ="i vana. podnar @er. hr"
nobi | e="+3859991234567"
i d="uni que_id_for_ivana" />
</ ps: subscri ber >
<ps: subscription>
<ps: channel name="Weat her channel "
url ="jns://aloha.tel.fer.hr/topi c=weat her"
i d="uni que_id_for_jns_weather_topic" />
<ps: xpat h>
//content/ @ountry="Croati a"
</ ps: xpat h>
</ ps: subscri ption>
</ ps: subscri be>

Figure 6.11: An example XML message requesting subscription to a channel

means to specify and select the elements and attributes of an XML document, and can therefore be
used to express XML document filters. XPath can be used for expressing content-based subscriptions,
and XPath engines can be used to decide whether a published XML document satisfies the XPath
subscription. Algorithms and techniques for efficient filtering of a large number of XML documents
using XPath have been proposed in [8, 46].

The example XML message in Figure 6.12 initiates the process of publishing the content on
an existing channel. The parameters are publisher’'s data, information about a channel, and content
definition. Content definition in the given example consists of a name, a timestamp, validity dates,
an optional short text message, and a URL. Content definition carries the notification, not the actual
content, since it is preferable that the data that is pushed to a terminal, especially in mobile scenarios,
is concise. A subscriber can request the actual content using the provided URL.

The publish/subscribe component uses the information included in the presented XML messages
for submitting the request further to a specific transport component. The main task of the pub-
lish/subscribe service is the mapping of standard XML messages to transport-specific method invoca-
tions. Some transport components are inherently publish/subscribe-enabled: For example, JMS incor-
porates the principles of publish/subscribe which simplifies the process of mapping an incoming XML

6. Content Dissemination Service Architecture 119

<?xm version="1.0"?>
<ps: publish xm ns:ps="http://ww.tel.fer.hr/webservices/pubsub/">
<ps: publ i sher>
<ps:user nane="l|vana Podnar"
enmi | ="i vana. podnar @er. hr"
nobi | e="+3859991234567"
i d="uni que_id_for_ivana" />
</ ps: publ i sher >
<ps: channel nane="Weat her channel "
url ="jns://al oha.tel.fer.hr/topi c=weat her"
i d="uni que_i d_for_jnms_weather_topic" />
<ps:content nane="Forecast for Septenber 06 2003"
url ="http://aloha.tel.fer.hr/weather/hr/2003/sept/forecast060903. htm "
tinmestanp="Fri, Sept 05 10:44:04 CEST 2003"
val i dFr onme" 05. 09. 2003"
val i dTo="07. 09. 2003"
i d="uni que_id_for_content"
country="Croatia" >
</ ps: publ i sh>

Figure 6.12: An example XML message initiating content publishing

request to a JMS-specific request. Mail, SMS, and MMS do not have the built-in publish/subscribe
constructs: The publish/subscribe component needs to extend the basic operation of such components
to enable their application in publish/subscribe scenarios. For example, the publish/subscribe com-
ponent is responsible for defining mail messages containing the published content and for submitting
them to the mail server for subsequent delivery to interested subscribers. It performs the tasks similar
to mailing lists: It maintains a list of subscribers to channels, and on top of simple channel catego-
rization it can perform malil filtering based on XPath expressions. The difference between mailing
lists and this approach is in the filtering part: The list of receiving mail addresses is dynamically
determined for each published notification.

The described Web-based publish/subscribe service does not directly address problems related
to mobility. Mobility is facilitated by transport components that are mobility-aware and facilitate
the receipt of published content on various devices. Moreover, the combination of various transport
components offers usage flexibility: For example, a user may apply mail for receiving notifications
while having a permanent Internet connection, and receive SMS notifications while on the move.

6.4 Personal Mobility Management

The personal mobility management (PMM) service stores, updates, and distributes the user’s presence
and contact information. The presence information describes the current user communication capabil-
ities and preferences with respect to the applied terminal, application, and user state. We assume that a
subscriber’s presence information is updated as the subscriber starts and uses various applications that
may update the presence information, such as an instant messaging client, or a publish/subscribe con-
tent receiver. Furthermore, a subscriber can define a default communication point which is activated
in case the current presence information is unavailable.

6. Content Dissemination Service Architecture 120

Table 6.3: Communication point definitions and examples

mai | : // user name@ost nai | ://ivana. podnar @er. hr
sns: /[+(phone_nunber) sns: //+3859991234567
ns: / / +(phone_nunber) ns: / / +3859991234567
schene: // host: port/ jms://receiver.tel.fer.hr:8738/
application_paraneters m NewsBoar dRecei ver
mnstrel://receiver.tel.fer.hr:9090/
m nstrel / Recei ver

We define the presence information in accordance with the 3GPP presence service specifica-
tion [3]. The presence information includes the identifier of an end communication point, user’s
status, and user’s terminal.

Communication point. The end communication point provides the information about the type of the
service or application that can be used for communicating with a user, e.g., SMS, MMS, e-maill,
instant messaging service, publish/subscribe or push-based content receiver; and the contact
address that is needed to carry out the communication. A communication point can be defined
in the form of an URL: Table 6.3 lists examples of URLs that can be used to uniquely identify
and describe end communication points.

User's status. The user’s status field defines whether a user is willing and capable to accept the re-
guested communication. Examples of user’s statua\aitable, discreet, orunavailable. Since
content delivery does not require immediate user’s attention and involvement in communication,
user’s status is not vital for content dissemination services.

Terminal’s status. The information about the terminal’s current status can also be included into the
presence information. Possible status valuesaiéne/off-line for computers, obusy/idle/de-
tached for mobile phones.

The presence information can also include the information about the terminal’s geographical lo-
cation required by location-based services.

The changes of user’s presence information need to be reported to the PMM server that updates
the user’s presence status. The publish/subscribe event-based approach is a natural communication
mechanism for updating the presence information: As soon as the status changes, the change is re-
ported to the PMM server. In publish/subscribe terms, the PMM server is a subscriber to a special
channel/topic, e.gpr esence, that is used for distributing the presence data. All other services
that require the presence information can query the PMM server in the standard request/reply style
to obtain the presence data, or may become subscribers to the presence channel/topic. Publishers of
presence data are various applications that may update the presence information. For example, when

6. Content Dissemination Service Architecture 121

a user starts a JMS content receiver, the application can declare the JMS receiver as the end commu-
nication point. By closing the receiver, a new message canceling the active JMS presence data would
be published. In case no other presence data is available, the PMM server can activate a user’s default
communication point, e.g., e-mail or SMS.

The user’s presence data interferes with user’s privacy: The update and retrieval of this information
must therefore be secured and authenticated.

Presence update. The presence data can be updated only in case proper user credentials are
provided to avoid situations in which a malicious user impersonates the user. We propose that the
published presence data carry user credentials that can be verified by the PMM. For example, a unique
user identifier and a password can be transported with the presence data and a time-to-live period over
a secure communication protocol such as Secure Sockets Layer (SSL). It is also possible to use a
public key distribution similar to the approach presented in [4]: Apart from being identified by a
unique identifier {d,), each user has a private/public key pd,(E,). When the user registers
with the PMM server for the first time, it provides ifs}, and £,. When reporting the change of
presence data to the PMM, the user sends a tuple consistiid, 0ofhe encrypted presence data
D,(Pres,), an expiry field for the new presence mappifig and a signature of the new mapping,

i.e., Dy(Idy, Pres,,T,). The PMM server uses the user’s public kByto check the signature by
verifying that £, (D, (Id,, Pres,,T,)).1d, = Id, which confirms that the update comes from the
user. The presence data is obtained by decrypiing®res,,), i.e., E,(D,(Pres,)). The presence

data is valid untill;, expires, and must be renewed. Otherwise, the default presence status is activated.
A possible problem with this approach is that a user applies various devices for updating the presence
data. The private/public key pair and tlié, must therefore be stored on a special smart card and
transfered to the applied terminal.

Presence retrieval. Only the parties that satisfy the authorization policies can access the user’s
presence information. The PMM server administrator can allow access to the presence data only to
authorized parties that provide adequate credentials. For example, if a PMM server uses a JMS queue
or a JMS topic for distributing the presence information, the JMS administrator must allow access to
the JMS presence queue/topic only to parties that are authorized to receive the user’s presence data.

Chapter 7

m-NewsBoard: A Case Study

This chapter presents m-NewsBoard, a news dissemination service for mobile users based on the
publish/subscribe interaction model. This service enables users to publish and receive news of their
interest, and yet stay mobile. Users can browse the repository of current news on a WAP-enabled
mobile phone, or in a desktop browser, and publish their news using the m-NewsBoard’s Web inter-
face. In addition, they may subscribe to particular news categories, and supply keywords to refine
their subscriptions. Subscribers will receive either e-mail or JMS notifications when news match-
ing their subscriptions are published. m-NewsBoard is a prototype system implemented using the
loosely-coupled remotely accessible services that have been identified as parts of the service-oriented
reference architecture presented in Chapter 6. The implemented components, the Web-based pub-
lish/subscribe service, and the personal mobility component in particular, offer generic functionality
and are applicable for integration into various content dissemination services.

The chapter is structured as follows: Section 7.1 presents m-NewsBoard’s implementation. Firstly,
in Section 7.1.1 we describe the usage scenarios to show the user’'s perspective of the application.
Secondly, we present the system architecture, compare it to the proposed reference architecture, and
discuss m-NewsBoard’s implementation details in Section 7.1.2. The detailed description of the Web-
based publish/subscribe service prototype implementation is presented in Section 7.2. Section 7.3 of-
fers a solution for the device independent mobility-aware content receipt, and personal mobility man-
agement. We discuss the characteristics of the implemented system in Section 7.4, and contrast them
to the general content dissemination service requirements that have been identified in Section 6.1.

7.1 m-NewsBoard - a News Dissemination Service

m-NewsBoard is a content dissemination service for publishing and delivering news in the form of
multimedia messages to mobile users [95]. It offers flexible usage scenarios enabling personal mobil-
ity: Users can apply various devices for browsing, publishing, and receiving the news. For example,
users may browse the repository of published and unexpired news, define and publish their news, and
define subscriptions using a WAP-enabled mobile phone, or a desktop browser. They may subscribe

122

7. m-NewsBoard: A Case Study 123

DeliverNews

CreateChannel

—\

7 . X
Administrator Subscriber Publisher

DefineSubscription
DeleteChannel Chextends»
ModifySubscription

BrowseNews

Figure 7.1: m-NewsBoard use cases

to particular news categories, supply keywords for further specialization of their subscription, and
choose the preferred means for receiving the news at the time of news publishing.

7.1.1 Usage Scenarios

The UML use case diagram in Figure 7.1 defines system usage scenarios. There are three types of
system users: administrator, publisher, and subscriber. An administrator has privileges to administer
user profiles of other users, and to create and modify channels that are used for content classifica-
tion. A publisher can publish news on existing channels and browse the repository of published news
in pull-style. A subscriber can also browse the news repository, and additionally, actively receive
notifications about news publications according to defined subscriptions. New system users have to
register when they use m-NewsBoard for the first time, and provide the data needed to create a new
user profile.

m-NewsBoard supports the following use cases:

CreateChannel, DeleteChannel. An administrator can create a new channel by providing its name,
a short description, and the delivery method used for transporting the content to subscribers.
The administrator can also invalidate an existing channel.

DefineProfile. Each system user is associated with a user profile. A user defines the profile when it
first registers with the service and provides the following data: user name, password, full name,
e-mail address, and mobile phone number.

DefineSubscription, ModifySubscription. A subscriber defines the subscription to an existing chan-
nel and optionally provides a list of keywords for further filtering of news published on the
subscribed channel. For specifying the subscription, a user is presented with a screen shown in
Figure 7.2. By choosing a channel, the subscriber also chooses the delivery method for notifica-
tions. Note that a subscriber can subscribe to the “same” channel, i.e., the channel that delivers

7. m-NewsBoard: A Case Study 124

4 m-NewsBoardServlet - Microsoft Internet Explorer E[EIE|
File Edit View Favorites Tools Help 'y
Qosk -) - [¥] [B] @ O searh §lpravories @ vedia) A+ Lo s 3

Address |] hittp://aloha.zavod.tel. fer, br :8080/m-News/servietaction=newsubscription b . Go

A

m-NewsBoard
‘You are logged as ana Podnar. You have admin user access. [1

Channels

¥ channe| ZZT news
= name:
Chann.e‘ . ZZT news for shudents
description
delivery S
method.
O
@
name of a
=, channel you

IIT news ¥
want .

subscribe to
keywords: exam

Subscribe channel

& @ inemet

Figure 7.2: Subscribing to a channel

the same content, multiple times. For example, the subscriber may subscribe to the zd@a@annel
twice, using JMS and e-mail as means for content receipt. In such a case, the subscriber will
receive notifications in a JMS receiver application while it is active, and the service will acti-
vate e-mail subscription while the subscriber is not using the JMS receiver. Personal mobility
management enables tracking of user’s presence information.

PublishNews. A publisher may publish news on an existing channel. He/She defines a news title,

news body, the date of news expiry, chooses a channel that classifies the news, and optionally
provides an additional file to be published with the news and a list of keywords that further
describe the news. Keywords are used for content-based news filtering. The added file will
be stored on the m-NewsBoard’s Web server, but it will not be included in notifications that
are sent to subscribers. Subscribers will receive the URL of the published file to retrieve the
document. Figure 7.3 shows the m-NewsBoard’s publishing screen.

BrowseNews. A registered user can browse the repository of valid news that are stored on the

m-NewsBoard’s Web server: This is the traditional pull-based operation offered by the m-
NewsBoard application. The list of news is created on the fly for each request with unexpired
news from the news repository depending on the type of used browser. Figure 7.4 shows the list
of published news presented in a desktop browser.

DeliverNews. This use case enables a subscriber to receive notifications about news publication in

case the published news corresponds to his/her subscription. A subscriber that uses JMS for

7. m-NewsBoard: A Case Study

A m-NewsBoardServlet - Microsoft Internet Explorer

File Edit View Favorites Tools Help
r " ~ e :) T - a3
Qe - © M A @ Poeach Jrraorics @rede @ (3-2 B -[J B
Address &) http://aloha.zavod, tel. fer b :8080/m-News/serviet?action=publish "! &4 Go
~
m-NewsBoard
You are logged as vana Podnar. You have admin user access.[]
Publish new news
B
? title™: | Diploma thesis exam - February, 16 2004 |
] body | The schedule for the d’\pluma thesis exam that will be held
. at our Department on February 16, 2004 is now available
El o online,
@
= e
channel name”. | ERaiEn e v
sxpires’ - [Ty702.2004
(dd.mm.yyyy]:))
file to include H:AZZTvexam16_02_2004.pc Browse.. |
keywords: exam
Publish
v
8 © Interret

Figure 7.3: Publishing news on a channel

A m-NewsBoardServlet - Microsoft Internet Explorer
File Edit View Favorites Tools Help

Qexk - © [B @ POseach Jrravries @rede &) (- W E
Address | @] http://aloha, zavod, tel. fer hr :8080/m-News fserviet?action=readsubscribedall

m-NewsBoard

(i)

09.02.2004., 15:09:14
Newton's laws of graduation
FIRST LAWY A grad student in procrastination tends to stay in

age, a, of a doctoral process is directly proportional to the flexibility, f,
given by the advisor and inversely proportional to the student's
motivation, m

I7T news

09.02.2004., 15:00:11
Diploma thesis exam - February 16, 2004

The schedule for the diploma thesis exam that will be held at our
Department on February 16, 2004 is now available online.

Z7T news

¥ e B -~

You are logged as vana Podnar. You have admin user access.[]

procrastination unless an external force is applied SECOND LAW: The

&l ® Int=rmet

Figure 7.4: Reading the published news in a desktop browser

125

7. m-NewsBoard: A Case Study 126

& JMS Receiver for m-NewsBoa... [= |[B]X]

File Settings Connection View Help

Channel: ZIT news

Published: Mon Feb 09 15:27:18 CET 2004

xpires: Tue Feb 17 00:00:00 CET Z004

itle: Diploma thesis exam - February 16, 2004

ody: The schedule for the diploma thesis exam that wil
uthor: Ivana Podnar

http: //aloha, zavod. tel. fer.hr: 80680/n-News/data/channels,

Figure 7.5: The published message in a JMS desktop receiver

Please write the news:

Title:
[Publish via WaP |

Body,
[Puhlishing news from a mobile |

Select channel:
ODisseration, e-mail
BZZT news, JMS

Expires [DD.MMYYYY]:

24.07.2003

N

Figure 7.6: Publishing screen on a mobile phone

news receipt would receive a notification in the active JMS receiver at the time of news publish-
ing as shown in Figure 7.5.

m-NewsBoard’s implementation supports WAP-enabled terminals: The listed and presented use
cases are also supported if users apply WAP-enabled mobile phones. For example, Figure 7.6 shows
the publishing screen in a mobile phone simulator. The presented screen is fitted to show all the
contents of the publishing screen for representation reasons only: This screen would be split into
several screens on a real mobile phone.

7.1.2 Description of System | mplementation

The architecture of the m-NewsBoard system consists of a WAP-enabled Web interface that interacts
with the Web-based publish/subscribe service and a personal mobility component as depicted in Fig-
ure 7.7. The Web interface is responsible for news presentation: It interprets the incoming requests,

7. m-NewsBoard: A Case Study 127

Web interface

Web-based pub/sub

«—> e-mail
m-NewsBoard Pub/Sub wl RMI
serviet management | SOAP »| Minstrel push
HTTPS na| Personal > MS server

ser profiles mobility

4

A

4

A
4

Figure 7.7: m-NewsBoard architecture

updates the news repository, and submits the publish/subscribe requests to the publish/subscribe ser-
vice which is in charge of news dissemination according to user subscriptions. The Web interface,
i.e, its publish/subscribe management component, interacts with the personal mobility component
that maintains the presence information about registered users, and enables modifications of user sub-
scriptions depending on the presence data.

The WAP-enabled Web interface is implemented as a Java servlet which runs within a Web server
and supports both HTTP and WAP. It maintains a repository of published news, and stores user pro-
files that contain user subscriptions and describe user access rights regarding the service. The servlet
provides the service graphical user interface: It is designed following the principle of clear separation
of content and layout. The content is stored in the form of XML documents, while special HTTP and
WAP templates define the layout. The servlet incorporates a publish/subscribe management compo-
nent that invokes the services offered by the Web-based publish/subscribe service, and interacts with
the personal mobility component to receive the relevant presence information that will modify active
subscriber’s subscriptions. A detailed description of the m-NewsBoard servlet implementation can be
found in [97].

If we compare the m-NewsBoard’s architecture to the reference architecture depicted in Fig-
ure 6.4, it can be concluded that the m-NewsBoard servlet implements content management and con-
tent presentation. Furthermore, it stores user profiles and incorporates a solution for publish/subscribe
management. The publish/subscribe communication layer is implemented as a stand-alone Web-based
service providing publish/subscribe communication primitives. Section 7.2 gives the detailed descrip-
tion of the Web-based publish/subscribe service implementation. The prototype implementation of
the personal mobility component offers a centralized solution for maintaining subscriber’s presence
data. It is further described in Section 7.3. The m-NewsBoard’s current implementation provides no
support for content adaptation: The content structure is determined by publishers who decide what
type of content will be sent on a particular channel depending on the applied transport mechanism,
such as e-mail or IMS.

The m-NewsBoard’s system architecture is truly distributed as shown in the deployment dia-

7. m-NewsBoard: A Case Study 128

Web Server
Servlet Container

______ n m-NewsBoard Servlet

User terminal

HTML/WML Browser -

JMS Receiver -
L] .
Personal Mobility
L]

1
1
1
1
1
1
i
1
: i
Mail Reader ----|-1--- I i Mail
JM . !
bl e -2 - SMTP Server
JMS Server ¢ —-4-----—--—-= ______ I

Pub/Sub Management ---1--,
i Pub/Sub Server

1
Pub/ Interf
ub/Sub Inter _a_c_e_:i
Pub/Sub Component

,,,,,, —

:
I
I
I
I
i
Mobility Server

Figure 7.8: Deployment diagram

gram in Figure 7.8. User interacts with the Web interface using an HTML or WML browser and

the communication between the m-NewsBoard servlet and the browser is performed over HTTP or
WAP. The web servlet processes user requests and ‘translates’ them into Java Remote Method In-
vocation (RMI) calls [110] or Simple Object Access Protocol (SOAP) messages [120] because the
publish/subscribe service offers an interface that is remotely accessible using either Java RMI, or
SOAP. The publish/subscribe service processes each request, and submits it further to specialized de-
livery components such as an SMTP server, or a JMS server. The personal mobility component and
the publish/subscribe management component communicate using JMS over HTTPS. A user employs
transport-specific applications such as a JMS receiver, or an e-mail reader, for receiving naotifications
about news publication.

We show the interaction between the m-NewsBoard components in the sequence diagram that is
depicted in Figure 7.9. The sequence diagram illustrates the processes of subscribing and publishing
news using JMS as transport protocol. A subscriber uses a Web browser to subscribe to a channel and
a JMS receiver for reading the published news. Note that the receiver is a lightweight component that
can run on a desktop computer, a handheld computer, a mobile phone, or in a Web applet: It performs
a single function of displaying the received news. A publisher uses a browser to publish news on a
defined channel.

Subscribing. In the example scenario we assume that a publisher or system administrator has
defined a news channel, and that the corresponding JMS topic exists on the JMS server. Firstly, a
subscriber defines his/her subscription which consists of a preferred means for receiving the news,

7. m-NewsBoard: A Case Study 129

| subscribe(subscriptionSpec) i |

[1~~~ 7 l— I Publisher has defineﬁ

| publish(subUpdate) myNews and aChannel
Subscriber uses notify(subscriptionUpdate) is already created.
R 1
; a JMS receiver subscribe(JMSsubscription) i |
or viewing incoming = | |

e -

news (specified in setMessageListener(l) publish(myNews, aChannel)
user profile). [] f——

publish(myNews, aChannel)

JMS -Browser :Web :Web-based :JMS -Browser
Receiver * Interface Pub/Sub Server *
| !
Subscriber subscribe(aChannel) ! Publisher
i subscribe(aChannel) ! |
| I

|
| updateUserProfile(subscriber)
|

publish(deliverySpec)

publish(myNews, JMStopic)

be active to receive
the published conten

|

|

|

|

| JMS receiver must

|

| t.
|

|

onMessage(myNews)

I !

S

Figure 7.9: Sequence diagram that shows the interaction between NewsBoard’s components.

the channel identifier, and an optional list of keywords for news filtering. In the example scenario the
subscriber selects JMS as the preferred means for news receipt. Secondly, the servlet processes the
subscription request and updates the subscriber’s user profile by adding the new channel to his/her
subscription. Thirdly, the servlet will relay the subscription request to the dissemination component
with the specific parameters that define the user’s subscription, i.e., JIMS as the delivery component,
the subscriber’s id, the channel id, and the list of keywords.

Subsequently, the dissemination component needs to initiate and register the new subscription
with the JMS server. However, the problem is that the dissemination component is not the receiver
of published messages, instead it is a JMS receiver used by the subscriber. The JMS receiver must
create a new message listener for the subscribed JMS topic that can accept incoming messages from
the JMS server. Since the JMS receiver has no knowledge about user subscriptions that are pro-
cessed through the servlet, the dissemination component needs to notify the receiver about changes
in user subscriptions. We have decided to implement the interaction between the JMS receiver and
the dissemination component through the JMS server. During the JMS receiver bootstrap, the receiver
subscribes to a special IMS topisubscri pt i onUpdat e - with afilter requesting that the user id
of the subscription update message matches the subscriber id. Accordingly, the dissemination compo-
nent publishes the data about the changes in user subscriptions throsgibter i pt i onUpdat e
topic specifying whether a subscription or unsubscription request has been processed, the subscriber’s
id, the JMS topic name, and the list of keywords if such have been defined. In the example sequence

7. m-NewsBoard: A Case Study 130

diagram in Figure 7.9, the dissemination component publishes a message about the new subscription
defined by the subscriber, and the running receiver receives the subscription update message through
the JMS server. Consequently, the receiver sends a subscription request to the JMS server and starts a
new message listener for the specified topic.

Publishing. The process of publishing is performed using a browser: A publisher specifies the
news data and decides on which channel it should be published. The servlet will process the request,
store the news in its repository, and transfer the publishing request to the dissemination component.
The dissemination component submits it further to the JIMS server which finally disseminates the news
to all subscribers of the particular JMS topic. Eventually, the subscriber's JMS receiver will receive
the published news and notify the subscriber that a news of interest has been published.

7.2 Publish/Subscribe Service | mplementation

The publish/subscribe service implements a Web-based interface defined in Section 6.3 using Java
RMI and SOAP. Each method of the defined interface accepts an XML message describing the request
as an input method parameter. We have incorporated two transport components as a proof of concept
implementation: e-mail and JMS. Each request identifies the transport component that is used to
complete the actual request. The main task of the Web-based publish/subscribe component is to
interpret an incoming request, and map it to the specific requirements and format of the transport
component.

JMS offers publish/subscribe constructs that simplify the mapping process. E-mail, on the other
hand, does not have the built-in publish/subscribe functionality: It can be used to transport the con-
tent, and the specific publish/subscribe functionality is added as part of the publish/subscribe service
implementation. We outline the mapping between incoming requests that are processed by the pub-
lish/subscribe Web service and component specific method invocations in Table 7.1. The incoming re-
questcr eat eChannel that specifies JIMS as the transport component creates a new JMS topic pub-
lisher. For example, a request with the URbs:// al oha.tel .fer. hr/topi c=ZZTnews
creates a new topieZTnews on the JMS server running on the hadtoha. tel . fer. hr. The
same request specifying e-mail as the transport componentyeid.; / / ZZTnews@el . fer. hr
creates a new mailing list that is maintained by the publish/subscribe Web service. The request
del et eChannel closes an active JMS topic publisher, or removes an existing mailing list from
the publish/subscribe service repository. The regsabiscr i be that specifies JMS as the transport
component creates a new durable topic subscriber. While a durable JMS subscriber is disconnected
from the JMS server, the server stores messages for the subscriber. A durable subscriber is identified
by a unique identifier: It is necessary to provide only the durable subscriber identifier to re-initiate
subscriptions and receive messages published during disconnection. The smaduest i be that
chooses e-mail as the transport component adds an e-mail address to an existing mailing list. The
requestunsubscr i be unsubscribes and removes an existing durable JMS subscriber from a JMS
server, or removes a mail address from an existing mailing list maintained by the publish/subscribe

7. m-NewsBoard: A Case Study 131

Table 7.1: Mapping publish/subscribe methods to JMS and e-mail specific implementations.

Publish/subscribe Web service| IMS e-mail
cr eat eChannel create JMS topic publishercreate new mailing list
del et eChannel close JMS topic publisher{remove an existing mailing list
subscri be create durable IMS add subscriber to an existing
topic subscriber mailing list
unsubscri be remove durable IMS remove subscriber from
topic subscriber a mailing list
publ i sh publish message using JMSend e-mail message to
topic publisher mailing list members

service. The requesgtubl i sh will invoke either a publish method on an active JMS topic publisher,
or initiate the process of sending messages to addresses of a specified mailing list.

Support for content-based subscriptions and message filtering is adjusted to specific component
characteristics. Table 7.2 depicts a JMS representation of the published news as defined in Figure 7.3.
JMS enables content-based message filtering through message selectors that are defined on JMS mes-
sage properties. Every JMS message has standard properties such as JMSDeliveryMode, or JM-
STimestamp, and application specific properties. We use application specific properties to define
message selectors. For examfpeywor d=" exani is the message selector that is used to refine
a subscription to the JMS topi€ZTnews defined in Figure 7.2. A published message that matches
the defined subscription must include the additional JMS propeziywor d with the valueexam
For e-mail, content-based subscriptions and message filtering need to be implemented additionally
as part of the publish/subscribe service. We suggest the usage of XPath for defining message filters,
e.g. // content/ @eywor d="exan!', and XPath processing tools, such as Xalan-Java [9], for
matching published XML messages to XPath filters.

Here we describe the details of the Java RMI service implementation. Figure 7.10 shows a
class diagram of the server-related classes and proxy classes used for communicating with spe-
cific transport components. Server-related classe®asserm nat i onSer ver that registers an
RMI remote object, andDi sseni nati onl npl implementing the remote object interface speci-
fied in Di ssemi nati on. Each request that complies with the interface definition is directed to
a specific transport component, and a special proxy object, either an instadddsief oxy, or
Mai | Proxy, handles the request and directs it to the appropriate component. Since the type of
the instantiated proxy object is unknown prior to request receipt, we use the Factory Method pat-
tern [53] that enables an object to instantiate an object whose type is specified at run time. In our
solution, theDi sseni nati onl npl instantiatesIMSPr oxy and Mai | Pr oxy objects using the
classDi ssProxyFact ory and the abstract clag¥ ssPr oxy. For the SOAP implementation the
server-related classes are adjusted to implement a SOAP servlet. The service description using Web

7. m-NewsBoard: A Case Study

Table 7.2: A JMS message representation

channel ZZT news

name Diploma thesis exam - February, 16 2004

id 20040209115511 ivana

valid from 1076281200000

valid to 1096063200000

type content

size 1775435

MIME application/pdf

URL http://al oha. zavod. tel . fer. hr: 8080/ m News/ dat a/ channel s/
20040209115511_i vana/ examl6_02_2004. pdf

keyword exam

JMSDeliveryModg 2

JMSMessagelD |1D:113001

JMSPriority 4

JMSExpiration | 1096063202406

JMSTimestamp |1076324113765

MessageBody The schedule of the diploma thesis exam...

«interface»
Dissemination
+createChannel(),
prommoe- ~D +deleteChannel()
| +publish()
| +subscribe()
} +unsubscribe()
Il
Di L
Di: inationServer
-remoteObject
+createChannel()
+deleteChannel() +init()
+publish() 1 1 |+startup()
+subscribe() +shutdown()
+unsubscribe() 1
T Server
! Factory
|
! -requestedProxy DissProxy
DissProxyFactory
1 +createChannel(),
______________________ > +deleteChannel()
+getinstance() +oublish()
+createDefaultProxy() . _[> +subscribe() q_ -
1
: +unsubscribe() |
I I
JMSProxy MailProxy
+createChannel() +createChannel()
+deleteChannel() +deleteChannel()
+publish() +publish()
+subscribe() +subscribe()
+unsubscribe() +unsubscribe()

Figure 7.10: Class diagram of the Java RMI implementation

132

7. m-NewsBoard: A Case Study 133

Services Description Language (WSDL) and a detailed description of the SOAP-based implementa-
tion can be found in [80].

7.3 A Solution for Personal M obility

The solution for personal mobility relies on the JMS server functionalities: It uses special IMS queues
for storing the presence information that is accessed on demand in the request/reply style, and JMS
topics for distributing the presence information to active processes that are affected by changes in
the subscriber’s presence status. In the current implementation, a subscriber can either receive e-mail
notifications, or JMS messages in an active JMS receiver. Therefore, the user’'s presence data can
either contain a user’'s e-mail address, or a URL of a JMS receiver.

The process of news receipt is transport specific: A user needs a mail reader for receiving mail
notifications, and a JMS receiver for IMS-based messages. The design of a JMS receiver is the most
challenging in this context: We describe the design of the JMS receiver that is used for displaying the
received messages in the m-NewsBoard application.

It is important to note that a user can specify a subscription to a single channel in three modes:
e-mail delivery, JMS delivery, and combined e-mail/JMS delivery. The user presence information
does not affect the e-mail based delivery. For the JIMS-based delivery we use durable subscriptions to
enable message storage during disconnections, and a special solution for storing and updating active
subscriptions in device-independent style. The special solution is needed because a user can apply
different devices for receiving the content, and no subscription information can be stored on a device.
For the combined e-mail/JMS delivery we assume that JMS delivery is used while a user applies a
JMS receiver, and e-mail is the default delivery mechanism in case when the JMS receiver is inactive.

Receiving the news using JMS. The JMS receiver offers a single functionality: It displays the
messages for an authenticated user that comply with the defined user subscriptions. The receiver needs
to be independent of the applied terminal: A subscriber may start a receiver on one terminal, even in
an applet, receive the published messages, then disconnect and stop the receiver, and later on resume
the receiving process on another device. It is possible that the receiver is activated on a terminal that
is behind a firewall because a JMS subscriber initiates a connection to the JMS server, possibly over
HTTP, and maintains it active while waiting for message publications from the server.

First, the publish/subscribe service should store the published messages matching user’s subscrip-
tion during disconnections. JMS offers the possibility to define durable subscriptions which remain
active while the receiver is disconnected. The JMS server will store messages for a durable subscriber
and deliver them when the durable subscriber reconnects.

The second problem is how to activate subscriptions on a JMS receiver. Note that the JMS receiver
has no knowledge about subscriptions that are processed through the m-NewsBoard Web interface and
activated by the publish/subscribe service. The publish/subscribe management component needs to
notify a JMS receiver application about changes in user subscriptions. We have decided to implement
the interaction between the JMS receiver and the publish/subscribe management component through

7. m-NewsBoard: A Case Study 134

MS Receiver Queue Update: Topic Mng
send(mySubs)
ke
1 publish(unsubscribe, myld, aTopic)
i
receive(mySubs)
ke

subscribe(myld)
T

onMessage(unsubscribe, myld, aTopic)

setMessageListener()

subscribe(mySubs \ aTopic)
T
setMessageListener()

Figure 7.11: Sequence diagram for IMS-based delivery

queues and topics on the JMS server. During the JMS receiver bootstrap, the receiver subscribes to a
special IMS topicsubscri pti onUpdat e - with a filter requesting that the user id of the subscrip-

tion update message matches the subscriber id. Accordingly, the publish/subscribe service publishes
the data about the changes in user subscriptions through thestopgxcr i pt i onUpdat e and no-

tifies the receiver that the user has changed the subscription. Consequently, in case of a subscription to
a new topic, the receiver sends a new subscription request to the JMS server and starts a new message
listener for the specified topic. In case of unsubscription an existing message listener is stopped.

The third problem is the storage and update of user subscriptions during disconnections since
they cannot be stored on a terminal. User subscriptions are stored in a user's JMS queue: Prior
to stopping the receiver, current subscriptions are put in the queue. Accordingly, during receiver
bootstrap, the subscriptions are fetched from the queue and a new message listener is created for
each topic subscription. In case there have been changes of subscription during disconnection, this
notification will be received through the topaibscri pti onUpdat e.

Figure 7.11 shows a sequence diagram related to terminal-independent operation of the JMS re-
ceiver. Prior to JMS receiver disconnection from a JMS server, active subscriptions are stored in a
special receiver queuay Queue. The JMS receiver and the publish/subscribe management compo-
nent interact through the topgubscri pti onUpdat e. When the subscriber unsubscribes from
aTopi c through the m-NewsBoard’s Web interface, the message is stored on the server because of
receiver’s durable subscription to the togiabscri pti onUpdat e. When the user restarts the
JMS receiver, possibly from a different terminal, the stored subscriptions are read from the queue
myQueue. Next, it reissues the durable subscription to the tapibscri pti onUpdat e, and

7. m-NewsBoard: A Case Study 135

myMidlet: subscriptionUpdate bresence: :Pub/Sub :Web-based
JMS Receiver : Topic Topic Mng Pub/Sub
[
M publish(myld, JMSconnect)
subscribe(myld) notify(myld, JMSconnect)
| setMessageListener()
4 getSubs(myld,JMS)
[
subscribe(myld, JMS, mySubs)
ublish(myld, mySubs
onM ge(mySubs) P (my th)
subscribe(mySubs)
[—setMessage
Listener()
T unsubscribe(mySubs)
unsubscribe(myld)
publish(myld, JMSdisconnect)
J notify(myld, JMSdisconnect)
! F———II

unsubscribe(myld, JMS, mySubs)

getDefaultSubs(myld)
[

subscribe(myld, email, defaultSubs)

Figure 7.12: Sequence diagram for e-mail/JMS delivery

receives the previously published notification about user’s unsubscription from theaf®pp c.
Therefore, the receiver remova3opi ¢ from the list of active subscriptionsy Subs and reacti-
vates active subscriptions.

Receiving the news using e-mail/JM S. The combination of e-mail and JMS notification deliv-
ery uses non-durable subscriptions during JMS-based notification delivery because notifications are
sent in the form of e-mail messages during disconnections. Figure 7.12 depicts a sequence diagram
showing the activation of JIMS delivery using a JMS receiver, the operational JMS phase, a deactiva-
tion of the JMS receiver, and activation of the e-mail notification delivery. When a user activates a
JMS receiver, the publish/subscribe management component is notified about the new presence status
through thepr esence topic. The management component initiates user’'s JMS-based subscriptions
through the publish/subscribe component, and subsequently notifies the JMS receiver to start listeners
for the subscribed topics through thabscri pt i onUpdat e topic. During the operational phase,
in case the user changes his/her subscriptions, the receiver will be notified about subscription changes
through thesubscri pti onUpdat e topic. Before stopping the receiver, the information about dis-
connection is sent to the management component througprtbeence topic. The management
component subsequently terminates JMS subscriptions and initiates e-mail subscriptions by sending
a subscribe request to the publish/subscribe service.

7. m-NewsBoard: A Case Study 136

7.4 Discussion

We have used m-NewsBoard as a case study to shown the applicability of the proposed reference
architecture for the implementation of an example content dissemination service. m-NewsBoard is a
personalized service that enables true user mobility: Users can define subscriptions and choose the
preferred means for receiving the published content. The published news will be delivered to an active
subscriber’s receiver application independent of the applied device, or an e-mail message will be sent
to the user’s mail server in case the receiver application is inactive.

The presented implementation of the publish/subscribe service in the form of a Web service facil-
itates integration of publish/subscribe functionality into other applications. It offers a generalized in-
terface which provides the common publish/subscribe constructs and maps general requests to method
invocations that are specific to the transport component that performs the actual content dissemination.
The main benefit of the proposed approach is the stability of the publish/subscribe generic interface
and, at the same time, service flexibility and openness which enables the encapsulation of an arbitrary
number of publish/subscribe-enabled components into the service. We are unaware of implemented
solutions for generalized publish/subscribe Web-based services that are suitable for mobile scenarios.
The existing publish/subscribe systems have specific proprietary APls, although the offered function-
ality and communication patterns are similar. These systems are also primarily intended for use in
stationary scenarios and offer limited support for mobility. Recently, a specification draft for Web
Service Notification has been published [56] which addresses the problem of defining a topic-based
publish/subscribe Web service. The draft is still in its initial phase, and the initial analysis shows that
it has largely been influenced by JMS.

Based on the experience gained during the design and implementation of m-NewsBoard, we con-
clude that the prototype implementation of the Web-based publish/subscribe content dissemination
service exhibits the following properties:

Flexibility and openness. The publish/subscribe service can employ different systems and protocols
for content dissemination ranging from traditional mechanisms, such as mail and SMS, to re-
cently developed infrastructures that implement the publish/subscribe interaction model. The
generic interface of the publish/subscribe service assures system stability and simplifies the in-
tegration of publish/subscribe functionality into other value-added services. The addition of
new transport components can improve service flexibility and performance, not its basic func-
tionality: It will not affect other services requiring publish/subscribe.

Terminal independence and personal mobility. Terminal independence enables users to utilize pub-
lish/subscribe functionality from various devices in different networks. On top of terminal inde-
pendence is personal mobility which offers a higher degree of mobility than terminal mobility
and regards a user as an end communication point which is extremely important for the receipt
of published notifications. Personal mobility does not depend on the publish/subscribe service
itself, but needs to be provided by a particular transport component which performs the actual

7. m-NewsBoard: A Case Study 137

delivery: In the presented JMS solution we have shown the ability to design a receiver using
publish/subscribe principles that is able to receive the content in push-style regardless of the
device where the receiver currently runs. Mail readers for various mobile devices, ranging from
desktop computers, to mobile phones are available. The main drawback of mail in mobile sce-
narios is its pull-style operation which is inappropriate for networks with bandwidth limitations
and intermittent connection. A better solution would employ SMS or MMS instead of mail in
mobile scenarios.

Scalability. Service scalability depends heavily on the performance characteristics of the components
that are used for transporting the content. Here we compare e-mail and JMS, the two compo-
nents that are used in the prototype implementation. The solution that employs mail servers
for content delivery is not scalable because of serious resource consumption if the number of
receivers is high: Each mail message is duplicated and sent separately to each subscriber even
if all subscribers use the same mail server. This puts a high processing load on the sender’s mail
server and causes high network bandwidth consumption. The existing JMS implementations
differ in performance and scalability and load tests are needed to evaluate the performance of
each solution for a particular application domain. The common JMS server implementations
have a centralized architecture and may become a performance bottleneck in case of a large
number of publishers and subscribers scattered in a wide area network. However, distributed
JMS server solutions can significantly improve performance and scalability as discussed in Sec-
tion 5.4.

Chapter 8

Conclusion

Even though notification services in mobile networks are gaining wide acceptance, they currently of-
fer limited support for service customization and personalization. Service users can simply subscribe
to a predefined topic, and receive all notifications published on the topic in the form of SMS or MMS
messages. The concepts found in publish/subscribe systems offer means to remedy this limitation:
Expressive content-based subscriptions enable users to describe the type of notifications that are of
interest to them. The next limitation is that notifications are delivered to a single terminal regard-
less of the user's presence status, or the terminal the user is currently applying. Personal mobility
management is therefore needed to extend the service and offer flexible usage scenarios to service
users.

The thesis has presented a solution for a flexible, personalized content dissemination service that
supports personal mobility of end users. The service serves as an information bus with filtering ca-
pabilities: Publishers can publish the content for numerous subscribers who define subscriptions to
express their interest in receiving certain content types. The service compares each published notifi-
cation to defined subscriptions and delivers the notification only to subscribers with a matching sub-
scription. Notifications are delivered in push-style to the current subscriber's communication point in
accordance with the subscriber’s presence status.

8.1 Contributions

The thesis focuses on two aspects of content dissemination: the design and evaluation of a mobility-
enabled publish/subscribe middleware, and the design of a software architecture for content dissemi-
nation services that uses the publish/subscribe middleware as its basic communication component.

M obility-enabled publish/subscribe middleware. The thesis proposes awent-based model
for distributed publish/subscribe systems supporting client mobility: The model defines the events
that can occur in the systempublish, subscribe, unsubscribe, notify, connect, anddisconnect — and
change the system state. We introduce proxy subscribers and proxy publishers to model the distribu-
tion of system brokers: Proxy publishers represent publishers connected to neighboring brokers, while

138

8. Conclusion 139

proxy subscribers model subscribers residing on neighboring broker, and enable the communication
and interaction between the brokers. We use the proposed model to define the routing algorithms for
selective dissemination of notifications to subscribers that are mobile and potentially disconnected
from a distributed system.

The definedouting algorithms use a novel principle that relies on notification persistency to solve
the mobility problem in publish/subscribe systems: Notification publishers define the validity period
for published notifications, the system stores notification during the validity period, and delivers valid
notifications to subscribers when they reconnect to the publish/subscribe system. If a subscriber con-
nects to the system after notification expiry, the notification will not be delivered to the subscriber.
Two different routing algorithms that use persistent notifications have been defined: routing based on
subscription equality, and routing based on subscription covering.

To validate the proposed model and the routing solution, we have implemented a prototype system
that can be distinguished from other publish/subscribe implementations by the inherent support for
publisher and subscriber mobility. Further on, we have used the prototype implementation to evaluate
the performance of the proposed routing solution, and to compare it with the approach based on
gqueues. The evaluation results show that the routing solution using persistent notifications is superior
to the queuing approach with respect to broker memory consumption and scalability. It places less load
on service brokers in case of the increased number of subscribers in the system which can be expected
in real systems, and does not cause significant performance degradation in terms of notification delay
when compared to the solution that uses queues. Best to the author’s knowledge, this is the first
evaluation of the publish/subscribe system performance in a mobile setting that provides performance
measures regarding the broker load, notifications delay, and bandwidth consumption.

Content dissemination service architecture. We have designed an architecture for a mobile
content dissemination service that enables the delivery of personalized and customized content to
mobile users. The architecture is composed of the components that have been identified through the
analysis of service usage scenarios. It uses a publish/subscribe middleware for realizing the inter-
action between service users, and a special personal mobility component for maintaining the user’s
presence information. We have designed a solution for a Web-based publish/subscribe service that of-
fers a generic set of methods for the implementation of publish/subscribe interactions, and uses other
components, such as mail, SMS, MMS, or JMS for the actual content transport. The design of the
personal mobility component proposes the procedures for the update and retrieval of presence data,
and analyzes the issues regarding security.

Finally, we have used m-NewsBoard, a news dissemination service, as a case study to evaluate the
applicability of the proposed architecture. The m-NewsBoard system offers personalized news dis-
semination and enables true user mobility: Users can define subscriptions and choose the means for
receiving the published content. We currently support e-mail and JMS-based delivery: The published
news is delivered to an active JMS receiver independent of the applied device, or an e-mail message
is sent to the user's mail server in case the receiver application is inactive. The m-NewsBoard system

8. Conclusion 140

utilizes a Web-based implementation of a publish/subscribe service that offers a generalized interface
with the common publish/subscribe constructs, and maps general requests to method invocations that
are JMS or e-mail specific. The main benefit of the approach is the stability of the publish/subscribe
generic interface and, at the same time, service flexibility and openness which enables the encapsula-
tion of an arbitrary number of publish/subscribe-enabled components into the service. A solution for
terminal independence and personal mobility is implemented using the publish/subscribe and queue-
based communication capabilities offered by the JMS.

8.2 FutureWork

The thesis has given answers to certain questions related to mobile publish/subscribe systems, and
content dissemination services. However, a number of interesting research problems have been iden-
tified for the future work.

The initial analysis shows that the presented publish/subscribe model and routing algorithms offer
a solution for the design of a scalable distributed JMS-based broker network that can support client
mobility. Service implementation and experimental evaluation are needed to investigate such claims.
Further on, the presented model and algorithms can be extended by publisher advertisements: Eval-
uation studies show that the usage of advertisements in publish/subscribe systems reduces the traffic
generated by control messages in distributed publish/subscribe systems [79]. We currently support
routing algorithms that are based on reverse path forwarding: It would be interesting to investigate
and evaluate the performance of other approaches, such as the core-based tree routing, and probabilis-
tic gossip-based algorithms [64], in mobile settings. In the current publish/subscribe system design
we assume that the system is fault-free: Mechanisms for designing a fault tolerant solution should be
further investigated.

Moreover, further analysis of the recent attempts to publish/subscribe service standardization are
needed. For example, we should investigate the compliance of the Web Service Notification initia-
tive [56] with the proposed Web-based publish/subscribe service design. Another interesting exten-
sion of the content dissemination service is related to user geographical location. The integration of
location status in the presence data can be used to offer location-based content dissemination.

Bibliography

[1] 3rd Generation Partnership Project. Virtual Home Environment/Open Service Access; (3GPP TS 23.127
V6.0.0), December 2002. http://www.3gpp.org.

[2] 3rd Generation Partnership Project. IP Multimedia Subsystem (IMS); Stage 2 (3GPP TS 23.228 V6.3.0),
September 2003. http://www.3gpp.org.

[3] 3rd Generation Partnership Project. Presence Service; Architecture and functional description; Stage 2
(3GPP TS 23.141 V6.4.0), September 2003. http://www.3gpp.org.

[4] K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained handling of identity in Peer-to-Peer
systems, 2004. To be published in IEEE Transactions on Knowledge and Data Engineering (second
quarter 2004).

[5] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events in a content-
based subscription system. MRnoceedings of the 18th ACM Symposium on Principles of Distributed
Computing, pages 53-61. ACM Press, 1999.

[6] I. F. Akyildiz and J. S. M. Ho. On location management for personal communication netwa&kE.
Communications Magazine, 34(9):138-45, September 1996.

[7] 1. F. Akyildiz, J. McNair, J. S. M. Ho, H. Uzunalgll, and W. Wang. Mobility management in next-
generation wireless systenfroceeding of the |IEEE, 87(8):1347-1384, August 1999.

[8] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemination of
information. InThe VLDB Journal, pages 53—64, 2000.

[9] Apache XML Project. Xalan-Java version 2.5.2, 2004. http://xml.apache.org/xalan-j/.

[10] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri. Generic support
for distributed applicationd EEE Computer, 33(3):68—76, March 2000.

[11] B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M. Satyanarayanan. A conceptual frame-
work for network and client adaptatioriviobile Networks and Applications, 5(4):221-31, December
2000.

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and |. Stoica. Looking up data in P2P systems.
Communications of the ACM, 46(2):43-48, February 2003.

[13] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT): An architecture for scalable inter-
domain multicast routing. IRroceedings of ACM SS GCOMM’ 93, pages 85-95. ACM Press, September
1993.

[14] S. Banerjee and B. Bhattacharjee. A comparative study of application layer multicast protocols, 2002.
Submitted for review. http://citeseer.nj.nec.com/banerjee0lcomparative.html.

[15] K. Betz. A scalable stock web service. Rnoceedings of the 2000 International Conference on Par-
allel Processing, Workshop on Scalable Web Services, pages 145—-150, Toronto, Canada, 2000. IEEE
Computer Society.

141

BIBLIOGRAPHY 142

[16] A. D. Birrell and B. J. Nelson. Implementing remote procedure c&lBM Transactions on Computer
Systems, 2(1):39-59, February 1984,

[17] G.Booch, J. Rumbaugh, and I. Jacobskre Unified Modeling Language User Guide. Addison-Wesley,
Reading, Massachusetts, USA, 1999.

[18] E. A. Brewer, R. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes, G. Nguyen, M. Stemm, T. Henderson,
E. Amir, H. Balakrishnan, A. Fox, V. N. Padmanabhan, and S. Seshan. A network architecture for
heterogeneous mobile computin@EE Personal Communications, 5(5):8—24, October 1998.

[19] G. Bricconi, E. Di Nitto, A. Fuggetta, and E. Tracanella. Analyzing the behavior of event dispatching
systems through simulation. FProceedings of the 7th International Conference on High Performance
Computing, pages 131-140, December 2000.

[20] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering in publish-subscribe sys-
tems using binary decision diagrams.Rroceedings of the 23rd Inter national Conference on Software
Engineering, pages 443-52, 2001. http://www-2.cs.cmu.edinaki/publications/ICSE-2001.pdf.

[21] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation of a support service for mobile,
wireless publish/subscribe applicationsEEE Transactions on Software Engineering, 29(12):1059—
1071, December 2003.

[22] A. Carzaniga.Architectures for an Event Notification Service Scalable to Wide-area Networks. PhD
thesis, Politecnico di Milano, Milano, Italy, 1998.

[23] A.Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness in an internet-
scale event notification service. Rnoceedings of the 19th ACM Symposiumon Principles of Distributed
Computing, pages 219-227. ACM Press, July 2000.

[24] A.Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event notification
service.ACM Transactions on Computer Systems, 19(3):332—-383, August 2001.

[25] M. Castro, P. Druschel, A.-M. Kermarrec, and A. RowstroncREBE: A large-scale and decentral-
ized application-level multicat infrastructurd EEE Journal on Selected Areas in Communications,
20(8):100-110, October 2002.

[26] M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing user profiles for data rechartfiid:
Personal Communications, 8(4):32—8, August 2001.

[27] G. V. ChockKler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive
study. ACM Computing Surveys, 33(4):1-43, December 2001.

[28] W. Consortium. Composite Capabilities/Preference Profiles, September 2003. http://www.w3.org/
Mobile/CCPP/.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Riveshtroduction to Algorithms, chapter 24: Minimum
Spanning Trees. MIT Press, 1990.

[30] G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware for mobile systems& GMO-

BILE Mobile Computing and Communications Review, 6(4):25-33, 2002.

[31] G. Cugola and E. D. Nitto. Using a publish/subscribe middleware to support mobile computing. In
Proceedings of the Advanced Topic Workshop on Middleware for Mobile Computing, in association
with IFIP/ACM Middleware 2001, November 2001.

[32] G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop complex
distributed systems. [Rroceedings of the 20th International Conference on Software Engineering,
pages 261270, April 1998.

[33] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its application to
the development of the OPSS WFMSEEE Transactions on Software Engineering, 27(9):827-50,
September 2001.

BIBLIOGRAPHY 143

[34] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and Instant Messaging, February 2000.

RFC 2778. http://www.ietf.org/rfc/rfc2778.txt.

[35] S. E. Deering and D. R. Cheriton. Multicast routing in datagram networks and extended IAEN&.

Transactions on Computer Systems, 8(2):85-111, 1990.

[36] A. Devlic and I. Podnar. Location-aware content delivery service using publish/subscriBecéed-

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

ings of tcmc 2003, March 2003.

S. Dustdar, H. Gall, and M. Hauswirttsoftware-Architekturen fur Verteilte Systeme. Springer Verlag,
2003.

S. Dustdar, H. Gall, and R. Schmidt. Web services for groupware in distributed and mobile collabora-
tion. Technical Report TUV-1841-2003-24, Distributed Systems Group, Technical University of Vienna,
2003.

A. El-Sayed, V. Roca, and L. Mathy. A survey of proposals for an alternative group communication
service.|[EEE Network, 17(1):2—7, 2003.

W. Emmerich. Software engineering and middleware: A roadmaphdr-uture of Software Engineer-

ing - 22th International Conference on Software Engineering (ICSE 2000), pages 117-129. ACM Press,

May 2000.

P. T. Eugster, R. Boichat, R. Guerraoui, and J. Sventek. Effective multicast programming in large scale
distributed systems Concurrency and Computation: Practice and Experience, 13(6):421-447, May
2001.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114-131, 2003.

P. T. Eugster and R. Guerraoui. Content-based publish/subscribe with structural reflecioocehal-

ings of the 6th USENI X Conference on Object-Oriented Technologiesand Systems (COOTS 01), January

2001.

P. T. Eugster, R. Guerraoui, and F. Sventek. Distributed asynchronous collections: Abstractions for
publish/subscribe interaction. Iroceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP 2000), volume 1850 ofLecture Notes in Computer Science, pages 252—-276.
Springer-Verlag, June 2000.

P. T. Eugster, R. Guerraoui, and J. Sventek. Type-based publish/subscribe. Technical report, Distributed
Programming Laboratory, Swiss Federal Institute of Technology, June 2000.

P. Felber, C.-Y. Chan, M. Garofalakis, and R. Rastogi. Scalable filtering of XML data for web services.
|EEE Internet Computing, 7(1):49-57, January/February 2003.

A. Festag, H. Karl, and G. Safér. Current developments and trends in handover design for All-IP
wireless networks. Technical Report TKN-00-007, Telecommunication Networks Group, Technical
University Berlin, Germany, 2000.

L. Fiege, F. C. @Gitner, O. Kasten, and A. Zeidler. Supporting mobility in content-based pub-
lish/subscribe middleware. PProceedings of the ACM/IFIP/USENIX International Middleware Confer-

ence (Middleware 2003), volume 2672 of ecture Notesin Computer Science, pages 103-122. Springer-
Verlag, June 2003.

L. Fiege, G.Mihl, and F. C. @itner. Modular event-based systenkiowledge Engineering Review,
17(4):359-388, 2003.

G. Fox and S. Pallickara. JMS compliance in the Narada event brokering systBnocéadings of the
International Conference on Internet Computing, pages 391-402, 2002.

BIBLIOGRAPHY 144

[51] M. J. Franklinand S. B. Zdonik. A framework for scalable dissemination-based systeRiscéedings
of the 12th ACM Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’97), pages 94-105, Atlanta, GA, USA, October 1997.

[52] N. Freed and N. Borenstein. Multipurpose Internet Mail Extension (MIME) Part Two: Media Types,
November 1996. RFC 2046. http://www.ietf.org/rfc/rfc2046.txt.

[53] E. Gamma, R. Helm, R. Johnson, and J. VlissidBesign Patterns: Elements od Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley Publishing Com-
pany, New York, NY, 1995.

[54] C. Ghezzi, M. Jazayeri, and D. Mandridiundamental s of Software Engineering, 2nd edition. Prentice
Hall, 2002.

[55] D. J. Goodman. The wireless Internet: Promises and challlen&&gE Computer, 33(7):36—41, July
2000.

[56] S. Graham and P. Niblett (editors). Web Services Notification, specification draft, January 2004. http:
/Ixml.coverpages.org/ws-notification200401.pdf.

[57] M. Hauswirth. Internet-Scale Push Systems for Information Distribution—Architecture, Components,
and Communication. PhD thesis, Distributed Systems Group, Technical University of Vienna, October
1999.

[58] M. Hauswirth and M. Jazayeri. A component and communication model for push syster®so- In
ceedings of the ESEC/FSE 99 — Joint 7th European Software Engineering Conference and 7th ACM
S GSOFT International Symposium on the Fundations of Software Engineering, September 1999.

[59] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environmeRtdeeedings of the 2nd
ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE’ 01), pages
27-34, May 2001.

[60] J. F. Huber, D. Weiler, and H. Brand. UMTS, the mobile multimedia vision for IMT-2000: A focus on
standardizationlEEE Communications Magazine, 38(9):129-136, September 2000.

[61] C. Huitema.Routing in the Internet, 2nd ed., chapter 12: IP Multicast Routing. Prentice Hall, 2000.

[62] H.-A. Jacobsen. Middleware services for selective and location-based information dissemination in
mobile wireless networks. IRroceedings of the Advanced Topic Workshop on Middleware for Mobile
Computing, in association with IFIP/ACM Middleware 2001, November 2001.

[63] S. Kapp. 802.11: Leaving the wire behintEEE Internet Computing, 6(1):82—85, January/February
2002.

[64] A. Kermarrec, L. Massoulie, and A. Ganesh. Reliable probabilistic communication in large-scale infor-
mation dissemination systems, 2000.

[65] E. Kirda, C. Kerer, and M. Jazayeri. Supporting multidevice enabled web services: Challenges and
open problems. IProceedings of the 10th |EEE Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). IEEE Computer Society, June 2001.

[66] T.Kunz, A. A. Siddiqi, and J. Scourias. The peril of evaluating location management proposals through
simulations.Wreless Networks, 7(6):635—643, 2001.

[67] G. Le Bodic.Mobile Messaging Technologies and Services. SMS EMSand MMS. Wiley, 2003.

[68] S. J. Lefflet, R. S. Fabry, W. N. Jay, P. Lapsley, S. Miller, and C. Torek. An advanced 4.4BSD inter-
process communication tutorial: Unix programmer’s supplementary documents (PSD) 21. Technical
report, Computer Systems Research Group, Depertment of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley, 1993.

[69] T. Liao. Global information broadcast: An architecture for internet push chann&BE Internet
Computing, 4(4):16—25, July/August 2000.

BIBLIOGRAPHY 145

[70] Y.-B. Lin and I. ChlamtacWreless and Mobile Network Architectures. Wiley, 2001.

[71] I. Lovrek, M. Matijasevic, and G. Jeic. Pokretljivost u mreadma. In A. Baant et al., editorOsnovne
arhitekture mreza. Element, 2003.

[72] P. Maniatis, M. Roussopoulos, E. Swierk, K. Lai, G. Appenzeller, X. Zhao, and M. Baker. The Mobile
People ArchitectureACM Mobile Computing and Communications Review, 3(3), July 1999.

[73] C. Mascolo, L. Capra, and W. Emmerich. Middleware for mobile computing (A Surveyldvanced
Lectures on Networking - Networking 2002 Tutorials, volume 2497 oL ecture Notes in Computer Sci-
ence, pages 20-58. Springer-Verlag, May 2002.

[74] R. Meier. State of the art review of distributed event models. Technical Report TCD-CS-00-16, Dept.
of Computer Science, Trinity College Dublin, Ireland, 2000.

[75] M. Mitin. Usmjeravanje poruka u distribuiranim sustavima objavi/pretplati (In Croatian)—Routing
messages in publish/subscribe systems. Diploma Thesis. FER, University of Zagreb, Croatia, June
2003.

[76] R. Monson-Haefel and D. A. Chappellava Message Service. O'Reilly & Associates, 2001.

[77] G. MUhl. Generic constraints for content-based publish/subscribe systerRsockedings of the 6th
International Conference on Cooperative Information Systems (CooplS 01), volume 2172 ofLecture
Notes in Computer Science, pages 211-225. Springer-Verlag, 2001.

[78] G. Muhl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt University of
Technology, 2002.

[79] G. Muhl, L.Fiege, F. C. @itner, and A. Buchmann. Evaluating advanced routing algorithms for content-
based publish/subscribe systems.Phoceedings of the 10th IEEE International Symp. on Modeling,
Analysis, and Smulation of Computer and Telecommunications Systems (MASCOTS 02), pages 167—

176. IEEE Computer Society, October 2002.

[80] D. Muhoberac. Implementacija usluge objavi-pretplati primjenom tehnologije Web Services (In
Croatian)— mplementation of a publish/subscribe Web service. Diploma Thesis. FER, University of
Zagreb, Croatia, June 2004. To be published.

[81] C. Noble. System support for mobile, adaptive applicatioBEE Personal Communications, 2(3):44—

49, February 2000.

[82] Object Management Group. CORBA event service specification, version 1.1, March 2001. http://www.
omg.org/technology/documents/formal/evsatvice.htm.

[83] Object Management Group. CORBA natification service, version 1.0.1, August 2002. http://www.omg.
org/technology/documents/formal/notificatiservice.htm%.

[84] ObjectWeb Open Source Middleware. JORAM - Java Open Reliable Asynchronous Messaging (release
3.6.0), August 2003. http://www.objectweb.org/joram/.

[85] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an architecture for extensible
distributed systems. In B. Liskov, editdProceedings of the 14th Symposium on Operating Systems
Principles, pages 58—68, Asheville, NC, USA, December 1993. ACM Press.

[86] C. Peersman, S. Cvetkovic, P. Griffiths, and H. Spear. The global system for mobile communications
short message servickEEE Personal Communications, 6(3):15—-23, June 2000.

[87] J. Pereira, F. Fabret, F. Llirbat, R. Preotiuc-Pietro, K. A. Ross, and D. Shasha. Publish/subscribe on the
Web at extreme speed. WLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, pages 627-630, Cairo, Egypt, September 2000. Morgan Kaufmann Publishers.

[88] C. E. Perkins. Mobile networking through Mobile IFEEE Internet Computing, 2(1):58—69, January-
February 1998.

BIBLIOGRAPHY 146

[89] P.Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architedtuRroteedings
of the 22rd International Conference on Distributed Computing Systems - Workshops (ICDCS 2002
Workshops), pages 611-618. IEEE Computer Society, July 2002.

[90] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in an event-based middleware. In
Proceedings of the 2nd International Workshop on Distributed Event-Based Systems (DEBS 03). ACM
Press, June 2003.

[91] E. Pitoura and G. Samaras. Locating objects in mobile computEgE Transactions on Knowledge
and Data Engineering, 13(4):571-592, July/August 2001.

[92] I. Podnar. Publish/subscribe middleware concepts. Technical Report FER-ZZT-2002-12-01, Department
of Telecommunications, FER, University of Zagreb, December 2002.

[93] I. Podnar. Web-based mobile content dissemination service with publish/subscribe. Technical Re-
port FER-ZZT-2003-09-01, Department of Telecommunications, FER, University of Zagreb, September
2003.

[94] 1. Podnar, M. Hauswirth, and M. Jazayeri. Mobile Push: Delivering content to mobile usePso-In
ceedings of the 22nd International Conference on Distributed Computing Systems - Workshops (ICDCS
2002 Workshops), pages 563-568. IEEE Computer Society, July 2002.

[95] I. Podnar and K. Primi€. m-NewsBoard: A news dissemination service for mobile userBrdoeed-
ings of the 7th International Conference on Telecommunications (ConTEL 2003), pages 205-211. FER,
University of Zagreb, June 2003.

[96] G. Pospischil, J. Stadler, and I. MiladinoviLocation-based push architectures for the mobile internet.

In S. Dixit and R. Prasad, editofjreless | P and Building the Mobile Internet, pages 503-524. Artech
House, 2003.

[97] K. Pripwzic. Oblikovanje i razvoj aplikacije za isporuku viSemedijskih poruka u mobilnom okru zenju
(In Croatian)—Design and implementation of an application for disseminating multimedia messagesin
mobile environments. Diploma Thesis. FER, University of Zagreb, Croatia, September 2003.

[98] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-
addressable networks. Rroceedings of the 3rd International Workshop on Networked Group Com-
munication, November 2001.

[99] P. Reinbold and O. Bonaventure. IP micro-mobility protocolEEE Communications Surveys and
Tutorials, 5(1):40-57, Third Quarter 2003.

[100] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation and no-
tification. In Proceedings of the 6th European conference on Foundations of Software Engineering
(ESECIFSE ' 97), volume 1301 of_ecture Notes in Computer Science, pages 344—360. Springer / ACM
Press, 1997.

[101] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller, and M. Baker. Person-level routing
in the Mobile People Architecture. Froceedings of the USENIX Symposium on I nter net Technol ogies
and Systems, October 1999.

[102] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale
peer-to-peer systems. Rroceedings of Middleware 2001, pages 329-350, November 2001.

[103] A. K. Salkintzis. Wide-area wireless IP connectivity with the general packet radio service. In S. Dixit
and R. Prasad, editordireless |P and Building the Mobile Internet, pages 27-47. Artech House, 2003.

[104] M. Satyanarayanan. Fundamental challenges in mobile computingro¢eedings of the 15th ACM
Symposiumon Principles of Distributed Computing, pages 1-7, May 1996.

[105] H. Schulzrinne and J. Rosenberg. The Session Initiation Protocol: Internet-centric sigri&litie).
Communication Magazine, 38(10):134-141, October 2000.

BIBLIOGRAPHY 147

[106] H. Schulzrinne and E. Wedlund. Application-layer mobility using 3iBbile Computing and Commu-
nications Review, 4(3):47-57, July 2000.

[107] Softwired. iBus//Mobile developer's manual release 3.1., August 2002. http://www.softwired-inc.com.

[108] Sun Microsystems, Inc. Java Message Service Specification version 1.1, 2002. http://java.sun.com/
products/jms/.

[109] Sun Microsystems, Inc. JavaSpaces Service Specification version 1.2.1, April 2002. http://wwws.sun.
com/software/jini/specs/jinil.2html/js-title.html.

[110] Sun Microsystems, Inc. Java Remote Method Invocation (Java RMI), 2004. http://java.sun.com/
products/jdk/rmi/index.jsp.

[111] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness—Transparent information delivery
for mobile and invisible computing. IRroceeding of the IEEE International Symposium on Cluster
Computing and the Grid, pages 277-285. IEEE Computer Society, May 2001.

[112] S. Tai and I. Rouvellou. Strategies for integrating messaging and distributed object transactions. In
Middleware 2000, volume 1795 ofecture Notesin Computer Science, pages 308—330. Springer-Verlag,
2000.

[113] A. S. TanenbauntComputer Networks, 3rd edition, chapter 7.4: Electronic mail. Prentice Hall, 1996.

[114] A. S. TanenbaunComputer Networks, 3rd edition, chapter 7.5: Usnet news. Prentice Hall, 1996.

[115] A. S. Tanenbaum and M. van Stedbistributed Systems: Principles and Paradigms, chapter 12: Dis-
tributed coordination-based systems. Prentice Hall, 2002.

[116] TIBCO Software Inc. TIBCO Rendezvous (version 7.2), 2003. http://www.tibco.com/solutions/
products/activeenterprise/rv/default.js%p.

[117] B. Turk. Usporedba algoritama za usmjeravanje poruka u sustavima objavi-pretplati (In Croatian)—
Comparison of the routing algorithms in publish/subscribe systems. Diploma Thesis. FER, University
of Zagreb, Croatia, September 2004. To be published.

[118] W3C. XML Path Language (XPath), version 1.0, November 1999. http://www.w3.0rg/TR/xpath.

[119] W3C. Web Services Description Language (WSDL), version 1.1, March 2001. http://www.w3.0rg/TR/
wsdl.

[120] W3C. SOAP Version 1.2 Part 0: Primer0, June 2003. http://www.w3.0rg/TR/soapl2-part0/.

[121] W3C. Web services architecture, August 2003. http://www.w3.org/TR/ws-arch/.

[122] H. J. Wang, B. Raman, C.-N. Chuah, R. Biswas, R. Gummadi, B. Hohlt, X. Hong, E. Kiciman, Z. Mao,
J. S. Shih, L. Subraimanian, B. Y. Zhao, A. D. Joseph, and R. H. Katz. ICEBERG: An Internet core net-
work architecture for integrated communicatioHsEE Personal Communications, 7(4):10-19, August
2000.

[123] E. Yoneki and J. Bacon. Pronto: MobileGateway with publish-subscribe paradigm over wireless net-
work. Technical Report UCAM-CL-TR-559, Computer Laboratory, University of Cambridge, 2003.

[124] S. Young, D. Spanjol, and V. K. Garg. Control of discrete event systems modeled with deterministic
Buchi automata. IProceedings of 1992 American Control Conference, pages 2809-2813, Chicago, IL,
1992.

[125] A. Zeidler and L. Fiege. Mobility support with REBECA. FProceedings of the 23rd International
Conference on Distributed Computing Systems - Workshops (ICDCS 2003 Workshops), pages 354—360,

May 2003.

[126] Y. Zhao and R. E. Strom. Exploiting event stream interpretation in publish-subscribe systems. In
Proceedings of the 20th ACM Symposium on Principles of Distributed Computing, pages 219-228.

ACM Press, August 2001.

BIBLIOGRAPHY 148

[127] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz. Bayeux: An architecture
for scalable and fault-tolerant wide-area data disseminatiofRrdoeedings of the 11th International
Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2001),

June 2001.

Summary

The dissertation presents an architecture and an implementation of efficient and personalized content
dissemination service targeting mobile users. The service enables information publishers to publish
the content for numerous users based on the publish/subscribe interaction style. Service personaliza-
tion is achieved through subscriptions: Users define subscriptions to express their interest in receiv-
ing certain content types. The published content contains non-realtime data of variable bandwidth
demands (short text messages, images or video clips) and the publishing time is usually randomly
determined. Furthermore, the service enables personal mobility, i.e., a user can receive the content in
various networks applying different terminals.

The thesis investigates two aspects of content dissemination. Firstly, a mathematical model of
distributed publish/subscribe systems is presented, followed by the definition of routing algorithms
that support publisher and subscriber mobility. Secondly, the thesis proposes a software architecture
for content dissemination services based on a publish/subscribe Web service.

Keywords
content dissemination, publish/subscribe middleware, mobility, event-driven model, routing
algorithm, software architecture

149

Kratki sadrzaj

Disertacija predlzé arhitekturu i implementaciju usluge zainKovitu i personaliziranu isporuku
sadraja pokretnim korisnicima. Usluga omamé objavljivanje sadidja na naélu objavi-pretplati
namijenjenog velikom broju korisnika. Usluga je personalizirana jer korisnici pretplatozaizapi
interes za primanje oddene vrste sadeja. Sadrdj Cine podaci koji se ne prenose u stvarnom vre-
menu, varijabilnih su prometnih karakteristika (kratke tekst poruke, slike ili videodsjed trenutak
njihovog objavljivanja je sladjni dogaaj. Usluga treba omogiti pokretljivost osobe, tj. mogtriost
primanja sadrdja u raznovrsnim meama i na raztiitim terminalima.

Disertacija daje dva pogleda na uslugu za isporukuzsgar Najprije je predipeén matematiKi
model koji opisuje distribuirane sustave objavi-pretplati, te su definirani algoritmi umjeravanja poruka
koji podrZavaju pokretljivost korisnika sustava. Potom je predlta arhitektura usluge za isporuku
sadraja temeljena na komponenti objavi-pretplati koja je oblikovana primjenom tehnoMghe
service.

Kljucnerijeci

isporuka sadtdja, meluoprema objavi-pretplati, pokretljivost, model voden digjana, algoritam
usmjeravanja, arhitektura programskog proizvoda

150

Curriculum Vitae

| was born on October 29th, 1973 in Zagreb. After finishing high school, natural science track, in
Zagreb, | started the undergraduate program at the Faculty of Electrical Engineering and Computing,
University of Zagreb, in 1992. | received my B.S. (Dipl.-Ing.) and M.S. degrees in electrical engi-
neering with a major in telecommunications and information science from the University of Zagreb,
in 1996 and 1999, respectively. The research topic of my Master’s thesis was “Software Mainte-
nance Process Analysis”. | am currently a teaching assistant at the Faculty of Electrical Engineer-
ing, University of Zagreb. | have been affiliated with the Department of Telecommunications at the
named Faculty since 1997. In 2000 and 2001 | was on leave from the University of Zagreb, work-
ing toward my Ph.D. as a research associate at the Information Systems Institute of the Technical
University of Vienna, Austria. My current research interests include distributed information systems,
publish/subscribe systems in particular, and services in mobile networks. | have published 13 papers
on international conferences in the area of distributed systems and software maintenance. | am fluent
in English, German, and Italian. | am a member of IEEE.

151

Zivotopis

Rodena sam 29. listopada 1973. u Zagrebu. Posaku srednjeskole (XV Gimnazija u Za-
grebu), 1992. godine upisujem studij na Fakultetu elektrotehnikeuna'stva Sverilista u Za-
grebu, gdje sam i diplomirala u prosincu 1996. godine s temom “Optimalno pridjeljivanje valnih
duljina u sveoptikim mreZama s valnim multipleksom”. Magistrirala sam u prosincu 1999. godine
na Fakultetu elektrotehnike icaharstva, i time stekla znanstveni stupanj magistra znanosti iz po-
drucja tehnckih znanosti, polje Elektrotehnika, smjer Telekomunikacije i informatika. Tema mog
magistarskog rada je “Analiza procesa zairanja programske opreme”. Od vegal997. godine
sam zaposlena na Zavodu za telekomunikacije Fakulteta elektrotehnigenaratva u zvanju asis-
tenta. Tijekom 2000. i 2001. godine sam radila kao znanstveni suradnik na Institutu za informacijske
sustave TehKog svegilista u Bel radi znastvenog usaavanja u okviru doktorskog studija. Moja
podrwcja istr&ivanja su distibuirani informacijski sustavi s naglaskom na susthjeyi-pretplati i
usluge u pokretnim meaima. Objavila sam 13 radova natmearodnim konferencijama iz podja”
distribuiranih sustava i odevanja programske pak&. Govorim engleski, njerokii talijanski jezik.

Clan sam udreénja IEEE.

152

