
University of Zagreb

Faculty of Electrical Engineering and Computing

DISSERTATION

Service Architecture for Content Dissemination to

Mobile Users

Ivana Podnar

Zagreb, February 2004

i

The doctoral dissertation has been completed at the Department

of Telecommunications of the Faculty of Electrical Engineering

and Computing, University of Zagreb.

Advisor: Ignac Lovrek, Ph.D.

Professor, FER, University of Zagreb

Co-advisor: Mehdi Jazayeri, Ph.D.

Professor, Technische Universit¨at Wien

The dissertation has 148 pages.

Dissertation number:

ii

The dissertation evaluation committee:

1. Branko Mikac, Ph.D., professor, FER, University of Zagreb

2. Ignac Lovrek, Ph.D., professor, FER, University of Zagreb

3. Mehdi Jazayeri, Ph.D., professor, Technische Universit¨at Wien

The dissertation defense committee:

1. Branko Mikac, Ph.D., professor, FER, University of Zagreb

2. Ignac Lovrek, Ph.D., professor, FER, University of Zagreb

3. Mehdi Jazayeri, Ph.D., professor, Technische Universit¨at Wien

4. MarioŽagar, Ph.D., professor, FER, University of Zagreb

5. Manfred Hauswirth, Ph.D.,́Ecole Polytechnique F´edérale de Lausanne, Switzerland

Date of dissertation defense: May 7, 2004

iii

Acknowledgments

A number of people have supported me during the process that led to the completion of the thesis.

Firstly, I would like to thank my advisor Prof. Ignac Lovrek for his support, guidance, and patience

throughout my research. I thank my co-advisor Prof. Mehdi Jazayeri for teaching me the principles

of research, and impelling me to pursue my research interests. I am also grateful to Dr. Manfred

Hauswirth who has directed my research interests towards the area of publish/subscribe systems, and

supported my efforts with insightful comments and arguments.

The major ideas presented in the dissertation have been developed at the Distributed Systems

Group, Technical University of Vienna. I thank the members of the DSG for creating an inspiring

research environment, and for making my stay in Vienna a pleasant experience. I also thank my col-

leagues at the Department of Telecommunications, FER Zagreb, for their patience and understanding

to reduce my teaching obligations during the last frantic months of thesis completion. Furthermore,

special thanks go to FER students Kreˇsimir Pripužić, Matija Mićin, and Branimir Turk for their par-

ticipation in the implementation of the MOPS system and the m-NewsBoard application.

And finally, I cordially thank my family for their constant support, and encouragement to always

do my best while pursuing my goals.

iv

Abstract

The dissertation presents an architecture and an implementation of efficient and personalized

content dissemination service targeting mobile users. The service enables information publishers

to publish the content for numerous users based on the publish/subscribe interaction style. Service

personalization is achieved through subscriptions: Users define subscriptions to express their interest

in receiving certain content types. The published content contains non-realtime data of variable

bandwidth demands (short text messages, images or video clips) and the publishing time is usually

randomly determined. Furthermore, the service enables personal mobility, i.e., a user can receive the

content in various networks applying different terminals. The research is motivated by the increased

demand for the push-based dissemination of personalized content to mobile users that enables service

users to promptly receive important notifications.

The thesis investigates two aspects of content dissemination. Firstly, a mathematical model of

distributed publish/subscribe systems is presented, followed by the definition of routing algorithms

that support publisher and subscriber mobility. Secondly, we propose a software architecture for

content dissemination services that uses publish/subscribe middleware as its basic communication

component.

The proposed model presents distributed publish/subscribe systems as discrete event systems. We

propose a novel approach to routing in mobile environments that relies on notification persistency.

System brokers store persistent notifications until their validity period expires, and deliver valid no-

tifications to subscribers when they reconnect to the system. The prototype implementation and the

experimental results show validity of the proposed solution. In the second part of the thesis we propose

a component-based content dissemination service architecture that is adequate for mobile settings. We

have designed a generic Web-based solution for the publish/subscribe component that forms the basis

of the proposed architecture, and outline the solution for personal mobility. The implementation of

the m-NewsBoard system, a news dissemination service for mobile users, demonstrates applicability

of the proposed architecture.

v

Sažetak

Disertacija predlaže arhitekturu i implementaciju usluge za ǔcinkovitu i personaliziranu isporuku

sadržaja pokretnim korisnicima. Usluga omogućuje objavljivanje sadřzaja na načelu objavi-pretplati

namijenjenog velikom broju korisnika. Usluga je personalizirana jer korisnici pretplatom izrǎzavaju

interes za primanje odredene vrste sadřzaja. Sadržaj čine podaci koji se ne prenose u stvarnom vre-

menu, varijabilnih su prometnih karakteristika (kratke tekst poruke, slike ili video isjěcci), a trenutak

njihovog objavljivanja je slučajni dogadaj. Usluga treba omogućiti pokretljivost osobe, tj. mogućnost

primanja sadržaja u raznovrsnim mrežama i na različitim terminalima. Motivaciju za njen razvoj

čine potrebe korisnika za uslugom koja omogúcuje aktivnu isporuku personaliziranog sadřzaja i time

pravovremeni pristup važnim informacijama, a podržava pokretljivost korisnika.

Disertacija daje dva pogleda na uslugu za isporuku sadřzaja. Najprije je predložen matematički

model koji opisuje distribuirane sustave objavi-pretplati, te su definirani algoritmi umjeravanja poruka

koji podržavaju pokretljivost korisnika sustava. Potom je predlǒzena arhitektura usluge za isporuku

sadržaja temeljena na sustavu objavi-pretplati koji čini osnovnu komunikacijsku komponentu usluge.

Predloženi model opisuje distribuirane sustave objavi-pretplati kao sustave vodene diskretnim

dogadajima. Predložen je novi pristup usmjeravanju poruka u pokretnoj okolini temeljen na perzis-

tentnosti poruka. Poslužitelji sustava objavi-pretplati čuvaju perzistentne poruke dok ne istekne pe-

riod njihove valjanosti, te ih isporučuju pretplatnicima prilikom ponovnog spajanja u sustav. Imple-

mentacija prototipa i eksperimentalni rezultati pokazuju primjenjivost predlǒzenog rješenja. U dru-

gom dijelu disertacije predložena ja komponentna arhitektura sustava za isporuku sadřzaja pokretnim

korisnicima. Oblikovana je komponenta objavi-pretplati primjenom tehnologije Web servicekojačini

osnovu arhitekture sustava, te opisan prijedlog rješenja za osobnu pokretljivost korisnika. Predlǒzena

arhitektura je verificirana implementacijom sustava m-NewsBoardkoji se koristi za isporuku vijesti

pokretnim korisnicima.

Contents

1 Introduction 1

2 Content Dissemination and Mobility 5

2.1 Introduction . 5

2.2 Classification of Distributed Interaction Models 7

2.3 The Concepts of Publish/Subscribe 13

2.3.1 Publish/Subscribe Interaction Model 13

2.3.2 Subscription Schemes. 15

2.3.3 Characteristics of Publish/Subscribe Systems. 19

2.4 Mobility . 21

2.4.1 Mobility-Aware Content Dissemination 21

2.4.2 Mobility Management. 24

3 Related Work 29

3.1 Representative Publish/Subscribe Systems. 29

3.1.1 CORBA Event and Notification Service 30

3.1.2 Java Message Service. 32

3.1.3 TIB/Rendezvous . .. 33

3.1.4 JEDI 34

3.1.5 Siena 35

3.1.6 DACs 36

3.1.7 Hermes . .. 37

3.1.8 REBECA .. 37

3.2 Mobility Support in Publish/Subscribe Systems 38

3.3 Related Approaches. 42

3.3.1 Electronic Mail 42

3.3.2 Usenet News. 43

3.3.3 Short Message Service. 43

3.3.4 Multimedia Message Service . .. 43

3.3.5 Application-Level Multicast . .. 44

vi

CONTENTS vii

3.3.6 Push Systems. 44

4 Publish/Subscribe System Model 45

4.1 Basic Mathematical Model .. 45

4.1.1 Structural View 46

4.1.2 Behavioral View . .. 46

4.2 Mobility-Enabled Model . .. 50

4.3 Distributed Model .. 57

5 Routing Algorithms Supporting Mobility 65

5.1 Existing Approaches. 66

5.2 The Proposed Routing Algorithms Supporting Mobility 69

5.2.1 Routing Based on Subscription Equality 75

5.2.2 Routing Based on Subscription Covering. 76

5.3 Evaluation of the Routing Algorithms .. 86

5.3.1 The Prototype System MOPS . 86

5.3.2 Queuing Algorithm vs. Persistent Notification Algorithm. 91

5.4 Discussion. 100

6 Content Dissemination Service Architecture 103

6.1 Requirements and Usage Scenarios 104

6.2 Reference Architecture 108

6.2.1 Communication Layer. 110

6.2.2 Service Layer. 110

6.2.3 Application Layer .. 111

6.2.4 Component Interaction. 112

6.3 Publish/Subscribe as a Mobile Web Service 114

6.3.1 Architecture. 115

6.3.2 Service Interface . .. 117

6.4 Personal Mobility Management. 119

7 m-NewsBoard: A Case Study 122

7.1 m-NewsBoard - a News Dissemination Service 122

7.1.1 Usage Scenarios . .. 123

7.1.2 Description of System Implementation 126

7.2 Publish/Subscribe Service Implementation. 130

7.3 A Solution for Personal Mobility. 133

7.4 Discussion. 136

CONTENTS viii

8 Conclusion 138

8.1 Contributions 138

8.2 Future Work. 140

Bibliography 141

Summary 149

Curriculum Vitae 151

List of Figures

2.1 Content dissemination 6

2.2 Remote method invocation .. 11

2.3 Message-queuing .. 11

2.4 Process interaction through shared dataspace 12

2.5 The basic publish/subscribe interaction model 14

2.6 The extended publish/subscribe interaction model. 15

2.7 Subject-based subscription scheme 16

2.8 Content-based subscription scheme 17

2.9 Type-based subscription scheme. 18

2.10 Decision tree for a content-based subscription 19

2.11 An environment for service deployment. 23

3.1 Publish/subscribe interaction in JMS . .. 33

4.1 An example of a publish/subscribe system. 50

4.2 Automaton of the basic example. 51

4.3 Automaton of the mobility-enabled example 56

4.4 An example of a distributed publish/subscribe system. 58

4.5 Proxy publisher and proxy subscriber .. 59

4.6 The model of the example system from Figure 4.4. 60

4.7 Subscribing in a distributed model 62

4.8 Publishing in a distributed model. 62

5.1 Reverse path forwarding: Creating delivery trees. 68

5.2 Creating a core-based tree .. 68

5.3 Algorithm forPSx: ConnectingPSy toPSx . 72

5.4 Algorithm for the proxy subscriberSy→x
proxy ∈ PSx 73

5.5 Algorithm for the proxy publisherPy→x
proxy ∈ PSx 73

5.6 Connecting local publishers and subscribers toPSx 74

5.7 Disconnecting local publishers and subscribers fromPSx 74

5.8 Notification publishing 75

ix

LIST OF FIGURES x

5.9 Defining a new subscription using subscription equality 77

5.10 Terminating an existing subscription using subscription equality. 78

5.11 A method for updating a proxy subscriber’s covering set withmjl 80

5.12 A method for removingmjl from the covering sets of a proxy subscriber. 81

5.13 Local subscription based on covering . .. 82

5.14 Proxy subscription based on covering .. 84

5.15 Terminating an existing subscription based on covering 85

5.16 Class diagram of event classes. 87

5.17 The implementation of methods for checking the coverage relationship 88

5.18 Class diagram of infrastructure classes .. 89

5.19 Class diagram of routing classes. 90

5.20 Experimental network. 93

5.21 Number of connected subscribers per broker 94

5.22 Rate of received and sent notifications .. 95

5.23 Rate of received and sent subscriptions .. 96

5.24 Rate of received and sent unsubscriptions. 97

5.25 Rate of received and sent control messages. 97

5.26 Rate of received and sent notifications/subscriptions/unsubscriptions 98

5.27 The average routing table size per broker. 98

5.28 Delay for direct notifications. 99

5.29 Delay for stored (queued/persistent) notifications. 99

5.30 Delay for all notifications .. 100

6.1 Stationary scenario. 105

6.2 Nomadic scenario .. 106

6.3 Mobile scenario . .. 107

6.4 Reference architecture 109

6.5 Registration of a new subscriber (UML sequence diagram) 112

6.6 Subscription update due to disconnection (UML sequence diagram) 113

6.7 Sequence diagram for publish and subscribe use cases. 114

6.8 Web-based publish/subscribe service . .. 116

6.9 Web-based publish/subscribe service with respect to reference architecture. 116

6.10 An example XML message requesting channel creation 118

6.11 An example XML message requesting subscription to a channel. 118

6.12 An example XML message initiating content publishing 119

7.1 m-NewsBoard use cases . .. 123

7.2 Subscribing to a channel . .. 124

7.3 Publishing news on a channel. 125

7.4 Reading the published news in a desktop browser. 125

LIST OF FIGURES xi

7.5 The published message in a JMS desktop receiver. 126

7.6 Publishing screen on a mobile phone . .. 126

7.7 m-NewsBoard architecture .. 127

7.8 Deployment diagram. 128

7.9 Sequence diagram that shows the interaction between NewsBoard’s components. . . 129

7.10 Class diagram of the Java RMI implementation 132

7.11 Sequence diagram for JMS-based delivery. 134

7.12 Sequence diagram for e-mail/JMS delivery. 135

List of Tables

2.1 Comparison of communication and cooperation patterns 10

2.2 Classification of the existing models . .. 12

2.3 Requirements for mobility management. 28

3.1 Comparison of the presented publish/subscribe systems 39

5.1 Input parameters .. 94

6.1 Services for stationary, nomadic and mobile users. 108

6.2 Functionality offered by the publish/subscribe Web service 117

6.3 Communication point definitions and examples 120

7.1 Mapping publish/subscribe methods to JMS and e-mail specific implementations. . . 131

7.2 A JMS message representation. 132

xii

Chapter 1

Introduction

The extensive headway of mobile networks and their expected convergence with the Internet has

been driven by the demand for higher rate wireless connectivity in support of terminal mobility, and

the need for novel services that can satisfy the requirements of mobile users. The development of

the network infrastructure with increased bandwidth and coverage has been the primary objective of

network operators [55]. The next challenge is the deployment of a variety of new services that will

become a necessity for mobile users, and utilize the provided bandwidth.

Personalized and flexible content dissemination has been recognized as a valuable service in the

environments that support user mobility [30, 62, 94]. Notification services for weather and traffic

reports, messaging systems for group discussions, and location-based information delivery services

are examples of applications that rely on content dissemination. Such services enable users to receive

relevant information while being mobile, and to define the type and customize the content delivered

to their terminals. The main characteristic of content publication is the event-driven and probabilistic

nature of content availability that cannot be predicted a priori.

Motivation. Information and notification services for communicating time-sensitive data have

proved their usability in the Internet domain [24, 69, 57]. The huge success of Short Message Service

(SMS) and the increased acceptance of Multimedia Message Service (MMS) advocate the extension

of the initial application domain to mobile environments, and encourage further efforts to implement

and deploy content dissemination services in mobile environments. However, mobile scenarios intro-

duce additional requirements regarding the service: Mobile users want to be served with relevant and

personalized content in a timely manner. Moreover, the content must be customized to their current

presence status, and directed to the terminal they are currently applying. Therefore, service flexibil-

ity and its ability to deliver personalized content that provokes no nuisance to end users is of major

importance for the wide acceptance of the service. Support for personal mobility is needed to assure

timely information dissemination in accordance with the user’s presence status.

Publish/subscribe content dissemination. Content dissemination service enables delivery of

content from information sources to numerous users across a wide area network. The content being

1

1. Introduction 2

distributed is non-realtime multimedia content such as plain text, images, or video clips. The service

involves two types of users: publishers and subscribers. Publishers define and structure the content

that is submitted to the service for subsequent delivery to subscribers. Subscribers define subscrip-

tions that describe the type of content they are interested in receiving. Content dissemination service

can, therefore, be visualized as an information bus that joins a publisher when publishing the content

with a group of subscribers interested in the published content. The publish/subscribe communication

middleware [42, 100] reflects the interaction style of content dissemination services. Communicating

parties, publishers and subscribers, interact asynchronously by generating and consuming notifica-

tions. The notifications are delivered to subscribers in the push-style. The available publish/subscribe

implementations [33, 24, 43, 90, 78] offer mechanisms for defining expressive subscriptions, and

enable content filtering according to the provided subscriptions.

Beneficial characteristics of publish/subscribe. Publish/subscribe interaction decouples the

communicating participants because they interact through an intermediary and need not to be active si-

multaneously to exchange messages. The decoupled, asynchronous, and persistent publish/subscribe

communication is adequate for highly dynamic mobile environments: A mobile network is faced with

a changing number of terminals that are often disconnected or unavailable, whereas a terminal needs

to adapt to connectivity and services offered by the network in which it currently resides. Furthermore,

the publish/subscribe model supports system extendibility. The addition of a new publisher or a sub-

scriber does not affect system functionality which is desirable when dealing with frequent changes in

the mobile environment. The problem of system scalability is solved by designing a distributed archi-

tecture that comprises a network of special servers, denoted as brokers in terms of publish/subscribe

systems. Lastly, publish/subscribe systems satisfy the requirement for context-awareness. The event-

based nature of the publish/subscribe interaction model offers the means for designing responsive

applications that are aware of publisher’s and subscriber’s states, and adaptable to changes in the net-

work context. Consequently, we have decided to build a mobile content dissemination service using

the publish/subscribe middleware. However, the available publish/subscribe systems offer limited or

no support for publisher and subscriber mobility.

Shortcomings of current approaches. SMS- and MMS-based notification services from the

telecommunications domain are adjusted to mobile environments and offer push-based delivery of

content to mobile terminals. However, these services lack flexibility and expressiveness of subscrip-

tions, as well as content filtering found in publish/subscribe systems, and provide no support for

content customization according to the user’s presence status. On the other hand, notification services

from the Internet domain offer expressive and flexible subscription mechanisms for building highly

personalized content dissemination service, but offer limited support for user mobility.

We argue in [94] that the publish/subscribe middleware itself must offer mobility support and

ensure seamless client reconnections preserving notifications published during disconnection. The

authors in [125] agree that mobility-related issues should be addressed by the publish/subscribe

middleware itself, rather than being delegated to the application layer. However, the existing pub-

1. Introduction 3

lish/subscribe systems are designed and optimized for static environments where both publishers and

subscribers are stationary. The problems related to mobility have been addressed recently [21, 48,

125]. The proposed solutions for client mobility in publish/subscribe middleware are not optimized

for mobile environments, but they extend the existing stationary systems [48, 21]. The common solu-

tion is based on the “queuing approach” where a system broker – usually the last broker that served a

subscriber, or a special subscriber proxy – acts as a proxy subscriber during subscriber disconnection.

This proxy stores the notifications published during the subscriber disconnection in a special queue,

and delivers them to the subscriber upon reconnection. If the subscriber reconnects to the system

through a new system broker, a costly handover procedure is performed which transfers the stored

notifications to the subscriber and updates delivery paths in the broker network.

Contributions. The thesis focuses on two aspects of content dissemination. Firstly, we design

a solution for the mobility-enabled publish/subscribe middleware by defining a mathematical system

model and the corresponding routing algorithms. Secondly, we propose a software architecture for

content dissemination services that uses the publish/subscribe middleware as its basic communication

component.

The thesis proposes a mathematical model for distributed publish/subscribe systems. The model

describes publish/subscribe systems as discrete event systems that change the system state through a

sequence of events. The model is defined using the set theory notation following the approach in [27].

It is the basis for defining the routing algorithms for delivery of published notifications to subscribers

that are mobile, and potentially disconnected from the system.

We propose a novel approach to mobility in publish/subscribe systems. Rather than queuing notifi-

cations for disconnected users in special queues, the network of brokers stores persistent notifications

until their validity period expires. We argue that notification publishers need to define validity pe-

riod of published notifications, the system must assure notification storage during the validity period,

and deliver valid notifications to subscribers when they reconnect to the publish/subscribe system. If

a subscriber connects to the system after notification expiry, the notification is not delivered to the

subscriber because it is reasonable to believe that it no longer holds valuable information. Notifica-

tion persistency is by no means a new characteristic of the existing publish/subscribe systems. For

example, JMS [108] defines notification persistency as one of the basic notification characteristics.

However, the existing approaches do not consider notification persistency as a possible solution to the

mobility problem in publish/subscribe systems.

To validate the proposed model and the routing solution we have implemented a prototype system

distinguishable from other publish/subscribe implementations by its inherent support for publisher

and subscriber mobility. Furthermore, we applied the prototype to evaluate the performance of the

proposed routing solution, and to compare our approach with the queue-based approach.

In the second part of the thesis we have designed a component-based content dissemination service

architecture. The architecture is composed of the components that have been identified through the

analysis of service usage scenarios following software engineering principles [54]. We have identified

1. Introduction 4

publish/subscribe and personal mobility as vital architectural components. We propose the design of

a publish/subscribe component as a Web-based service, and outline a solution for personal mobility

with the focus on communication patterns and security.

Finally, we present m-NewsBoard, a news dissemination service for mobile users. The m-News-

Board system enables users to publish and receive news of their interest, and to customize the service

regarding the means for news receipt. It has served as a proof of concept implementation to evaluate

the proposed content dissemination service architecture.

Thesis structure. The thesis is structured as follows: Chapter 2 explains the basic concepts of

content dissemination and mobility, and justifies the decision to apply publish/subscribe middleware

for the design and implementation of personalized content dissemination services supporting mobile

users. Chapter 3 gives an overview of the existing solutions and systems related to content dissemina-

tion. We analyze and compare the characteristics of the prominent publish/subscribe systems, and of

the related solutions, such as e-mail, Usenet news, SMS, MMS, application-level multicast, and push

systems. Chapter 4 introduces a mathematical model of distributed publish/subscribe systems used

as the basis for defining the routing algorithms for selective dissemination of notifications to mobile

subscribers. The proposed routing algorithms are defined and evaluated in Chapter 5. In Chapter 6

we propose the reference architecture for content dissemination services that comprises a Web-based

publish/subscribe middleware layer, and a component for personal mobility. The implementation of

a news dissemination service, m-NewsBoard, that is used to show the applicability of the proposed

reference architecture is presented in Chapter 7. Chapter 8 evaluates the thesis contributions and gives

guidelines for future work.

Chapter 2

Content Dissemination and Mobility

This chapter analyzes the applicability of publish/subscribe middleware for design and implemen-

tation of content dissemination services supporting user mobility. The publish/subscribe interaction

model reflects the content dissemination interaction style. Content sources are publishers that provide

the content to a content dissemination service which, in turn, distributes it to interested subscribers,

content destinations. Subscribers can personalize the received content through subscriptions by de-

scribing the type and properties of notifications of their interest. The inherent characteristics of pub-

lish/subscribe middleware, such as loose coupling between the communicating parties and system

extendibility, are suitable for the dynamic and volatile nature of mobile environments.

The chapter is organized as follows: Section 2.1 defines the content dissemination service and

describes the basic interaction pattern between service entities. Section 2.2 analyzes the existing in-

teraction models for distributed applications and classifies them across two dimensions, communica-

tion and cooperation. Section 2.3 gives a comprehensive analysis of the publish/subscribe interaction

style: It describes the communication pattern, defines the notion of notification and subscription, de-

scribes the existing subscription schemes, and gives an overview of publish/subscribe characteristics.

Section 2.4 defines the basic terms related to mobility and mobile networks. It presents the mobile

environment for the deployment of mobile content dissemination services. Mobility management is

essential for the implementation of services that support personal mobility. Section 2.4.2 gives an

overview of the existing solutions to mobility management, and discusses the requirements of a mo-

bility management solution that is adequate for content dissemination.

2.1 Introduction

The traditional request/reply model of distributed computation supports a demand-driven interaction

style between two communicating parties: A client sends a request to a server that performs the

computation, or hosts the requested information, and waits for a reply from the server. Information-

intensive applications for timely dissemination of content to a multitude of clients face a significant

performance deficiency if implemented using the request/reply approach. Clients that depend on time-

5

2. Content Dissemination and Mobility 6

S

S

S

S

S

S S
content
publisher

content
subscriber

S

P
P

P
P

Figure 2.1: Content dissemination

sensitive information need to poll for data at regular intervals to check if the data has been updated.

Inefficiency is the main drawback of this approach: The sequence of requests and replies wastes

a lot of bandwidth which is particularly inadequate for mobile environments with limited wireless

bandwidth and power supply. Furthermore, servers offering time-sensitive information, e.g., sport

news or election results, are saturated with a multitude of requests [51].

The push-based approach which facilitates active dissemination of published information to in-

terested users has been proposed as a viable solution to the problem of timely and scalable content

dissemination. Acontent dissemination service enables the delivery of content from content sources

to a potentially large number of interested users, content destinations. Some authors use the term

notification service [23] to denote that the content, in most cases, carries time-sensitive information.

Others use the termpush service [57, 69] to indicate that the content is actively delivered to content

destinations, as opposed to the traditional user-initiated pull-style model. Timely content dissemina-

tion is the main service task. The publishing time and the time of content change is a probabilistic

event that cannot be predicted a priori. The content being distributed is non-real time multimedia

content, e.g., plain text, images, or video clips.

Figure 2.1 shows the basic interaction between content sources and content destinations on the top

service level. A content source publishes the content at a particular timet, and the published data is

delivered to destinations having declared interest in receiving it within a “reasonably” short time in-

terval∆t. Various scenarios for determining the set of destinations for each source and its publication

are possible. For example, in asingle-source scenario each source can have a stationary group of des-

tinations that want to receive all of the content published by this particular source. In amultiple-source

scenario a number of sources can publish the content to a predefined group or receivers. Publishers

and receivers can either join or leave a predefined group which makes the subscription scheme rather

restricted and static. Group communication services [39] including the network-layer IP multicast

[35] are practical implementations of such static content dissemination services.

A dynamic and flexible subscription scenario is possible in which a group of receivers is formed

2. Content Dissemination and Mobility 7

per each publication. This approach incorporates thepublish/subscribe interaction model [100]: Sub-

scribers declare the interest in certain content categories and notifications with particular properties,

and receive only publications that match their subscriptions. A dynamic scenario facilitates person-

alized content delivery guided by user subscriptions. The publish/subscribe interaction enables the

customization of a set of received notifications minimizing thus the amount of received content ir-

relevant to a subscriber. However, the gain in service flexibility and personalization complicates the

design and implementation of a content dissemination service: The service must provide the mecha-

nisms for describing the content that is of interest to subscribers, and implement the mechanisms for

delivering messages matching the descriptions.

The publish/subscribe model seems a natural choice for the design of a content dissemination

service since it reflects the interaction style for content dissemination. Recent solutions and mea-

surements show that the publish/subscribe infrastructure can substantially improve performance and

scalability of the traditional request/reply content dissemination services [15, 87]. Furthermore, the

loosely-coupled, asynchronous, and persistent publish/subscribe model is recognized as a suitable

paradigm for mobile applications requiring adaptation to highly interactive and changing conditions

of mobile environments [30]. In addition, Short Message Service (SMS) and Multimedia Message

Service (MMS), the prominent services from the telecommunications domain, are inherently push-

based: SMS delivers text messages directly to mobile phones, while MMS can first push the notifica-

tion about the receipt of a new multimedia message, and let a user request the message in the second

step.

2.2 Classification of Distributed Interaction Models

Distributed systems comprise software components that run on different hosts in local or wide-

area networks: Distributed processes run concurrently in different operating systems virtual proces-

sors which leads to the need for process communication and coordination. Sockets, remote pro-

cedure call and its successor, remote object invocation, message-queuing, shared dataspaces, and

publish/subscribe are notable models and infrastructures used in distributed system implementations.

They enable data exchange between distributed processes and offer higher level operations to the ap-

plication programmer than the low-level message passing offered by the underlying transport network.

The models listed have different characteristics with respect to the underlying communication and co-

operation style, and offer different abstraction levels of functionality. For example, sockets are built

on top of the message-oriented model of the transport layer and act as an interface to transport services

provided by TCP and UDP [68]. Publish/subscribe middleware, on the other hand, offers higher level

of abstraction through its special interaction model. It can be built using other lower-level models for

process communication, e.g., datagram sockets, stream sockets, or even remote method invocation.

There are a number of classifications of the interaction models for distributed systems. Refer-

ence [51] classifies dissemination systems according to the following data delivery mechanisms: push

vs. pull, periodic vs. aperiodic, and point-to-point vs. multi-point. The authors in [42] compare the

2. Content Dissemination and Mobility 8

interaction models with respect tospace, time andsynchronization decoupling. Reference [112] fo-

cuses on messaging models, i.e., on message-queuing and publish/subscribe messaging, and presents a

classification model for messaging middleware with three different models:message delivery model,

message processing model and message failure model. The authors in [100] propose a framework

for the publish/subscribe communication that comprises seven models: object model, event model,

naming model, observation model, time model, notification model, and resource model.

We propose a complementary classification of distributed interaction models based on the ap-

proach presented in [115] that analyzes the characteristics of the existing models with respect to

communication, interacting processes, and their coordination. We classify the models across two

dimensions:communication andcooperation. Communication enables the transport of information

between the interacting parties: A communication pattern defines the rules for message generation and

the sequence of messages between distributed processes. Cooperation deals with the joint operation

of distributed processes observed as a whole.

Communication. We classify the models according to the following communication patterns:

request/reply, put/get, andsubscribe/publish/notify. The listed communication patterns have different

characteristics with respect to temporal and referential coupling, communication persistency, commu-

nication initiation, and receiver multiplicity. Distributed processes aretemporally coupled if they need

to execute simultaneously to exchange the data.Referential coupling denotes that a process initiating

the communication knows the globally unique identifier of a destination process.Persistent com-

munication ensures that the submitted information is delivered to the receiver. In contrast,transient

communication offers no guarantees regarding information receipt and provides best-effort delivery.

There are two approaches to communication initiation: pull and push. Two processes are communi-

cating inpull-style when a client process requesting information sends an explicit request followed

by a reply from the server process. Withpush-style communication a process registers a handler and

passively waits for the incoming data. With respect to receiver multiplicity the communication can be

eitherpoint-to-point with two interacting parties, ormulti-point with multiple data recipients.

Request/reply. Request/reply is a simple and widely used communication pattern based on the ex-

change of requests followed by replies. A client process issues a request and delivers it to a

server for processing. Then a server sends a reply to the client. The client is blocked while

waiting for the reply or an acknowledgment of request receipt from the server. The client and

server process aretemporally coupled since they need to execute simultaneously to carry out

the communication. They arereferentially coupled because the client sends a request to the

known server with the identifier of the serving process. Request/reply is the representative of

pull-style point-to-point communication: The communication is initiated by an explicit request

for information. The World Wide Web, one of the widely-used applications in todays networks,

uses the request/reply interaction principle as its basic communication model.

Put/get. The main rationale behind the put/get communication pattern iscommunication persistency:

The information source – sender – puts the information in a well-known storage space, and

2. Content Dissemination and Mobility 9

the information destinations – receivers – get the information from the storage. Senders and

receivers aretemporally uncoupled because the operation of storing a message is independent

from its retrieval. Put/get is the representative of a loosely-coupled mediated communication

pattern: Senders and receivers do not interact directly, but rather through an intermediary, the

data storage. The communication is performed in a pull-style because a receiver sends an

explicit request for a message from the storage.

There are two representative models that fall into the put/get category: message-queuing and

shared dataspaces. Message-queuing implements a point-to-point referentially coupled com-

munication pattern in which senders put messages into receiver’s queues. Shared dataspaces

use a common data structure, an intermediary through which the processes exchange messages.

A process puts a message into a shared dataspace, and can retrieve it from that medium. Shared

dataspaces implement a one-to-many communication pattern and offer referentially uncoupled

communication because the destination processes are anonymous to a process that is the infor-

mation source.

Subscribe/publish/notify. Subscribe/publish/notify is apush-style multi-point communication pat-

tern where the receivers of information – subscribers – firstsubscribe to a category of infor-

mation and register handlers that will receive the information when published by information

sources. Next, when a publisherpublishes the content, anotify operation is invoked on the

subscriber’s side assuming that its subscription matches the published content. Publishers and

subscribers can interact directly. In that case they are temporally and referentially coupled.

However, most systems offer mediated solutions and use an intermediary for enabling referen-

tially and temporally uncoupled communication. The publish/subscribe infrastructure imple-

ments the subscribe/publish/notify interaction model.

Cooperation. Cooperation enables distributed processes to act jointly in order to provide a com-

mon service. With respect to cooperation we classify the models asaddress-based andcontent-based

to define the basic mode of interaction between distributed processes.

Address-based cooperation. The traditional approach to cooperation relies on the availability of the

address of a communicating party and is closely related to referential coupling. The interact-

ing parties can cooperate and communicate if they know the address of the parties they want

to interact with. The address-based cooperation relies on the traditional unicast and multicast

routing where messages are given explicit destination addresses that enable the transport of data

to defined destinations. For example, request-reply uses direct point-to-point address-based co-

operation between a client initiating a request to a well-known server. Group communication is

another example of the address-based cooperation: A group is a set of processes, group mem-

bers, and each group is associated with a logical name [27]. A logical name represents a group

address. IP multicast [35] at the network level and application-layer multicast solutions [14]

2. Content Dissemination and Mobility 10

Table 2.1: Comparison of communication and cooperation patterns

temporal referential persistency communication receiver

coupling coupling initiation multiplicity

request/reply coupled coupled transient pull point-to-point

address-based put/get uncoupled coupled persistent pull point-to-point

content-based put/get uncoupled uncoupled persistent pull multi-point

address-based coupled coupled transient push multi-point

subscribe/publish/notify

content-based uncoupled uncoupled persistent push multi-point

subscribe/publish/notify

are practical implementations of group communication. Message-queuing is also an example

of the address-based cooperation where each receiver has an associated addressable queue.

Content-based cooperation. The content-based cooperation is driven by the content of messages

communicated among the interacting parties. Content destinations define the characteristics

or templates of the content they want to receive, and the messages matching their descrip-

tions are sent to them. This cooperation style is usually mediated and requires an intermediary

that performs matching. It enables anonymous communication since the content sources do

not necessarily know message recipients, and can remain anonymous to content destinations.

The content-based cooperation is more flexible than the address-based cooperation because the

binding between communicating parties is dynamic and data-dependent, as opposed to static

binding to fixed names or addresses. Shared dataspaces and publish/subscribe are the existing

models that support the content-based process cooperation.

Table 2.1 compares the defined communication and cooperation patterns. Request/reply is an

address-based highly-coupled communication pattern between two processes that execute simultane-

ously and cannot rely on the content-based cooperation. Conversely, put/get and subscribe/publish/noti-

fy that use the content-based cooperation offer a loosely-coupled process interaction. The address-

based variants are referentially coupled, and subscribe/publish/notify is also temporally coupled.

Next we give an overview of the models and infrastructures currently used in practice for the

development of distributed applications.

RPC and RMI. Remote procedure call (RPC) [16] and its successor, remote method invocation

(RMI), extend the principle of local method invocation into a distributed context and make the re-

mote method call transparent to the invoking process. The main design goal is location transparency

which hides the distribution of processes from the application programmer and simplifies distributed

programming. The invocation of a remote method call comprises the marshaling of procedure param-

eters on the client side, the transport of parameters to the server side, the unmarshalling of parameters

and the execution of the remote procedure on the server side. The results of procedure execution will

2. Content Dissemination and Mobility 11

Network channel

Stub Skeleton

Client object Server object

request reply

Figure 2.2: Remote method invocation

Sender Receiverput getQueue

Figure 2.3: Message-queuing

be returned to the client process following the same procedure of results marshalling, transmission and

unmarshalling. RMI uses the same principles adjusted to object-oriented contexts. In object-oriented

systems objects interact by invoking the object methods using the interfaces that define those methods.

Figure 2.2 depicts a client object that invokes a method on a remote object through a stub and skeleton

that perform parameter marshaling and unmarshalling. The client-side stub holds an interface that is

equal to the interface of the remote server object: From the client’s viewpoint a call to the remote

method is equal to a local method call.

RPC and RMI follow the request/reply communication and the address-based cooperation pattern.

A client invokes a remote procedure – a method on the remote object – in a synchronous mode and

blocks until the remote invocation returns. In this way, the client and the server are tightly coupled,

both temporally and referentially, and the communication is transient and synchronous.

Message-queuing. The interaction style based on message-queuing follows the put/get address-

based pattern that supports persistent asynchronous point-to-point communication. Distributed pro-

cesses interact by putting messages into queues and by getting messages from the queues as shown in

Figure 2.3. Senders and receivers are referentially coupled since a sender needs to know the identifier

of the receiver’s queue. Senders and receivers are temporally uncoupled because a message placed

into the queue remains stored until removed by a receiver. Therefore, there is no need for the sender

and the receiver to execute simultaneously.

Shared dataspaces. Shared dataspaces implement the put/get content-based interaction style.

Synchronization and communication between distributed processes is performed through operations

2. Content Dissemination and Mobility 12

put

A

A

A

put

B

Tuple space

get

B

B

T

look for tuple
that matches T

Figure 2.4: Process interaction through shared dataspace

Table 2.2: Classification of the existing models

address-based content-based

request/reply RPC/RMI -

put/get message-queuing shared dataspaces

subscribe/publish/notify group communicationpublish/subscribe

on the shared data. The shared dataspace is implemented as a distributed shared memory that stores

a set of orderedtuples. A tuple is stored into the dataspace using the operationput that creates a

tuple instance in the shared memory. A process that wants to read the data from the shared dataspace

defines a template for matching tuple instances and uses the operationget to import the tuple from

the dataspace as depicted in Figure 2.4. If a tuple instance matching the template is found in the

dataspace, it is returned to the requesting process and optionally removed from the dataspace. JavaS-

paces [109], a service used in Jini, is an example implementation of shared dataspaces. There is no

distinction between clients and servers in tuple spaces. There are processes putting tuples into the

shared memory and processes extracting tuples from it. The communication is potentially multi-point

because a process can read a tuple without removing it from the dataspace and, thus, enable other

processes to read it afterward until one of the processes removes it from the dataspace.

Publish/subscribe. Publish/subscribe systems implement the content-based subscribe/publish/

notify interaction style and provide loose-coupling between the interacting parties. Notification pub-

lishers and subscribers are temporally and referentially uncoupled. The communication can be per-

sistent because the intermediary can store notifications until they are delivered to all subscribers. One

of the features that distinguishes publish/subscribe from other interaction styles is its inherent multi-

point communication style. A published notification is replicated and delivered to all interested parties

in the push-based style.

Table 2.2 classifies the existing models with respect to the presented communication and coordi-

2. Content Dissemination and Mobility 13

nation interaction styles.

2.3 The Concepts of Publish/Subscribe

The publish/subscribe interaction model enables asynchronous communication between information

publishers andsubscribers. Publishers and subscribers communicate by exchangingnotifications, of-

ten denoted asevents, that represent information items and carry the published content. The model

is event-driven because the act of publishing is aperiodic and guided by the availability of a new

or modified information item, or by a publisher’s state change. Publishers produce the information

and subsequently publish it for dissemination to interested subscribers: Publishers are notification

producers, while subscribers act as notification consumers that declare interest in receiving specific

categories of notification. When a notification is published, it is delivered to all the subscribers that

have declared interest in receiving such notification. Publishers and subscribers may interact directly:

However, most systems introduce an intermediary, an “information bus” [85] responsible for effi-

cient notification delivery from publishers to subscribers. The intermediary ensures anonymity of

communicating parties: Publishers and subscribers do not necessarily know of each other and the

infrastructure keeps track of their subscriptions and publications. Furthermore, the interaction style

enables one-to-many multicast-style communication because the published notification is delivered to

all interested subscribers.

The systems that implement the publish/subscribe interaction style fall into the category ofmid-

dleware, software infrastructure built on top of the network operating system that offers generic ser-

vices for the development of distributed applications. The main purpose of middleware application

in practice is to simplify the implementation of distributed systems [40]. Publish/subscribe systems

are often classified asevent-based middleware because of the event-driven communication and coop-

eration model that uses notifications for carrying the information passed among the communicating

parties [74, 100]. The authors in [115] classify publish/subscribe systems ascoordination systems to

stress that the publish/subscribe interaction coordinates the activities between distributed processes.

2.3.1 Publish/Subscribe Interaction Model

The publish/subscribe model involves two types of entities: publishers and subscribers.Publishers

are content sources that publish notifications andsubscribes are content destinations that subscribe

to a number of notification types using thepublish/subscribe service. The publish/subscribe service

provides the management of subscriptions, and storage and dissemination of published notifications.

It is an intermediary between the referentially uncoupled and anonymous publishers and subscribers.

The interaction between publishers and subscribers is achieved through the mechanism implemented

by the publish/subscribe service that matches subscribers’ subscriptions with published notifications,

and delivers the matching notifications to the interested subscribers.

Notifications are information items that are produced and published aperiodically. They usually

2. Content Dissemination and Mobility 14

Publish/subscribe service

publisher

subscriber

publish
subscribe

notify

PP1 P2

publish() publish() subscribe()

unsubscribe

unsubscribe()

notify()

S1 S2

S

Figure 2.5: The basic publish/subscribe interaction model

contain a set of properties in the form of attribute-value pairs, and a payload. Notification properties

describe the published notification and may be generic – e.g., unique identifier, timestamp, expiry

field, priority – or application specific, i.e., defined by the notification producer. Notification payload

carries the actual published content which can be a document of a Multipurpose Internet Mail Exten-

sion (MIME) type [52]. To transmit a notification across the network, an entity, either a publisher or

an intermediary service, must incorporate the notification into amessage. Messages are exchanged

between two parties, a source and a destination. They are generally composed of a header field, that

contains the source and destination addresses, and a payload field, which contains the transported

notification.

Publishers and subscribers interact according to the subscribe/publish/notify communication pat-

tern. Figure 2.5 shows the basic operations that enable the interaction between publishers and sub-

scribers through an intermediary publish/subscribe service. A subscriber expresses its interest in re-

ceiving notifications of a certain type by invoking the methodsubscribe on the publish/subscribe

service. The methodunsubscribe is used for subscription termination. For example, in Figure 2.5

subscriberS1 subscribes to “circular” notifications by invoking the methodsubscribe of the pub-

lish/subscribe service.S1’s subscription is defined by a property that is common to the notifications

of interest: S1 is interested in “circular” notifications. A subscription can be viewed as a notifica-

tion description or a template: The publish/subscribe service stores subscriptions and uses them for

comparison with the published notifications.

When generating a notification, a publisher invokes the methodpublish of the publish/subscribe

service and supplies the notification. The notification contains some information or content that a

publisher has and wants to share with other interested parties. For example, in Figure 2.5 the pub-

lisher P1 publishes the notification© and the publisherP2 publishes the notification�. Next, the

publish/subscribe service compares each published notification with the existing subscriptions, and

eventually delivers© to the interested subscriberS1 using the methodnotify. The same notifica-

tion is not delivered toS2 becauseS2 has terminated the subscription to “circular” notifications before

© notification is published. If a subscriber cannot be contacted, a published notification is discarded,

or stored to be delivered when the subscriber becomes available, depending on the persistence of the

published notification.

2. Content Dissemination and Mobility 15

Publish/subscribe service

publisher

subscriber

publish
subscribe

notify

PP1

publish() subscribe()

unsubscribe

unsubscribe()

notify()

advertise()

advertise

S1 S2

S

Figure 2.6: The extended publish/subscribe interaction model

The methodssubscribe, unsubscribe, publish, andnotify comprise the methods

that are used in the basic publish/subscribe interaction model. The extended model incorporates the

methodadvertisewhich allows a publisher to announce the intent of publishing notifications of a

defined type. Publishers can terminate their advertisements by invoking the methodunadvertise.

Figure 2.6 depicts a scenario in which the publisherP1 first advertises future publications of “circular”

notifications. Next, the subscriberS1 defines a subscription to “circular” notifications. Subsequently,

whenP1 publishes the notification©, the publish/subscribe service delivers it toS1. Advertisements

are used to define notification types that will be used in the publish/subscribe system. Additionally,

advertisements enhance the efficiency of the routing protocols in distributed architectures of pub-

lish/subscribe services.

2.3.2 Subscription Schemes

The publish/subscribe interaction model enables subscribers to specify the categories of notifications

they want to receive: Subscribers are usually interested in a subset of published notifications, and

subscriptions are used to filter out the published notifications according to individual subscriber’s

needs. Subscriptions can be regarded as notification templates: They contain the rules that enable the

publish/subscribe service to compare each published notification with the subscriber’s interest, and

to deliver only the notifications that match the defined subscription criteria. The publish/subscribe

service can thus be viewed as a notification filter that performs the process of matching notifications to

subscriptions. Currently, the publish/subscribe systems use three different schemes for subscriptions:

subject-based, content-based, andtype-based subscriptions.

Subject-based subscription. Subject-based, or topic-based subscriptions classify each notification

as belonging to a particular subject, i.e., topic. A subject is used to characterize and clas-

sify the published content and can be regarded as a logical connector between publishers and

subscribers. Subjects can be arranged in a hierarchy: A sub-subject can be derived from a

super-subject to further specialize the notifications published on the super-subject.

Subject-based subscriptions are an extension of thechannel-based subscription model used in

2. Content Dissemination and Mobility 16

/e-Auction

P1

publish(e1) subscribe subscribe

/e-Auction/Books

publish(e2)

notify(e1)
notify(e2)

notify(e2)

/e-Auction/DVDs

S1 S2

Figure 2.7: Subject-based subscription scheme

the first publish/subscribe systems, e.g. CORBA event service [82]. Channels are similar to the

notion of groups defined in the context of group communication [42]: When a subscriberSi sub-

scribes to a channelchj , Si becomes a member of the group of subscribers to the channelchj .

A notification published on channelchj is delivered to all subscribers of the channel. Channels

can be implemented efficiently using IP multicast because each channel can be mapped to a

multicast group: The Global Information Broadcast is a push system for information distribu-

tion that uses IP multicast or reliable multicast for the efficient data transport at the network

level [69]. However, the main disadvantage of the channel-based notification classification is

its limited expressiveness with a coarse level of notification classification.

The subject-based approach usessubject hierarchies to offer finer granularity of notification cat-

egories. Subjects are usually specified using the URL-type format, e.g./e-Auction/Books

/ScienceFiction. Subscribers can subscribe to a particular subject, or refine their sub-

scription by subscribing to a sub-subject. It is even possible to use a more complex subscrip-

tion scheme, for example,/e-Auction/*/ScienceFiction. Figure 2.7 illustrates the

subject-based subscription scheme for an auction site: The subscriberS2 subscribes to the chan-

nel/e-Auction/Booksand receives only the notificatione2 published on that channel. The

subscriberS1 is subscribed to the channel/e-Auctionand thus receives all notifications pub-

lished on that channel including the notifications published on channels/e-Auction/Books

and /e-Auction/DVDs. Compared to channels, subjects offer better expressiveness, al-

though expressiveness is still limited because subjects offer a static view of notification cate-

gories. Secondly, a large number of subject subcategories may lead to the explosion of a subject

hierarchy tree which is a serious implementation problem, especially if the implementation is

based on IP multicast: Each sub-subject must be implemented as a special multicast group and

the number of multicast addresses is limited.

Content-based subscription. The alternative approach to the static channel-based scheme is the

content-based subscription which offers a more sophisticated and flexible subscription scheme

2. Content Dissemination and Mobility 17

/e-Auction

P1

publish(e1) subscribe(sub2)

publish(e2) notify(e1)
notify(e2)

notify(e2)

subscribe(sub1)

e2 = (category = “books”
& author = “J.R.R. Tolkien”
& title = “The Lord of the Rings”
& price = 19.99 EUR)

e1 = (category = “books”
& author = “D. Adams”
& title = “The Hitchhiker's Guide through the Galaxy”
& price = 9.99 EUR)

sub1 = (category == “books”
 & price < 20 EUR)

sub2 = (category == “books” &
 author == ”J.R.R. Tolkien”

 & price < 20 EUR)

S1 S2

Figure 2.8: Content-based subscription scheme

with increased expressiveness. It enables subscribers to define properties of notifications they

are interested in: Each subscription is a predicate which can test notification properties, i.e.,

attribute-value pairs. A subscription predicate consists of a sequence of patterns that com-

bine notification attributes with a subscription constraint that defines the attribute value. The

content-based subscriptions enable subscribers to describe the properties of notifications along

multiple dimensions ensuring flexible and subscriber-centric notification filtering. The filtering

minimizes the number of uninteresting notifications delivered to subscribers.

Figure 2.8 illustrates an example content-based subscription to the subject/e-Auction. The

notification space is modeled as a single subject and subscription predicates are used to specify

subscriptions. For example, the subscriberS1 is interested in books below 20 EUR. It spec-

ifies the subscription using the predicate(category=="books" & price<20 EUR).

The subscriberS2 is also interested in books below 20 EUR, but only in those written by J.R.R.

Tolkien. It specifies the predicate as(category=="books" & author=="J.R.R.

Tolkien" & price<20 EUR). The content-based scheme offers increased expressiveness

when compared to the subject-based scheme: To offer the same type of subscription expressive-

ness in the subject-based scheme, new subjects/e-Auction/Books/LessThan20_EUR

and /e-Auction/Books/Tolkien/LessThan20_EUR would be created making the

subject tree quite complex. Moreover, it is not possible to predict the preferences of all sub-

scribers and to create static subjects that match all their needs. The dynamic nature of the

content-based subscription scheme is obviously superior with respect to expressiveness. How-

ever, it complicates the implementation of the publish/subscribe system which has to deal with

subscription predicates [23]: The design of an efficient and scalable solution to the problem of

matching notifications to subscriptions is still an open problem under active research [20, 78].

Type-based subscription. The type-based subscription scheme is a static classification scheme which

resembles the subject-based approach. It uses types from object-oriented languages for distin-

2. Content Dissemination and Mobility 18

type hierarchy

e-Auction
Book

DVD

SFBook

e-Auction

DVD Book

SFBook

P1

Book e1;
publish(e1)

subscribe

SFBook e2;
publish(e2)

notify(e1)

notify(e2)

S1

Figure 2.9: Type-based subscription scheme

guishing notification categories [45]. In type-based systems notifications are modeled as ob-

jects, and each notification object has a type. The notion of notification subject is matched to

the notion of notification type, and the notification hierarchy found in subject-based subscrip-

tions is mapped to the type inheritance tree found in object-oriented languages. Subscribing

to a type implies that a subscriber receives all notifications of the class implementing the type

and also all notifications of its inheriting subclasses: In other words, a number of classes may

conform to a single type. For example in Figure 2.9 the subscriberS1 subscribes to the type

Book and receives the notificatione1, an instance of the classBook, and also the notification

e2, an instance of the classSFBook which inherits the classBook.

The main advantage of the type-based subscription over the subject-based scheme is that subject

hierarchy is naturally mapped to the inheritance tree found in object-oriented languages. The

process of matching a notification object to a type is performed by querying weather the noti-

fication object is an instance of a defined type. When compared to the content-based scheme,

the type-based approach ensures the encapsulation of data within notification objects which is

violated in content-based systems.

It is possible to combine either the subject-based or the type-based subscription scheme with the

content-based scheme: Static classification of the subject-based or the type-based scheme is extended

by the dynamic nature of the content-based scheme. Clearly, the matching problem – determining the

subset of all subscriptions with predicates that match each published notification [5] – is the major

bottleneck in the content-based systems used in realistic applications with a large number of published

notifications and subscriptions. A naive matching algorithm would match each published notification

against every existing subscription. This algorithm runs in time linear to the number of subscriptions

and becomes inefficient in environments with a large number of publishers and subscribers [5]. The

main rationale for improving this naive approach is that it is highly probable for several subscription

2. Content Dissemination and Mobility 19

category ==
books

price < 20

yes

yes

author ==
Tolkien

yes

no

no

no

0

sub1

sub1
sub2

Figure 2.10: Decision tree for a content-based subscription

predicates in a publish/subscribe system to share some common sub-expressions. It is, therefore, rea-

sonable to exploit the commonality and check each expression only once. Subscriptions are combined

into decision trees that enable simultaneous matching of notification properties to subscriptions with

common constraints on notification attributes. Decision trees are updated with each new subscription

which is adequate for the environments in which the frequency of published notifications is very high

when compared to the frequency of subscription changes.

Two subscriptions from the example in Figure 2.8 can be combined into a decision tree illustrated

in Figure 2.10. The decision tree consists of three nodes, each representing an expression that tests

a notification attribute. The rectangles represent end states with a list of subscriptions that match a

published notification. When a notification is published, its attribute-value pairs are matched against

node expressions, until reaching the end state with a list of subscriptions that identify the subscribers

to which the notification must be delivered.

Construction of a decision tree is not a trivial task, especially when the number of subscriptions is

high. Reference [20] lists the requirements for building an efficient filtering engine, and proposes an

approach based on binary decision diagrams. A pragmatic solution for implementing a content-based

publish/subscribe service using structural reflection is presented in [43].

2.3.3 Characteristics of Publish/Subscribe Systems

In this section we summarize the important characteristics of publish/subscribe systems.

Loose coupling and system extendibility. One of the major characteristic of the publish/subscribe

interaction model is its inherent loose coupling. The communicating parties are temporally

and referentially decoupled since they interact through an intermediary. The communicating

parties can frequently be deactivated and reactivated, without affecting the functionality of the

system as a whole. Furthermore, the integration of additional components does not affect the

functionality of the existing components in the system which ensures system extendability.

2. Content Dissemination and Mobility 20

Filtering. Filtering of published notifications ensures that a subscriber receives only the notifications

that satisfy certain criteria defined in its subscription. This approach minimizes network traffic

and the processing done by a subscriber. It is attractive to perform the function of notification

filtering close to notification sources especially when network resources are scarce. This process

is usually performed by an intermediary.

Notification persistency. The employment of an intermediary which is usually operating perma-

nently on a stationary host can ensure notification persistency. The intermediary can store

the received notifications prior to their delivery to subscribers, and discard them after receiving

an acknowledgment from all notification receivers. If a subscriber is inactive, the notification

can be stored and delivered when the subscriber is activated. To ensure notification publish-

ing, a publisher can store a published notification locally until the intermediary acknowledges

notification receipt. Hence, the model is adequate for designing a system with delivery guaran-

tees:At-least-once andexactly-once delivery guarantees can be implemented by incorporating

acknowledgments into the basic communication protocol.Totally-ordered notification delivery

may be ensured using notification sequence numbers per each publisher.

Scalability. The architecture of the notification service can be eithercentralized or distributed, de-

pending on the scope of the system, the number of publishers and subscribers, and the number of

published notifications. Centralized implementation might become a bottleneck for wide-area

systems. In such cases the distributed service architecture is applied.

The distributed publish/subscribe service usually comprises a number ofbrokers that form an

overlay network. Each broker is in charge of the publishers and subscribers that are connected to

it. It is also responsible to submit the published notifications to other brokers having subscribers

interested in them, to accept the notifications coming from other brokers, and to deliver them to

their subscribers with the matching subscription. Brokers need to exchange control messages so

as to have a consistent view of advertisements and subscriptions in the system. They maintain

a routing table with the routing information for forwarding published notifications to interested

subscribers. For example, if a notification is published and its subscribers are connected only to

the local broker, this notification will not be delivered to other brokers in the system.

The distributed publish/subscribe service architecture solves the scalability problem and offers

the means to design a fault tolerant system. However, the design of a distributed architecture

is more complex than of a centralized solution, and it introduces significant communication

load due to the exchange of control messages between system brokers. Hence, it is necessary

to adjust the employed publish/subscribe system design to traffic requirements of the actual

application setting.

2. Content Dissemination and Mobility 21

2.4 Mobility

Mobility is the ability of moving readily in space. With respect to communication and data services,

it is the ability of an end user to move through different geographical locations and to use different

terminals in different networks, subnetworks and network domains while applying the service.

Firstly, the applied network, or a number of networks, need to support the mobility of terminals

while providing access to the Internet. The wireless part of the network assumes cellular topology.

A mobile terminal moves within radio cells and attains its network connection through a cell base

station using radio signals. The terminal can move between different cells and maintain a continuous

network connection using the mechanism know, as a handover, which transfers the connection from

the old base station to a new base station [47]. There are a number of solutions that provide wireless

IP access. Wireless LAN (WLAN) technology is based on the IEEE 802.11 LAN standard that defines

new physical and data link layers to provide wireless connectivity within IP-based LANs [63]. Mobile

networks from telecommunications domain, such as GPRS [103] and UMTS [60], rely on packet

switching technologies to support data services for mobile terminals. Wireless networks unlike wired

networks exhibit considerable constraints, such as lower bandwidth, higher latencies, and intermittent

connectivity.

Secondly, the used terminals need to be mobility-enabled, i.e. small, portable and capable of

preserving the connection to the network at different geographical locations. Mobile devices are

resource-scarce when compared to their stationary counterparts [104]. Computational resources, e.g.,

processor speed, memory size, disk capacity, and display size are inferior and costly because of the

size and weight limitations. Next, mobile terminals run on batteries with a limited power supply.

Furthermore, the wireless network bandwidth is always lower and more variable than in wired envi-

ronments.

Thirdly, the service placed in the network must be mobility-aware and flexible to support a con-

stantly changing number of terminals. The service should adjust to specific needs of applications

running on mobile terminals. Such applications should be context-aware and adaptive [73]. The ap-

plication must react to the changes in the environment and on the device, e.g., bandwidth variations,

frequent disconnections, and the status of resources on the terminal, and adjust its behavior based on

this knowledge.

2.4.1 Mobility-Aware Content Dissemination

We assume that the content dissemination service supports mobility of end users, both content pub-

lishers and subscribers, in diverse networks. The service is placed in an IP-based network and ex-

ecutes in an extremely dynamic context. Publishers and subscribers change network access points,

network domains, and terminals in different networks. The characteristics of network domains and

network access points differ significantly. The availability of services in different networks varies,

and the availability of terminal resources such as memory, bandwidth, or battery power is constantly

changing. Therefore, the service must be capable of adapting to the changes in both the network and

2. Content Dissemination and Mobility 22

terminal context, and has to deal with different types of mobility.

Figure 2.11 depicts an environment for the deployment of a content dissemination service. Pub-

lishers and subscribers may roam in a network domain which uses WLAN as a radio access network

(RAN), or in a GPRS/UMTS wireless domain. The WLAN domain is IP-based and adequate for the

packet-based transport of the published content with theoretical maximum bit rate of 54 Mbps for

IEEE 802.11a WLAN and 11 Mbps for IEEE 802.11b WLAN. The GPRS network provides packet

data transport at the rates from 9.6 to 115 kbps (theoretical maximum 171 kbps), while UMTS of-

fers theoretical maximum bit rate of 2 Mbps, which in reality falls down to 384 kbps or 144 kbps

for mobile terminals moving at high speed. WLAN enables wireless broadband access over smaller

geographical areas, the so-called “hot spots”, while GPRS and UMTS networks offer mobility over

wide coverage areas.

In GPRS/UMTS the base stations are grouped and controlled by a base station controller (BSC) –

radio network controller (RNC) in UMTS – that comprises a RAN. GPRS enables mobile terminals

to communicate with terminals located in the external IP networks. GGSN is a gateway used as an

interface to an external packet data network such as the Internet. The tendency is to introduce IP-

based data transport close to a mobile terminal, and to build all-IP networks. For example, GPRS

uses IP in its backbone network that connects serving GPRS support nodes (SGSN) with a gateway

GPRS support node (GGSN). However, IP is not used in its native mode for routing data packets

between SGSN and GGSN: A special protocol, GPRS Tunneling Protocol (GTP), built on top of

UDP/IP tunnels the packets between SGSN and GGSN nodes. The major difference between GPRS

and UMTS architectures is in their RANs: Time division multiple access (TDMA) is used for air

interface transmission in GPRS networks, while wideband code-division multiple access (WCDMA)

is applied in UMTS networks. In its packet switched core network, UMTS release ’99 architecture

uses the elements that have evolved from GPRS networks. The next UMTS releases, release 4 and

5, are gradually evolving UMTS networks into a converged packet based network [71]. The main

reasons for the all-IP approach are lower infrastructure and maintenance costs of a single converged

network and easier deployment of novel services in IP-based networks. The aim is to provide real-

time multimedia services that impose strict QoS requirements on network performance with respect

to packet loss and delay. This is still a challenge in packet-based networks where network resources

are not reserved ahead of a multimedia session.

Service environment is highly dynamic due to mobility of terminals and users, intermittent net-

work connectivity, variable bandwidth, and the inherent probabilistic nature of the content publishing

service itself. It is dynamic from the service point of view because publishers deliver the content for

publication at random, and subscribers change subscriptions. Furthermore, they move across the net-

work, and change access points and network domains. Publishers and subscribers are also affected by

the dynamic nature of the environment. As they move between networks and domains, the available

services change, and they need to be aware of service availability in the particular visiting domain.

Service architecture must deal with the constant changes in the number, location, and properties of the

participating publishers and subscribers and operate in a heterogeneous environment with a diversity

2. Content Dissemination and Mobility 23

IP backbone

Internet

gateway
router

wireless LAN
access point

MT mobile terminal

MT

wireless LAN

SGSN
base station controller
(BSC) /
radio network controller
(RNC)

BSC/
RNC

BSC/
RNC

base station /
node B

MT

SGSNBSC/
RNC

GPRS/UMTS

GGSN

GGSN

SGSN

gateway GPRS
support node

serving GPRS
support node

Figure 2.11: An environment for service deployment

of wireless access technologies and terminals.

Distribution transparent interaction models, such as RPC/RMI, are inadequate for highly dynamic

and heterogeneous mobile environments. Temporal coupling and transient communication style can-

not be applied in environments where communicating parties are often disconnected and unreachable.

Furthermore, transport protocols, such as TCP and UDP, expose weaknesses in mobile environments,

because the characteristics of wireless links can significantly affect their performance. TCP assumes

that packets are dropped due to network congestion, and forces senders to lower the transmission

speed which deteriorates TCP performance. UDP packets are often dropped in wireless environments

and the application or middleware using UDP must deal with the unreliability of data transport.

The traditional requirement for distribution transparency is found unsuitable for distributed inter-

actions that are unreliable and introduce significant latency frequently found in mobile settings [73].

Loose coupling of communication parties andcontext-awareness are promoted as key characteristics

of mobile middleware. Temporally and referentially uncoupled systems offering persistent communi-

cation can deal with intermittent connections, terminal unavailability, and changes of terminal network

access points. Context-aware middleware makes the information about the execution context available

to higher layers, and enables applications and end users to take actions when the context changes.

Communication patterns put/get and subscribe/publish/notify offer persistent and temporally de-

coupled communication adequate for mobile environments. The put/get interaction style is designed

for point-to-point communication, while publish/subscribe is inherently multi-point, and suitable for

the implementation of content dissemination services. Asynchronous, anonymous, time-independent,

and persistent characteristics of the publish/subscribe interaction model make it adequate for highly

dynamic mobile environments [30]. Publishers and subscribers are fully decoupled: They inter-

act with the service without the knowledge about other information sources and sinks. The pub-

lish/subscribe model supports system extendability: The addition of a new publisher or subscriber

does not affect system functionality which is desirable when dealing with frequent disconnections.

2. Content Dissemination and Mobility 24

Publish/subscribe systems also satisfy the requirement for context-awareness: The event-based nature

of the publish/subscribe interaction model offers means for designing responsive applications aware

of publisher’s and subscriber’s states, and adaptable to the changes in network context.

2.4.2 Mobility Management

Content dissemination services require the transport of non-realtime data and do not impose strict

real-time QoS requirements on the network infrastructure. The service can benefit from higher data bit

rates, for example, those offered by WLAN or UMTS, however, the existing GPRS networks can offer

sufficient bandwidth for the transport of published notifications. Nevertheless, a higher bit rate alone

is not sufficient for the deployment of mobile content dissemination services that support personal

mobility of end users. The network needs to provideterminal and personal mobility management to

ensure the mobility of terminals and people in different networks, and to deliver the content to mobile

terminals that are at a particular moment used by service subscribers. Various mobility management

procedures are used in telecommunication networks and in the Internet. Mobile telecommunication

networks offer efficient solutions for seamless terminal mobility and handover [6]. The Internet, on the

other hand, was not originally designed to support mobility of terminals and users. Mobile IP [88] is

currently a prevalent solution for terminal mobility in the Internet domain. It is necessary to combine

the mobility management solutions from both domains, and to design a solution for personal mobility

management since it is not available in the existing networks.

Mobility management is a network service that enables a mobile network to locate users applying

mobile terminals across different network domains, and to maintain an active session when mobile

terminals change service domains. Mobility management is essential for services that initiate a com-

munication session to a user, such as a voice call, a multimedia session, or a push-based content

delivery. A current network access point of a mobile terminal, such as an IP address, or the identifier

or a wireless cell, is needed to deliver data packets or to set up a multimedia session with a user. The

network needs to store the up-to-date information that can enable quick and efficient localization of

users and terminals. Mobility management comprises two distinct services:location management

andhandover [7]. Location management stores and updates the information about current network

access point of a mobile terminal or a user. Handover enables a mobile user and terminal to roam

across different network cells and domains, and maintain an active session regardless of terminal or

user movements.

With respect to the type of mobile entity, mobility management schemes are applied for different

types of mobility, such asterminal, personal, or session mobility [106]. Terminal mobility enables

mobility of a single terminal within a mobile network. Personal mobility deals with mobility of end

users who apply different terminals in various networks. Session mobility enables seamless transfer

of an ongoing communication session from one terminal to another without the loss of information.

Terminal mobility management is an essential service in today’s mobile and wireless networks. Prob-

lems and solutions related to terminal mobility are widely explored in the literature [6, 7, 88]. The

2. Content Dissemination and Mobility 25

need for personal mobility management that regards a user, rather than a terminal, as an end commu-

nication point, extends the concept of terminal mobility from a single terminal and network, to various

terminals in different networks [101]. Currently, there are no standard solutions for personal mobility

that are widely applied in today’s networks. Session mobility has been addressed recently.

Terminal mobility. Terminal mobility deals with the mobility of a single terminal in a mobility-

enabled network. A terminal can seamlessly move and attain the connection to the core network,

despite changed location and the applied network access point. We distinguish between nomadic and

truly-mobile terminal mobility.

Nomadic terminal mobility enables network connectivity from arbitrary and changing locations,

but there is no network connectivity during the move procedure. A nomadic user may disconnect from

a network access point, move to another network domain, and reconnect through another access point.

Terminals may change access points only between successive data sessions. The handover procedure

for nomadic mobility does not impose demanding requirements on the network infrastructure. It is

even possible to use a wired network connection for this mobility scenario.

Mobile IP [88] is nowadays a prevailing solution for nomadic mobility in IP-based networks. It

is a network layer protocol that supportsmacro-mobility across the Internet. The essential problem

when dealing with mobility in IP-based networks is that IP-based protocols are designed for stationary

terminals. An IP address is used to identify a terminal and its location in the Internet. When a mobile

terminal connects to another network domain, it needs to use a new address from the new domain to be

addressable in the Internet. Mobile IP enables a mobile terminal to be uniquely addressable through

a permanent home address, regardless of its position in the network. When a terminal migrates to

a new network domain, it acquires a temporary care-of-address from a new domain and registers it

with its home agent in the home network. The home agent intercepts the packets sent to a mobile

terminal and tunnels them to the new care-of-address. Mobile IP uses thehome-based approach to

location management [91]: The home agent maintains a mapping between a mobile terminal and its

current IP address. The problem with this approach is that the assignment of a home agent to a mobile

terminal is permanent, and it introduces performance overhead due to triangular routing. Moreover,

packet tunneling between a home agent and a mobile node adds overhead which is significant for

bandwidth-constrained wireless links. This overhead and the registration of each new care-of-address

with the home agent introduces high latency during the handover, and makes mobile IP inadequate for

real-time handover of quickly moving terminals. Mobile IPv6 offers a solution to triangular routing

using dynamic binding between a terminal’s permanent and temporary address at the correspondent

host, which decreases the bandwidth consumption and communication latency.

Truly-mobile terminal mobility assures network connectivity during terminal movements between

wireless cells and offers greater movement flexibility than nomadic mobility. The essential infras-

tructure for truly-mobile terminal mobility is the availability of a mobile network that offers seamless

handover support. The network enables a mobile terminal to change a network access point during a

session in real time and to perform the handover procedure that is not observable by an end user.

Mobility management mechanisms for mobile networks have been designed to support seamless

2. Content Dissemination and Mobility 26

terminal mobility [70]. Their key advantage over the approach found in IP networks is in the concept

that separates the identifier of a mobile terminal from its location in the network, and the applied

network access point. A network maps the unique terminal identifier to its current location in the

network using thetwo-tiered scheme for location management [91], a Home Location Register (HLR)

and a Visitor Location Register (VLR). HLR maintains the current location of a mobile terminal

together with a user profile. VLR is associated with a predefined area and maintains the information

about the terminals currently visiting its area. In the mobile-controlled handover, a mobile terminal

monitors the signals of the surrounding base stations, and initiates the handover when a signal from

the currently serving base station deteriorates. It can perform location update either periodically, or

each time it enters a new predefined location area comprising a set of base stations. The change

of location area is reported to VLR, and if the mobile terminal enters the area associated to a new

VLR, the change is reported to HLR. The two-tiered scheme found in mobile networks resembles the

home-based approach of mobile IP because of the home entity that stores the information about the

whereabouts of mobile terminals. The main difference between the two approaches is that the location

query in mobile IP is always directed through a home agent, while in HLR/VLR approach the search

for a mobile terminal starts with a local VLR, and if the local VLR has no entry about the mobile

terminal, the query is directed to HLR.

To use data services in GPRS/UMTS networks, a mobile terminal needs to register with the net-

work using theattach procedure [103]. The terminal sends an attach request to SGSN responsible

for current terminal location area, SGSN checks the terminal’s subscription data stored by HLR, and

grants access to network services. Furthermore, thePDP context activation procedure enables a mo-

bile terminal to acquire an IP address that is used for routing data packets to the terminal from the

external packet data networks. GGSN maintains the mapping between the terminal’s address and

its serving SGSN, and tunnels the packets received from the external network to SGSN that delivers

them to the mobile terminal. The handover procedure is calledpacket rerouting: It occurs when the

mobile terminal changes its serving SGSN and causes the rerouting of packets from GGSN to the

new SGSN. The correspondent host from an external network is not aware of the handover since the

terminal maintains its external identifier. Mobility management in GPRS networks is also based on

the two-tier scheme: GGSN is a gateway that maintains the mapping between the external terminal

identifier and its current location in a GPRS network.

Micro-mobility solutions for IP-based networks have been designed to solve the problem of sig-

nificant handover delay of mobile IP [99]. The main idea of micro-mobility is to use mobile IP for

inter-domain mobility, but to apply a different procedure when a mobile terminal moves within a sin-

gle administrative domain. The change of the location within the domain causes the change of the

terminal care-of-address, but this information is maintained within the domain, and is not propagated

to the home agent that remains unaware of terminal movements within a domain. This approach fol-

lows the ideas used in GPRS networks since a domain root router supporting micro-mobility is the

only visible element from external networks that keeps the identifier of a mobile terminal fixed while

it moves within its domain, and maintains a current mapping to the location of the mobile terminal

2. Content Dissemination and Mobility 27

with the domain.

Personal mobility. Personal mobility regards end users as end communication points. A user can

employ various terminal devices in different networks and stay uniquely addressable within the scope

of a service. Personal mobility reflects the need to locate people and establish a session to a user

through a terminal. For example, a unique user identifier is mapped to one of the temporary terminal

addresses, e.g., email address, mobile phone number, or service-specific address, such as ICQ number.

The mapping enables a service to adjust the communication means to the current application, terminal,

and user preferences that define conditions under which certain communication means are adequate.

Personal mobility management can be regarded as a layer on top of the existing terminal mobility

schemes. It requires support for terminal mobility within the existing networks, and extends it by a

location management procedure that maintains a dynamic binding between a uniquely addressable

user and its current network attachment point.

Mobile People Architecture (MPA) [72] is a solution for personal mobility that aims at enabling

person-to-person communication while preserving mobile person’s privacy and communication pref-

erences. It proposes aperson layer on top of the application layer found in traditional networks by

adding a new entity to the network, apersonal proxy. Personal proxy tracks current application and

the means for user reachability, intercepts incoming communication sessions and data, and directs and

adjusts them to currently used application. For example, a voice message can be converted into an

e-mail message if a user is currently reading mail and has decided not to accept phone calls.

Personal mobility is closely related to thepresence service specified in the context of instant mes-

saging [34]. A presence service accepts, stores, and distributes presence information about mobile

users - presence entities. The presence information describes the current status of a presence entity

regarding its communication capabilities, for example, a user can be “online” or “offline”. Presence

information is given in the form of XML documents that contain the information about communica-

tion means, user preferences, and current geographical location. Presence services are event-based:

Presence entities provide their presence information to the presence service. Presence service accepts,

stores, and distributes the presence information to everyone subscribed to get the notifications about

presence changes.

Session mobility. Session mobility enables users to maintain an active session while changing

terminals. A session is moved from one terminal in one network to another terminal in another net-

work while preserving an ongoing session. This concept requires migrating current service execution

related information, including service context and service data, from one terminal to another.

Session Initiation Protocol (SIP) [105] is a signaling protocol for multimedia services that enables

setup and management of multimedia sessions. The network must primarily locate an end user to

setup a session. SIP is an application layer approach that offers the means for terminal, personal, and

session mobility. SIP binds a user-specific identifier to a temporary IP address of a terminal that is

currently applied by a user and inherently provides means for personal mobility. Users can maintain

the same identifier as they change network attachment points or use different devices. Users register

their temporary location in the network to a home SIP redirect server or leave a pointer to other servers

2. Content Dissemination and Mobility 28

Table 2.3: Requirements for mobility management

nomadic mobile

single terminal terminal mobility terminal mobility

◦ mobile IP ◦ micro-mobility for IP networks

◦ mobility management in GPRS/UMTS

various terminals personal mobility terminal & personal mobility

◦MPA ◦ SIP

where the information about the user location may be found. The distributed network of SIP registrars

and redirect servers implements a home-based mobility management procedure. A home registrar

receives a request for session setup, and initiates the process for locating the user following pointers at

a number of redirect servers. On top of personal mobility, SIP offers the support for session mobility

by enabling a redirection of an active multimedia session.

Terminal and personal mobility management are vital for the operation of content dissemination

services. Session mobility is not an issue because the service disseminates non-real time content. A

number of scenarios for service usage are possible. A user may be either nomadic or truly mobile,

and apply a single or various terminals for content receipt. Different mobility management solutions

are needed for the four usage scenarios as listed in Table 2.3.

For a single device moving across domains we can assume the usage of mobility management

protocols for terminal mobility. Mobile IP is adequate for nomadic users, while micro-mobility so-

lutions for IP-based networks and terminal mobility management procedures found in GPRS/UMTS

can be used for truly mobile terminals. In usage scenarios where users apply a number of terminals for

content receipt, the support for personal mobility is required. If a user is nomadic a personal mobility

service is required to authenticate the user and track the current identifier of the applied terminal,

similar to the MPA approach. In a mobile scenario with multiple terminals both terminal and personal

mobility management are needed. SIP is currently the only service providing such support. However,

SIP is primarily designed to support multimedia services and its scalability and performance need fur-

ther investigation if applied as a terminal and personal mobility management solution. The argument

in favor of applying SIP for personal mobility is that SIP has been selected as the main signaling pro-

tocol in future all-IP mobile networks [2]. It might become widely available and extended to support

non-realtime traffic.

Chapter 3

Related Work

Scalable and efficient dissemination of content to users residing in wide area networks has been

an area of active research for many years. Different approaches have been designed ranging from

network-level to application-level solutions. IP multicast is a network-level solution for the efficient

group communication. Services like electronic mail and Usenet news are the established applications

used for communication and exchange of content in everyday life. Recently, push systems and pub-

lish/subscribe systems have been introduced to provide active content dissemination with increased

content customization through user subscriptions. The listed systems are mainly designed for sta-

tionary environments. However, the development of higher bandwidth mobile networks promotes the

deployment of content dissemination services in mobile environments. The widespread use of SMS,

and the increased interest in MMS clearly indicate the demand for information delivery that enables

user mobility.

This section gives an overview of the concepts and systems related to content dissemination

services. In section 3.1 we analyze the existing publish/subscribe systems, and explore the pub-

lish/subscribe concepts related to mobility in Section 3.2. Section 3.3 considers the related ap-

proaches. First, we briefly discuss electronic mail and Usenet news, the established applications

from the Internet domain. Next, we analyze SMS and MMS, services for information dissemination

in mobile networks. Finally, we list the basic properties of application-level multicast systems and

push systems.

3.1 Representative Publish/Subscribe Systems

A number of solutions and systems based on the publish/subscribe interaction model are in use today.

CORBA event service [82] and CORBA notification service [83], as defined by OMG, are imple-

mented in a number of CORBA systems. Sun has developed the Java Message Service [108] spec-

ification that incorporates the publish/subscribe principles. TIBCO’s TIB/Rendezvous [116] is an

example of a commercial system widely used in business applications. There are also a number of

research projects, e.g., JEDI [19, 32, 33], Siena [23, 24], DACs [44, 45, 43], Hermes [89, 90], and

29

3. Related Work 30

REBECA [49, 78], that are designed and implemented using the publish/subscribe concepts.

The research in the area of publish/subscribe systems has thus far concentrated on the design of

an adequate subscription language with an efficient filtering engine [5, 20], topology and routing for

distributed architecture [24], or the quality of service mechanisms for reliable and ordered content

delivery [126]. Reference [42] offers a systematic analysis of the publish/subscribe characteristics.

Reference [33] classifies and compares the existing publish/subscribe systems. We present a short

overview of the established publish/subscribe systems. A detailed discussion and comparison is given

in [92].

3.1.1 CORBA Event and Notification Service

Common Object Request Broker Architecture (CORBA) incorporates the support for the event-based

publish/subscribe interaction between CORBA objects. CORBA event service [82] defines a set of

publish/subscribe service interfaces and describes the underlying infrastructure: Objects can publish

notifications or be interrupted upon the occurrence of a particular notification. The notification service

specification [83] extends the event service by advanced facilities, such as quality of service and

notification filtering.

Event service. CORBA event model [82] follows the channel-based publish/subscribe communi-

cation pattern: Objects communicate viachannels that allow multiple suppliers to communicate with

multiple consumers in an asynchronous way.Suppliers connect to a channel to publish notifications,

denoted events in the context of CORBA event service, andconsumers connect to the channel to

receive the notifications.

In a simple scenario consumers and suppliers can interact directly, without a channel, by invoking

each other’s interface methods. A mediated scenario involves a channel that acts as both a supplier

and a consumer of events. Event channels enable anonymous many-to-many communication between

suppliers and consumers. However, event channels offer no means for event filtering: All channel

consumers receive all events published on the channel.

CORBA event service supports bothpush andpull approaches to communication initiation: The

push model allows suppliers to initiate the distribution of notifications to consumers. The pull model

allows consumers to request notifications from suppliers. Push suppliers actively send notifications to

the event channel, while pull suppliers wait for requests coming from the channel. Push consumers

passively wait for events that are eventually sent through the channel, while pull consumers regularly

check if new events are available on the channel.

CORBA notifications are associated with a single data item, such as an object reference, or an

application-specific value, but they are not objects, since CORBA does not support passing objects

by values. Two orthogonal approaches to notification communication are defined: generic, and typed.

Generic notifications carry messages with an undefined structure. In the typed case, notification data

is passed by means of typed parameters that are defined by the Interface Definition Language (IDL).

Accordingly, event channels can also be generic or typed: Generic event channels only support generic

3. Related Work 31

communication, while typed event channels support both typed and generic communication. One of

the major constraints of the approach is that suppliers and consumers need to agree beforehand on the

structure of notifications so as to be able to process them in a meaningful way.

The event service defines simple means for event propagation and has a number of drawbacks. It

is not adequate for mobile scenarios because consumers must be connected to the channel at the time

of event publication because CORBA event service does not support event persistence. The second

drawback is that event channels offer no means for event filtering: If various event types are needed,

it is necessary to use separate channels for each event type. Finally, the specification does not dictate

the reliability requirements for the communication service and offers no guarantees concerning the

delivery of events. It can have either “at-most-once” or “exactly once” semantics, depending on the

particular service implementation.

Notification service. CORBA notification service [83] deals with the mentioned drawbacks of the

event service and extends it with new capabilities, such as filtering and configurability, according to

various requirements for quality of service (QoS). The notification service preserves the semantics of

the event service and ensures interoperability between the basic event service clients and notification

service clients. One of the extensions offered by the notification service are content-based subscrip-

tions and event filtering using filter objects: Filter objects define a set of constraints that affect the

forwarding of an event. For example, notification service consumer can subscribe to events of interest

by associating a filter object to the proxy through which it connects to an event channel. When an

event that matches the filter object is published, the proxy will forward it to the consumer.

The notification service introduces a new type of events,structured events with a well-known data

structure into which a wide variety of event types can be mapped. Structured events consist of a header

and a body: Aheader is further decomposed into a fixed and a variable part. The fixed event header

consists of adomain_namewhich identifies a particular domain (e.g. telecommunications, finance),

a type_name which categorizes an event, and anevent_name which can uniquely specify an

event. A variable header part is composed of a list of optional name-value pairs.Event body carries

the content of an event. The filterable portion of the body contains the most interesting event fields

(name-value pairs) used when matching the event with a filter object. The remainder of the body is of

typeany and can be used to transmit large data items.

Another enhancement introduced by the notification service are standard interfaces for controlling

QoS characteristics for event delivery. The notification service enables each channel, each connection,

and each message to be configured so as to support the desired quality of service with respect to deliv-

ery guarantees, event persistence, and event prioritization. OMG defines a set of QoS properties, their

permitted types, and the range of values. This is an open list of parameters, and service implementers

can add their own properties. OMG has defined the following properties:

• Reliability is related to the event delivery policy, such as best effort, or persistent delivery.

• Priority; by default, the notification channel will attempt to deliver messages according to their

priority level.

3. Related Work 32

• Expiry times indicate the time interval within which an event is valid.

• Earliest delivery time specifies the time after which an event can be delivered.

• Maximum events per consumer defines the maximum number of events a channel can queue on

behalf of a consumer. This property prevents malicious users from overloading a channel.

The list of supported properties provides flexible QoS configuration of a notification channel.

However, meaningless properties are not prevented which creates a serious vulnerability that could

be exploited by malicious consumers or suppliers. End-to-end delivery policy can only be guaranteed

with the cooperation of all parties, i.e., consumers, suppliers, and the notification channel.

The OMG event and notification service specifications offer no guidelines regarding the architec-

ture and routing strategy for distributed event systems.

3.1.2 Java Message Service

Java Message Service (JMS) [108] is a message-oriented specification for the Java programming lan-

guage that defines a set of interfaces and their semantics, thus enabling JMS compliant clients to access

the services offered by a JMS messaging server. JMS target application area is enterprise messaging

for asynchronous Business-to-Business communication over the Internet. JMS provides two types

of messaging models, point-to-point messaging and publish/subscribe [76]. The point-to-point mes-

saging model relies on the classical message-queuing communication pattern. The publish/subscribe

model incorporates two types of JMS clients, publishers and providers, that communicate by exchang-

ing messages through an intermediary server, called JMS provider. AJMS provider is a messaging

server that implements JMS interfaces and provides administrative and control features.JMS clients

are programs or components written in the Java programming language that produce and consume

messages. Notifications are referred to asmessages in JMS: Messages are Java objects that commu-

nicate information between JMS clients.

The concept of notifications is circumvented in JMS and used implicitly in messages. Message

properties and its payload represent a notification, i.e., information submitted to message subscribers.

Messages consist of message headers, message properties, and message data called the payload, or

message body. Message headers carry message routing information, and control information about

the message, such as message id, timestamp, priority, and delivery mode. Message properties consist

of attribute-value pairs and can be defined by the application using JMS, or by the messaging server.

Message payload contains the information that message publishers communicate to message receivers.

Publishers publish messages to aJMS topic, which is one of JMS destinations. Topics are created

by an administrator using the administrative tools offered by the applied JMS provider. It is assumed

that publishers will publish messages on the established topics. This approach is static and is aug-

mented bytemporary topics: Publishers can dynamically create new temporary topics. Subscribers

subscribe to a particular topic by registering their message listeners with the topic, as depicted in Fig-

ure 3.1. Whenever a message is published on a topic, the listener’s method is invoked, signaling the

3. Related Work 33

p.publish(m)
Topic

l.onMessage(m)
Publisher

TopicPublisher p;

Publisher Subscriber

TopicSubscriber s;
MessageListener l;

s.setMessageListnener(l);

Subscriber

Figure 3.1: Publish/subscribe interaction in JMS

receipt of a new message for the subscriber.

JMS offers delivery guarantees using the concepts ofdurable subscriptions andpersistent mes-

sages. Subscribers can define durable subscriptions to a topic. While a durable subscriber is discon-

nected from a JMS server, the server stores the published messages matching its subscription. When

the subscriber reconnects, the server sends all stored and unexpired messages to the subscriber in the

store-and-forward delivery style. Publishers can define either persistent or non-persistent delivery

mode for their messages. In case of the non-persistent mode, the server offers at-most-once message

delivery. Persistent messages are first stored by the server, and then delivered to subscribers. Sub-

scribers need to confirm the receipt of a persistent message. If the acknowledgment is missing, the

server resends the message assuring at-least-once message delivery.

JMS definesmessage filtering on the subscriber side using message selectors. Message selectors

are expressed as Java strings that define conditions on message properties and headers. Message

selectors need to comply with the defined subscription grammar which supports the conditions as

complex boolean expressions with equality, comparison, or range operators. The JMS specification is

a pure API specification. It does not define the rules for building the architecture of JMS server with

respect to distribution.

3.1.3 TIB/Rendezvous

TIB/Rendezvous is a commercial messaging system for application-to-application integration that is

based on the publish/subscribe communication pattern [116]. It is originally described in terms of

an information bus [85] that offers application independent communication through self-describing

messages. TIB/Rendezvous is a widely used messaging system applied for integrating diversity of

applications, e.g., various financial and banking applications.

TIB/Rendezvous adopts the subject-based approach to subscriptions. A subject name is a se-

quence of strings separated by dots (e.g.,news.comp.theory.books) that arrange subjects in

a subject tree. A subscriber can subscribe to a single subject, or use wildcard characters, such as

“*” (substitutes a single string) or “>” (substitutes a number of strings) to specify a range of sub-

jects. Messages communicated between publishers and subscribers are composed of a set of typed

data fields. A field is a record with the following attributes:name specifies the name of the field,ID

defines a message-unique field identifier,size gives the total size of the field,count contains the

number of elements if the field consists of an array,type indicates the type of field data, and, finally,

3. Related Work 34

data contains the actual data stored in the field [115].

TIB/Rendezvous employs a distributed architecture to offer reliable and scalable distribution of

notifications using different transport mechanisms, such as link-level network multicasting, IP mul-

ticasting and point-to-point communication. Each host running a client, either a publisher or a sub-

scriber, must run a specialrendezvous daemon which is responsible for handling the subject-based

communication. TIB/Rendezvous applies receiver-side filtering of messages. Whenever a message is

published, it is sent to each host on the local network running a rendezvous daemon that delivers the

message to the subscribers residing on the same host in case of a matching subscription. In case of a

distributed architecture expanded over a wide-area network,rendezvous router daemons are used for

communicating with router daemons on remote networks. Router daemons are aware of the overlay

network topology and compute a multicast tree for publishing messages to other remote networks. A

router daemon multicasts the messages published on its local network to remote networks, and for-

wards the messages coming from other remote networks. Note that the receiver-side filtering might

cause significant bandwidth consumption: The overlay network can be flooded by unneeded messages

because subscription information is not distributed between router daemons, and notifications might

be forwarded to remote networks that host no subscribers for these messages.

3.1.4 JEDI

The Java Event-based Distributed Infrastructure (JEDI) [19, 32, 33] is a lightweight middleware in-

frastructure that supports the development of event-based applications. JEDI is based on the concept

of active objects (AO) and event dispatchers (EDs). An AO is a special kind of object that interacts

with other AOs by producing and consuming events. Thus, an AO can perform the activities of both

an event publisher and a subscriber to a particular event type. ED is a special component responsible

for delivering events from publishing AOs to AOs that have expressed the interest in receiving such

events.

JEDI events and event patterns. JEDI event is an ordered set of attributes that describes an

event characteristic. An attribute is a name-value pair: Both name and value are strings and, as a

consequence, an event is a sequence of strings. JEDI supports the content-based event filtering that

applies pattern matching based on regular expressions when comparing events to subscriptions. AO

can either subscribe to a specific event, or to an event pattern. Event patterns are ordered set of strings

that represent a simple form of regular expressions over events. An event pattern is identified with

a sequence of pairs(name, regular expression), where name and regular expression are

both strings. A pattern-matching algorithm is used to verify compatibility between an event instance

and an event pattern. For example, the event pattern(Source_ID, 12*); (Signal_Type,*)

is compatible with all events with a value for attributeSource_ID starting with 12, and with any

value of attributeSignal_Type.

ED stores all event patterns received from the subscribing AOs. When ED receives an event, it

verifies compatibility between the received event and each event pattern using the pattern-matching

3. Related Work 35

algorithm, and delivers the event to each AO with the matching subscription connected to it.

Distributed ED architecture. ED is a logically centralized component that needs the global

knowledge about AOs, their subscriptions, and published events. However, a centralized implementa-

tion of an ED would be a critical bottleneck for a distributed system. To solve the scalability problem,

JEDI offers a distributed implementation of ED. The distributed version of ED consists of a set of dis-

patching servers (DSs). DSs are connected to form a tree topology. Each DS is located at a different

network node and is connected to one parent DS, and to zero or more descendant DSs. A DS with no

parent DS is the root of the tree, while DSs with no descendant DSs are the leaves of the tree. AOs

can connect to all DSs that form the ED.

DSs use a coordination protocol that distributes the information about subscriptions and events

among them. The distribution protocol is designed to minimize the network load generated by control

messages exchanged among the DSs. JEDI uses the hierarchical strategy to distribute events, sub-

scriptions, and unsubscription messages between DSs: Subscriptions are propagated upwards in the

tree, so that all ancestors of a DS receive it. When a DS receives a new event, it must send it to its con-

nected AOs with a matching event pattern, to its descendant DSs that have subscribed with a matching

pattern, and to its parent. This strategy ensures that all relevant nodes and the connected AOs receive

the published event messages. However, this strategy has significant weakness since events are always

sent upward to the root DS which may become a serious performance bottleneck.

3.1.5 Siena

Siena (Scalable Internet Event Notification Architecture) [22, 23, 24] is a middleware infrastructure

that supports the implementation of publish/subscribe-based applications, with the main objective to

provide a scalable Internet-scale notification service. Siena is implemented as a distributed overlay

network of servers that provide clients with access points to a publish/subscribe interface. Notifica-

tions are produced by objects of interest and consumed by interested parties. Siena offers an advertise-

ment mechanism that enables objects of interest to announce the type of notifications they intend to

publish. The interested parties subscribe to notifications by defining an event pattern. Siena servers are

responsible for selecting the notifications of interest and for delivering them to the interested parties.

Notifications, filters, and patterns. Siena notifications are untyped set of typed attributes. Each

attribute is a triple consisting of a type, a name, and a value. A filter selects notifications by specifying

attributes and constraints on the values of these attributes. Constrains are expressed by equality and

ordering relations, substring, prefix, and suffix operators for strings, and the operatorany matching

any value. A filter is matched against a single notification based on the notification’s attribute val-

ues. Additionally, Siena offers limited support for composite events. It is possible to investigate a

combination of notifications through the use of patterns. A pattern is defined as a sequence of filters

matched against a temporally ordered sequence of notifications. For example, if two notifications are

received in a consecutive order, and if they match two filters that compose the client’s pattern, these

notifications are delivered to the client.

3. Related Work 36

Distributed architecture. Siena is designed to offer scalable event distribution in wide area

networks: A network of interconnected Siena servers builds the service infrastructure. Reference [24]

defines and analyzes four different server topologies: centralized, hierarchical, acyclic peer-to-peer,

and general peer-to-peer. A control algorithm, based on the principle of reverse path forwarding, is

applied in hierarchical and peer-to-peer topologies. The main idea behind the routing algorithm is to

send notifications only to the servers that have clients interested in receiving such notifications. The

algorithm is based on the principles found in IP multicast:

• Downstream replication; a notification is routed in one copy as far as possible and replicated

only downstream, as close as possible to the parties interested in it.

• Upstream evaluation; filers are applied and assembled upstream, as close as possible to the

sources of notifications.

The forwarding of advertisements decreases the number of control messages that update sub-

scription information, since subscription update is sent only to those servers that intend to generate

matching notifications. Advertisements set the routing path for subscriptions, which in turn set the

path for notifications. Every advertisement is broadcasted to all Siena servers. When a server receives

a subscription, it propagates the subscription in the opposite direction along the path to the advertiser,

and activates the path for notification forwarding.

3.1.6 DACs

Distributed Asynchronous Collections (DACs) are object-oriented abstractions for expressing differ-

ent publish/subscribe styles and qualities of service [43, 44, 45]. A single DAC represents a distributed

collection of objects, e.g.,set, bag, queue, extended by publish/subscribe communication primitives.

A client can subscribe to a DAC by registering a specialcallback object. When a new object is in-

serted into the DAC, it triggers the invocation of the client’s listener method which delivers the inserted

object to the client. Thus, DACs enable asynchronous interaction between the communicating parties.

DAC events are objects. An event can be any object with a single constraint that the object is

serializable in terms of the Java programming language because serialized objects can be transported

through the network. DACs offer subject-based publish/subscribe communication by using object

types as the basic subscription criterion: [45] introduces the notion oftype-based subscription. The

content-based subscription scheme relies on structural reflection to implement filter objects for ex-

pressing subscription patterns [43]. Reflection offers increased modularity and flexibility compared

to standard approaches that use subscription languages and patterns. However, it causes performance

degradation of the filtering engine which is considerable for systems with high frequency of published

events.

DACs are inherently distributed. Messages are sent to all DAC processes using various QoS

such as unreliable delivery, guaranteed delivery, guaranteed delivery without duplicates, and ordered

delivery [41]. A special topic membership protocol maintains the information about the running

3. Related Work 37

processes and the state of channels between them. TheTopic Reliable Broadcast protocol is defined

to offer efficient and reliable message delivery resilient to channel failures.

3.1.7 Hermes

Hermes is a distributed publish/subscribe middleware system that uses peer-to-peer techniques to build

and maintain a scalable overlay network of brokers for notification dissemination [89, 90]. Clients are

lightweight components that can act both as notification publishers and as subscribers. They connect

to system brokers that are responsible for routing notifications in the form of messages to interested

subscribers. Notifications are instances of anevent type. An event type has a type name and a list of

attributes, and all event types are organized in an inheritance hierarchy.

Brokers form an overlay network that uses the principles of peer-to-peer routing algorithms, sim-

ilar to the routing algorithm used in Pastry [102]. Every broker has a unique node identifier and the

overlay network provides the operation of routing a message to the broker with a given node identi-

fier. The routing of messages in the peer-to-peer layer is efficient. A message takesO(log N) hops on

average to reach a destination broker, or a broker with the closest identifier, whereN is the number of

brokers in the system.

Hermes usesrendezvous nodes, similar to core nodes in the core-based multicast trees [13], for

setting up delivery paths for notifications. A rendezvous node exists in the broker network for each

event type. A node identifier of a rendezvous node for a given type is determined by calculating a hash

value of the event type name. Hermes supports two variants of content-based routing:type-based and

attribute-based. In the type-based variant, subscribers receive all notifications of a certain type and

its subtypes. Attribute-based routing allows filtering of notifications according to type’s attributes as

close as possible to a publisher. The routing algorithm works as follows: First, advertisements that de-

note publisher’s intent to publish notifications of a certain type are routed to the type rendezvous node.

Next, subscriptions are routed to the rendezvous node to set up delivery paths for notifications. In case

of the attribute-based subscriptions, subscriptions follow reverse paths of type advertisements to set

up filtering state as close to the publishers as possible. Finally, a notification is routed following the

advertisement message to the rendezvous node, and in the reverse direction of subscription messages

from the rendezvous node. In case of attribute-based routing, notifications just follow the reverse

path of subscriptions and are filtered by brokers using the information received through subscription

messages.

3.1.8 REBECA

REBECA notification service [49, 78] is a content-based publish/subscribe infrastructure comprising

a set of interconnected brokers that allow clients to publish notifications for interested users. Brokers

are divided into two categories:Local brokers serve as access points for publisher and subscriber

processes, whilerouters are used for forwarding messages between their neighboring brokers.

A notification in REBECA is a message that contains information about an event that has occurred.

3. Related Work 38

A notification consists of a set of attributes where each attribute is a name-value pair. Notification

filters are defined as boolean functions that can be applied to notifications. Filters can be either simple

atomic predicates or compound filters. Simple atomic predicates contrast attributes to values using

the operators, such as equality, comparison, set operators, or string operators. A compound filter is a

conjunction of simple filters.

The notification service is distributed and relies on a set of routing algorithms for delivering noti-

fications: simple routing, identity-based routing, covering-based routing, and merging-based routing.

All algorithms are based on the reverse path forwarding approach and can apply advertisements to

avoid subscription flooding. In simple routing, all active filters are added to the broker routing tables

with the identity of the link they originate from. This approach is not optimal because the size of the

routing tables grows linearly with the number of subscriptions. The straightforward improvement of

the approach is to combine equal filters in routing tables, the approach used in identity-based routing.

Further improvement is the covering routing strategy which considers covering among filters to de-

crease the size of the routing tables. Finally, the most complex approach is merging applied to create

new filters that cover the existing filters [77]. REBECA working prototype has been used to evaluate

and compare the listed routing strategies in [79].

Comparison of the presented publish/subscribe systems. Table 3.1 summarizes and compares

the features of the presented representative publish/subscribe systems.

3.2 Mobility Support in Publish/Subscribe Systems

Most of the existing publish/subscribe systems have been designed and optimized for stationary envi-

ronments where publishers and subscribers are static, and the infrastructure itself stays fixed. The

mobility-related operation is dealt with at the application layer through a sequence ofsubscribe-

unsubscribe-subscribe requests: A subscriber from the application layer first defines new subscrip-

tions and unsubscribes prior to disconnecting from the publish/subscribe system. After reconnecting

to the system, the subscriber needs to re-subscribe to make the system aware of its subscriptions.

However, the subscriber will not receive notifications that have been published during the time of

disconnection.

We have argued in [94] that the publish/subscribe middleware itself must offer the mobility sup-

port by ensuring seamless reconnection to a new broker and by preserving notifications published

during disconnection. The authors in [125] agree that mobility-related issues should be addressed by

the publish/subscribe middleware, and not delegated to the application layer. Some publish/subscribe

systems incorporate solutions to the problem of client mobility: The common solution stores notifica-

tions published during disconnection in a special subscriber queue and delivers the notifications after

subscriber reconnection. The existing solutions extent the established stationary publish/subscribe

systems to cope with client mobility while keeping the infrastructure stationary [21, 48]. The posi-

tion paper [59] takes an orthogonal approach: The authors analyze the requirements of mobile pub-

3. Related Work 39

Ta
bl

e
3.

1:
C

om
pa

ris
on

of
th

e
pr

es
en

te
d

pu
bl

is
h/

su
bs

cr
ib

e
sy

st
em

s

C
O

R
B

A
ev

en
t

C
O

R
B

A
no

ti
fic

at
io

n
JM

S
T

IB
/

JE
D

I
Si

en
a

D
A

C
s

H
er

m
es

R
E

B
E

C
A

se
rv

ic
e

se
rv

ic
e

R
en

de
zv

ou
s

su
bs

cr
ip

ti
on

ch
an

ne
l-

co
nt

en
t-

co
nt

en
t-

su
bj

ec
t-

co
nt

en
t-

co
nt

en
t-

ty
pe

-
ty

pe
/a

ttr
ib

ut
e-

co
nt

en
t-

cr
it

er
ia

ba
se

d
ba

se
d

ba
se

d
ba

se
d

ba
se

d
ba

se
d

ba
se

d
ba

se
d

ba
se

d

no
ti

fic
at

io
n

ty
pe

d
st

ru
ct

ur
ed

st
ru

ct
ur

ed
se

to
ft

yp
ed

se
to

fu
nt

yp
ed

se
to

ft
yp

ed
Ja

va
in

st
an

ce
s

of
an

se
to

f

st
ru

ct
ur

e
A
n
y

m
es

sa
ge

s
m

es
sa

ge
s

at
tr

ib
ut

es
at

tr
ib

ut
es

at
tr

ib
ut

es
ob

je
ct

s
ev

en
tt

yp
e

at
tr

ib
ut

es

fil
te

ri
ng

no
t

co
ns

tr
ai

nt
m

es
sa

ge
no

t
re

gu
la

r
co

ns
tr

ai
nt

st
ru

ct
ur

al
fil

te
r

co
m

po
un

d

cr
it

er
ia

sp
ec

ifi
ed

la
ng

ua
ge

se
le

ct
or

s
sp

ec
ifi

ed
ex

pr
es

si
on

s
la

ng
ua

ge
re

fle
ct

io
n

ex
pr

es
si

on
s

ex
pr

es
si

on
s

no
ti

fic
at

io
n

no
ye

s
ye

s
no

no
no

no
no

ye
s

pe
rs

is
te

nc
y

no
t

no
t

ce
nt

ra
liz

ed
/

di
st

rib
ut

ed
di

st
rib

ut
ed

di
st

rib
ut

ed
di

st
rib

ut
ed

ar
ch

it
ec

tu
re

sp
ec

ifi
ed

sp
ec

ifi
ed

di
st

rib
ut

ed
di

st
rib

ut
ed

(h
ie

ra
rc

hi
ca

l
(h

ie
ra

rc
hi

ca
l/

di
st

rib
ut

ed
(g

en
er

al
(a

cy
cl

ic

im
pl

em
en

ta
tio

ns
gr

ap
h)

ac
yc

lic
gr

ap
h)

gr
ap

h)
gr

ap
h)

ro
ut

in
g

no
t

no
t

re
ve

rs
e

re
ve

rs
e

no
t

co
re

-b
as

ed
re

ve
rs

e

st
ra

te
gy

sp
ec

ifi
ed

sp
ec

ifi
ed

flo
od

in
g

flo
od

in
g

pa
th

pa
th

sp
ec

ifi
ed

tr
ee

s
pa

th

fo
rw

ar
di

ng
fo

rw
ar

di
ng

fo
rw

ar
di

ng

3. Related Work 40

lish/subscribe systems, and discuss centralized and distributed system architectures tailored to mobile

environments.

Mobility support in CEA. The Cambridge Event Architecture (CEA) [10] uses a mediator which

receives notifications on behalf of a subscriber during disconnections. The mediator acts as a sub-

scriber proxy, and can register interest in subscriber’s location: When the subscriber reconnects to the

system, the mediator will get a notification with the new subscriber’s location, and then deliver the

queued messages to the subscriber. The proposed solution is indeed interesting because it relies on

the publish/subscribe infrastructure itself to transmit the information about the changing subscriber

locations. However, it involves a serious security risk: A malicious party could take the role of a

mediator, track subscribers which jeopardizes location privacy, and deliver bogus notifications after

subscriber reconnection.

Mobility support in JEDI. JEDI [33] offers two mobility-related operations:moveIn, and

moveOut. A subscriber usesmoveOut to disconnect from a broker andmoveIn to reconnect

possibly to a new broker. A client can detach from the system, serialize its current state, and later on

reconnect. The old broker stores events on behalf of the subscriber during the disconnection period

and transmits them to a new broker upon reconnection. The approach solves the queuing problem,

however, no details regarding the handover procedure from the old to the new broker, or the change of

the delivery path is given. Reference [31] proposes a rather complex solution that updates the deliv-

ery tree in a hierarchical distributed architecture: It uses a dynamic dispatching tree that has a leader

responsible for subscribers with the same subscription. This solution requires a complex protocol and

further analysis is needed since no evaluation study is currently available.

Mobility in Siena. The authors of Siena present a support service for mobile, wireless clients

of a distributed publish/subscribe system in [21]. The mobility service enables the movement of

subscribers between different access points of a publish/subscribe system. The service usesclient

proxies and a specialclient library to manage subscriptions and notifications on behalf of a subscriber,

both while the subscriber is disconnected and during the handover between different access points. A

client proxy runs as a special component at an access point and stores messages for a disconnected

subscriber in a special queue. The client library mediates subscriptions, and initiates amove-out

procedure: It submits subscriptions to the client proxy that subscribes using the client’s subscriptions

and stores incoming messages in a special buffer. The client uses themove-in function to reconnect

to the system: It contacts the local client proxy and submits the address of the old proxy. The old and

the new proxy start a special handover procedure that transfers messages from the old proxy to the

new one and then to the subscriber.

The mobility service implements a specialsynchronization mechanism to avoid lost notifications.

The main principle is quite simple: When transferring subscriptions fromA to be active onB, the

system needs to make sure that subscriptions are active onB before terminating subscriptions onA.

It is possible that during the procedure bothA andB will receive the same messages. The mobility

service implementation permits that a subscriber receives duplicate messages.

The presented system is independent from the underlying publish/subscribe middleware: The

3. Related Work 41

portability of the mobility service has been proved through an implementation on top of three dif-

ferent publish/subscribe systems (Siena, JMS, and Elvin). The client library wraps the target pub-

lish/subscribe API and needs to be implemented specially for each API by adding themove-in and

move-out functions, and by overriding the subscribe function of the original API.

Reference [21] offers results of an experiment that proves the applicability of the implementation.

The evaluation is limited since the experiment has been performed on a broker network consisting

of three broker nodes, a single publisher, and a single mobile subscriber that moves only once. The

experiment includes the performance evaluation if a subscriber uses a GPRS network - which has been

simulated – to access the publish/subscribe service.

Mobility in REBECA. The approach taken within the project REBECA is to extend and modify

the existing publish/subscribe system to support mobile and location-dependent applications [48, 125].

The mobility service aims to support two different types of mobility:physical mobility and logical

mobility. Physical mobility is similar to terminal mobility: A client is physically mobile and roams

between different network domains. It can disconnect from the system and later on reconnect possibly

to another broker in a different network. Its subscriptions are valid and the system stores notifications

published during the disconnected period. Logical mobility is related to geographical location: As a

client changes its geographical position, its subscriptions dynamically change because the published

information is location-dependent.

The algorithm that is developed for physical mobility is designed for a distributed network of

brokers. It applies the “queuing” approach: The old broker stores notifications for a disconnected

subscriber. When the subscriber connects to a new broker, it re-issues its subscriptions, but keeps no

record of the old broker address. The algorithm finds the old broker by locating a broker that is at

the junction of delivery paths for the new and the old broker. It is clear how this junction broker is

found if simple routing is used: Each broker stores active subscriptions for all subscribers with the

subscriber identifier, and since the subscription from the old broker is still active in the system, it is

simple to find the junction broker leading to both the old and the new broker. The notifications stored

by the old broker are routed through the junction to the new broker and delivered to the subscriber.

With simple routing the routing tables can become rather large because all brokers have the knowledge

about all subscriptions. Routing algorithms that use covering and merging are better suited for mobile

environments where subscriptions change more often than in static scenarios. The proposed algorithm

needs further extensions in case routing based on covering or merging is applied since the process of

finding a broker junction is not straightforward. The designed algorithm appears to be rather complex

and there are currently no evaluation results that shows it’s applicability and performance.

Mobility in Elvin. Mobility support for Elvin [111] is one of the first implementations offer-

ing mobility to subscribers in a publish/subscribe system. It enables subscriber’s nomadic mobility

without modifying the original Elvin server: The proposed solution puts a proxy server between the

original Elvin server and a mobile device. The central proxy server queues messages for disconnected

subscribers and delivers them upon their reconnection. The presented solution implements a queu-

ing strategy with a time-to-live expiry. A subscriber must always connect to the central proxy server

3. Related Work 42

which can become a performance bottleneck and induce significant network traffic due to triangular

routing if a subscriber connects to the system from another network.

JMS-based systems supporting mobility. Recently, some of the systems that implement the

JMS specification offer support for mobility [107, 84, 123]. Such systems offer a lightweight JMS-

compliant API for Java-enabled mobile terminals that can be used to implement JMS-based publishers

and subscribers. iBus//Mobile [107] is a commercial JMS-compliant implementation. It integrates a

special gateway that serves as a mediator between a JMS provider, and JMS clients. It offers support

for native clients with no JMS support: Native clients can publish and receive SMS or MMS mes-

sages that are transformed into JMS messages that can interact with the JMS provider. iBus//Mobile

supports TCP, UDP, HTTP, and HTTPS as transport protocols for JMS messages. JORAM [84] is an

open source project that has recently published a client API called kJORAM that adjusted to J2ME

devices. Pronto [123] is an academic project: It provides a JMS-compliant middleware system that

supports mobility of JMS publishers and subscribers, and implements a mobile JMS API that can run

on resource-limited devices. It incorporates a mobile gateway that supports JMS in wireless networks

and employs SMS, or mail as transport mechanisms for native devices that do not support Java and

JMS.

3.3 Related Approaches

3.3.1 Electronic Mail

Electronic mail [113] is one of the first services on the Internet for distributing messages with ar-

bitrary content. The introduction of mailing lists provides a powerful tool for one-to-many content

dissemination: Tools for creating and maintaining mailing lists facilitate users to subscribe to and

unsubscribe from mailing lists automatically, and enables topic-based publish/subscribe interaction.

The main disadvantage of using mail for disseminating content to large mailing lists is resource con-

sumption: The typical mail distribution method creates a separate mail copy for each receiver from

the mailing list and sends each copy separately to the receiver even if several receivers use the same

mail server. This approach can cause considerable computing load and bandwidth consumption which

can lead to significant delivery delays.

Contrary to the huge success and primacy on the Internet, electronic mail is currently not widely

used in the mobile domain. The main reasons for its poor acceptance are bandwidth limitations and

scheduled pull-style retrieval of mail messages which requires permanent network connection. Mail

readers for mobile devices that apply standard Internet protocols (POP3 and IMAP) are currently

available. To solve the problems related to the pull-style operation, proprietary solutions that employ

push-style message retrieval are recently being deployed: Such solutions send notifications to a user’s

mobile terminal when a new mail message arrives at the mail server.

3. Related Work 43

3.3.2 Usenet News

Usenet news [114], one of the most popular applications in computer networking, is a worldwide

distributed blackboard for disseminating news. News are grouped around specific topics, called

newsgroups, which are organized in a hierarchical topic tree similar to subject-based subscriptions

in publish/subscribe systems. The basic interaction model found in Usenet news is similar to the

publish/subscribe approach: A user may post an article to a newsgroup, and another user who has

subscribed to this newsgroup will eventually receive a copy of the article. Users can access the arti-

cles posted to newsgroups via a news reader that manages the interaction with the news server. The

news infrastructure consisting of news servers ensures the worldwide distribution of posted news.

The Network News Transfer Protocol (NNTP) is used to propagate articles among news servers. The

exchange of news between the news servers may be performed in either pull or push style, while a

news reader receives the articles for user topics via client-side pull. The protocol offers no delivery

guaranties: messages may be lost, duplicated, and delivered without order.

3.3.3 Short Message Service

Short Message Service (SMS) is a simple messaging service widely used in today’s mobile net-

works [67, 86]. SMS transports alphanumeric messages using thestore-and forward paradigm: Mes-

sages are temporarily stored if users cannot retrieve them at the time of message publication. A stored

message is delivered to the user terminal when it reconnects to the network. SMS offers apoint-

to-point service that enables person-to-person and machine-to-person message exchange carrying at

most 140 bytes of payload, either 160 7-bit characters, or 140 8-bit characters. In addition to the point-

to-point communication, SMS offers the so-calledcell broadcast service for transmitting messages to

all active terminals in a cell that have subscribed to the particular information service. This feature

enables the deployment of information services carrying for example weather updates and financial

reports that are examples of machine-to-person SMS usage scenarios. SMS is an extremely popular

messaging service, but limited by the low bandwidth communication channels.

3.3.4 Multimedia Message Service

Multimedia Message Service (MMS) is an enhanced messaging service that exploits the access to

higher bandwidth in 2.5G and 3G networks [67]. MMS enables the exchange of multimedia mes-

sages carrying text, audio, and pictures in the context of person-to-person and machine-to-person

scenarios. MMS supports interoperability with electronic mail which gives rise to various usage

scenarios. The concept of message notification allows deferred retrieval of messages and relies on

persistent network-based storage of messages: Messages can be stored persistently in the network

and controlled remotely via mobile terminals. Value-added services such as weather notifications,

news updates, or location-based information are typical content dissemination applications that can

be deployed using MMS as a transport mechanism. Those services lack the flexibility of subscription

found in publish/subscribe systems: The subscription to value-added services is static and currently

3. Related Work 44

offers no means for adjusting the service to user preferences and up-to-date needs. It would be useful

to extend the MMS architecture with publish/subscribe interaction principles.

3.3.5 Application-Level Multicast

Due to the lack of widespread deployment of network-level IP multicast [35], application-level multi-

cast has emerged as an alternative solution for the efficient distribution of content to many users across

wide area networks [14, 39]. The basic idea in application-level multicast is to route and replicate the

content using network end-host, rather than routers. Naturally, application-level multicast solutions

are less efficient than IP multicast since they may send data packets several times over the same link.

Application-level multicast systems can be regarded as distributed publish/subscribe systems of-

fering topic-based subscription to topic, i.e., group members. The existing solutions propose different

algorithms for scalable group management, and reliable message propagation through the overlay

network. Systems such as SCRIBE [25], CAN [98] and Bayeux [127] build a multicast tree over a

peer-to-peer network that is responsible for scalable and fault-tolerant message routing.

3.3.6 Push Systems

Push systems [57, 69] offer timely delivery of possibly large amounts of content to many subscribers

in wide area networks. These systems use channels to classify the content that is published to sub-

scribers, and the termpush service is used to stress that the content is actively pushed to subscribers.

Push systems and publish/subscribe systems are closely related: The basic interaction model is the

same: Subscribers subscribe to the service and receive the published content in push style. The main

difference between the two types of systems is that push systems offer services to end users, while

publish/subscribe systems are middleware. Push systems offer channel-based subscription criteria to

their users, while publish/subscribe systems provide flexible and expressive subscription capabilities.

The extensive comparison of push systems and publish/subscribe middleware can be found in [58].

Minstrel [57] is a Java-based push system developed at the Technical University of Vienna. The

main goal is to provide flexible and secure content delivery in the area of e-commerce, and to ensure

system scalability. Minstrel has a distributed architecture and employs a proprietary application-layer

protocol for efficient content distribution to numerous users across a wide area network. The main

Minstrel components are a broadcaster and a receiver. A broadcaster is responsible for managing

channels and sending information along channels. A receiver component is responsible for subscrib-

ing a user to available channels and for receiving the content. The current receiver implementation is

designed for desktop computers, and the system does not support receiver mobility.

LoL@ is a prototype location-based service offering tourist information to mobile users [96].

It has been designed using the push principle for data transfer to terminals, and relies on the SIP

architecture for user mobility management.

Chapter 4

Publish/Subscribe System Model

This chapter presents the mathematical model of distributed mobility-enabled publish/subscribe sys-

tems. The model reflects the observation that publish/subscribe systems exhibit the characteristics of

discrete event systems, and that their behavior is guided by a sequence of events. We use set theory no-

tation to define the model and the rules specifying valid event sequences that cause changes to system

state. The main contribution of the proposed model is the introduction of proxy subscribers and proxy

publishers that enable the communication and interaction between distributed publish/subscribe bro-

kers. The approach facilitates the description of each publish/subscribe broker with a separate basic

model, and the description of interactions between brokers with the publish/subscribe communication

primitives. In addition to offering a formal system definition, the publish/subscribe system model

enables the design of routing algorithms for disseminating notifications to subscribers in a distributed

system that will be presented in Chapter 5.

The section is organized as follows: In Section 4.1 we present the basic mathematical model and

extend it with mobility-related events in Section 4.2. Section 4.3 defines the distributed model which

is based on the basic mathematical model, and introduces proxy publishers and proxy subscribes for

modeling connections between system brokers.

4.1 Basic Mathematical Model

We present the mathematical model of a publish/subscribe system that describes the basic publish/sub-

scribe interaction. The model involves two types of actors, publishers and subscribers, and two types

of objects, notifications and subscriptions: Subscribers define subscriptions, while publishers publish

notifications. Notifications matching subscriptions are delivered to subscribers. We use set theory

notation to state our definitions and describe system properties following the approach used in [27]

for modeling group communication systems.

45

4. Publish/Subscribe System Model 46

4.1.1 Structural View

We define a 4-tupleB = (P,S,N ,M) comprising a set of publishersP, and a set of subscribers

S that interact by using notifications from the set of notificationsN , and subscriptions from the set

of subscriptionsM. B gives thestructural view of a publish/subscribe system and determines the

boundaries of the system’s state space: It defines the type and the number of entities that can exist in

a publish/subscribe system.

P is a finite set of publishers,P = {P1, P2, . . . , Pp}, wherep ≥ 0 is the total number of publishers

in the system. A publisherPi ∈ P is an actor that publishes notifications from the finite set of

notificationsN .

S is a finite set of subscribers,S = {S1, S2, . . . , Ss}, wheres ≥ 0 is the total number of sub-

scribers in the system. A subscriberSj ∈ S is an actor that defines subscriptions from the finite set

of subscriptionsM. WhenPi ∈ P publishes a notificationnik ∈ N , nik is compared to the set of

Sj ’s active subscriptions{mj1,mj2, . . . ,mjl}. If nik matches at least one ofSj ’s subscriptions, the

system deliversnik to Sj. Otherwise, no action is taken.

4.1.2 Behavioral View

Publishers, subscribers, and the system interact by performing actions. The occurrence of an action

is anevent that changes a system state. Publish/subscribe systems exhibit the properties ofdiscrete

event systems: A discrete event systems is a dynamic system that evolves in time in response to the

occurrence of events at discrete points in time [124].

We defineA = {a1, a2, . . . , ai, . . .}, a possibly infinite set of events that provides thebehavioral

view of a publish/subscribe system. An eventai occurs at a discrete point in timet(ai). We assume

that two events cannot occur simultaneously, i.e., ift(ai) = t(aj)⇒ ai = aj . Therefore, we have an

ordered sequence of events in the system whereai occurs beforeaj , iff t(ai) < t(aj), andi < j.

In the basic model the following types of events can occur:

• publish - publisher publishes notification,

• subscribe - subscriber activates a subscription,

• unsubscribe - subscriber cancels subscription, and

• notify - subscriber receives notification.

Publish. Publishers perform the action of publishing notifications. We define the eventpublish as

pub(Pi, nij) | Pi ∈ P, nij ∈ N (4.1)

where a publisherPi publishes a notificationnij. The publishing event adds a new notification to the

set of notifications published byPi. If we assume that each publisher can publish the same notification

nij from the finite set of notificationsN multiple times, the number of eventspub(Pi, nij) occurring

4. Publish/Subscribe System Model 47

in the system is possibly infinite. Such events occur at different points in time and are therefore not

considered equal, i.e.[ak = pub(Pi, nij)] �= [al = pub(Pi, nij)], k �= l.

Published notifications. N(Pi) is the set of notifications published byPi. N(Pi) is initially an

empty set that is updated whenPi publishes a new notificationnij ∈ N . For example, the occurrence

of the eventpub(Pi, nij) addsnij to the setN(Pi). We define the set of notifications published byPi

as

N(Pi) = {nij ∈ N | ∃ak ∈ A(ak = pub(Pi, nij))} , (4.2)

and the set of all published notifications asN(P) =
⋃p

i=1 N(Pi).
Subscribe. Subscribers perform the action of subscribing and unsubscribing. We define the event

subscribe as

sub(Sj,mjk) | Sj ∈ S,mjk ∈M,mjk /∈MA(Sj) (4.3)

where a subscriberSj subscribes tomjk. The subscribing event adds a new subscription to the set of

Sj ’s active subscriptionsMA(Sj) iff MA(Sj) does not already contain subscriptionmjk.

Unsubscribe. We define the eventunsubscribe as

unsub(Sj,mjk) | Sj ∈ S,mjk ∈MA(Sj) (4.4)

whereSj terminates a subscriptionmjk. The unsubscribing event removes an existing subscription

from the set ofSj ’s active subscriptionsMA(Sj).
Active subscriptions. MA(Sj) ⊆ M is the set ofSj ’s active subscriptions.MA(Sj) is initially

an empty set that is updated each timeSj defines a new subscriptionmjk ∈M or cancels an existing

subscription fromMA(Sj). For example, the occurrence of the eventsub(Sj,mjk) addsmjk to the

setMA(Sj). Conversely, the occurrence of the eventunsub(Sj,mjk) | mjk ∈MA(Sj) removesmjk

from MA(Sj). We define the set ofSj ’s active subscriptions as

MA(Sj) = {mjk ∈ M | ∃ai ∈ A(ai = sub(Sj,mjk)), � ∃al ∈ A(al = unsub(Sj,mjk)), l > i)} ,

(4.5)

and the set of all active subscriptions asMA =
⋃s

j=1 MA(Sj).
Matching. We define a boolean functionmatch over the set of notificationsN and the set of

subscriptionsM as

match : N ×M 	→ {true, false} . (4.6)

A notificationn matches a subscriptionm iff match(n,m) evaluates totrue. We use the follow-

ing simplified notation to denote thatn matchesm

n ≺ m ≡ match(n,m) = true, (4.7)

and

n �≺ m ≡ match(n,m) = false (4.8)

to denote thatn does not matchm.

4. Publish/Subscribe System Model 48

Notify. Subscribers are notified about the publication of a notification through the eventnotify

which is defined as follows

notify(Sj, nij) | Sj ∈ S, nij ∈ N , nij /∈ N(Sj), nij ≺ mjk (4.9)

wheremjk ∈ MA(Sj), i.e., the published notification matches an active subscription ofSj , and

N(Sj) is the set of notifications received bySj , i.e.,Sj has not previously receivednij . The number

of eventsnotify occurring in the system is finite becauseS andN are finite sets.

Received notifications. N(Sj) is the set of notifications received bySj. N(Sj) is initially an

empty set that is updated each timeSj receives a new notificationnij ∈ N . For example, the oc-

currence of the eventnotify(Sj, nij) addsnij to the setN(Sj). We define the set of notifications

received by a subscriber as a consequence of an eventnotify as

N(Sj) = {nij ∈ N | ∃ak ∈ A(ak = notify(Sj, nij))} . (4.10)

and the set of all received notifications asN(S) = ∪sj=1N(Sj).
To summarize, in a publish/subscribe system with a definedB, the following events can occur:

• pub(Pi, nij), i ∈ 1 . . . p,∀nij ∈ N ,

• sub(Sj ,mjk), j ∈ 1 . . . s,∀mjk ∈M,

• unsub(Sj,mjk), j ∈ 1 . . . s,∀mjk ∈M, and

• notify(Sj, nij), j ∈ 1 . . . s,∀nij ∈ N .

Some event types can possibly occur an infinite number of times, but in a different point in time which

makes each eventai ∈ A unique.

Publish/subscribe system. A publish/subscribe system is a tuplePS = (B, A) consisting of a

4-tupleB = (P,S,N ,M) that defines the structure of a publish/subscribe system, and a set of events

A that defines system behavior.

We model the behavior of a publish/subscribe system as a sequence of events that cause changes

of system states. System state is affected by the states of system publishers and subscribers. Event

occurrences cause transitions between states of individual publishers and subscribers, and cause the

change of the entire system state. We observe the state change of a publisherPi through the change of

N(Pi), which in turn changes the set of all published notifications in the systemN(P). We observe

the state change of a subscriberSj through the change ofMA(Sj) andN(Sj). The change ofMA(Sj)
changes the set of all active subscriptions in the systemMA. The change ofN(Sj) changes the set of

all delivered notifications in the systemN(S).
Finite automata are used to describe the behavior of discrete event systems as a sequence of

discrete events causing the change of system states. We may model a publish/subscribe system as a

finite state automation(Q,A, q0, δ) consisting of a finite set of system statesQ, a set of events that

cause system transitionsA, an initial stateq0 ⊆ Q, and a transition functionδ : Q × A 	→ Q. An

4. Publish/Subscribe System Model 49

eventak causes the transition from system stateqi ∈ Q to qj ∈ Q, which we write asδ(qi, ak) = qj,

or qi
ak→ qj.

The behavior of a publish/subscribe systemPS = (B, A) can be modeled by an automaton with

a finite set of states because the setsP, S,N , andM that determine the system state space are finite.

The sequence of events in the automaton is possibly infinite. A single event trace from an automaton

defines a possible valid sequence of events and state changes of the modeled publish/subscribe system.

For example, a trace
[
q0

sub(S,m)−→ q1
pub(P,n)−→ q2

notify(S,n)−→ q3

]
is a valid event trace ifn ≺ m. It

comprises three eventssub(S,m), pub(P, n), notify(S, n) that change the system state represented

by q0 =




NP (P) = ∅
MA(S) = ∅
N(S) = ∅


 to q3 =




NP (P) = {n}
MA(S) = {m}
N(S) = {n}


.

We define rules that govern the definition of valid event sequences in publish/subscribe systems.

The rules define the change of a system state caused by the occurrence of an event, and the generation

of a new event as a consequence of a system state change.

Rule 1.1. Publishing rule. Eachpublish event adds a notification to the set of publisher’s notifica-

tionsN(Pi) if the notification has not previously been published by the same publisher. Formally we

write this rule as

pub(Pi, nik)⇒ N(Pi)← N(Pi) ∪ nik. (4.11)

Rule 1.2. Subscription rule. Eachsubscribe event adds a subscription to the set of subscriber’s ac-

tive subscriptionsMA(Sj) if the subscription has not previously been defined by the same subscriber.

Formally we write this rule as

sub(Sj ,mjk)⇒MA(Sj)←MA(Sj) ∪mjk. (4.12)

Rule 1.3. Unsubscription rule. Eachunsubscribe event removes an existing subscription from the

set of subscribers’s active subscriptionsMA(Sj). In case no such subscription exists, the setMA(Sj)
does not change. Formally we can write this rule as

unsub(Sj,mjk)⇒MA(Sj)←MA(Sj)\mjk. (4.13)

Rule 1.4. Delivery rule. Everypublish event is followed by anotify event if the set of subscribers

with an active subscription matching a published eventnik is non-empty. If a subscriber has previously

receivednik, or in case none of the active subscriptions matchesnik, no action is taken. A publishing

event can possibly be followed by a number of notify events depending on the number of subscribers

with an active subscription matching the published notification. Formally we write this property as

[pub(Pi, nik),∃Sj , nik /∈ N(Sj),∃mjl ∈MA(Sj), nik ≺ mjl]⇒ notify(Sj, nik). (4.14)

Rule 1.5. Notification rule. Eachnotify event adds a notification to the set of subscribers’s notifi-

cationsN(Sj). Formally we write this rule as

notify(Sj, n)⇒ N(Sj)← N(Sj) ∪ n. (4.15)

4. Publish/Subscribe System Model 50

pub(n2)

pub(n1)P sub(m)

notify(n1)

S

Figure 4.1: An example of a publish/subscribe system

An example of the basic model. Figure 4.1 shows an example publish/subscribe system with a

single publisher and a single subscriber.B = ({P} , {S} , {n1, n2} , {m}) defines the system struc-

ture. If we assume thatn1 ≺ m andn2 �≺ m, the list of events that can occur in the system is

pub(P, n1), pub(P, n2), sub(S,m), unsub(S,m), andnotify(S, n1).
We show the finite state automaton of the example publish/subscribe system in Figure 4.2. This

is the minimal automaton of the system represented by four states. The state changes of subscriber

S are observed through changes of setsMA(S) and N(S). The state changes of publisherP is

observed through the change of the setN(P). The state changes ofS are significant to state changes

of the whole system, while the change of the setN(P) does not significantly influence system state.

The stateq0 =

{
MA(S) = ∅
N(S) = ∅

}
represents the initial state in whichS has not subscribed tom,

and has not received any notification. WhenS subscribes tom, the system enters the stateq1 ={
MA(S) = {m}
N(S) = ∅

}
. Eventpub(P, n2) will not cause the change of system state sincen2 �≺ m and

cannot be delivered toS. When inq1, the occurrence of eventpub(P, n1) will invoke another event

notify(S, n1) and the system enters the stateq2 =

{
MA(S) = {m}
N(S) = {n1}

}
. Further publications ofn1

or n2 will not cause the change of system state becauseS has already receivedn1 and can not receive

it again. WhenS unsubscribes fromm, the system enters the final stateq3 =

{
MA(S) = ∅
N(S) = {n1}

}
.

4.2 Mobility-Enabled Model

We assume that either publishers or subscribers can be mobile, and the publish/subscribe service is

deployed in a wired part of the network. Publishers and subscribers can disconnect from the pub-

lish/subscribe system willingly or unwillingly, and the system must accommodate such disconnec-

tions. Publisher’s disconnections do not pose a significant requirement: Disconnected publishers

cannot publish notifications during disconnections. The application running on publisher’s terminal

should store the defined notifications for further publication when it resumes the connection to the

publish/subscribe service. On the other hand, subscriber’s disconnections need to be supported by

4. Publish/Subscribe System Model 51

q0

q3 q2

q1

pub(P, nx)

MA(S) = 0
N(S) = 0

MA(S) = {m}
N(S) = 0

sub(S, m)

unsub(S, m)

MA(S) = {m}
N(S) = {n1}

pub(P, n2)

pub(P, n1),
notify(S, n1)

MA(S) = 0
N(S) = {n1}

sub(S, m)

unsub(S, m)

pub(P, nx)

pub(P, nx)

Figure 4.2: Automaton of the basic example

the publish/subscribe system: The system must enable subscribers to receive notifications that have

been published during their disconnections from the system. The system must store the published

notifications matching subscriber’s subscription for future delivery after subscriber’s reconnection to

the system.

The basic mathematical model must be extended to accommodate subscriber and publisher mobil-

ity. When a subscriber is disconnected from the system, it cannot receive the published notifications

matching its subscriptions because the eventnotify immediately followspublish as defined in eq. 4.14.

We introducepersistent notifications: Publishers define validity periods for notifications and the sys-

tem stores such notifications until their validity period expires. A disconnected subscriber can receive

persistent notifications matching it’s subscription that are still valid when it reconnects to the system.

We redefine the eventspublish, subscribe, unsubscribe, andnotify defined in the basic model,

and define new events,connect, disconnect, andunpublish, that are characteristic to the mobility-

enabled model. The original event definitions for publish, subscribe, unsubscribe, and notify need

to be modified since only connected publishers can publish notifications in the system, and only

connected subscribers can subscribe, unsubscribe, and receive notifications in the system.

We extend the basic model with the following events:

• connect - a publisher or a subscriber connects to the publish/subscribe system,

• disconnect - a publisher or a subscriber disconnects from the publish/subscribe system, and

• unpublish - a publisher or the system removes a persistent notification from the system.

Connect. Publishers and subscribers can connect to the system using the eventconnect. We define

the eventconnect as

conn(Pi) | Pi ∈ P,P ∈ Bx (4.16)

4. Publish/Subscribe System Model 52

where a publisher connects to the system described byBx, and

conn(Sj) | Sj ∈ S,S ∈ Bx (4.17)

where a subscriber connects to the system defined byBx. The eventconnect adds a publisher to the

set of connected system publishers, or a subscriber to the set of connected system subscribers.

Disconnect. Publishers and subscribers can disconnect from the system using the eventdiscon-

nect. We define the eventdisconnect as

disconn(Pi) | Pi ∈ P,P ∈ Bx (4.18)

where a publisher disconnects from the system described byBx, and

disconn(Sj) | Sj ∈ S,S ∈ Bx (4.19)

where a subscriber disconnects from the system defined byBx. The eventdisconnect removes a

publisher from the set of connected system publishers, or a subscriber from the set of connected

system subscribers.

Connected publishers. PC ⊆ P is the set of publishers that are connected to the systemBx. PC

is initially an empty set that is updated each time a disconnected publisher connects to the system, or

when it disconnects from the system. We define the set of connected publishers as

PC = {Pi ∈ P | ∃aj ∈ A(aj = conn(Pi)), � ∃ak ∈ A(ak = disconn(Pi)), j < k)} (4.20)

Connected subscribers. SC ∈ S is the set of subscribers that are connected into the system.

Bx. SC is initially an empty set that is updated each time a disconnected subscriber connects to the

system, or when it disconnects from the system. We define the set of connected subscribers as

SC = {Sj ∈ S | ∃ak ∈ A(ak = conn(Sj)), � ∃al ∈ A(al = disconn(Sj)), k < l)} (4.21)

Only connected publishers can publish notifications. Such notifications are by default declared

persistent and stored in the system until they are declared invalid, i.e., until an unpublish event causes

their removal from the system. This is similar to the subscribe-unsubscribe pattern that defines and

subsequently cancels active subscriptions.

Publish. We redefine the eventpublish based on the eq. 4.1 as:

pub(Pi, nij) | Pi ∈ PC , nij ∈ N , nij /∈ NP (Pi) (4.22)

The eventpub(Pi, nij) adds a notificationnij to the set of persistent notifications published byPi.

Unpublish. We define the eventunpublish as

unpub(Pi, nij) | Pi ∈ PC , nij ∈ NP (Pi) (4.23)

wherePi or the system removes a previously published persistent notificationnij from the set ofPi’s

persistent notifications.

4. Publish/Subscribe System Model 53

Persistent notifications. NP (Pi) ⊆ N(Pi) is the set ofPi’s published persistent notifications.

NP (Pi) is initially an empty set that is updated each timePi publishes a new notificationnij ∈ N ,

or cancels a previously published notification fromNP (Pi). For example, the occurrence of the event

pub(Pi, nij) addsnij to the setNP (Pi). Conversely, the occurrence of the eventunpub(Pi, nij) |
nij ∈ NP (Pi) removesnij from NP (Pi). We define the set ofPi’s persistent notifications as

NP (Pi) = {nij ∈ N | ∃ak ∈ A(ak = pub(Pi, nij)), � ∃al ∈ A(al = unpub(Pi, nij), k < l)} ,

(4.24)

and the set of all persistent notifications asNP =
⋃p

i=1 NP (Pi).
We assume that each persistent notificationn ∈ N is characterized by a validity period∆T (n)

that defines the time point of notification expiry. Persistent notifications have∆T (n) > 0, and

if ∆T (n) = 0 the notification is non-persistent. Notifications defined in the basic mathematical

model are non-persistent and become invalid immediately after their publication. Notifications in the

mobility-enabled model are persistent and stored by the system until they become invalid, i.e., their

validity period expires, or their publisher explicitly generates an unpublish event. A publisherP is the

source of eventspublish andunpublish, but if it defines the validity period∆T (n) when publishing

n, then the system itself can invoke the eventunpublish and purge invalid notification from the set of

persistent notificationsNP (P).
Subscribe. We redefine the eventsubscribe based on the eq. 4.3 as

sub(Sj,mjk) | Sj ∈ SC ,mjk ∈M,mjk /∈MA(Sj). (4.25)

Unsubscribe. We redefine define the eventunsubscribe based on the eq. 4.4 as

unsub(Sj,mjk) | Sj ∈ SC ,mjk ∈MA(Sj) (4.26)

As with persistent notifications, each active subscriptionm ∈ M can be characterized by a va-

lidity period ∆T (m) that defines the active period of a subscription. A subscriberS defines∆T (m)
when defining a new subscriptionm. When∆T (m) expires, the system can removem from the set

of active subscriptionsMA(S), as if the subscriber has generated an unsubscribe event. IfS generates

unsub(S, n) prior to m’s expiry, the system removesm from the set of active subscriptionsMA(S)
regardless ofm’s validity period. The default value for subscription validity period is∞.

Notify. We redefine define the eventnotify based on the eq. 4.9 as

notify(Sj, nij) | Sj ∈ SC , nij ∈ NP , nij /∈ N(Sj), nij ≺ mjk (4.27)

To summarize, in a publish/subscribe system that is mobility-enabled, the following events can

occur:

• conn(Pi), i ∈ 1 . . . p, conn(Sj), j ∈ 1 . . . s,

• disconn(Pi), i ∈ 1 . . . p, disconn(Sj), j ∈ 1 . . . s,

4. Publish/Subscribe System Model 54

• pub(Pi, nij), Pi ∈ PC ,∀nij ∈ N ,

• unpub(Pi, nij), Pi ∈ PC ,∀nij ∈ N ,

• sub(Sj ,mjk), Sj ∈ SC ,∀mjk ∈M,

• unsub(Sj,mjk), Sj ∈ SC ,∀mjk ∈M, and

• notify(Sj, nij), Sj ∈ SC ,∀nij ∈ N .

Here we redefine the rules that are used to model the behavior of a mobility-enabled system.

Rule 2.1. Connect rule. Each eventconnect adds a publisher or a subscriber to the set of connected

publishersPC or subscribersSC . Formally we write this rule as

conn(Pi)⇒ PC ← PC ∪ Pi, (4.28)

and

conn(Sj)⇒ SC ← SC ∪ Sj . (4.29)

Rule 2.2. Disconnect rule. Each eventdisconnect removes a publisher or a subscriber from the

set of connected publishersPC or subscribersSC . Formally we write this rule as

disconn(Pi)⇒ PC ← PC\Pi, (4.30)

and

disconn(Sj)⇒ SC ← SC\Sj. (4.31)

Rule 2.3. Persistent publishing. Eachpublish event adds a notification to the set of publisher’s

persistent notificationsNP (Pi) if the same notification is not already stored and valid inNP (Pi).
Formally we write this rule as

pub(Pi, nik)⇒ NP (Pi)← NP (Pi) ∪ nik. (4.32)

Rule 2.4. Unpublishing rule. Eachunpublish event removes an existing notification from the set

of publishers’s persistent notificationsNP (Pi). If the notification is not an element ofNP (Pi), the set

NP (Pi) does not change. Formally we write this rule as

unpub(Pi, nik)⇒ NP (Pi)← NP (Pi)\nik. (4.33)

Rule 2.5. Subscription rule. Eachsubscribe event adds a subscription to the set of subscriber’s ac-

tive subscriptionsMA(Sj) if the subscription has not previously been defined by the same subscriber.

Formally we write this rule as

sub(Sj ,mjk)⇒MA(Sj)←MA(Sj) ∪mjk. (4.34)

4. Publish/Subscribe System Model 55

Rule 2.6. Unsubscription rule. Eachunsubscribe event removes an existing subscription from the

set of subscribers’s active subscriptionsMA(Sj). If the subscription is not an element ofMA(Sj), the

setMA(Sj) does not change. Formally we write this rule as

unsub(Sj,mjk)⇒MA(Sj)←MA(Sj)\mjk. (4.35)

Rule 2.7. Delivery rule for connected subscribers. Everypublish event is followed by anotify

event if the set of connected subscribers with an active subscription matching a published eventnik is

non-empty. If a subscriber has previously receivednik, or if none of the active subscriptions matches

nik, no action is taken. Formally we write this rule as

[pub(Pi, nik),∃Sj ∈ SC , nik /∈ N(Sj),∃mjl ∈MA(Sj), nik ≺ mjl]⇒ notify(Sj, nik). (4.36)

Rule 2.8. Persistent delivery afterconnect. Every eventconn(Sj) is possibly followed by a

number of notify events if the set of persistent notificationsNP is non-empty, and if notifications

from this set match any ofSj ’s active subscriptions. If a subscriber has previously receivednik,

or in case none of the active subscriptions matchesnik, no action is taken. This rule ensures that

subscribers receive valid notifications that have been published while they were disconnected from

the system. Formally we write this rule as

[conn(Sj),∃nik ∈ NP , nik /∈ N(Sj),∃mjl ∈MA(Sj), nik ≺ mjl)]⇒ notify(Sj, nik). (4.37)

Rule 2.9. Persistent delivery aftersubscribe. Every eventsubscribe(Sj,mjl) is possibly followed

by a number of notify events if the set of persistent notificationsNP is non-empty, and if any notifica-

tion from this set matchesmjl. If a subscriber has previously receivednik no action is taken. This rule

ensures that new subscribers receive valid notifications that have been published prior to definition of

a new subscription. Formally we write this rule as

[sub(Sj ,mjl), Sj ∈ SC ,∃nik ∈ NP , nik /∈ N(Sj), nik ≺ mjk)]⇒ notify(Sj, nik). (4.38)

Rule 2.10. Notification rule. Eachnotify event adds a notification to the set of subscribers’s

notificationsN(Sj). Formally we write this rule as

notify(Sj, n)⇒ N(Sj)← N(Sj) ∪ n. (4.39)

An example of the mobility-enabled model. In the mobile example we analyze the behavior or a

publish/subscribe system with a single publisher and a single subscriber.B = ({P} , {S} , {n} , {m})
defines the system structure. If we assume thatn ≺ m, and thatP is constantly connected to the

system, the list of events that can occur in the system isconn(S), disconn(S), pub(P, n), sub(S,m),
unsub(S,m), andnotify(S, n).

The finite state automaton of the example system is shown in Figure 4.3. We observe the change

of the system state through four sets: the set of connected subscribersSC , the set of persistent no-

tifications in the systemNP , the set ofS’s active subscriptionsMA(S), and the set ofS’s received

notificationsN(S).

4. Publish/Subscribe System Model 56

q0

q3

q2q1

pub(P, n)

SC = 0
NP = 0
MA(S) = 0
N(S) = 0

conn(S)

sub(S, m)

disconn(S)unpub(P, n)

SC = {S}
NP = 0
MA(S) = 0
N(S) = 0

SC = 0
NP = {n}
MA(S) = 0
N(S) = 0

conn(S) disconn(S) pub(P, n)

unpub(P, n)

q5

SC = {S}
NP = {n}
MA(S) = 0
N(S) = 0

SC = {S}
NP = {n}

MA(S) = {m}
N(S) = 0

q7

SC = {S}
NP = {n}

MA(S) = {m}
N(S) = {n}

q4

sub(S, m)

unsub(S, m)

q6

pub(P, n)

SC = {S}
NP = 0
MA(S) = {m}
N(S) = 0

conn(S)
disconn(S)

SC = 0
NP = 0
MA(S) = {m}
N(S) = 0

q8

unpub(n)
pub(n)

SC = 0
NP = {n}
MA(S) = {m}
N(S) = 0

conn(S)
notify(S, n)

q9

q10

unpub(n)
pub(n)

SC = {S}
NP = 0

MA(S) = {m}
N(S) = {n}

conn(S)

disconn(S) SC = 0
NP = {n}
MA(S) = {m}
N(S) = {n}

q11

unpub(n)
pub(n)

SC = 0
NP = 0
MA(S) = {m}
N(S) = {n}

conn(S)

disconn(S)

q13

unsub(m)
sub(m)

SC = {S}
NP = 0
MA(S) = 0
N(S) = {n}

q15

disconn(S)
conn(S)

SC = 0
NP = 0
MA(S) = 0
N(S) = {n}

q12
pub(P, n)

unpub(P, n)
SC = {S}
NP = {n}
MA(S) = 0
N(S) = {n}

sub(m)

unsub(m)

q14

disconn(S)
conn(S)

SC = 0
NP = {n}
MA(S) = 0
N(S) = {n}

pub(P, n)

unpub(P, n)

Figure 4.3: Automaton of the mobility-enabled example

4. Publish/Subscribe System Model 57

In the initial stateq0 =




SC = ∅
NP = ∅
MA(S) = ∅
N(S) = ∅




, P has not published a persistent notificationn, S

is not connected to the system, and has not subscribed tom. When the automaton enters the state

q5 =




SC = {S}
NP = {n}
MA(S) = {m}
N(S) = ∅




, all the conditions are met to delivern to S which causes the transition

q5
notify(S,n)−→ q7. There are four valid event sequences that lead toq7. The event sequenceq0 →

q2 → q4 → q5 describes the most obvious event sequence leading toq7, whereS first connects to the

system and subscribes tom, so that whenP publishesn it can be delivered toS. The event sequence

q0 → q1 → q3 → q5 describes the situation whenP first publishesn, the systems storesn in NP , and

whenS connects and subscribes tom, n can be delivered toS. The sequenceq0 → q2 → q3 → q5

describes the sequence of events whereS receives a previously published persistent notificationn

after defining a subscriptionm. The sequenceq0 → q2 → q4 → q6 → q9 → q5 describes the

sequence of events that enableS to connect to the system, define its active subscriptionm, and to

disconnect from the system. WhenP publishesn, it is stored and delivered toS after it reconnects to

the system.

4.3 Distributed Model

The basic mathematical model presented in Section 4.1, and the extended model dealing with mobility

presented in Section 4.2 describe publish/subscribe system as a black-box and show no details of the

inner service architecture. We assume that the system has a centralized architecture dealing with all

system publishers and subscribers that interact via the publish/subscribe service. However, the cen-

tralized approach has significant drawbacks with respect to scalability and fault-tolerance particularly

if publishers and subscribers are scattered in a wide-area network. Therefore, it is advisory to design

the service with a distributed architecture composed of a network of brokers. Each broker is a server

that manages a subset of publishers and subscribers, for example, those that roam in its domain. A

broker communicates with the neighboring brokers to deliver notifications from its publishers to re-

mote subscribers residing on other brokers in the system, and to inform the neighboring brokers about

subscriptions generated in its domain. The exchange of information between brokers is needed to

maintain a distributed consistent view of the system as a whole.

Figure 4.4 shows an example distributed publish/subscribe system that employs three brokers

for distributing notifications to subscribers. From the publisher’s and subscriber’s point of view, the

publish/subscribe system is a black-box, while the network of brokers deals with distribution and

maintains a consistent distributed system state. Assuming that publishers can publishn, and sub-

scribers can subscribe tom, the structure of the system in Figure 4.4 is defined byP = {P1, P2, P3},

4. Publish/Subscribe System Model 58

B1

Broker

B1

Broker B2

Broker

B2

Broker

B3

Broker

B3

Broker

PublisherPublisher

Subscriber

PublisherPublisher

PublisherPublisher

Subscriber

P1

P2

P3

S1

S2

PublisherPublisher

P4

Figure 4.4: An example of a distributed publish/subscribe system

S = {S1, S2}, N = {n}, andM = {m}. Each broker maintains a partial view of the system:

For example,B1 is aware ofP(B1) = {P1, P2} and its neighboring brokerB2. B2 acts as aproxy

subscriber for its local subscriberS1, and enablesB1 to route notifications published by its local pub-

lishersP1 andP2 throughB2 to S1. From theB2’s perspective,P(B2) = {P3} andS(B2) = {S1}.
B2 is aware of it’s neighborsB1 andB3, and regardsB1 as aproxy publisher for its local subscriber

S1. Consequently, each broker can be regarded as a publisher for the set of its local subscribers, and

as a subscriber to notifications published by the set of its local publishers. We use this observation

to design a distributed publish/subscribe model that includes proxy publishers and proxy subscribers

that enable the communication between system brokers.

We propose a novel approach to modeling connections between brokers in a distributed pub-

lish/subscribe system. Each connection betweenBi andBj is modeled as an edgeeij connecting a

proxy subscriber and a proxy publisher as depicted in the upper part of Figure 4.5. It gives the model

view of the system consisting of two separate publish/subscribe modelsPSi andPSj . The lower part

of Figure 4.5 shows the underlying system architecture, i.e., the network of brokers with connected

publishers and subscribers. A proxy subscriberSj→i
proxy represents all subscribers inBj ’s domain, i.e.,

Bj ’s local subscribers and recursively remote subscribers on its neighboring brokers.Sj→i
proxy, a proxy

subscriber for domainj in i, is part ofPSi where it represents subscribers fromPSj. A proxy

publisherP i→j
proxy represents all publishers inBi’s domain, i.e.,Bi’s local publishers and recursively

remote publishers on its neighboring brokers.Pi→j
proxy, a proxy publisher forPSi in PSj , is part of

PSj where it represents publishers fromPSi. When a subscriber fromPSj defines a new subscrip-

tion, Sj→i
proxy must accordingly subscribe inPSi: Sj→i

proxy will receive notifications published inPSi

and forward them to the proxy publisherPi→j
proxy that publishes notifications for subscribers inPSj.

The described approach enables the division of a single system model into two separate models

connected by a directed edgeeij = (Sj→i
proxy, P

i→j
proxy). The direction of the edgeeij shows the direction

4. Publish/Subscribe System Model 59

Sproxy Pproxy

S1

P1

P2

S2

Bi

Bi-1

Bi-2

P3

P1

P2

P3

Bj

Bj+1

Bj+2

S3

S1

S2

S3

proxy
publisher

proxy
subscriber

Model view

System view

eij

PSi PSj

j i i j

Figure 4.5: Proxy publisher and proxy subscriber

of the notification flow betweenPSi andPSj . In case there are publishers inPSj, and subscribers in

PS i, we need to add a proxy publisher toPSi, and a proxy subscriber toPSj . The second directed

edgeeji = (Si→j
proxy, P

j→i
proxy) would connect publishers inPSj with subscribers inPSi. The process

of dividing the system model into two separate models around an existing link between two brokers

can be applied recursively to all links connecting system brokers. In the end of such process, we

obtain a single model per each broker that consists of local subscribers and publishers connected to

the broker, and proxy subscribers and publishers representing neighboring brokers.

Figure 4.6 shows the model view of the example system depicted in Figure 4.4. It is composed

of three basic modelsPS1, PS2, andPS3. Edgee12 corresponds to the link between brokersB1

andB2, and models the flow of notifications published inPS1 and forwarded toPS2. There is no

edgee21 in the system because there are no subscribers inPS1. Edgese23 ande32 correspond to

the link between brokersB2 andB3. Proxy subscriberS3→2
proxy represents subscriberS2 from PS3 in

PS2. Proxy subscriberS2→3
proxy represents subscriberS1 fromPS2 in PS3, andS2→1

proxy represents both

subscribersS1 andS2 in PS1. When publishersP1 or P2 publish a notification,S2→1
proxy forwards it to

their proxy publisher inPS2, P 1→2
proxy. P 2→3

proxy is a proxy publisher forP3, and also forP1 andP2 that

publish notifications viaP1→2
proxy. P 3→2

proxy is a proxy publisher forP4 in PS2.

Distributed publish/subscribe model. We model a distributed publish/subscribe system as a

connected directed graphG = (V,E), |V | = z. A graph vertex represents a publish/subscribe

systemvi = PS i = (Bi, Ai), whereBi = (Pi,Si,Ni,Mi). PS i ⊆ PS models a part of the

entire publish/subscribe system, i.e., it models publishers and subscribers that interact through a sin-

gle broker. In other words, we regard each broker as a separate publish/subscribe system. Graph

edgesE ⊆
{
(Sj→i

proxy ∈ PS i, P
i→j
proxy ∈ PSj) | 1 ≤ i ≤ z, 1 ≤ j ≤ z

}
represent directed connections

between publish/subscribe systemsPSi andPSj. An edgeeij = (Sj→i
proxy, P

i→j
proxy) models a commu-

4. Publish/Subscribe System Model 60

Sproxy

Pproxy

Sproxy

Pproxy
S1P1

PS1

P2

S2

e12

e23

PS2
2 1

P3
3 2

1 2

2 3

Pproxy
3 2

Sproxy
2 3

e32

PS3
P4

Figure 4.6: The model of the example system from Figure 4.4

nication link that enables notifications published inPSi to be transmitted toPSj . Sj→i
proxy ∈ PSi is a

proxy subscriber representing subscribers residing inPSj , while P i→j
proxy ∈ PSj is a proxy publisher

representing publishers fromPSi.

The distributed model uses the mobility-enabled model presented in Section 4.2 for modeling

vertices of distributed publish/subscribe system. To model a bidirectional connection between two

brokers represented byPSi andPSj , a proxy publisherPj→i
proxy and a proxy subscriberSj→i

proxy are

created inPSi, and a proxy publisherPi→j
proxy and a proxy subscriberSi→j

proxy are created inPSj.

When brokers disconnect, either willingly of unwillingly, proxy subscribers and proxy publishers

are removed fromPSi andPSj. Consequently, it is straightforward to build a distributed system

architecture consisting of a network of brokers, and to implement a simple procedure for connecting

two brokers. When a brokerBi wants to connect to another brokerBj , Bi must create and connect

a proxy publisherPj→i
proxy representing the publishers of the remote broker in its own domain, and

initiate the process of creating a proxy subscriberSi→j
proxy, and connecting it to the remote brokerBj.

This enablesBi to forward its subscriptions toBj and receive and republish notifications published in

the remote domain. The same procedure must be performed byBj to enable the flow of notifications

from Bi to Bj.

We assume that the broker network is stationary, while publishers and subscribers are mobile

entities that may change the location in the network and connect to different brokers. For example,S2

in Figure 4.4 can disconnect fromB3 and reconnect to the system throughB1. Therefore, in a truly

mobile distributed system that allows both publishers and subscribers to connect to the service via

different system brokers, the following statements hold:Pi∩Pj �= ∅ andSi∩Sj �= ∅, 1 ≤ i < j ≤ z.

If Pi ∩Pj = ∅ andSi ∩Sj = ∅, 1 ≤ i < j ≤ z, the system supports disconnected operation only, but

4. Publish/Subscribe System Model 61

not true mobility of publishers and subscribers.

Proxy subscribers for PSi. We define the set of proxy subscribers forPSi as the set of sub-

scribers residing in neighboring publish/subscribe systems that represent subscribers fromPSi

Sout(PS i) =
{
Si→j

proxy | ∃eji = (Si→j
proxy, P

j→i
proxy), 1 ≤ i ≤ z, 1 ≤ j ≤ z

}
, (4.40)

whereSi→j
proxy ∈ Sj andP j→i

proxy ∈ Pi.

Proxy subscribers in PSi. We define the set of proxy subscribers residing inPSi as the set of

subscribers representing subscribers from neighboring publish/subscribe systems

Sin(PS i) =
{
Sj→i

proxy | ∃eij = (Sj→i
proxy, P

i→j
proxy), 1 ≤ i ≤ z, 1 ≤ j ≤ z

}
, (4.41)

whereSj→i
proxy ∈ Si, P i→j

proxy ∈ Pj , andSin(PS i) ⊆ Si.

The following statements hold:Si→j
proxy ∈ Sout(PS i) andSi→j

proxy ∈ Sin(PSj).
Proxy publishers for PSi. We define the set of proxy subscribers forPSi as the set of publishers

residing in neighboring publish/subscribe systems that represent publishers fromPi

Pout(PS i) =
{
P i→j

proxy | ∃eij = (Sj→i
proxy, P

i→j
proxy), 1 ≤ i ≤ z, 1 ≤ j ≤ z

}
, (4.42)

whereP i→j
proxy ∈ Pj andSj→i

proxy ∈ Si.

Proxy publishers in PSi. We define the set of proxy publishers residing inPSi as the set of

publishers representing publishers from neighboring publish/subscribe systems

Pin(PS i) =
{
P j→i

proxy | ∃eji = (Si→j
proxy, P

j→i
proxy), 1 ≤ i ≤ z, 1 ≤ j ≤ z

}
, (4.43)

whereP j→i
proxy ∈ Pi andSi→j

proxy ∈ Sj .

The following statements hold:Pi→j
proxy ∈ Pout(PS i) andP i→j

proxy ∈ Pin(PSj).
The behavior of publishers and subscribers in the distributed model follows the rules of the

mobility-enabled model defined in Section 4.2. Proxy publishers and proxy subscribers follow the de-

fined rules, and additionally, rules specific to distribution. The difference between proxy subscribers

and ordinary subscribers is in the nature of generatingsubscribe andunsubscribe events: Ordinary

subscribers generate such events at random, while proxy subscribers generate them as a consequence

of a subscribe or unsubscribe event generated by one of subscribers that they represent. The simi-

lar property holds for publishers: Ordinary publishers generate publish events at random, while proxy

publishers publish notifications as a consequence of the publish event generated by one of the publish-

ers that a proxy publisher represents. We assume that each broker-related publish/subscribe system

periodically removes expired persistent notifications, i.e., notifications with expired validity times-

tamps, from the set ofNP , without requiring a special unpublish event coming from the publisher.

Figure 4.7 illustrates the process of subscribing in a distributed model. SubscriberS1 ∈ S2 de-

fines a new subscription and generates the eventsub(S1,m). PS2 forwards the subscriptionm to

its proxy subscribersS2→1
proxy and S2→3

proxy. Each proxy subscriber generates a new subscribe event:

sub(S2→1
proxy,m) addsm to MA(S2→1

proxy), andsub(S2→3
proxy,m) addsm to MA(S2→3

proxy). In case of an

4. Publish/Subscribe System Model 62

sub(m)
Sproxy Pproxy

sub(m)
S1

P1

PS1

P2

e12
PS2

2 1

P3

1 2

Pproxy
3 2

Sproxy
2 3

e32

PS3

sub(m)

forward(m)

forward(m)

Figure 4.7: Subscribing in a distributed model

pub(n)

Sproxy Pproxy

S1

P1

PS1

P2

e12
PS2

2 1

P3

1 2

Pproxy
3 2

Sproxy
2 3

e32

PS3

forward(n)

notify(n)

pub(n)

notify(n)

Figure 4.8: Publishing in a distributed model

4. Publish/Subscribe System Model 63

unsubscribe event,PS2 forwards the unsubscription¬m to proxy subscribers, which causes the gen-

eration of eventsunsub(S2→1
proxy,m) andunsub(S2→3

proxy,m).
Figure 4.8 illustrates the process of publishing in a distributed model. WhenP1 ∈ P1 publishesn,

PS1 generatesnotify(S2→1
proxy, n) becauseMA(S2→1

proxy) = {m}, andn ≺ m. WhenS2→1
proxy receives

n, it forwardsn to its neighboring proxy publisherP1→2
proxy. WhenP 1→2

proxy receivesn, it generates a

new eventpub(P1→2
proxy, n) which invokesnotify(S1, n) becauseMA(S1) = {m} andn ≺ m.

Here we define rules specific to the distributed environment. We assume that rules 2.1. to 2.10.

defined in Section 4.2 are valid.

Rule 3.1. Forward local subscription.PSi forwards a subscription generated by its local sub-

scriberSij ∈ Si\Sin(PS i) to proxy subscribers in neighboring domains defined by the setSout(PS i).
Formally we write this rule as

[sub(Sij,m) | Sij ∈ Si\Sin(PS i)]⇒ forward(Si→k
proxy,m), (4.44)

whereSi→k
proxy ∈ Sout(PS i).

Rule 3.2. Forward local unsubscription.PSi forwards an unsubscription generated by its local

subscriberSij ∈ Si\Sin(PS i) to its proxy subscribers in neighboring domains defined by the set

Sout(PS i). Formally we write this rule as

[unsub(Sij,m) | Sij ∈ Si\Sin(PS i)]⇒ forward(Si→k
proxy,¬m), (4.45)

whereSi→k
proxy ∈ Sout(PS i).

Rule 3.3. Forward remote subscription.PSi forwards a subscription generated by a proxy

subscriberSj→i
proxy ∈ Sin(PS i) to its proxy subscribers in neighboring domains defined by the set

Sout(PS i), except to its proxy subscriberSi→j
proxy ∈ Sj, if such exists, becausePSj is the domain

from which the subscription has been received. Formally we write this rule as

[
sub(Sj→i

proxy,m) | Sj→i
proxy ∈ Sin(PS i)

]
⇒ forward(Si→k

proxy,m), (4.46)

whereSi→k
proxy ∈ Sout(PS i)\Si→j

proxy.

Rule 3.4. Forward remote unsubscription.PSi forwards an unsubscription generated by a proxy

subscriberSj→i
proxy ∈ Sin(PS i) to its proxy subscribers in neighboring domains defined by the set

Sout(PS i), except to its proxy subscriberSi→j
proxy ∈ Sj, if such exists, becausePSj is the domain

from which the unsubscription has been received. Formally we write this rule as

[
unsub(Sj→i

proxy,m) | Sj→i
proxy ∈ Sin(PS i)

]
⇒ forward(Si→k

proxy,¬m), (4.47)

whereSi→k
proxy ∈ Sout(PS i)\Si→j

proxy.

Rule 3.5. Proxy subscribe. Proxy subscriberSj→i
proxy ∈ Si that receives a subscriptionm from the

remote domain subscribes tom. Formally we write this rule as

forward(Sj→i
proxy,m)⇒ sub(Sj→i

proxy,m). (4.48)

4. Publish/Subscribe System Model 64

Rule 3.6. Proxy unsubscribe. Proxy subscriberSj→i
proxy ∈ Si that receives an unsubscription¬m

from the remote domain unsubscribes fromm. Formally we write this rule as

forward(Sj→i
proxy,¬m)⇒ unsub(Sj→i

proxy,m). (4.49)

Rule 3.7. Forward notification. Proxy subscriberSj→i
proxy ∈ Si that receives a notificationn

forwards it using the edgeeij to the proxy publisherPi→j
proxy ∈ Pj . Formally we write this rule as

[
notify(Sj→i

proxy, n) | ∃eij = (Sj→i
proxy, P

i→j
proxy)

]
⇒ forward(P i→j

proxy, n). (4.50)

Rule 3.8. Proxy publish. Proxy publisherPj→i
proxy ∈ Pi publishes a notificationn as a consequence

of receiving a notification fromSi→j
proxy. Formally we write this rule as

forward(P j→i
proxy, n)⇒ pub(P j→i

proxy, n). (4.51)

The defined rules identify the allowed sequence of events in a distributed publish/subscribe sys-

tem. It is possible to model a distributed system by a number of automata where each automaton

describes aPSi modeling a system brokerBi.

Chapter 5

Routing Algorithms Supporting Mobility

This chapter defines the routing algorithms for distributed publish/subscribe systems that support

mobility of system publishers and subscribers. The routing algorithms are based on the mobility-

enabled distributed publish/subscribe model presented in Chapter 4. We introduce a novel approach

to storing notifications for disconnected users. The system stores persistent notifications until their

validity period expires, and delivers such notifications to subscribers with a matching subscription as

they reconnect to the system. This approach prevents the storage of notifications in special queues

per each subscriber, and avoids the usage of proxy subscribers, or queues, representing disconnected

subscribers in the system, which is the usual practice in the existing systems.

To prove the applicability of the proposed routing solution in a mobile setting, we have imple-

mented a prototype system, MOPS (Mobile PublishSubscribe), that is designed based on the defined

distributed publish/subscribe model. The system is distinguishable from other publish/subscribe pro-

totype implementations by the inherent support for publisher and subscriber mobility, as opposed to

solutions that extend an existing system optimized for stationary clients. The prototype has served

as an evaluation environment for assessing the performance of the proposed routing scheme based on

notification persistency, and for comparing it with the standard queuing approach.

The chapter is structured as follows: Section 5.1 analyzes the existing routing algorithms for sta-

tionary systems and contrast them to the routing principles found in multicast systems. The design of

routing algorithms supporting mobility based on the principle of notification persistence is presented

in Section 5.2. Two different routing strategies are investigated: routing based on subscription equal-

ity (Section 5.2.1) and routing based on subscription covering (Section 5.2.2). Section 5.3 gives an

evaluation of the proposed approach. A brief description of the prototype system MOPS is given in

Section 5.3.1, and we give evaluation results that compare the queuing algorithm with the persistent

notification algorithm in Section 5.3.2. Finally, we examine the characteristics of the proposed routing

solution and discuss the evaluation results in Section 5.4.

65

5. Routing Algorithms Supporting Mobility 66

5.1 Existing Approaches

Routing algorithms for delivering notifications to subscribers in distributed publish/subscribe systems

rely on the principles found in multicast routing. Each subscription can be regarded analogous to a

multicast group, where subscribers with the same active subscription represent multiple destinations

that have joined a subscription-defined group. A published notification should reach each subscriber

with minimal dissemination delay and network utilization: Each notification is routed in a single copy

as further as possible, and multiplied when reaching a junction connecting subscriber groups along

two or more network branches. The main difference between distributed publish/subscribe systems

and IP multicast is in different utilization scenarios: Publish/subscribe is provided at the application

layer offering sophisticated means for expressing subscriptions, while IP multicast is a network layer

solution with limited subscription expressiveness, but superior to publish/subscribe systems from the

point of network bandwidth consumption.

Both multicast and distributed publish/subscribe systems can be represented as graphs: Graph

nodes represent routers, and graph edges physical links for IP multicast, while for publish/subscribe

systems nodes model brokers and edges represent logical links between brokers. There are several

routing techniques used in multicast that have influenced the design of the routing algorithms for

publish/subscribe systems. These are flooding, reverse path forwarding, and core-based trees [61].

Flooding is the simplest multicast algorithm: When a network node receives a multicast packet,

it ensures that it has not received it previously, and transmits a copy of the packet to all neighboring

nodes, except to the one from which the packet has been received. Flooding needs to test the first

reception of the packet to avoid graph loops. In case the graph is acyclic, the test in not needed.

Reverse path forwarding [35] computes a spanning tree per each multicast source using the fol-

lowing principle: When a multicast packet is received, test if it has arrived following the shortest path

from the packet source. If this is the case, forward the packet to all neighboring nodes, except to the

one from which the packet has been received. If it did not arrive through the shortest path, discard the

packet. The described principle enables the forwarding of packets along a graph’s spanning tree. A

spanning tree is an acyclic and connected graph that connects all nodes of a given graph. The forward-

ing of a packet along the spanning tree will flood the network:Pruning is used to stop forwarding to

nodes without packet recipients, i.e., pruning enables the management of group membership. Leaf

nodes without packet recipients send a prune message in the reverse direction of the incoming packet.

As a result of this procedure the tree will include only the nodes and edges leading to packet recipients.

Some authors describe reverse path forwarding as a “flood-and-prune” algorithm.

Core-based tree algorithm [13] proposes the usage of a single tree per multicast group: A core-

based tree has a core node that represents the center of a multicast group. Packet recipients send a join

message to the core node to mark the path from recipients to the core node. To reach the interested

recipients, each packet is first routed to the core node, and from there it follows the reverse path of join

messages. The core tree approach results in a single multicast tree per group opposed to the reverse

path forwarding approach which determines a different tree per each multicast source. The main

5. Routing Algorithms Supporting Mobility 67

problem of the core-based tree algorithm is the choice of a core node that optimizes the dissemination

delay and network load for a given group of recipients. Since the group of recipients can be dynamic,

the choice of an optimal core node becomes even more challenging.

Routing algorithms in distributed publish/subscribe systems. The simplest approach that can

be used for routing notifications to subscribers in publish/subscribe systems is notification flooding:

Each published notification is sent to all system brokers, and brokers perform the matching of notifi-

cations to subscriptions of their local subscribers. This approach wastes a lot of bandwidth especially

in cases with few or no subscribers interested in a particular published notification. Both reverse

path forwarding and the core-based tree approach can be applied to disseminate the information about

subscriptions in the broker network, and thus enable the routing of notifications only to interested

subscribers. For example SIENA [23], JEDI [33], and REBECA [78], use the principle of reverse path

forwarding in their routing protocols, while the routing algorithm applied in Hermes [89, 90] uses the

core-based tree approach. We explain both approaches using an example acyclic connected graph that

models nine brokers and logical links between the brokers. We use an acyclic graph to simplify the

algorithm and to avoid the explanation of the procedure for determining a minimal spanning tree of

a general graph. A spanning tree of an acyclic graph is equal to the graph itself. In case of a general

graph, a distance-vector protocol can be applied to create a spanning tree [29].

Figure 5.1 shows the construction of a delivery tree per each publisher using reverse path forward-

ing. In the example network there are two publishers and two subscribers:S1 is connected toB1,

S2 is connected toB6, P1 is connected toB9, andP2 is connected toB5. When a subscriber defines

a new subscription, it is first submitted to the connecting broker, and further on flooded through the

network of brokers. For example, whenS1 subscribes tom, this information is noted byB1. B1

sends a subscription request to its neighboring brokerB3, B3 forwards it to its neighboring brokers

B2 andB4, and so on, until the information about the subscriptionm reaches all brokers. WhenS2
subscribes tom, this information also needs to flood the network: FromS2 it reachesB4 throughB6.

B4 will forward it to B3, but not toB5 or B7 becauseB3 has previously subscribed tom at B5 and

B7 as a consequence ofS1’s subscription. Each broker maintains the information about a subscriber,

or a neighboring broker that has sent a subscription to it. For example,B1 will store a record(m,S1)
indicating thatS1 has subscribed tom. B3 will store a record(m,B1, B4) indicating that it needs to

send a notification matchingm to bothB1 andB4, except if the notification has not previously arrived

from eitherB1 andB4. The flooding of network with subscriptions enables the definition of a delivery

tree connecting all subscribers tom. The delivery tree is computed per each publisher following the

reverse direction of previously flooded subscriptions. For example, the delivery tree forP1 comprises

brokersB9, B7, B4, B3, B1, andB6. It is computed using the local knowledge about subscriptions

stored by each broker.

Figure 5.2 shows the application of a core tree for routing notifications to interested subscribers.

In the example network the brokerB4 has been chosen as the core node. Each subscription is routed

to the core: For example, whenS1 subscribes tom, B1 will route it to B4 throughB3 and create a

path fromB4 to S1 for notifications matchingm. Each notification is also routed to the core which

5. Routing Algorithms Supporting Mobility 68

m

B1

B6B5

B4

B3

B2

B7

B8

B9

S1

S2

P1

P2

m

m

m m

m m

m

m

m

m

m

m

Figure 5.1: Reverse path forwarding: Creating delivery trees

n

m

B1

B6B5

B4

B3

B2

B7

B8

B9

S1

S2

P1

P2

m

m

m

m

core node

n

n

n

n

Figure 5.2: Creating a core-based tree

5. Routing Algorithms Supporting Mobility 69

transmits it along the reverse path defined by subscriptions. For example, whenP2 publishesn ≺ m,

n is routed toB4 throughB5. B4 will duplicate the notification and send it along two paths, one

of them leading toS1, and the other toS2. From this example it is obvious that the core-based

approach is superior to the reverse path forwarding with regards to network utilization. However,

the core-based approach is complex to implement: The choice of an optimal core node is proved

to be an NP-complete problem. Further on, it is challenging to design an algorithm that will route

each subscription or notification to the core node using only the local knowledge of each broker.

Hermes [89] relies on the peer-to-peer network for routing messages to a core node. The simulation

results provided in [90] prove that the core-based approach is superior in terms of network utilization

and the sizes of broker’s routing tables, but causes substantial notification delay when compared to

the minimum spanning tree solution.

5.2 The Proposed Routing Algorithms Supporting Mobility

This section presents design of the routing algorithms for distributed publish/subscribe systems based

on the distributed model presented in Section 4.3. The algorithm is specially tailored to support mobile

publishers and subscribers that can connect to the publish/subscribe service using different brokers as

they change the location in the network. It can be assumed that the “closest” broker, the broker

residing in the same domain as a mobile publisher or subscriber, is the most suitable for providing

access to the publish/subscribe service.

The common practice in publish/subscribe systems is to deliver notifications to active available

subscribers as they are published. Usually, notifications are not stored by the system: It is assumed

that the application using the service will provide notification storage if it is needed. However, mobile

subscribers that disconnect and unsubscribe from the system, and later on reconnect and resubscribe,

will not receive the notifications that have been published during the period of disconnection. There-

fore, the system must store notifications on behalf of disconnected subscribers and deliver them as

soon as subscribers reconnect to the system. In addition, mobile subscribers can reconnect to the

system through a new broker which requires the update of the delivery path for notifications match-

ing subscriber’s subscriptions. In stationary systems the update of a delivery path occurs only when a

subscriber changes its subscription, while in mobile systems such reconfigurations occur also as a con-

sequence of subscriber’s movements and reconnections through different system brokers. In mobile

systems the number of control messages exchanged between system brokers is significantly increased

when compared to static environments. Thus, it is vital that the routing algorithm used in mobile envi-

ronments requires minimal system reconfiguration overhead added by subscriber’s mobility to enable

efficient, scalable, and low-delay notification delivery.

The common approach used in systems that support subscriber’s mobility is to employ the last

broker that has served a subscriber prior to disconnection as it’s proxy: The proxy broker stores no-

tifications in a specialsubscriber’s queue. When the subscriber reconnects, possibly through another

broker, a special handover procedure is performed. Firstly, the system updates the routing tables ac-

5. Routing Algorithms Supporting Mobility 70

cording to the existing subscriber’s subscriptions to route notifications directly to the subscriber, and

secondly, the queued notifications are delivered to the new broker that delivers them to the subscriber.

The “queuing” approach requires that the system stores notifications in a special queue per each

disconnected subscriber, and performs the handover procedure which is an additional overhead. Fur-

thermore, special care must be taken that notifications are not lost or duplicated. The described ap-

proach is used for the design of a mobility service built on top of SIENA [21]: The mobility service

adds proxies between system brokers and subscribers. Proxies take the role of subscribers during

subscribers’ disconnections. The usage of new components that act as stationary subscribers adds

considerable overhead to the system as a whole. In addition, a complex procedure is performed when

disconnecting and reconnecting a subscriber to the system. Another solution build on top of REBECA

uses border brokers as proxies for disconnected subscribers [48]. The proposed algorithm floods the

broker network with subscriptions ofall system subscribers and requires that each broker has a copy

of all subscriptions in the system which makes this approach inefficient in a system with a large num-

ber of subscriptions that often change. Furthermore, it proposes a complex procedure for modifying

a delivery path from the old to a new border broker. A comprehensive performance and complexity

evaluation of the proposed algorithm is needed to prove its applicability.

We propose a novel approach to deal with disconnected subscribers: It relies on the characteristic

of notification persistency to ensure that disconnected subscribers receive the published notifications.

It is important that the system stores notifications until their validity period expires which enables

subscribers to receive such notifications when they reconnect to the system. If the validity period

of a notification has expired, the notification is removed from the system, and disconnected users

will not receive it since it is no longer relevant. A publisher, the creator of a notification, defines its

validity period. Additionally, the approach enables users to receive persistent notifications after they

define a new subscription, although such notifications are published prior to the definition of the new

subscription.

We usereverse path forwarding for creating delivery trees connecting each publisher to active sub-

scribers. When a subscriber disconnects from the system, the broker will terminate its subscriptions to

invalidate the delivery path leading to the subscriber. When a subscriber reconnects, the system will re-

initiate its subscriptions and create a delivery path that will enable the transmission of newly published

notifications, as well as persistent notifications stored in the system. To re-initiate a subscription, a

new broker needs the information about the subscriber’s subscriptions, and received persistent noti-

fications to avoid duplicate notifications. The straightforward approach is to store subscriber-related

information on the subscriber’s terminal. However, this solution prevents subscriber’s personal mobil-

ity: A better solution is that the system stores the subscriber-related information. When a subscriber

reconnects providing its credentials, the new broker first searches the system to find the information

about its active subscriptions and received persistent notifications, and subsequently reactivates the

subscriber’s subscriptions to create a new delivery path for notifications matching the subscriptions.

The system can store the information in a distributed broker network, e.g., on the last broker that

served a subscriber as the access point to the publish/subscribe system. To locate the broker storing

5. Routing Algorithms Supporting Mobility 71

the information, adistributed hash table approach can be used that finds the required information us-

ing a unique key defining the subscriber. The existing algorithms enable efficient search for data items

in a distributed hash table. Data items are found by specifying a unique data key for which the algo-

rithm finds the node storing the data associated with a given key [12]. The distributed approach offers

robustness and reliability compared to the centralized solution, and seems a natural design choice for

storing the information in a distributed publish/subscribe system.

The routing algorithm is based on the presented distributed model. It uses the rules 2.1 to 2.10,

and 3.1 to 3.8 when defining the behavior of system brokers modeled as mobility-enabled pub-

lish/subscribe systems connected by proxy publishers and proxy subscribers. We assume that the

communication in the system is remote, it is implemented by asynchronous message passing: For

example, the eventnotify(S, n) is implemented assend message “notify(n)” to S.

We consider two different routing strategies: routing based on subscription equality, and routing

based on subscription covering. The two principles define when a broker-related systemPSx informs

its proxy subscribers that the active subscriptions inPSx have changed, and that they need to issue a

new subscription or unsubscription request. Next, we define the algorithms that are independent of the

applied routing strategy: These are the algorithms for building a distributed publish/subscribe environ-

ment, the algorithm enabling mobility in a distributed environment, and the algorithm for publishing

notifications. The algorithms that are essential for building a distributed system are the algorithm

for connecting two brokers defined in Figure 5.3, and the two algorithms describing the operation

of proxy publishers and subscribers defined in Figure 5.4 and Figure 5.5, respectively. The mobility

of publishers and subscribers in a distributed system is enabled by the algorithm for connecting lo-

cal publishers and subscribers to a system broker, and the algorithm for disconnecting them from a

system broker that are defined in Figure 5.6 and Figure 5.7, respectively. The procedure performed

after the event of publishing a new notification is independent of the applied routing strategy because

notifications follow delivery paths that are defined by a sequence ofsubscribe andunsubscribe events.

The algorithm for publishing notifications is defined in Figure 5.8.

Connecting two brokers. The process of connecting two brokers modeled byPSx andPSy

creates a communication link between the two brokers. Figure 5.3 shows the algorithm for connecting

PSy toPSx executed byPSx. PSx stores the list of its proxy subscribers outsidePSx in Sout, and

the list of proxy subscribers and proxy publishers residing inPSx in setsSin andPin, respectively.

PSx updates the list of connected publishers and subscribers using the setsPC andSC . Persistent

notifications are stored inNP .

SincePSx wants to receive notifications coming fromPSy, it creates a proxy publisherPy→x
proxy

that publishes notifications fromPSy (line 10), and adds the created proxy to the setPin andPC .

Next, PSx sends a message toPSy initiating the creation of its representative proxy subscriber

Sx→y
proxy, and adds a reference to the proxy publisherPy→x

proxy that forms an edgeeyx with Sx→y
proxy (line

14).PSx adds a reference toSx→y
proxy into the setSout, and initiates the list ofSx→y

proxy’s active subscrip-

tions.

The method presented in lines 19 to 23 defines the sequence of actions performed whenPSx

5. Routing Algorithms Supporting Mobility 72

Sout = ∅ //proxy subscribers /∈ PSx

Sin = ∅ //proxy subscribers ∈ PSx

Pin = ∅ //proxy subscribers ∈ PSx

5 PC = ∅ //connected publishers
SC = ∅ //connected subscribers
NP = ∅ //persistent notifications

upon receiving a message “conn(PS y)” {
10 create(P y→x

proxy,PSy)
Pin ← Pin ∪ P y→x

proxy

PC ← PC ∪ P y→x
proxy

NP (P y→x
proxy) = ∅

send message “create(Sx→y
proxy, P

y→x
proxy)” to PSy

15 Sout ← Sout ∪ Sx→y
proxy

MA(Sx→y
proxy) = ∅

}

upon receiving a message “create(S y→x
proxy, P

x→y
proxy)” {

20 create(Sy→x
proxy, P

x→y
proxy)

Sin ← Sin ∪ Sy→x
proxy

SC ← SC ∪ Sy→x
proxy

}

Figure 5.3: Algorithm forPSx: ConnectingPSy toPSx

5. Routing Algorithms Supporting Mobility 73

defineP x→y
proxy

upon receiving a message “notify(nik)” from PSx

send message “forward(nik)” to P x→y
proxy

5 upon receiving a message “forward(mjl)” from PSy

send message “sub(mjl)” to PSx

upon receiving a message “forward(¬mjl)” from PSy

send message “unsub(mjl)” to PSx

Figure 5.4: Algorithm for the proxy subscriberSy→x
proxy ∈ PSx

defineSx→y
proxy

upon receiving a message “forward(nik)” from Sx→y
proxy

send message “pub(nik)” to PSx

Figure 5.5: Algorithm for the proxy publisherPy→x
proxy ∈ PSx

receives a message requesting the creation of a proxy subscriber for another broker, e.g.,PSy. It

creates a new proxy subscriberSy→x
proxy (line 20) and adds a reference to the proxy publisherPx→y

proxy

through whichPSx publishes its notifications inPSy. Sy→x
proxy is added to the setsSin andSC .

Proxy subscriber Sy→x
proxy ∈ PSx. Figure 5.4 shows the algorithm performed by a proxy sub-

scriber residing inPSx that represents subscribers fromPSy. Sy→x
proxy stores a reference to its pair

publisher inPSy, P x→y
proxy. WhenSy→x

proxy receives a message “notify(nik)” from PSx, it forwards

nik to Px→y
proxy that will publish it inPSy. WhenSy→x

proxy receives a new subscriptionmjl fromPSy, it

subscribes tomjl in PSx. After receiving an unsubscription request¬mjl from PSy, Sy→x
proxy sends

the message “unsub(mjl)” to PSx.

Proxy publisher P y→x
proxy ∈ PSx. The role of a proxy publisher is quite straightforward: When it

receives a notification from its pair proxy subscriberSx→y
proxy, P y→x

proxy publishes the notification inPSx.

The algorithm is defined in Figure 5.5.

Connecting local publishers and subscribers to PSx. Figure 5.6 defines the algorithm per-

formed when a local publisher or a local subscriber connects toPSx. When a local publisher con-

nects toPSx, it is added to the set of connected publishersPC (line 2). When a local subscriber

connects toPSx, the publisher, or the system, provides a list of its active subscriptions, and the list of

persistent received notifications (line 4). The subscriber is added to the set of connected subscribers

SC , and if the subscriber has active subscriptions, they are reactivated: The message “sub(Sj ,mjl)”
for all mjl ∈ MA(Sj) (line 9) subscribesSj to mjl at PSx and the system creates a delivery path

for notifications matching allmjl ∈ MA(Sj) leading to the subscriberSj. The actions following the

receipt of a message “sub(Sj ,mjl)” depend on the routing strategy. They are defined in Figure 5.9,

5. Routing Algorithms Supporting Mobility 74

upon receiving a message “conn(Pi)”
PC ← PC ∪ Pi

upon receiving a message “conn(Sj , MA(Sj), NP (Sj))” {
5 SC ← SC ∪ Sj

//initiate existing subscriptions
if MA(Sj) �= ∅

for all mjl ∈MA(Sj)
send message “sub(Sj, mjl)” to PSx

10 }

Figure 5.6: Connecting local publishers and subscribers toPSx

upon receiving a message “disconn(Pi)”
PC ← PC\Pi

upon receiving a message “disconn(Sj)” {
5 SC ← SC\Sj

//terminate existing subscriptions
if MA(Sj) �= ∅

for all mjl ∈MA(Sj)
send message “unsub(Sj, mjl)” to PSx

10 }

Figure 5.7: Disconnecting local publishers and subscribers fromPSx

Figure 5.13, and Figure 5.14.

Disconnecting local publishers and subscribers from PSx. Figure 5.7 defines the algorithm

performed when a local publisher or a local subscriber disconnects fromPSx. When a local publisher

disconnects fromPSx, it is removed from the set of connected publishersPC (line 2). When a local

subscriber disconnects fromPSx, it is removed from the set of connected subscribersSC . Its active

subscriptions are terminated using the message “unsub(Sj,mjl)” for all mjl ∈MA(Sj) (line 9) that

unsubscribesSj from all mjl ∈ MA(Sj) at PSx. The actions following the receipt of a message

“unsub(Sj,mjl)” depend on the routing strategy. They are defined in Figure 5.10 and Figure 5.15.

The two algorithms for connecting and disconnecting local publishers and subscribers define the

basic principle or mobility. When a subscriber disconnects, the system terminates its active subscrip-

tions, and re-initiates them when the subscriber reconnects. The approach gives no solution to the

storage of notifications published during the period of disconnection and needs to be solved else-

where: We define the algorithm for activating new subscriptions to enable the delivery of persistent

notifications stored in the system.

Notification publishing. Figure 5.8 defines the actions performed byPSx when a publisher,

5. Routing Algorithms Supporting Mobility 75

//new publication from a local or proxy publisher
upon receiving a message “pub(nik)” from Pi ∈ PC

if nik /∈ NP (Pi) {
NP (Pi)← NP (Pi) ∪ nik

5 NP ← NP ∪ nik

for all connected local subscribersSj ∈ [SC\Sin]
if nik /∈ N(Sj)

for all mjl ∈MA(Sj)
if nik ≺ mjl {

10 send message “notify(nik)” to Sj

N(Sj)← N(Sj) ∪ nik

}

for all connected proxy subscribersS y→x
proxy ∈ Sin

15 if nik /∈ NP (P y→x
proxy) andnik /∈ N(Sy→x

proxy)
for all mjl ∈MA(Sj)

if nik ≺ mjl {
send message “notify(nik)” to Sy→x

proxy

N(Sy→x
proxy)← N(Sy→x

proxy) ∪ nik

20 }
}

Figure 5.8: Notification publishing

either a local publisher, or a proxy publisher, publishes a notificationnik. PSx stores the published

notification in the set of persistent notifications. Next, it tests active subscriptions of all connected

local subscribers, and forwards the notification to the subscriber with an active subscription matching

nik in case the subscriber has not previously received the same notification (lines 6 to 12). The

notification is also forwarded to connected proxy subscribers with a matching subscription using an

additional test: If the notification comes from the direction of a broker the proxy subscriber represents,

i.e., if it is published byPy→x
proxy, the notification is not delivered toSy→x

proxy since the subscribers inPSy

have already receivednik (lines 14 to 20).

5.2.1 Routing Based on Subscription Equality

The routing algorithm based on subscription equality uses the principle ofreverse path forwarding and

takes into considerationsubscription equality when flooding the network with new subscriptions. The

principle of subscription equality denotes that a subscriptionm originating from different subscribers

in PSx is considered equal by proxy subscribersSout(PSx) representingPSx’s subscribers in neigh-

boring brokers, sincem originates from the samePSx. In casem is currently an active subscription

of one ofPSx’s subscribers,m has already flooded the network and has set up a delivery path for

notifications matchingm. A new subscription event occurring inPSx that defines a subscription to

m by either a local subscriber, or a proxy subscriber, is not forwarded to proxy subscribers from the

5. Routing Algorithms Supporting Mobility 76

setSout(PSx) if proxy subscribers are already subscribed tom.

Defining a new subscription. Figure 5.9 defines the actions performed byPSx when a sub-

scriber, either a local subscriber, or a proxy subscriber, defines a new subscriptionmjl. PSx checks if

a subscriber is not already subscribed tomjl (lines 3 and 21). Ifmjl is not one of subscriber’s active

subscriptions, it is added to the set of its active subscriptionsMA(Sj). mjl is forwarded toPSx’s

proxy subscribers inSout if there is no active subscription tomjl issued previously by one ofPSx’s

local subscribers (lines 5 and 23). Since some of the proxy subscribers may already be subscribed

to mjl as a consequence of a subscription by a proxy subscriber inPSx, we perform an additional

test (line 7) and forwardmjl only to proxy subscribers without an active subscription tomjl, which

prevents forwarding of identical subscriptions. In case of a new subscription by a proxy subscriber,

mjl is forwarded to all proxy subscribers without an existing active subscription tomjl, except to

Sx→y
proxy ∈ PSy, becausemjl has been received fromPSy (lines 24 to 28).

Next, the definition of a new subscription will cause the delivery of persistent notifications stored

in PSx that matchmjl and are not already in the set of persistent notifications received by the sub-

scriber (lines 11 to 16, and 30 to 35). In case of a proxy subscriber, an additional check in needed:

A proxy subscriber does not receive notifications published byPy→x
proxy since they have already been

published inPSy and delivered to subscribers thatSy→x
proxy represents.

Terminating an existing subscription. Figure 5.10 defines the actions performed byPSx when a

subscriber, either a local subscriber, or a proxy subscriber, unsubscribes frommjl. First,PSx checks

if a subscriber is already subscribed tomjl (line 3). If the test returnstrue, mjl is removed from the

set of subscriber’s active subscriptions (line 4). If there is no other local of remote subscriber tomjl

in PSx, the unsubscribe message is propagated to all proxy subscribers fromSout (lines 5 to 10). If

there are no local subscribers tomjl (line 12), and there are remote subscribers tomjl, we count the

number of proxy subscribers fromSin that are subscribed tomjl (lines 13 to 16). In case of only

one such proxy subscriber residing inPSx, e.g.,Sy→x
proxy, an unsubscription message is sent to the

proxy subscriberSx→y
proxy in PSy (lines 17 to 20) because there are no other subscribers tomjl in the

domain ofPSx, and a proxy subscription tomjl is no longer needed. This follows the basic principle

of flooding, a subscription is forwarded to all neighboring brokers, except to the one from which the

subscription originates. If there are two proxy subscribers tomjl in Sin, no subscription cancellation

can be performed because all neighboring brokers need to be aware of the subscription.

5.2.2 Routing Based on Subscription Covering

The routing algorithm based on subscription covering exploitscovering among subscriptions, the

characteristic that is inherent to type-based and content-based subscriptions. The algorithm uses the

principle ofreverse path forwarding for selective forwarding of subscriptions: The covering relation-

ship between subscriptions determines whether a new subscription should be forwarded to neighbor-

ing brokers or not. The concept of subscription covering was first defined in [22] and is denoted in

literature as content-based routing. The algorithm for routing based on filter covering presented in [78]

5. Routing Algorithms Supporting Mobility 77

//new subscription from a local subscriber
upon receiving a message “sub(mjl)” from Sj ∈ [SC\Sin] or “sub(mjl, Sj)”

if mjl /∈MA(Sj) {
MA(Sj)←MA(Sj) ∪mjl

5 if mjl /∈MA(SC\Sin) //subscription equality
for all Sproxy ∈ Sout

if mjl /∈MA(Sproxy) {
send message “forward(mjl)” to Sproxy

MA(Sproxy)←MA(Sproxy) ∪mjl

10 }
if NP �= ∅ //deliver persistent notifications

for all nik ∈ NP

if nik /∈ NP (Sj) andnik ≺ mjl {
send message “notify(nik)” to Sj

15 N(Sj)← N(Sj) ∪ nik

}
}

//new subscription from a proxy subscriber representing subscribers in PSy

20 upon receiving a message “sub(mjl)” from Sy→x
proxy ∈ Sin

if mjl /∈MA(Sy→x
proxy) {

MA(Sy→x
proxy)←MA(Sy→x

proxy) ∪mjl

if mjl /∈MA(SC\Sin) //subscription equality
for all Sproxy ∈ (Sout\Sx→y

proxy)
25 if mjl /∈MA(Sproxy) {

send message “forward(mjl)” to Sproxy

MA(Sproxy)←MA(Sproxy) ∪mjl

}
//deliver persistent notifications except those published in PSy

30 if NP �= ∅
for all nik ∈

[
NP \NP (P y→x

proxy)
]

if nik ≺ mjl {
send message “notify(nik)” to Sy→x

proxy

N(Sy→x
proxy)← N(Sy→x

proxy) ∪ nik

35 }
}

Figure 5.9: Defining a new subscription using subscription equality

5. Routing Algorithms Supporting Mobility 78

//unsubscription from either a local or proxy subscriber
upon receiving a messageunsub(mjl) from Sj ∈ SC or “unsub(mjl, Sj)”

if mjl ∈MA(Sj) {
MA(Sj)←MA(Sj)\mjl

5 if mjl /∈MA(SC) //no other subscriber to mjl

//terminate delivery path
for all Sproxy ∈ Sout {

send message “forward(¬mjl)” to Sproxy

MA(Sproxy)←MA(Sproxy)\mjl

10 }
else

if mjl /∈MA(SC\Sin) //no other local subscriber to mjl {
proxySubs = 0 //no. of proxy subscribers to mjl

for all Sproxy ∈ Sin

15 if mjl ∈MA(Sproxy)
proxySubs + +

if proxySubs == 1 {
send message “forward(¬mjl)” to Sx→y

proxy wheremjl ∈MA(Sy→x
proxy)

MA(Sx→y
proxy)←MA(Sx→y

proxy)\mjl

20 }
}

}

Figure 5.10: Terminating an existing subscription using subscription equality

5. Routing Algorithms Supporting Mobility 79

exploits the covering of subscriptions, to avoid unnecessary forwarding of subscriptions and unsub-

scriptions among neighboring brokers. The presented algorithm is used in stationary publish/subscribe

systems. We use a similar approach in our algorithms for subscription and unsubscription covering.

The covering-based approach aims at removing covered redundant subscriptions from the system

to reduce the number of subscription entries, and improve the routing performance. The main idea in

covering-based routing is the following:

• A subscription request is not forwarded to neighboring brokers if a subscription covering the

subscription is already active on the broker. An unsubscription request is not forwarded to

neighboring brokers if a subscription covering the expired subscription is still active on the

broker.

• When a subscription covering an existing subscription is defined on a broker, the broker for-

wards the new subscription request to its neighbors, and cancels all covered subscriptions.

When the covering subscription is canceled, the broker forwards the unsubscription request

for the covering subscription together with a number of subscription requests that will initiate

previously covered subscriptions.

Subscription covering. A subscriptionmx covers another subscriptionmy if mx matches all noti-

fications that matchmy. We define the set of all notifications matchingmx asN(mx) = {n | n ≺ mx},
and the set of all notifications matchingmy asN(my) = {n | n ≺ my}. Formally,mx coversmy,

denoted bymx � my iff N(mx) ⊇ N(my). If mx � my thenn ∈ N(my) impliesn ∈ N(mx), and

n ≺ my impliesn ≺ mx.

We define the boolean functioncovers between a set of subscriptionsM according to the eq. 4.6

as

cover :M×M 	→ {true, false} . (5.1)

Subscription covering sets. We define a subscription covering set of a proxy subscriberSproxy ∈
Sout(PSx) as a set of active subscriptions inPSx that are covered by an existingSproxy ’s subscription

mproxy ∈MA(Sproxy). Formally,

Mcov(mproxy, Sproxy) = {mjl | mproxy � mjl,mjl ∈MA(SC),mproxy ∈MA(Sproxy)} . (5.2)

We use subscription covering sets for each proxy subscriberSproxy ∈ Sout of a broker modeled

by PSx to denote covered subscriptions that are currently active inPSx, but that are not at the same

time active for proxy subscribersSproxy ∈ Sout. Proxy subscribers are not aware of their subscription

covering sets: The broker stores and updatesMcov(mproxy, Sproxy) for all mproxy ∈ MA(Sproxy).
Subscription covering sets track changes to subscriptions that are not propagated to proxy subscribers:

They are needed for optimization purposes introduced by subscription covering. The covering sets

enable a broker to decide whether to forward a new subscription or unsubscription request to a proxy

subscriber.

5. Routing Algorithms Supporting Mobility 80

//update the Sproxy ’s covering set with mjl

updateCoveringSets(mjl, Sproxy) {
proxyCovered = false
if mjl ∈MA(Sproxy)

5 proxyCovered = true
else{

for all mproxy ∈MA(Sproxy)
if mjl ≺ mproxy {

proxyCovered = true; added = false
10 for all mcov ∈Mcov(mproxy, Sproxy)

if mcov � mjl

added = true
if Mcov(mcov, Sproxy) �= ∅

Mcov(mcov, Sproxy)←Mcov(mcov, Sproxy) ∪mjl

15 else
Mcov(mcov, Sproxy) = {mjl}

else ifmjl � mcov

added = true
Mcov(mproxy, Sproxy)←Mcov(mproxy, Sproxy) ∪mjl

20 Mcov(mproxy, Sproxy)←Mcov(mproxy, Sproxy)\mcov

if Mcov(mjl, Sproxy) �= ∅
Mcov(mjl, Sproxy)←Mcov(mjl, Sproxy) ∪mcov

else
Mcov(mjl, Sproxy) = {mcov}

25 if added = false
Mcov(mproxy, Sproxy)←Mcov(mproxy, Sproxy) ∪mjl

}
if proxyCovered ≡ false {

Mcov(mjl, Sproxy) = ∅
30 for all mproxy ∈MA(Sproxy)

if mjl � mproxy

Mcov(mjl, Sproxy)←Mcov(mjl, Sproxy) ∪mproxy

}
}

35 returnproxyCovered
}

Figure 5.11: A method for updating a proxy subscriber’s covering set withmjl

5. Routing Algorithms Supporting Mobility 81

//removemjl from Sproxy ’s covering sets
updateCoveringSets(¬mjl, Sproxy) {

if Mcov(mjl, Sproxy) �= ∅
Mcov(mjl, Sproxy) = ∅

5 for all Mcov(mproxy, Sproxy)
if mjl ∈Mcov(mproxy, Sproxy)

Mcov(mproxy, Sproxy)←Mcov(mproxy, Sproxy)\mjl

}

Figure 5.12: A method for removingmjl from the covering sets of a proxy subscriber

Updating a proxy subscriber’s covering set with a new subscription. We define the method

for updatingSproxy’s subscription covering set with a new subscriptionmjl in Figure 5.11. The new

subscriptionmjl is compared to the set of active subscriptionsMA(Sproxy), and the existing subscrip-

tion covering setsMcov(mproxy, Sproxy). We use the variableproxyCovered to denote whether the

new subscriptionmjl is already covered by an active subscription from the setMA(Sproxy), and use

the value ofproxyCovered as the method return parameter.

If mjl is already an active subscription inMA(Sproxy), proxyCovered is set totrue (line 5)

and no updates of the covering sets are needed. Conversely, ifmjl is not an active subscription in

MA(Sproxy), we check whether an existing active subscription inMA(Sproxy) already coversmjl

(lines 7 and 8). If an active subscription, e.g.mproxy, coversmjl, proxyCovered is set totrue

and we update the covering sets withmjl (lines 10 to 26). Subscriptions form a hierarchy: It is not

sufficient to simply addmjl to the covering set of an active subscription that coversmjl sincemjl

must be put into the suitable hierarchical level of the subscription covering tree. For example,mjl

might be covered by an element that is already an element of the setMcov(mproxy, Sproxy), e.g.mcov.

mjl should therefore become an element ofmcov’s coverage set to form the appropriate hierarchy

(lines 11 to 16). Note thatmcov is not an active subscription forSproxy. Lines 17 to 24 define the

update of coverage sets if the new subscriptionmjl is covered by an active subscriptionmproxy, and

whenmjl covers one of the elements of themproxy’s coverage set, i.e.mproxy ≺ mjl ≺ mcov. In this

casemjl is put into themproxy ’s coverage set, andmcov becomes an element of themjl’s coverage

set. Ifmjl does not cover any of the elements from themproxy ’s coverage set, andmjl is not covered

by any element from the same set,mjl can be added toMcov(mproxy, Sproxy) (line 26).

If none of the active subscriptions coversmjl, i.e.,proxyCovered = false, Sproxy subscribes to

mjl, and a coverage set formjl is created (lines 28 to 33). All active subscriptions that are covered by

the new subscriptionmjl become members of the setMcov(mjl, Sproxy). The subscriptions from this

set will be inactivated whenSproxy subscribes tomjl.

Removing a subscription from proxy subscriber’s covering sets. Figure 5.12 defines the algo-

rithm for removingmjl from the proxy subscriber’s covering sets. Firstly, the elements from the set

Mcov(mjl, Sproxy) are removed, and secondly,mjl is removed from all otherSproxy ’s covering sets.

5. Routing Algorithms Supporting Mobility 82

//new subscription from a local subscriber
upon receiving a message “sub(mjl)” from Sj ∈ [SC\Sin] or “sub(mjl, Sj)”

if mjl /∈MA(Sj) {
MA(Sj)←MA(Sj) ∪mjl

5 covered = false
if mjl /∈MA(SC\Sin) {

for all mlocal ∈MA(SC\Sin)
if mjl ≺ mlocal {

covered = true //covered by local subscription
10 for all Sproxy ∈ Sout

updateCoveringSets(mjl, Sproxy)
}

if covered = false
for all Sproxy ∈ Sout {

15 proxyCovered = updateCoveringSets(mjl, Sproxy)
if proxyCovered ≡ false {
//not covered by proxy subscriptions

send message “forward(mjl)” to Sproxy

MA(Sproxy)←MA(Sproxy) ∪mjl

20 for all mcov ∈Mcov(mjl, Sproxy) {
send message “forward(¬mcov)” to Sproxy

MA(Sproxy)←MA(Sproxy)\mcov

}
}

25 }
} else

covered = true //equal to a local subscription
if NP �= ∅ //receive persistent notifications

for all nik ∈ NP

30 if nik /∈ NP (Sj) andnik ≺ mjl {
send message “notify(nik)” to Sj

N(Sj)← N(Sj) ∪ nik

}
}

Figure 5.13: Local subscription based on covering

5. Routing Algorithms Supporting Mobility 83

Defining a new subscription by a local subscriber. Figure 5.13 defines the algorithm performed

when a local subscriber defines a new subscriptionmjl. If Sj is not already subscribed tomjl, mjl is

added to the set ofSj ’s active subscriptions (line 4), and, if needed, the new subscription is propagated

to proxy subscribers from the setSout. In casemjl is already an active subscription issued by another

local subscriber, there is no need for subscription propagation (line 27). Conversely, we check whether

mjl is covered by an existing active subscription of a local subscriber (lines 7 and 8). If a covering

subscription is active, there is no need to propagatemjl to proxy subscribers. We only update the

covering sets of proxy subscribers by calling the methodupdateCoveringSets(mjl, Sproxy) (lines

10 and 11). In casemjl is not covered by a local subscription, we check whether each proxy subscriber

from the setSout already has an active subscription coveringmjl. Only if such subscription is not

active for aSproxy ∈ Sout, a subscription request formjl is propagated toSproxy (lines 18 and 19). We

also cancel subscriptions covered bymjl from the setMcov(mjl, Sproxy) by sending unsubscription

requests toSproxy (lines 20 to 23). Lines 28 to 33 ensure that a local subscriber receives persistent

notifications as in the case of subscription based on equality (Figure 5.9).

Defining a new subscription by a proxy subscriber. The algorithm for defining a new subscrip-

tion by a proxy subscriber as defined in Figure 5.14 is similar to the algorithm for a local subscriber.

The only difference between the two algorithms is in the fact that a subscription by a proxy subscriber

Sy→x
proxy is not forwarded to the proxy subscriberSx→y

proxy since it originated fromPSy, while a new

subscription by a local subscriber is forwarded to all proxy subscribers from the setSout.

Terminating an existing subscription. We define the algorithm for unsubscribing a local or a

proxy subscriber frommjl in Figure 5.15. The algorithm relies on the information in the covering

sets that is maintained by a broker. Ifmjl is Sj ’s active subscription, it is first removed from the set

of active subscriptions. In case there are no other subscribers tomjl connected to the broker, either

local or proxy subscribers, the subscription tomjl can be canceled (lines 5 to 18). The unsubscription

is propagated to a proxy subscriber from the setSout only in casemjl is also an active subscription of

the proxy subscriberSproxy ∈ Sout (line 8). Otherwise, no action is taken becausemjl is covered by

another subscription andSproxy should not change its subscriptions. To cancel an active subscription

of a proxy subscriberSproxy, we first removemjl from the set ofSproxy’s active subscriptions (line

9), next we initiate subscriptions to all covered subscriptions from the setMcov(mjl, Sproxy) (lines 10

to 14), and finally, we cancel the active subscription tomjl by sending a message “forward(¬mjl)”
to Sproxy (line 15). The broker updates the covering sets for each proxy subscriber by invoking the

methodupdateCoveringSets(¬mjl, Sproxy).
If there are still active subscribers tomjl connected to the broker, we check whether there is a

single proxy subscriber, e.g.,Sy→x
proxy, with an active subscription tomjl connected to the broker (lines

21 to 24). In this case the active subscription by it’s pair proxy subscriberSx→y
proxy is canceled (lines 25

to 34). In all other cases, i.e., if there is a local subscriber tomjl, or two proxy subscribers tomjl, no

actions are needed.

5. Routing Algorithms Supporting Mobility 84

//new subscription from a proxy subscriber
upon receiving a message “sub(mjl)” from Sy→x

proxy ∈ Sin

if mjl /∈MA(Sj) {
MA(Sj)←MA(Sj) ∪mjl

5 covered = false
if mjl /∈MA(SC\Sin) {

for all mlocal ∈MA(SC\Sin)
if mjl ≺ mlocal {

covered = true //covered by local subscription
10 for all Sproxy ∈

[
Sout\Sx→y

proxy

]
updateCoveringSets(mjl, Sproxy)

}
if covered = false

for all Sproxy ∈
[
Sout\Sx→y

proxy

] {
15 proxyCovered = updateCoveringSets(mjl, Sproxy)

if proxyCovered ≡ false {
//not covered by proxy subscriptions

send message “forward(mjl)” to Sproxy

for all mcov ∈Mcov(mjl, Sproxy) {
20 send message “forward(¬mcov)” to Sproxy

MA(Sproxy)←MA(Sproxy)\mcov

}
MA(Sproxy)←MA(Sproxy) ∪mjl

}
25 }

} else
covered = true //equal to a local subscription

//receive persistent notifications except those published in PSy

if NP �= ∅
30 for all nik ∈

[
NP \NP (P y→x

proxy)
]

if nik ≺ mjl {
send message “notify(nik)” to Sy→x

proxy

N(Sy→x
proxy)← N(Sy→x

proxy) ∪ nik

}
35 }

Figure 5.14: Proxy subscription based on covering

5. Routing Algorithms Supporting Mobility 85

//unsubscription from either a local or proxy subscriber
upon receiving a messageunsub(mjl) from Sj ∈ SC or “unsub(mjl, Sj)”

if mjl ∈MA(Sj) {
MA(Sj)←MA(Sj)\mjl

5 if mjl /∈MA(SC) //no other subscriber to mjl

//terminate delivery path
for all Sproxy ∈ Sout {

if mjl ∈MA(Sproxy) {
MA(Sproxy)←MA(Sproxy)\mjl

10 if Mcov(mjl, Sproxy) �= ∅
for all mcov ∈Mcov(mjl, Sproxy) {

send message “forward(mcov)” to Sproxy

MA(Sproxy)←MA(Sproxy) ∪mcov

}
15 send message “forward(¬mjl)” to Sproxy

}
updateCoveringSets(¬mjl, Sproxy)

}
else

20 if mjl /∈MA(SC\Sin) //no other local subscriber to mjl {
proxySubs = 0 //no. of proxy subscribers to mjl

for all Sproxy ∈ Sin

if mjl ∈MA(Sproxy)
proxySubs + +

25 if proxySubs == 1 {
MA(Sx→y

proxy)←MA(Sx→y
proxy)\mjl

if Mcov(mjl, S
x→y
proxy) �= ∅

for all mcov ∈Mcov(mjl, S
x→y
proxy) {

send message “forward(mcov)” to Sx→y
proxy

30 MA(Sx→y
proxy)←MA(Sx→y

proxy) ∪mcov

}
send message “forward(¬mjl)” to Sx→y

proxy wheremjl ∈MA(Sy→x
proxy)

updateCoveringSets(¬mjl, S
x→y
proxy)

}
35 }

}

Figure 5.15: Terminating an existing subscription based on covering

5. Routing Algorithms Supporting Mobility 86

5.3 Evaluation of the Routing Algorithms

We use the implementation of the prototype system MOPS (Mobile PublishSubscribe) to investigate

the applicability of the proposed routing algorithms in mobile scenarios. The implementation shows

that mobile subscribers receive notifications published during the period of their disconnection that

are still valid when subscribers reconnect to the system, possibly through another broker. Subscribers

do not receive duplicate notifications because of the mechanism that compares already received no-

tifications that are still valid to those that should be sent to a subscriber. Undelivered notifications

are possible because of the delay introduced by a broker network and subscriber mobility which can

lead to notification expiry prior to it’s delivery to the subscriber. We evaluate the performance of the

routing algorithm based on subscription covering with persistent notifications (PN-alg), and compare

it to the same algorithm that uses queues (Q-alg). We define the metrics to assess the performance of

publish/subscribe systems in mobile scenarios.

5.3.1 The Prototype System MOPS

MOPS has been designed and implemented to prove the concept, and evaluate the proposed pub-

lish/subscribe distributed model, and routing algorithms supporting client mobility. The system has

been implemented in the Java programming language. It is distinguishable from other publish/subscribe

prototype implementations by the inherent support for publisher and subscriber mobility that has been

integrated into the system design, rather than added as an extension to an existing system supporting

stationary clients. Furthermore, the current system implementation can be configured to use either

queues for storing notifications on behalf of disconnected subscribers, or persistent notifications that

are maintained by the brokers until their validity period expires.

The MOPS infrastructure comprises a set of interconnected brokers that form an acyclic commu-

nication graph. There is a single spanning tree for notification delivery connecting a publisher to a

group of subscribers, and each broker is a single point of system failure. The system currently does

not provide mechanisms for fault tolerance: We assume that brokers cannot fail and that the commu-

nication links between brokers are error-free bidirectional point-to-point links. The broker network is

built by incrementally connecting a new broker to an active broker, and can be extended during system

operation. Clients, i.e., publishers and subscribers, are mobile entities that can connect to different

brokers. The communication between a pair of brokers, and a client and a broker is implemented in

the form of messages that are serialized Java objects transported using TCP.

The MOPS system supports typed notifications that carry a list of attributes. It offers type-based

and attribute-based subscriptions, and implements type-based routing with support for subscription

covering in the broker network. Notification filtering according to attribute-based subscriptions is

performed only on the edge broker prior to notification delivery to subscribers. Publishers can publish

notifications of an already defined type that is defined in the broker network, and subscribers can only

subscribe to recognized types. The set of recognized types is defined prior to system startup using a

file containing a serialized list of Java classes, and can be updated during system operation. The file is

5. Routing Algorithms Supporting Mobility 87

+equals() : boolean

#eventId : String
#originId : String
#timestamp : long
#validityTimestamp : long

Event

-subscription : Subscription
SubscriptionEvent

+coversSubscription() : boolean
+coversNEvent() : boolean
+equals() : boolean

-type : Class
-subProperties : Hashtable

Subscription

1

1

-subscription : Subscription
-uncovered : HashSet

UnsubscriptionEvent

1

1

-eventProps : Hashtable
-name : String

SysEvent

+matchesSubscription() : boolean
-userProperties : Hashtable

NotificationEvent

Figure 5.16: Class diagram of event classes

used only when starting the first broker: All added brokers and connected clients will receive the list

of recognized types when connecting to an active broker. The type restriction represents no limitation

with respect to other publish/subscribe systems. For example, JMS topics are administered objects

that need to be defined by an administrator on the JMS server prior to being used by JMS clients.

Basic Classes

The vital system class is the abstract classEvent that models events of the proposed publish/subscribe

model. AnEvent object is uniquely identified by the fieldeventId; its creator is specified by

originId; it carries the timestamp declaring the time of its creation, and the validity timestamp

that announces when the event expires. ClassesNotificationEvent,SubscriptionEvent,

UnsubscriptionEvent, andSysEvent extend the classEvent as depicted in the UML class

diagram in Figure 5.16. The classNotificationEvent models the eventspublish, andnotify

from the publish/subscribe model, and carries the information published by publishers, either be-

tween a publisher and a broker, two brokers, or a broker and a subscriber. ANotificationEvent

object can contain a list of user-defined attributes that are stored in the fielduserProperties.

Note that eachNotificationEvent object has avalidityTimestamp field that determines

its persistence in the system. All notifications published in the system need to extent the class

NotificationEvent, either directly, or indirectly through parent classes.

ClassesSubscriptionEvent andUnsubscriptionEvent model eventssubscribe, and

unsubscribe, respectively. They contain a fieldsubscription that defines the characteristics

of user’s subscription modeled by the classSubscription. A Subscription object deter-

mines the type of subscribed notifications as specified in the fieldtype, and carries an optional

5. Routing Algorithms Supporting Mobility 88

public boolean coversSubscription(Subscription sub) {
if (this.type.isAssignableFrom(sub.getType())) {

//check attributes
...
return true;

}
return false;

}

public boolean coversNEvent(NotificationEvent nEvent) {
if (this.type.isInstance(nEvent)) {

//check attributes
...
return true;

}
return false;

}

Figure 5.17: The implementation of methods for checking the coverage relationship

list of attributes (subProperties) that further refine the subscription. The matching relation-

ship between a notification and a subscription (defined in eq. 4.6) is implemented in the method

matchesSubscription() of the classEventNotification, andcoversNEvent() of

the classSubscription. The covering relationship between subscriptions as defined in eq. 5.1 is

implemented in the methodcoversSubscription() of the classSubscription. Figure 5.17

shows code fragments implementing the methods of the classSubscription that test the cover-

ing relationship. We use the methods provided byjava.lang.Class: isAssignableFrom()

checks the inheritance relationship between the two classes, andisInstance() tests whether an

object is an instance of a given class. After checking the type, the methods compare the attributes, both

attribute names and values, and in case all attributes of the covering subscription are present in the

covered subscription, or notification event, the method returnstrue. ThevalidityTimestamp

for SubscriptionEvent andUnsubscriptionEvent is set to0 by default: However, an

option is given to initiate unsubscription to an active subscription after its validity period expires.

The classSysEvent models eventsconnect, and disconnect of the publish/subscribe model,

and enables a client to connect to, and disconnect from a broker. Connection to a broker does not

mean a constant TCP connection between the two entities to preserve network resources. A new

connection is initiated when it is needed. We use TCP instead of UDP to ensure reliable data transport.

Therefore, eachSysEvent object declaring a connection between a client and a broker carries a

validityTimestamp, and maintains the client in the set of broker’s connected clients until the

timestamp is valid.

The infrastructure classes areClient andBroker that extend the classEntity as depicted in

the UML class diagram in Figure 5.18. The classEntity is identified by its uniqueid. It uses an

instance of the classIncomingThread that implements a TCP server socket listening on a defined

port and accepting incoming messages from otherEntity objects. The flaginSystem declares

whether the entity is connected to the broker network or not, andtype contains type definitions that

5. Routing Algorithms Supporting Mobility 89

#sendMsg()
+init()
+startup()
+shutdown()

#id : String
#incoming : IncomingThread
#inSystem : boolean
#types : Class

Entity

[]

+connect()
+disconnect()
+subscribe()
+unsubscribe()
+notify()

-connectedEntities : EntityData
-notificationsContainer : PersistentNotificationsContainer
-subscriberQueues : Hashtable
-routing : Routing

Broker

+connect()
+disconnect()
+publish()
+subscribe()
+unsubscribe()
+addToReceivedNotifications()

-brokerHost : String
-brokerPort : int
-subscriptions : HashSet
-connectionTimestamp : long

Client

[]

[]

+publish()
-proxySubscriber
ProxyPublisher

+forward()
+subscribe()
+unsubscribe()

-proxyPublisher
ProxySubscriber

1 1

Figure 5.18: Class diagram of infrastructure classes

are used in the system.

The classClient models both publishers and subscribers: It contains the information about

the broker to which the client is connected. The fieldconnectionTimestampdefines whether the

connection is still valid or not. The set of active subscriptions is stored in the fieldsubscriptions,

while the list of received and valid notification identifiers is recorded in the fieldnotifications-

Container. The classClient defines methodsconnect() anddisconnect() that enable a

client to send a message to a broker requiring connection or disconnection. The methodpublish()

is used for publishing a notification event that is an instance of one of the defined notification types.

Methodssubscribe() and unsubscribe() enable a client to specify and send a subscrip-

tion event or an unsubscription event to the broker. Special clients areProxySubscriber and

ProxyPublisher that implement the corresponding entities from the distributed publish/subscribe

model.

The classBroker maintains a list of connected clients in the fieldconnectedEntities.

Connected clients can be either publishers, subscribers, or proxy publishers, and proxy subscribers

that enable the communication between brokers. The information about the connected entities is

described by a special classEntityData. Persistent notifications are stored in a special container

notificationsContainer, queued notifications can be stored in a list of queuessubscriber-

Queues. Note that persistent notifications are used only if the PN-alg is applied. Queues are used for

the Q-alg. Methods of the classBroker enable brokers to connect to, and to disconnect from other

5. Routing Algorithms Supporting Mobility 90

+getTargetsFor(in nEvent : NotificationEvent)
+getTargetsFor(in sEvent : SubscriptionEvent)
+getTargetsFor(in usEvent : UnsubscriptionEvent)

-brokerSubscriptions : Hashtable
-adjacentEntities : Hashtable

Routing

+getEntitiesForSubscription()
-subscriptionEntities : Hashtable

RoutingTable

1 1+processMsg()
-routing : Routing
BrokerWorker

1 1

RuotingSubEquality RoutingSubCovering

Figure 5.19: Class diagram of routing classes

brokers, to send subscriptions and unsubscriptions to their proxy subscribers, and to send notification

to clients with matching subscriptions.

Implementation of the Routing Algorithms

The routing decisions regarding incoming messages received by brokers are made using the classes de-

picted in Figure 5.19. Each incoming message is processed in a new thread implemented by the class

BrokerWorker. It implements methods for processing messages carrying the defined events. It

uses the classRouting, i.e., the classesRoutingSubEquality andRoutingSubCovering

that implement the corresponding routing algorithms, to make decisions about the neighboring en-

tities to which the incoming message must be forwarded. Note that the system can be extended

by new routing algorithms implemented by classes that extent the base routing class, and that the

classRouting is a singleton [53], i.e., there can be at most one object instantiating the class in

a running process. The classRouting maintains a list of active broker subscriptions in the field

brokerSubscriptions, and a list of neighboring entities inadjacentEntities. Routing

is associated with the classRoutingTable that maintains a mapping of each active subscription to

a list of neighboring entities, either brokers or subscribers, that are subscribed to the particular sub-

scription.RoutingTable is updated by each new subscription or unsubscription event, and speeds

up the process of finding neighboring entities with matching subscriptions for incoming notifications.

The usage of a routing table reduces the processing time needed to find subscriptions matching a

published notification by avoiding program loops (for all subscribers, and for all their active subscrip-

tions) and maintains a list of entities for each defined subscription. The routing table is updated with

each subscription and unsubscription event.

The difference between the Q-alg and the PN-alg is not in the implementation of the classRout-

ing and its subclasses, but in the procedures that are performed when a subscriber connects to a

broker. In case of the Q-alg, the subscriber first activates its subscriptions to update the delivery path

in the broker network, and later on retrieves the notifications stored in its queue maintained by the old

broker. In case of the PN-alg, the subscriber also activates the subscriptions, and the broker network

answers by routing persistent valid notifications matching the subscriptions to the subscriber. Prior

5. Routing Algorithms Supporting Mobility 91

to notification delivery, the edge broker checks whether the subscriber has already received some

notifications using the list of received and valid subscriber notifications. The next difference is in the

notification storage: In case of the Q-alg, brokers store queues per each disconnected subscriber, while

for the PN-alg, brokers maintain persistent notifications, and subscribers maintain a list of received

and valid notifications.

The described set of classes builds the core of the publish/subscribe infrastructure. The application

using the infrastructure needs a mechanism to use the infrastructure in a simple and transparent way.

This is achieved through special interfaces:ApplicationInterface, and its extending inter-

facesBrokerApplicationInterface andClientApplicationInterface. The inter-

faces define the methods that need to be implemented by application programmers using the MOPS

infrastructure. The methods are invoked if an entity, either a broker or a client, receives an event.

They notify the application layer about event occurrences. The detailed description of the application

interfaces and an example application is presented in [75]. The detailed description of the system

implementation based on the PN-alg is given in [117].

5.3.2 Queuing Algorithm vs. Persistent Notification Algorithm

This section presents experimental results that assess the performance of the PN-alg, and compares

the PN-alg to the Q-alg. The main differences between the Q-alg and the PN-alg are in the following:

• Notification storage. In case of the Q-alg, system brokers store queues per each disconnected

subscriber. For the PN-alg, brokers maintain persistent notifications, and the list of valid notifi-

cations sent to subscribers and neighboring brokers.

• Subscriber’s reconnection to the system. When applying the Q-alg, a reconnecting sub-

scriber first reactivates its subscriptions at the new broker to update the delivery path in the

broker network, and next, the new broker retrieves the notifications from the subscriber’s queue

maintained by the old broker and delivers them to the subscriber. In case of the PN-alg, the

subscription reactivation will initiate the delivery of valid notifications along the new delivery

path to the subscriber. Prior to notification delivery to the client, the edge broker checks whether

the subscriber has already received a valid notification by comparing it to the list of received

notification ids.

• Subscriber’s data. A subscriber in the system applying the Q-alg needs to know the identifier

of the old broker together with the list of active subscriptions to reconnect to the system. In case

of the PN-alg, a list of received and valid notification ids, and the list of active subscriptions is

needed.

• Perceived number of system subscribers. Subscriber queues act as proxy subscribers for dis-

connected clients which gives the impression that subscribers are constantly active in a system

that uses the Q-alg. The PN-alg maintains no active subscriptions for disconnected subscribers.

5. Routing Algorithms Supporting Mobility 92

The evaluation results are obtained using a working prototype which emulated the real working

environment, instead of model simulation. There are some differences in the implementation of the

two approaches that cause the increased processing load for system brokers and clients in case of the

PN-alg: The main reason is the implementation of a garbage collector that purges expired notifications

from notification containers. Therefore, we have decided to define the metrics that are not largely

influenced by the processing latency to enable a just comparison of the two approaches.

Metrics. The performance of a publish/subscribe system in a dynamic environment with mobile

clients is largely influenced by its efficiency: minimal processing load on the brokers, minimal band-

width consumption, and minimal notification delay. We propose the usage of the following metrics

for mobile publish/subscribe system evaluation:

• Broker processing load. The processing load experienced by a broker can be measured by

the rate of processed messages. Messages carrying notifications transport the actual informa-

tion, while subscription and unsubscription messages represent control load that creates and

updates delivery paths. We differentiate between received and sent messages, and classify them

according to the type of events they transport.

• Bandwidth consumption. A desirable property of a distributed pub/sub system is to consume

minimal bandwidth. The rate of processed messages, as in the case of broker processing load,

gives a good estimate of the physical bandwidth consumption.

• Notification delay. Efficient notification delivery requires minimal delay, i.e., the period be-

tween notification publication and receipt. In case of mobile subscribers, the delay is increased

due to subscriber disconnections from the system, and it depends on the duration of disconnec-

tion periods and notification validity periods.

Best to the author’s knowledge, this is the first evaluation of publish/subscribe system perfor-

mance in a mobile setting that provides performance measures regarding the broker load, notification

delay, and bandwidth consumption. The results presented in [21] evaluate the mobility implementa-

tion within the project Siena. The results show that the extended mobility-enabled system functions

correctly, i.e., that notifications published during the disconnected period reach subscribers as they re-

connect to the system. The authors investigate the number of duplicate and lost messages, but define

no other metrics to evaluate system performance.

Experimental Setup

The experiment investigates the broker’s processing load, and bandwidth consumption of the Q-alg

and the PN-alg in terms of the rate of processed messages, and the number of stored notifications.

Furthermore, we investigate the implementation efficiency in terms of delay. We ran the experiment

under the same initial conditions for the Q-alg and the PN-alg. After forming a network of brokers,

we initiated stationary publishers, and the defined set of mobile subscribers. Each experiment run

lasted 15 minutes, and we conducted 5 runs with the same initial setting. Therefore, each data point in

5. Routing Algorithms Supporting Mobility 93

B6

B1

B3

B7

B2

B5

B4

P6

P5

P4
P2

P1P7

P3

Figure 5.20: Experimental network

the given charts is an arithmetic mean of 5 runs. The experiment was conducted using two computers

(Celeron 2.2 GHz, 512 MB of RAM) running Windows XP. The first computer was used to set up the

network of brokers, while the second one hosted both publisher and subscriber processes.

Input parameters. The experiment is conducted using a stationary network of seven brokers

forming a tree as depicted in Figure 5.20. The number of publishers is constantp = 7, and each

publisher is stationary and connected to one of the brokers. Each publisher publishes notifications at

a constant rate ofpubRate = 0.5 notifications/s. We use a complex type hierarchy consisting of20
types, and publishers generate notifications of a randomly chosen type with uniform probability. Each

notification carries a payload of100 bytes. The validity period for notifications in case of the PN-alg

is set to5000 ms to avoid potential undelivered notifications.

We varied the number of subscribers in the system,s = 1, 5, . . . , 30. Subscribers are mobile

and can connect to all system brokers except toB1 because it is the root node of the broker network,

and therefore the system bottleneck. We use the random mobility model [66] in the experiment:

A subscriber chooses the next broker randomly from the set of available brokers. Each subscriber

connects to a new broker with a constant connection rate in the range from0.2 to 0.6 connections/s.

Connection duration is50% of the connection period. For example, whenconnRate = 0.2 1/s and

connPeriod = 0.5, a subscriber is connected to a broker for2.5 s, then it disconnects from the

system, and after2.5 s reconnects to a new broker. Figure 5.21 shows the measured average number

of subscribers connected to a broker as the total number of subscribers in the system changes. It is

visible that subscribers do not connect toB1, and that other brokers evenly share the subscriber load.

In case of the total of 15 subscribers in the system, there is on average one subscriber connected to

each broker. All subscribers subscribe to the top subscription type, and should receive all published

notifications. The overview of input parameters for the experiment is given in Table 5.1.

Experimental Results

The rate of received and sent messages. Figure 5.22 shows the average rate of received and sent

notification messages per each broker. The rate ofreceived notification messages for both the Q-alg

5. Routing Algorithms Supporting Mobility 94

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7

Broker

A
ve

ra
ge

 N
um

be
r

of
 S

ub
sc

rib
er

s

1 5 7 10 15 20 25 30 35

Figure 5.21: Number of connected subscribers per broker

Table 5.1: Input parameters

Publishers Subscribers

p 7 s 1, 5, 10, 15, 20, 25, 30

pubRate 0.5 1/s connRate 0.2 − 0.6 1/s

loadSize 100 bytes connPeriod 0.5

validity 5000 ms brokers B2, B3, B4, B5, B6, B7

5. Routing Algorithms Supporting Mobility 95

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

Number of Subscribers

R
at

e

Q-alg (received) PN-alg (received) Q-alg (sent) PN-alg (sent)

Figure 5.22: Rate of received and sent notifications

and the PN-alg increases untils = 15 when there is on average1 subscriber per each broker, and

reaches the maximum value determined by the number of system publishers, and their publishing

rates, e.g., forp = 7 andpubRate = 0.5, the maximum rate of received notifications for each broker

equals3.5 when each broker receives all published notifications. Clearly, the rate ofsent notification

messages increases as the number of subscribers in the system increases, because the number of

message destinations increases accordingly. The rate of sent notifications is not significantly different

for both approaches in the experiment. However, the Q-alg generates a slightly larger number of

notification messages than the PN-alg whens ≥ 15, because in case of the Q-alg, notifications are

sent to subscriber queues during the disconnection period, while in case of the PN-alg, notifications are

cached on brokers they traverse, and from there delivered to reconnecting subscribers. The notification

rate in case of the Q-alg is further increased by notification exchange during the handover procedure.

The difference is not significant for 30 subscribers in the system, but the trend shows that it would be

substantial in case of a large number of subscribers.

Figure 5.23 shows the average rate of received and sent subscription messages per each broker.

As expected, the rate ofreceived subscription messages increases for both algorithms as the number

of subscribers in the system increases, and the rate ofsent subscription messages decreases due to

the existence of covered subscriptions in the system as the number of subscribers increases. The

graph shows that there are no significant differences between the two approaches as the number of

subscribers in the system increases.

Figure 5.24 shows the average rate ofreceived and sent unsubscription messages per broker. As

expected, the Q-alg generates less unsubscription messages than the PN-alg because the Q-alg does

not generate unsubscription messages in case the old and the new broker are the same, which is the

case for the PN-alg. The rate of sent unsubscription messages decreases as the number of subscribers

5. Routing Algorithms Supporting Mobility 96

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

Number of Subscribers

R
at

e

Q-alg (received) Q-alg (sent) PN-alg (received) PN-alg (sent)

Figure 5.23: Rate of received and sent subscriptions

increases, because there is no need to propagate unsubscriptions since there are other subscribers with

an active matching subscription that are connected to brokers.

Figure 5.25 shows the average rate ofcontrol messages per each broker that create and update

delivery paths in the broker network. We refer to both subscription and unsubscription messages as

control messages. Although it would be reasonable to assume that the rate of control messages in case

of the PN-alg is substantially larger than for the Q-alg due to the increased number of unsubscriptions,

the experiment shows that as the number of subscribers in the system increases, the difference between

the PN-alg and the Q-alg decreases.

Finally, Figure 5.26 depicts the average rate of all received and sent messages per broker and can

be used to asses the broker processing load. The messages that are taken into account are notifications,

subscriptions, and unsubscriptions. It is visible that the Q-alg poses less load on a broker for a smaller

number of subscribers, but that the performance of the PN-alg improves as the number of subscribers

in the system increases.

The number of stored notifications. Figure 5.27 shows the average number of routing table

entries on a broker as the number of subscribers in the system increases. The size of routing tables

are important as they directly influence the routing efficiency and delivery delay for published notifi-

cations. As expected, the number of routing table entries is larger for the Q-alg than for the PN-alg

because the Q-alg experiences a larger number of subscribers in the system because disconnected

subscribers are represented by queues and require routing table entries. It can be concluded that the

PN-alg is superior when compared to the Q-alg with respect to the number of routing table entries

especially if we assume that the number of subscribers in the system is large, and if disconnection

periods are frequent and long.

Notification delay. Figure 5.28, Figure 5.29, and Figure 5.30 show the experienced delay per

5. Routing Algorithms Supporting Mobility 97

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

Number of Subscribers

R
at

e
Q-alg (received) Q-alg (sent) PN-alg (received) PN-alg (sent)

Figure 5.24: Rate of received and sent unsubscriptions

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

Number of Subscribers

R
at

e

Q-alg (received) Q-alg (sent) PN-alg (received) PN-alg (sent)

Figure 5.25: Rate of received and sent control messages

5. Routing Algorithms Supporting Mobility 98

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

Number of Subscribers

R
at

e
Q-alg (received) Q-alg (sent) PN-alg (received) PN-alg (sent)

Figure 5.26: Rate of received and sent notifications/subscriptions/unsubscriptions

0

1

2

3

4

5

6

7

1 5 10 15 20 25 30

Number of subscribers

N
um

be
r o

f e
nt

rie
s

Queued

Persistent

Figure 5.27: The average routing table size per broker

5. Routing Algorithms Supporting Mobility 99

0

50

100

150

0 5 10 15 20 25 30

Number of Subscribers

D
el

ay
 [m

s]

Q-alg PN-alg

Figure 5.28: Delay for direct notifications

600

700

800

900

1000

0 5 10 15 20 25 30

Number of Subscribers

D
el

ay
 [m

s]

Q-alg PN-alg

Figure 5.29: Delay for stored (queued/persistent) notifications

received notification in ms ass varies. Notifications taken into account in Figure 5.28 were directly

delivered to subscribers without being stored in the system. The delay of stored notifications, either

queued, or persistent, is depicted in Figure 5.29. Figure 5.30 shows the average delay for all published

and delivered notifications. The figures show that the PN-alg causes smaller delay than the Q-alg as

a consequence of smaller routing tables. The delay is also influenced by the differences in broker

implementations: PN-alg brokers are burdened by special processing threads for updating the list of

unexpired notifications, and therefore the difference between the two approaches is less significant.

To conclude, the PN-alg is superior when compared to the Q-alg with respect to the routing ef-

ficiency as it generates smaller routing tables and introduces smaller notification delay. The PN-alg

introduces less processing load on brokers for the conducted experiment as the number of subscribers

in the system increases, and therefore consumes less bandwidth on links connecting the brokers. The

5. Routing Algorithms Supporting Mobility 100

400

500

600

0 5 10 15 20 25 30

Number of Subscribers

D
el

ay
 [m

s]

Q-alg PN-alg

Figure 5.30: Delay for all notifications

preliminary results show that the load introduced by control messages for the PN-alg is acceptable

when compared to the Q-alg.

5.4 Discussion

Mobility and persistent notifications. The usage of persistent notifications stored by the system,

and the algorithm that requires the delivery of such notifications after subscriber’s reconnection to the

system, is a novel approach that assures the delivery of notifications published during subscriber’s

disconnections. When a subscriber reconnects to the system, possibly through a new broker, the new

broker reactivates its subscriptions. The subscriber needs to provide a list of its active subscriptions,

and a list of subscriber’s valid received notifications. The broker can alternatively retrieve the list

of subscriptions and received notifications from the broker network. The list of active subscriptions

is needed to reactivate subscriptions, and the list of subscriber’s valid received notifications prevents

delivery of duplicate notifications. The reactivation of subscriptions causes the creation of a new

delivery tree to the subscriber using the new broker as the root node of the delivery tree. The rule that

requires the delivery of persistent valid notifications after each subscription reactivation assures that

the subscriber receives persistent notifications stored by the broker network that it has not previously

received.

A persistent notification is stored by a subset of network brokers until its validity period expires. It

is maintained by a single broker if, at the time of its publishing, there were no remote subscribers for

the notification. The notification will eventually reach a reconnecting subscriber following a newly-

created delivery path, and be stored on each broker it traverses. The subscriber might have already

received the notification if it has previously resided on the broker through which the notification has

been published: The notification will be routed to the new broker, however, it will not be delivered

to the subscriber since its id is in the list of subscriber’s received notifications. This in the known

5. Routing Algorithms Supporting Mobility 101

overhead of the approach that causes superfluous traffic in the broker network, and increases the usage

of broker memory and processing time. At the other extreme is the situation in which all brokers have

a notification copy. A reconnecting subscriber will receive a notification copy from the access broker

without causing extra traffic in the broker network.

If we assume reliable communication in the system, the system is resilient to duplicate notifica-

tions. The mechanism that compares the list of subscriber’s received notifications that are still valid to

those that should be sent to a subscriber prevents the possibility of delivering duplicate notifications.

However, a notification can be undelivered because a broker network may introduce the delay that can

lead to notification expiry prior to it’s delivery to the subscriber.

Comparison with the “queuing” approach. Potential advantages of the proposed approach

when compared with the Q-alg are the following: avoidance of the handover procedure that transfers

notifications from the old to the new broker, reduced size of broker routing tables due to decreased

number of perceived subscribers in the system, and memory consumption related to the storage of no-

tifications in the system. The expected disadvantage is related to control traffic: The PN-alg generates

an increased number of subscriptions and unsubscriptions for terminating the old and creating the new

delivery paths. The Q-alg suffers from the same problem if the probability that a subscriber reconnects

to the same broker is low. If subscribers frequently connect to the same broker, the number of control

messages is reduced because there is no need to update an existing delivery path. The maintenance of

the list of received and valid notification ids is an additional broker overhead in case of the PN-alg.

Advertisements. In the presented algorithms we utilize only subscription and notification mes-

sages: Subscriptions create delivery paths for notifications. Some systems, for example SIENA [24]

and Hermes [89] use advertisements to decrease the number of control messages exchanged between

system brokers. Advertisements are published by notification publishers to declare the intent of pub-

lishing notifications with certain characteristics. Advertisements set routing paths for subscriptions:

Every advertisement is broadcasted to all brokers, and subscriptions follow reverse paths set by ad-

vertisements to set delivery paths from potential publishers to subscribers. A subscription is routed

to a neighboring broker only if it advertises notifications matching a subscription. The forwarding

of advertisements decreases the number of control messages that update subscription information

since subscription update is sent only to those brokers that can generate matching notifications. The

algorithms presented in the thesis can be extended to use advertisements for decreasing the rate of

subscription and unsubscription messages in the system.

Reverse path forwarding vs. core-based trees. The algorithms use reverse path forwarding for

creating minimal delivery trees for notifications and offer minimal dissemination delay, but increase

the number of control traffic in the broker network. It is possible to adjust the presented algorithms

to rely on the core-based tree approach for routing notifications to mobile subscribers. Subscribe and

unsubscribe requests would be routed to the core node creating and updating delivery paths from the

core node to subscribers. Each published notification would be routed to its core node, and from there

it would follow delivery paths to subscribers. The notification would be stored at least by the core

node until it is valid.

5. Routing Algorithms Supporting Mobility 102

A comparison of the routing algorithm using the core-based tree approach that is applied in Her-

mes and the reverse path forwarding algorithm similar to the one used in Siena is given in [90].

The comparison considers environments with stationary clients. The algorithms are compared with

respect to the following cost metrics: delay, bandwidth consumption, and routing table sizes. The ex-

periments show that the reverse path forwarding approach using minimal spanning tree is superior to

the core-based approach with respect to notification delay, i.e., the average time between notification

publication and delivery. The core-based tree approach uses less space for storing routing tables be-

cause the routing information is not flooded through the network, but rather forwarded to core nodes.

The bandwidth consumption is measured in terms of the number of messages exchanged between net-

work brokers: The core-based tree approach generates less notification and advertisement messages,

but creates more subscription-related traffic because of additional messages sent to the core node.

The performance of the core-based tree routing approach needs further performance investigation,

especially in mobile settings.

An outline of a distributed JMS implementation. The current JMS-based distributed imple-

mentations, e.g., JORAM [84], use the flooding technique for disseminating notifications between

JMS servers. This is a costly technique that causes significant bandwidth consumption and processing

load, and may interfere with system scalability. The proposed distributed publish/subscribe model

and the routing algorithms with persistent notifications are adequate for transforming centralized JMS

solutions into scalable distributed JMS implementations: Firstly, the extension of an existing server

can be implemented by adding a pair of proxy publishers and proxy subscriber on top of two JMS

servers in order to enable equality-based or covering-based routing between the two JMS servers.

Secondly, the JMS specification defines message persistency, and it has been integrated into the avail-

able JMS implementations. Thirdly, JMS uses open connections for its publishers and subscribers:

It is therefore possible to update the set of connected subscribers which is needed for the algorithm

implementation.

The available JMS benchmark tests [50] show that JMS implementations are largely influenced by

the number of connected subscribers, and the publishing rate. The extension of the existing server im-

plementation would improve the performance of the distributed solution, and enable the deployment

of scalable distributed solutions that can satisfy requirements for large-scale notification systems. Fur-

ther work is needed to implement and evaluate the performance of distributed JMS implementations

based on the presented model and routing algorithms.

Chapter 6

Content Dissemination Service

Architecture

The increasing popularity of information services that rely on content delivery in mobile environ-

ments motivates the need for amobile content dissemination service—an efficient and scalable in-

formation service that enables the delivery of personalized and customized content to mobile users.

Publish/subscribe middleware offers mechanisms for content personalization: Subscribers define the

characteristics of content that is of interest to them, and get notified when such content becomes

available. The distributed architecture of publish/subscribe systems and efficient routing algorithms

solve the scalability requirement. However, the diversity of usage scenarios and the varying nature

of mobile environments requires additional services that need to cooperate with the publish/subscribe

middleware to offer a flexible service customized to particular user presence status.

This section lists and analyzes the requirements of a content dissemination service supporting

mobile users, and present representative usage scenarios that illustrate the features of the system

offering customized content dissemination to mobile users. The analysis of service usage scenarios

has enabled the identification of the supporting software components that need to collaborate with the

mobility-aware publish/subscribe middleware to address the dynamics of mobile environments. The

set of identified components forms the proposed content dissemination service architecture.

The chapter is structured as follows: Section 6.1 investigates usage scenarios that have guided the

design of the reference architecture which we present in Section 6.2. The reference architecture has a

layered structure comprising a set of components: We outline the features of the identified components

and describe their interaction in Section 6.2.4. We focus on two particular components that are crucial

for service implementation and deployment: publish/subscribe middleware, and personal mobility

management. We provide a detailed design description of a Web-based publish/subscribe component

in Section 6.3. Section 6.4 illustrates our solution for personal mobility management.

103

6. Content Dissemination Service Architecture 104

6.1 Requirements and Usage Scenarios

Even though content dissemination services can be useful, their wide acceptance depends on the pre-

condition that the service delivers only highly personalized and customized content in accordance

with user preferences and current presence status. This gives the opportunity to create a “branded”

dissemination service invulnerable to spam. The service would become a trusted intermediary be-

tween content publishers and subscribers that filters the wealth of information according to user’s

needs. We identify the following requirements that need to be satisfied by service design:

Push-based content delivery. Service users must be able to define the type of content they want to

receive, and be served with the published information as soon as it is available. The push-style

content delivery eliminates the burden of querying for information at regular intervals and is in

accordance with the stochastic nature of content creation and publication.

Content filtering and personalization. Content filtering is enabled through user subscriptions to

minimize the number of received message that are not of interest. This feature enables service

personalization and adaptation to user context. It reduce the information overload on a user by

associating and comparing each published piece of information to user context and preferences.

Personal mobility. Service users must be able to publish and receive the content using various ter-

minals in different networks. This feature enables true personal mobility and offers usage flex-

ibility.

Scalability. The service must scale well to a large number of potential users, and must be optimized

for the particular application area with respect to the number of publishers and subscribers in

the system, and the size and frequency of published content.

We describe a number of usage scenarios for content dissemination services in mobile environ-

ments: We start the analysis with the simplest scenario that offers no mobility support and gradually

extend it to introduce more flexibility for service users. In the first scenario a user employs a sta-

tionary terminal with a permanent network attachment point to publish and receive the content. The

second scenario enables nomadic users to access the service from different networks using desktop or

portable computers via dial-up modem lines or (wireless) LANs. In the third scenario a user can apply

various devices ranging from desktop and laptop computers to less powerful devices such as handheld

computers and mobile phones in different networks. We consider the content dissemination system as

a black box and put the user, either a content publisher, or a subscriber, in the focus of our discussion.

We use the following underlying scenario to motivate the discussion and illustrate the usage sce-

narios: Alice lives in the suburbs of Zagreb and commutes each day to her downtown office. She uses

the traffic notification service which informs her about the current traffic situation. The up-to-date

traffic reports enable Alice to decide whether to rely on public transportation or to drive to work. The

service can assist her in finding the best driving route.

6. Content Dissemination Service Architecture 105

Internet

Gateway

Gateway

P

Content
Dissemination

Service

S

S S

S
Alice

P

P Bob

Figure 6.1: Stationary scenario

Stationary users. Alice accesses the traffic notification service from her office desktop computer

on a LAN. Before leaving the office, she checks the list of received traffic reports to be informed

about the current traffic situation. If she needs additional information and driving instructions, she

can request a detailed map of the particular area with approximate waiting times for the traffic jam

areas.

Figure 6.1 depicts a stationary scenario showing an environment hosting the traffic dissemination

service. The service is deployed in the IP-based network, while service publishers and subscribers

apply stationary terminals for publishing and receiving the traffic reports. In this scenario Alice is a

stationary subscriber to the channel “Zagreb traffic.” Whenever traffic problems in the area of Zagreb

are reported, for example by Bob who has just arrived to the office, the traffic service initiates the

delivery of a new traffic report to all subscribers with a matching subscription. This is a standard

push-style service operation, while the use case in which Alice requests additional information using,

for example, an URL from the received report, relies on the request/reply interaction style.

In the stationary scenario all subscribers apply a single static terminal for receiving the published

content: If a terminal has apublic stationary IP address, the broker hosting the traffic dissemination

service can initiate connections to the content receiver running on the terminal to deliver a published

report. For this purpose the broker must know the address of the terminal and whether the receiver

application is running on the terminal. In case the terminal is behind a firewall, i.e., it has aprivate IP

address, the broker cannot initiate a connection to the receiver: The receiver must initiate a connection

to the broker and maintain it active. The broker can deliver the published content using the active

connection to the terminal behind a firewall.

In case a traffic report cannot be delivered to a subscriber’s receiver application, the undelivered

report must be stored by the service for subsequent delivery. The service needs to provide a strategy for

temporary content storage that will preserve undelivered content for disconnected users according to

6. Content Dissemination Service Architecture 106

Internet

Gateway

Content
Dissemination

Service

P

Gateway

P

ISP

Foreign Network

Home Network

BS

BS

S

S

S

S

S S

Figure 6.2: Nomadic scenario

the defined priority rules. Furthermore, the service enables publishers to define the topics for content

classification, and to define and store the content for publishing using acontent management service.

We have identified personalization as one of the major requirements of a dissemination service.

For example, Alice might define several routes between her home and office. In this case the traffic

service would filter the messages for the “Zagreb traffic channel” and deliver only those that match

her personal routes. Clearly,content-based filtering is needed to provide such a personalized service

and Alice must also be able to express her preferences as a set of rules/filters. Her subscriptions and

preferences are stored and managed by auser profile service.

Nomadic users. In the previous scenario Alice was restricted regarding the usage of the traffic

notification service since she was bound to one location. Naturally, she wants to use this service at

home before driving to the office. At home she connects her laptop to the Internet via dial-up and thus

becomes a nomadic service user.

This feature puts an additional requirement on the service: The service must be aware of the end

communication point, e.g., a terminal address and a port number, to deliver the content to a subscriber.

In case a nomadic user applies a single terminal with support for mobile IP, the mapping remains

stationary as in the case of stationary users. However, if the user applies a terminal without mobile IP

support, or various terminal, the service needs an up-to-date information that uniquely defines the end

communication point because if the content is sent to an invalid address it might reach the incorrect

subscriber or the service might assume that a subscriber is off-line. Further on, a subscriber may

apply various applications for receiving the content, e.g. a JMS-based receiver, or a mail reader, and

the service should be able to deliver it using the most appropriate and preferred delivery mode.

A nomadic user can frequently change its location in the network even though the service is not

used between the movements. Figure 6.2 depicts a nomadic scenario in which the terminal changes

the network, or a subscriber changes both the device and network. A subscriber can use the service

6. Content Dissemination Service Architecture 107

Internet

Gateway

Content
Dissemination

Service

GPRS/UMTS

Gateway

P
S

S BS

S
PDA

mobile
phone

Figure 6.3: Mobile scenario

from a dynamically configured home network, or move to a foreign network and connect to the In-

ternet via wireless LAN. A subscriber can also use the service from home via dial-up. By changing

its attachment point, the terminal address and the subscriber’s communication point will change ac-

cordingly. The same problem arises if a network (LAN, PPP) is configured using the Dynamic Host

Configuration Protocol (DHCP). To track the change of the subscriber’s current destination address,

a personal mobility management service must map a unique subscriber identifier to the current sub-

scriber’s communication point. We assume that the communication point identifies both the terminal

and the application for content receipt.

Mobile users. In this scenario Alice would like to use the traffic notification service while in

motion. Figure 6.3 depicts an environment where she can use both a handheld computer and a mobile

phone to receive traffic reports. She can use a handheld computer with wireless LAN connectivity

while within the reach of a wireless LAN base station or her mobile phone during outdoor activities.

In this setup, as well as in the nomadic scenario, we need apersonal mobility management service

that will map a user to the identifier of the currently applied end communication point. This is a one-

to-many mapping: A user might register a number of devices and receiver applications, e.g., a mobile

phone with MMS, a handheld computer with a mail reader, a desktop, or a laptop computer with a

JMS-based receiver. In case a user is applying a single terminal with multiple network interfaces and

a single receiver application, the network should providevertical handover [18], a smooth transition

between different networks. For example, when a user exits the wireless LAN coverage, the terminal

automatically switches to the mobile network.

Service personalization andcontent-based filtering are vital in this scenario because a user must be

able to define his/her preferences according to the currently used communication point. For example,

Alice may want to receive traffic reports regarding the area in which she is currently residing when

using her mobile phone, while in case she is in the office, she would need all the published information

about the Zagreb area.

6. Content Dissemination Service Architecture 108

Table 6.1: Services for stationary, nomadic and mobile users

Stationary Nomadic Mobile

content-based filtering + + +

temporary content storage + + +

content management + + +

user profiles + + +

personal mobility management - + +

content adaptation - - +

content presentation - - +

Due to the variations in network and end-device,content adaptation and presentation is essential

in this scenario. The content is delivered through various networks that differ in the available band-

width, and it is displayed on devices with different computational capabilities and screen sizes. For

example, Alice can receive high quality maps only on a computer with a high bandwidth connec-

tion. When driving home from the office she can re-check the text reports about the changing traffic

conditions on her mobile phone. The published content depends on the terminal and the network

both publishers and subscribers are applying. Similarly, the presentation of the received content will

depend on the characteristics of the subscriber’s terminal. The content must therefore be adapted to

match the capabilities of both terminal and network.

Table 6.1 summarizes the required services for each of the described usage scenarios. Content-

based filtering is needed for service personalization in all usage scenarios. Temporary storage of

undelivered content must be provided to guarantee the delivery of valid and possibly vital reports to

disconnected users in all usage scenarios. Content publishers define topics for content classification

and the content for publishing using the content management service, while subscriber’s subscriptions

and preferences are managed by the user profile service. Both content management and user profile

service are needed in all scenarios. Personal mobility management is required in nomadic and mobile

scenarios, while solutions for content adaptation and presentation become important in mobile sce-

narios with different devices and networks. It is desirable to design and implement generic services

that can accommodate the requirements of different scenarios and therefore be applied in all presented

scenarios.

6.2 Reference Architecture

Based on the discussion in Section 6.1, we propose a content dissemination service architecture for

mobile environments that is based on the publish/subscribe communication infrastructure. Figure 6.4

depicts the proposed architecture that consists of the components providing the features listed in Ta-

6. Content Dissemination Service Architecture 109

application
layer

service
layer

communication
layer

transport
layer

content
management

content
presentation

user profilepersonal mobility
management

publish/subscribe
management

content
adaptation

publish/subscribe
middleware

TCP UDP

Figure 6.4: Reference architecture

ble 6.1. We denote the proposed architecture asreference architecture because it identifies a complete

set of components needed to provide a personalized and adaptable content dissemination service for

mobile environments. This section gives an overview of component characteristics and describes their

functionality.

The components are logically divided into the following layers:

• The communication layer enables the publish/subscribe interaction between system users and

other services that require event-based communication. It employs publish/subscribe middle-

ware that provides push-based content delivery, content-based filtering according to defined

subscriptions, and temporary content storage for disconnected subscribers.

• The service layer contains utility services needed by a content dissemination service. These

are publish/subscribe management, personal mobility management, user profile service, and

content adaptation.

• Theapplication layer is a service-specific layer that deals with content presentation, and enables

publishers to define and manage device-dependent content.

The presented architecture adopts the approach used in the Open Service Access (OSA) stan-

dard [1]. OSA specifies an open standard API for third party service providers that enables them

to design and deploy value-added services using the network infrastructure controlled by mobile op-

erators. OSA offers abstractions of the core network functionality through OSA services, e.g., user

location service, user status service, call control, user interaction service, terminal capabilities service,

presence and availability management. OSA services are deployed in a layer above the network infras-

tructure: They rely on the network communication and management services that have traditionally

been unavailable to third party service providers. Security and authenticated access to network ser-

vices is obviously the major requirement that needs to be fulfilled for OSA-based service deployment

in real networks.

6. Content Dissemination Service Architecture 110

Following the OSA approach, we define generic services in the service layer of the reference

architecture. The identified services use the publish/subscribe communication capabilities of the un-

derlying layer: The publish/subscribe middleware may be deployed as a Web service and offered

and managed by a third party. We propose the design of such a publish/subscribe service in Sec-

tion 6.3. Some of the OSA services correspond to services in our reference architecture: Personal

mobility management corresponds to the OSA presence and availability management service, and

user status service; user profile can be mapped to the OSA interaction service. Assuming that the

OSA implementation is available and deployed in the existing mobile networks, service providers can

use OSA services to implement and offer content dissemination: OSA services would enable access

to the infrastructure and data of the mobile network. However, OSA services are still not supported

and offered in the existing networks. Furthermore, the service that is missing in the OSA standard is

the publish/subscribe-style communication which is required for the presented content dissemination

solution.

6.2.1 Communication Layer

Publish/subscribe is the basic interaction style in the proposed architecture. It enables the push-based

delivery of content from publishers to subscribers, and event-based interaction between other archi-

tecture components. Subscribers can define subscriptions to channels and refine their subscriptions

using the set of rules for content-based filtering. We use the termchannel for content classification

to avoid implying the subscription scheme of the applied publish/subscribe system: The underlying

publish/subscribe middleware may implement either subject-based, content-based, or type-based sub-

scription schemes.

To offer support for mobility, the publish/subscribe middleware should provide temporary storage

of published content for disconnected subscribers using either the “queuing” approach, or the storage

and delivery of persistent notifications. In addition, it serves as a distribution media for notifications

produced by a mobility management component, and environment-related events that guide service

adaptation. We assume that the publish/subscribe system has a distributed architecture to cope with

scalability-related problems and propose that it is designed and implemented using the distributed

mobility-enabled model presented in Chapter 4. The detailed description of the communication layer

design is given in Section 6.3.

6.2.2 Service Layer

The publish/subscribe management component is a mediator between the application layer and the

publish/subscribe middleware. It is used to coordinate other services: Firstly, it activates and de-

activates user subscriptions according to user presence status and defined preferences. Secondly, it

manages content adaptation to the characteristics of the applied user device. The component cooper-

ates with personal mobility management, user profile, and content adaptation component, and relies

on the publish/subscribe middleware for receiving and disseminating information relevant to service

6. Content Dissemination Service Architecture 111

coordination.

Thepersonal mobility management component is responsible for maintaining up-to-date informa-

tion about the current subscriber’s presence mode. It defines a mapping of a unique user identifier

to an end communication point where the subscriber is currently reachable. An end communication

point identifies uniquely the terminal and the application that is used for receiving the content. It

can be extended to track and store the user’s geographical position for location-based services as de-

scribed in [36]. The detailed description of the personal mobility management component is given in

Section 6.4.

The user profile component stores and manages user profiles and enables a subscriber to define

rules to customize the service. It stores user’s subscriptions and the information about subscriber’s

communication points. It is closely related to the personal mobility management component because

it stores the information about subscriber’s default communication points such as e-mail addresses, or

mobile phone numbers, that represent an active communication point stored by the personal mobility

management component.

A subscriber can decide which subscriptions apply to a particular end communication point, cur-

rent location, or time of day. Content can thus be queued for later delivery to a suitable device

according to user preferences. A user profile can contain device capability data following the Com-

posite Capability/Preference Profile (CC/PP) recommendation [28]. There are already a number of

solutions that define the type of data that are stored in user profiles. Examples arepreference registry

designed within the ICEBERGproject [122], and the “data recharging” profiles that evaluate the utility

of certain content for a specific user [26]. The open problems are related to security and privacy: will

the profile be stored on user devices, or will a broker store a copy, and who can access and change a

user profile.

Content adaptation deals with the problem of client and network variability in mobile environ-

ments. Data compression and data conversion are standard techniques for client and network variabil-

ity adaptation [81]. For example, an image must be transformed into a new format to be displayed on a

mobile phone, or a smaller and lower quality image is sent over a low-bandwidth connection. Dynamic

adaptation [11] can be used for content dissemination services: The system monitors the environment,

and acts upon changes, such as low bandwidth, or battery consumption. The publish/subscribe mid-

dleware can be used for distributing the data about environment changes.

6.2.3 Application Layer

The application layer contains components that are specific to a particular content dissemination ser-

vice: It is affected by the type of content that is distributed to subscribers, and the particular appli-

cation purpose. Thecontent management component enables a publisher to define the channels, and

create and manage device-dependent content which will be published on different channels. Thepre-

sentation component is responsible for device-dependent content representation: The content must

be adjusted to applied terminals in order to suit different display sizes and deal with terminal input

6. Content Dissemination Service Architecture 112

:GUI :P/SMng :UserProfile :Personal :P/S

Top Package::Subscriber

register()

newUser()

initProfile(uid)

init(uid)

:Adaptation

init(uid)

subscribe(presence, uid)

subscribe(env, uid)

Subscriber

:GUI :Pub/Sub
Mng

:User
Profile

:Personal
Mobility :Adaptation :Pub/Sub

Figure 6.5: Registration of a new subscriber (UML sequence diagram)

limitations. Currently, XML and related technologies are used to create and manage flexible user

interfaces [65]. The presentation-related problems, such as content structuring and partitioning, and

simple input techniques are still open research topics.

6.2.4 Component Interaction

We show the interaction between the components of the proposed reference architecture using Unified

Modeling Language (UML) sequence diagrams [17] that describe the following use cases: registration

of a new subscriber in the system, subscription update due to subscriber disconnection, and the process

of subscribing and content publishing.

The sequence diagram in Figure 6.5 depicts the component interaction when a new subscriber

registers with the system for the first time. The subscriber uses a graphical interface (GUI) to define

his/her user profile.GUI directs the request for registration of a new user to the publish/subscribe

management component (Pub/Sub Mng): Firstly, Pub/Sub Mng initializes a user profile with a unique

user identifier (uid) using the data provided by the subscriber. Secondly, it registers the user with

the personal mobility management component (Personal Mobility). This component uses the pub-

lish/subscribe infrastructure to receive notifications regarding user connections to, and disconnections

from the system: It subscribes to a special channel,presence, usinguid as a filtering constraint. Each

time the subscriber connects to or disconnects from the system, the relevant information will be pub-

lished on the channelsconnect anddisconnect. Therefore, thePersonal Mobility component will be

able to react to such occurrences and update the subscriber’s presence status. Thirdly,Pub/Sub Mng

contacts the adaptation component (Adaptation) that in turn subscribes to a special channelenv that

transports the information about the changes in service environment related to the user perception of

6. Content Dissemination Service Architecture 113

:GUI :P/SMng :UserProfile :Personal :P/S

Top Package::Subscriber

disconnect()

publish(disconnect, uid)

getDefaultContact(uid)

updateSub(defaultContact, uid)

notify(presence, uid, presenceData)

Subscriber

:GUI :Pub/Sub
Mng

:User
Profile

:Personal
Mobility :Pub/Sub

getSubscriptions(defaultContact, uid)

subscribe(subscriptions, uid)

unsubscribe(subscriptions)

Figure 6.6: Subscription update due to disconnection (UML sequence diagram)

the service.

The sequence diagram in Figure 6.6 presents a scenario that causes subscription update due to

subscriber disconnection. We assume that the subscriber has defined a default communication point

that is stored in the user profile. When the subscriber decides to close an application used for receiving

the published content (GUI), GUI sends an unsubscription request to the publish/subscribe middleware

(Pub/Sub) and notifies aPersonal Mobility component about user disconnection through thepresence

channel. ThePersonal Mobility component requests the data about the default user communication

point from theUser Profile component, and informs thePub/Sub Mng about the new subscriber status.

To activate subscriptions that the subscriber has chosen as valid in case of disconnection, thePub/Sub

Mng first retrieves the information about default subscriptions fromUser Profile, and subsequently

activates the default subscriptions.

The sequence diagram in Figure 6.7 shows the component interaction for two representative use

cases: publish (a publisher releases content to a channel) and subscribe (a subscriber subscribes to the

channel). We assume that a subscriber uses a special application for receiving the published content

(Receiver) that is independent of theGUI for defining and modifying subscriptions. The subscriber

sends the subscription request fromGUI to thePub/Sub Mng component which in turn updates the

user profile. When the user activates aReceiver that is used for receiving the content, the receiver must

first get the information about valid subscriptions fromUser Profile, and activate the valid subscription

by sending a subscribe request to thePub/Sub component.

To publish content, the publisher defines a message using aGUI which updates the content storage

6. Content Dissemination Service Architecture 114

:GUI :P/SMng :User :P/S

Top Package::Subscriber

subscribe(aChannel)

updateProfile(uid, aChannel)

Subscriber

:GUI :Pub/Sub
Mng

:User
Profile :Pub/Sub

Top Package::SubscriberPublisher

:GUI:GUI:P/S:Content:GUI:Receiver

subscribe(aChannel)

getSubscriptions(contact, uid)

subscribe(aChannel) publish(message, aChannel)

update(message, aChannel)

publish(message, aChannel)
notify(message)

Figure 6.7: Sequence diagram for publish and subscribe use cases

of theContent component, and chooses a channel on which the message should be published. TheGUI

submits the published message to thePub/Sub, andPub/Sub notifies the receiver about the published

message.

6.3 Publish/Subscribe as a Mobile Web Service

We propose the design of a Web-based publish/subscribe component which implements the commu-

nication layer of the proposed reference architecture [93]. The proposed component facilitates the im-

plementation of content dissemination services for mobile users who apply various types of terminals

for content receipt: It offers a general set of methods for the implementation of publish/subscribe-

based interaction and uses other components, such as mail, SMS, MMS, or JMS for the actual content

transmission. The service is mobility-enabled: The components used for content transmission are

applicable in mobile scenarios and facilitate the receipt of published content on various subscriber’s

devices.

Web service. Although publish/subscribe interaction style has been recognized as a valuable

service in a number of application domains, no Web services that offer the generic publish/subscribe

functionality are available so far. We argue that publish/subscribe is a generic service that is required

in various application domains such as content dissemination, notification services, instant messaging,

or groupware and collaboration systems. Publish/subscribe has indeed been recognized as one of the

basic services in the Web services architecture for groupware systems proposed in [38].

Web service, an emerging model for distributed computing on the Web, can be regarded as soft-

6. Content Dissemination Service Architecture 115

ware system providing a well-described functionality accessible over the network. Service descrip-

tion specifies its interface in a machine-processable format and facilitates the interaction between

various Web services to enable their integration in order to provide more complex value-added ser-

vices [37, 121]. Web services are designed as self-contained software components that can be pub-

lished, discovered, and invoked over the Internet. They apply XML-based standards for the transport

of messages and service description. Simple Object Access Protocol (SOAP) [120] is used as the com-

munication protocol for invoking service methods and conveying processing results. Web Services

Description Language (WSDL) [119] is an XML-based language used for describing Web services.

The publish/subscribe systems that are in use today offer a proprietary set of interfaces and APIs

for integration into other systems which burdens an application programmer with the details of each

specific implementation. Therefore, we design a generic publish/subscribe component as a Web ser-

vice to facilitate simple and efficient integration of publish/subscribe functionality into other systems.

It generalizes the common publish/subscribe constructs and can be regarded as a layer above the

existing publish/subscribe infrastructures.

A Web-based publish/subscribe service should offer a set of basic services for publishing, sub-

scribing, and creating channels for content classification. It should be remotely accessible, and accept

XML messages that define the information needed to perform the requested functionality. We assume

that the generic publish/subscribe service will rely on a number of other components, such as mail,

SMS, MMS, JMS, or other publish/subscribe middleware components that will perform the actual

transport of the published content.

6.3.1 Architecture

Figure 6.8 depicts the architecture of the proposed Web-based publish/subscribe service. We employ

the layered approach in which the publish/subscribe service is an intermediary between other services

that require publish/subscribe, such as content dissemination services, instant messaging, or group-

ware services, and specific components that provide the transport of data for the publish/subscribe ser-

vice. The publish/subscribe service offers a well-defined interface and generalized means to invoke

the dissemination services regardless of the actual transport mechanism provided by, for example,

mail, SMS, MMS, or JMS component. It enables a user of the publish/subscribe service to specify

the preferred transport mechanism for the particular request. Further on, it is open and extendible by

available transport components suitable for publish/subscribe content dissemination.

The Web-based publish/subscribe service implements the communication layer of the reference

architecture and is used as a binding between higher-level services of the service layer and compo-

nents providing publish/subscribe communication. Figure 6.9 shows the correspondence between the

reference architecture and the proposed Web-based publish/subscribe service.

6. Content Dissemination Service Architecture 116

mail SMS MMS JMS
publish/

subscribe
component

…

Web-based publish/subscribe service

XML over SOAP,
HTTP, RMI...

component-specific
protocols

communication
components

content
dissemination

instant
messaging

groupware
service

… Web
service

XML over SOAP,
HTTP, RMI...

Figure 6.8: Web-based publish/subscribe service

application
layer

service
layer

communication
layer

content
management

content
presentation

user profilepersonal mobility
management

publish/subscribe
management

content
adaptation

mail SMS MMS JMS

Web-based publish/subscribe service

Minstrel

Figure 6.9: Web-based publish/subscribe service with respect to reference architecture

6. Content Dissemination Service Architecture 117

Table 6.2: Functionality offered by the publish/subscribe Web service

publish Publishing the content on a channel using a defined transport component.

subscribe Subscribing to a channel with a specified preferred mechanism of content

receipt for this subscription.

unsubscribe Unsubscribing from a channel.

createChannel Defining a new channel for content classification with a predefined

mechanism for content delivery.

deleteChannel Deleting a specified channel.

6.3.2 Service Interface

There are two basic functions a publish/subscribe content dissemination service needs to provide:

publishing andsubscribing. Channel definition and creation is needed since the content is published

on a channel, and a subscription is to a channel. Therefore, we propose a simple interface which offers

the methodspublish,subscribe,unsubscribe,createChannel, anddeleteChannel

listed and defined in Table 6.2. We find the listed methods sufficient for the publish/subscribe-based

interaction implementation. These methods are requested in pull-style by submitting an XML message

to the publish/subscribe service. On the other hand, the process of receiving the published content is

independent from the generic publish/subscribe service: It is performed by a receiving process, for

example, a mail reader or a JMS receiver, running on a subscriber’s terminal. The receiving process

must be transport specific since the notification is always sent in push-style through a specific transport

component without an intermediary.

XML messages carry the parameters needed to perform the requested action: The mandatory

parameter for each request is the information about the transport component that will subsequently

perform content delivery. Figure 6.10 shows an example XML message that requests the creation of

a new weather channel. The parameters that are needed to create a new channel are the information

about the channel creator and the definition of the new channel. The channel creator in the example is

a user, but it is possible that another Web service sends such a request. The channel is defined by it’s

name, unique id, and an URL that uniquely identifies the transport component and it’s channel. For

example,jms://aloha.tel.fer.hr/topic=weather specifies that JMS is used for content

dissemination,aloha.tel.fer.hr is the name of the JMS server host, andweather is the name

of the JMS topic.

Figure 6.11 shows an example XML message that requests subscription to an existing channel.

The required parameters are subscriber’s contact information and a subscription. The subscriber’s con-

tact information uniquely identifies the subscriber and can be obtained from a user profile component.

The subscription is composed of the channel data and an XPath expression refining the subscription.

XPath is a language for addressing parts of an XML document [118]: It offers simple and expressive

6. Content Dissemination Service Architecture 118

<?xml version="1.0"?>
<ps:createChannel xmlns:ps="http://www.tel.fer.hr/webservices/pubsub/">

<ps:creator>
<ps:user name="Ivana Podnar"

email="ivana.podnar@fer.hr"
mobile="+3859991234567"
id="unique_id_for_ivana" />

</ps:creator>
<ps:channel name="Weather channel"

url="jms://aloha.tel.fer.hr/topic=weather" />
</ps:createChannel>

Figure 6.10: An example XML message requesting channel creation

<?xml version="1.0"?>
<ps:subscribe xmlns:ps="http://www.tel.fer.hr/webservices/pubsub/">

<ps:subscriber>
<ps:user name="Ivana Podnar"

email="ivana.podnar@fer.hr"
mobile="+3859991234567"
id="unique_id_for_ivana" />

</ps:subscriber>
<ps:subscription>

<ps:channel name="Weather channel"
url="jms://aloha.tel.fer.hr/topic=weather"
id="unique_id_for_jms_weather_topic" />

<ps:xpath>
//content/@country="Croatia"

</ps:xpath>
</ps:subscription>

</ps:subscribe>

Figure 6.11: An example XML message requesting subscription to a channel

means to specify and select the elements and attributes of an XML document, and can therefore be

used to express XML document filters. XPath can be used for expressing content-based subscriptions,

and XPath engines can be used to decide whether a published XML document satisfies the XPath

subscription. Algorithms and techniques for efficient filtering of a large number of XML documents

using XPath have been proposed in [8, 46].

The example XML message in Figure 6.12 initiates the process of publishing the content on

an existing channel. The parameters are publisher’s data, information about a channel, and content

definition. Content definition in the given example consists of a name, a timestamp, validity dates,

an optional short text message, and a URL. Content definition carries the notification, not the actual

content, since it is preferable that the data that is pushed to a terminal, especially in mobile scenarios,

is concise. A subscriber can request the actual content using the provided URL.

The publish/subscribe component uses the information included in the presented XML messages

for submitting the request further to a specific transport component. The main task of the pub-

lish/subscribe service is the mapping of standard XML messages to transport-specific method invoca-

tions. Some transport components are inherently publish/subscribe-enabled: For example, JMS incor-

porates the principles of publish/subscribe which simplifies the process of mapping an incoming XML

6. Content Dissemination Service Architecture 119

<?xml version="1.0"?>
<ps:publish xmlns:ps="http://www.tel.fer.hr/webservices/pubsub/">

<ps:publisher>
<ps:user name="Ivana Podnar"

email="ivana.podnar@fer.hr"
mobile="+3859991234567"
id="unique_id_for_ivana" />

</ps:publisher>
<ps:channel name="Weather channel"

url="jms://aloha.tel.fer.hr/topic=weather"
id="unique_id_for_jms_weather_topic" />

<ps:content name="Forecast for September 06 2003"
url="http://aloha.tel.fer.hr/weather/hr/2003/sept/forecast060903.html"
timestamp="Fri, Sept 05 10:44:04 CEST 2003"
validFrom="05.09.2003"
validTo="07.09.2003"
id="unique_id_for_content"
country="Croatia" >

</ps:publish>

Figure 6.12: An example XML message initiating content publishing

request to a JMS-specific request. Mail, SMS, and MMS do not have the built-in publish/subscribe

constructs: The publish/subscribe component needs to extend the basic operation of such components

to enable their application in publish/subscribe scenarios. For example, the publish/subscribe com-

ponent is responsible for defining mail messages containing the published content and for submitting

them to the mail server for subsequent delivery to interested subscribers. It performs the tasks similar

to mailing lists: It maintains a list of subscribers to channels, and on top of simple channel catego-

rization it can perform mail filtering based on XPath expressions. The difference between mailing

lists and this approach is in the filtering part: The list of receiving mail addresses is dynamically

determined for each published notification.

The described Web-based publish/subscribe service does not directly address problems related

to mobility. Mobility is facilitated by transport components that are mobility-aware and facilitate

the receipt of published content on various devices. Moreover, the combination of various transport

components offers usage flexibility: For example, a user may apply mail for receiving notifications

while having a permanent Internet connection, and receive SMS notifications while on the move.

6.4 Personal Mobility Management

The personal mobility management (PMM) service stores, updates, and distributes the user’s presence

and contact information. The presence information describes the current user communication capabil-

ities and preferences with respect to the applied terminal, application, and user state. We assume that a

subscriber’s presence information is updated as the subscriber starts and uses various applications that

may update the presence information, such as an instant messaging client, or a publish/subscribe con-

tent receiver. Furthermore, a subscriber can define a default communication point which is activated

in case the current presence information is unavailable.

6. Content Dissemination Service Architecture 120

Table 6.3: Communication point definitions and examples

mail://username@host mail://ivana.podnar@fer.hr

sms://+(phone_number) sms://+3859991234567

mms://+(phone_number) mms://+3859991234567

scheme://host:port/ jms://receiver.tel.fer.hr:8738/

application_parameters m-NewsBoardReceiver

minstrel://receiver.tel.fer.hr:9090/

minstrel/Receiver

We define the presence information in accordance with the 3GPP presence service specifica-

tion [3]. The presence information includes the identifier of an end communication point, user’s

status, and user’s terminal.

Communication point. The end communication point provides the information about the type of the

service or application that can be used for communicating with a user, e.g., SMS, MMS, e-mail,

instant messaging service, publish/subscribe or push-based content receiver; and the contact

address that is needed to carry out the communication. A communication point can be defined

in the form of an URL: Table 6.3 lists examples of URLs that can be used to uniquely identify

and describe end communication points.

User’s status. The user’s status field defines whether a user is willing and capable to accept the re-

quested communication. Examples of user’s status areavailable, discreet, orunavailable. Since

content delivery does not require immediate user’s attention and involvement in communication,

user’s status is not vital for content dissemination services.

Terminal’s status. The information about the terminal’s current status can also be included into the

presence information. Possible status values areon-line/off-line for computers, orbusy/idle/de-

tached for mobile phones.

The presence information can also include the information about the terminal’s geographical lo-

cation required by location-based services.

The changes of user’s presence information need to be reported to the PMM server that updates

the user’s presence status. The publish/subscribe event-based approach is a natural communication

mechanism for updating the presence information: As soon as the status changes, the change is re-

ported to the PMM server. In publish/subscribe terms, the PMM server is a subscriber to a special

channel/topic, e.g.,presence, that is used for distributing the presence data. All other services

that require the presence information can query the PMM server in the standard request/reply style

to obtain the presence data, or may become subscribers to the presence channel/topic. Publishers of

presence data are various applications that may update the presence information. For example, when

6. Content Dissemination Service Architecture 121

a user starts a JMS content receiver, the application can declare the JMS receiver as the end commu-

nication point. By closing the receiver, a new message canceling the active JMS presence data would

be published. In case no other presence data is available, the PMM server can activate a user’s default

communication point, e.g., e-mail or SMS.

The user’s presence data interferes with user’s privacy: The update and retrieval of this information

must therefore be secured and authenticated.

Presence update. The presence data can be updated only in case proper user credentials are

provided to avoid situations in which a malicious user impersonates the user. We propose that the

published presence data carry user credentials that can be verified by the PMM. For example, a unique

user identifier and a password can be transported with the presence data and a time-to-live period over

a secure communication protocol such as Secure Sockets Layer (SSL). It is also possible to use a

public key distribution similar to the approach presented in [4]: Apart from being identified by a

unique identifier (Idu), each user has a private/public key pair (Du/Eu). When the user registers

with the PMM server for the first time, it provides itsIdu andEu. When reporting the change of

presence data to the PMM, the user sends a tuple consisting ofIdu, the encrypted presence data

Du(Presu), an expiry field for the new presence mappingTu, and a signature of the new mapping,

i.e., Du(Idu, P resu, Tu). The PMM server uses the user’s public keyEu to check the signature by

verifying thatEu(Du(Idu, P resu, Tu)).Idu = Idu which confirms that the update comes from the

user. The presence data is obtained by decryptingDu(Presu), i.e.,Eu(Du(Presu)). The presence

data is valid untilTu expires, and must be renewed. Otherwise, the default presence status is activated.

A possible problem with this approach is that a user applies various devices for updating the presence

data. The private/public key pair and theIdu must therefore be stored on a special smart card and

transfered to the applied terminal.

Presence retrieval. Only the parties that satisfy the authorization policies can access the user’s

presence information. The PMM server administrator can allow access to the presence data only to

authorized parties that provide adequate credentials. For example, if a PMM server uses a JMS queue

or a JMS topic for distributing the presence information, the JMS administrator must allow access to

the JMS presence queue/topic only to parties that are authorized to receive the user’s presence data.

Chapter 7

m-NewsBoard: A Case Study

This chapter presents m-NewsBoard, a news dissemination service for mobile users based on the

publish/subscribe interaction model. This service enables users to publish and receive news of their

interest, and yet stay mobile. Users can browse the repository of current news on a WAP-enabled

mobile phone, or in a desktop browser, and publish their news using the m-NewsBoard’s Web inter-

face. In addition, they may subscribe to particular news categories, and supply keywords to refine

their subscriptions. Subscribers will receive either e-mail or JMS notifications when news match-

ing their subscriptions are published. m-NewsBoard is a prototype system implemented using the

loosely-coupled remotely accessible services that have been identified as parts of the service-oriented

reference architecture presented in Chapter 6. The implemented components, the Web-based pub-

lish/subscribe service, and the personal mobility component in particular, offer generic functionality

and are applicable for integration into various content dissemination services.

The chapter is structured as follows: Section 7.1 presents m-NewsBoard’s implementation. Firstly,

in Section 7.1.1 we describe the usage scenarios to show the user’s perspective of the application.

Secondly, we present the system architecture, compare it to the proposed reference architecture, and

discuss m-NewsBoard’s implementation details in Section 7.1.2. The detailed description of the Web-

based publish/subscribe service prototype implementation is presented in Section 7.2. Section 7.3 of-

fers a solution for the device independent mobility-aware content receipt, and personal mobility man-

agement. We discuss the characteristics of the implemented system in Section 7.4, and contrast them

to the general content dissemination service requirements that have been identified in Section 6.1.

7.1 m-NewsBoard - a News Dissemination Service

m-NewsBoard is a content dissemination service for publishing and delivering news in the form of

multimedia messages to mobile users [95]. It offers flexible usage scenarios enabling personal mobil-

ity: Users can apply various devices for browsing, publishing, and receiving the news. For example,

users may browse the repository of published and unexpired news, define and publish their news, and

define subscriptions using a WAP-enabled mobile phone, or a desktop browser. They may subscribe

122

7. m-NewsBoard: A Case Study 123

1
*

1

*

Administrator PublisherSubscriber
CreateChannel

DeleteChannel PublishNews

BrowseNews

DefineSubscription

ModifySubscription

DeliverNews

DefineProfileAdministrator

*

*

*

*

*

*

*

*

*

*
«extends»

*

*

*

*

*

*

PublisherSubscriber

Figure 7.1: m-NewsBoard use cases

to particular news categories, supply keywords for further specialization of their subscription, and

choose the preferred means for receiving the news at the time of news publishing.

7.1.1 Usage Scenarios

The UML use case diagram in Figure 7.1 defines system usage scenarios. There are three types of

system users: administrator, publisher, and subscriber. An administrator has privileges to administer

user profiles of other users, and to create and modify channels that are used for content classifica-

tion. A publisher can publish news on existing channels and browse the repository of published news

in pull-style. A subscriber can also browse the news repository, and additionally, actively receive

notifications about news publications according to defined subscriptions. New system users have to

register when they use m-NewsBoard for the first time, and provide the data needed to create a new

user profile.

m-NewsBoard supports the following use cases:

CreateChannel, DeleteChannel. An administrator can create a new channel by providing its name,

a short description, and the delivery method used for transporting the content to subscribers.

The administrator can also invalidate an existing channel.

DefineProfile. Each system user is associated with a user profile. A user defines the profile when it

first registers with the service and provides the following data: user name, password, full name,

e-mail address, and mobile phone number.

DefineSubscription, ModifySubscription. A subscriber defines the subscription to an existing chan-

nel and optionally provides a list of keywords for further filtering of news published on the

subscribed channel. For specifying the subscription, a user is presented with a screen shown in

Figure 7.2. By choosing a channel, the subscriber also chooses the delivery method for notifica-

tions. Note that a subscriber can subscribe to the “same” channel, i.e., the channel that delivers

7. m-NewsBoard: A Case Study 124

Figure 7.2: Subscribing to a channel

the same content, multiple times. For example, the subscriber may subscribe to the channelZZT

twice, using JMS and e-mail as means for content receipt. In such a case, the subscriber will

receive notifications in a JMS receiver application while it is active, and the service will acti-

vate e-mail subscription while the subscriber is not using the JMS receiver. Personal mobility

management enables tracking of user’s presence information.

PublishNews. A publisher may publish news on an existing channel. He/She defines a news title,

news body, the date of news expiry, chooses a channel that classifies the news, and optionally

provides an additional file to be published with the news and a list of keywords that further

describe the news. Keywords are used for content-based news filtering. The added file will

be stored on the m-NewsBoard’s Web server, but it will not be included in notifications that

are sent to subscribers. Subscribers will receive the URL of the published file to retrieve the

document. Figure 7.3 shows the m-NewsBoard’s publishing screen.

BrowseNews. A registered user can browse the repository of valid news that are stored on the

m-NewsBoard’s Web server: This is the traditional pull-based operation offered by the m-

NewsBoard application. The list of news is created on the fly for each request with unexpired

news from the news repository depending on the type of used browser. Figure 7.4 shows the list

of published news presented in a desktop browser.

DeliverNews. This use case enables a subscriber to receive notifications about news publication in

case the published news corresponds to his/her subscription. A subscriber that uses JMS for

7. m-NewsBoard: A Case Study 125

Figure 7.3: Publishing news on a channel

Figure 7.4: Reading the published news in a desktop browser

7. m-NewsBoard: A Case Study 126

Figure 7.5: The published message in a JMS desktop receiver

Figure 7.6: Publishing screen on a mobile phone

news receipt would receive a notification in the active JMS receiver at the time of news publish-

ing as shown in Figure 7.5.

m-NewsBoard’s implementation supports WAP-enabled terminals: The listed and presented use

cases are also supported if users apply WAP-enabled mobile phones. For example, Figure 7.6 shows

the publishing screen in a mobile phone simulator. The presented screen is fitted to show all the

contents of the publishing screen for representation reasons only: This screen would be split into

several screens on a real mobile phone.

7.1.2 Description of System Implementation

The architecture of the m-NewsBoard system consists of a WAP-enabled Web interface that interacts

with the Web-based publish/subscribe service and a personal mobility component as depicted in Fig-

ure 7.7. The Web interface is responsible for news presentation: It interprets the incoming requests,

7. m-NewsBoard: A Case Study 127

e-mail

Minstrel push

JMS server

Web interface

m-NewsBoard
servlet

RMI

WAP

Web-based pub/sub

HTTP

News repository

User profiles

Pub/Sub
management SOAP

Personal
mobility

JMS/
HTTPS

Figure 7.7: m-NewsBoard architecture

updates the news repository, and submits the publish/subscribe requests to the publish/subscribe ser-

vice which is in charge of news dissemination according to user subscriptions. The Web interface,

i.e, its publish/subscribe management component, interacts with the personal mobility component

that maintains the presence information about registered users, and enables modifications of user sub-

scriptions depending on the presence data.

The WAP-enabled Web interface is implemented as a Java servlet which runs within a Web server

and supports both HTTP and WAP. It maintains a repository of published news, and stores user pro-

files that contain user subscriptions and describe user access rights regarding the service. The servlet

provides the service graphical user interface: It is designed following the principle of clear separation

of content and layout. The content is stored in the form of XML documents, while special HTTP and

WAP templates define the layout. The servlet incorporates a publish/subscribe management compo-

nent that invokes the services offered by the Web-based publish/subscribe service, and interacts with

the personal mobility component to receive the relevant presence information that will modify active

subscriber’s subscriptions. A detailed description of the m-NewsBoard servlet implementation can be

found in [97].

If we compare the m-NewsBoard’s architecture to the reference architecture depicted in Fig-

ure 6.4, it can be concluded that the m-NewsBoard servlet implements content management and con-

tent presentation. Furthermore, it stores user profiles and incorporates a solution for publish/subscribe

management. The publish/subscribe communication layer is implemented as a stand-alone Web-based

service providing publish/subscribe communication primitives. Section 7.2 gives the detailed descrip-

tion of the Web-based publish/subscribe service implementation. The prototype implementation of

the personal mobility component offers a centralized solution for maintaining subscriber’s presence

data. It is further described in Section 7.3. The m-NewsBoard’s current implementation provides no

support for content adaptation: The content structure is determined by publishers who decide what

type of content will be sent on a particular channel depending on the applied transport mechanism,

such as e-mail or JMS.

The m-NewsBoard’s system architecture is truly distributed as shown in the deployment dia-

7. m-NewsBoard: A Case Study 128

User terminal

HTML/WML Browser

Web Server
Servlet Container

m-NewsBoard Servlet

Pub/Sub Server

Pub/Sub Component

Pub/Sub Interface

JMS

JMS Server

JMS Receiver

Mail

SMTP Server

Mail Reader

Pub/Sub Management

Mobility Server

Personal Mobility
*

1

*

1

1

1

*

1

1 1

1

1

Figure 7.8: Deployment diagram

gram in Figure 7.8. User interacts with the Web interface using an HTML or WML browser and

the communication between the m-NewsBoard servlet and the browser is performed over HTTP or

WAP. The web servlet processes user requests and ‘translates’ them into Java Remote Method In-

vocation (RMI) calls [110] or Simple Object Access Protocol (SOAP) messages [120] because the

publish/subscribe service offers an interface that is remotely accessible using either Java RMI, or

SOAP. The publish/subscribe service processes each request, and submits it further to specialized de-

livery components such as an SMTP server, or a JMS server. The personal mobility component and

the publish/subscribe management component communicate using JMS over HTTPS. A user employs

transport-specific applications such as a JMS receiver, or an e-mail reader, for receiving notifications

about news publication.

We show the interaction between the m-NewsBoard components in the sequence diagram that is

depicted in Figure 7.9. The sequence diagram illustrates the processes of subscribing and publishing

news using JMS as transport protocol. A subscriber uses a Web browser to subscribe to a channel and

a JMS receiver for reading the published news. Note that the receiver is a lightweight component that

can run on a desktop computer, a handheld computer, a mobile phone, or in a Web applet: It performs

a single function of displaying the received news. A publisher uses a browser to publish news on a

defined channel.

Subscribing. In the example scenario we assume that a publisher or system administrator has

defined a news channel, and that the corresponding JMS topic exists on the JMS server. Firstly, a

subscriber defines his/her subscription which consists of a preferred means for receiving the news,

7. m-NewsBoard: A Case Study 129

()

Location

()

Subscriber

GUI Sub User Profile

()
()subscribe(aChannel) Publisher

Pub manag

()publish(myNews, aChannel)

()

()

Subscriber uses
a JMS receiver

for viewing incoming
news (specified in

user profile).

:Browser
:Web

Interface
:Web-based

Pub/Sub
:JMS

Server
:Browser

Subscriber Publisher

Publisher has defined
myNews and aChannel

is already created.

Location:JMS
Receiver

subscribe(aChannel)

()

()
()

()onMessage(myNews)

JMS receiver must
be active to receive

the published content.

subscribe(subscriptionSpec)

subscribe(JMSsubscription)

publish(myNews, aChannel)

publish(deliverySpec)

publish(myNews, JMStopic)

()

setMessageListener(l)

()updateUserProfile(subscriber)

()notify(subscriptionUpdate)
publish(subUpdate)

Figure 7.9: Sequence diagram that shows the interaction between NewsBoard’s components.

the channel identifier, and an optional list of keywords for news filtering. In the example scenario the

subscriber selects JMS as the preferred means for news receipt. Secondly, the servlet processes the

subscription request and updates the subscriber’s user profile by adding the new channel to his/her

subscription. Thirdly, the servlet will relay the subscription request to the dissemination component

with the specific parameters that define the user’s subscription, i.e., JMS as the delivery component,

the subscriber’s id, the channel id, and the list of keywords.

Subsequently, the dissemination component needs to initiate and register the new subscription

with the JMS server. However, the problem is that the dissemination component is not the receiver

of published messages, instead it is a JMS receiver used by the subscriber. The JMS receiver must

create a new message listener for the subscribed JMS topic that can accept incoming messages from

the JMS server. Since the JMS receiver has no knowledge about user subscriptions that are pro-

cessed through the servlet, the dissemination component needs to notify the receiver about changes

in user subscriptions. We have decided to implement the interaction between the JMS receiver and

the dissemination component through the JMS server. During the JMS receiver bootstrap, the receiver

subscribes to a special JMS topic -subscriptionUpdate - with a filter requesting that the user id

of the subscription update message matches the subscriber id. Accordingly, the dissemination compo-

nent publishes the data about the changes in user subscriptions through thesubscriptionUpdate

topic specifying whether a subscription or unsubscription request has been processed, the subscriber’s

id, the JMS topic name, and the list of keywords if such have been defined. In the example sequence

7. m-NewsBoard: A Case Study 130

diagram in Figure 7.9, the dissemination component publishes a message about the new subscription

defined by the subscriber, and the running receiver receives the subscription update message through

the JMS server. Consequently, the receiver sends a subscription request to the JMS server and starts a

new message listener for the specified topic.

Publishing. The process of publishing is performed using a browser: A publisher specifies the

news data and decides on which channel it should be published. The servlet will process the request,

store the news in its repository, and transfer the publishing request to the dissemination component.

The dissemination component submits it further to the JMS server which finally disseminates the news

to all subscribers of the particular JMS topic. Eventually, the subscriber’s JMS receiver will receive

the published news and notify the subscriber that a news of interest has been published.

7.2 Publish/Subscribe Service Implementation

The publish/subscribe service implements a Web-based interface defined in Section 6.3 using Java

RMI and SOAP. Each method of the defined interface accepts an XML message describing the request

as an input method parameter. We have incorporated two transport components as a proof of concept

implementation: e-mail and JMS. Each request identifies the transport component that is used to

complete the actual request. The main task of the Web-based publish/subscribe component is to

interpret an incoming request, and map it to the specific requirements and format of the transport

component.

JMS offers publish/subscribe constructs that simplify the mapping process. E-mail, on the other

hand, does not have the built-in publish/subscribe functionality: It can be used to transport the con-

tent, and the specific publish/subscribe functionality is added as part of the publish/subscribe service

implementation. We outline the mapping between incoming requests that are processed by the pub-

lish/subscribe Web service and component specific method invocations in Table 7.1. The incoming re-

questcreateChannel that specifies JMS as the transport component creates a new JMS topic pub-

lisher. For example, a request with the URLjms://aloha.tel.fer.hr/topic=ZZTnews

creates a new topicZZTnews on the JMS server running on the hostaloha.tel.fer.hr. The

same request specifying e-mail as the transport component, e.g.,mail://ZZTnews@tel.fer.hr

creates a new mailing list that is maintained by the publish/subscribe Web service. The request

deleteChannel closes an active JMS topic publisher, or removes an existing mailing list from

the publish/subscribe service repository. The requestsubscribe that specifies JMS as the transport

component creates a new durable topic subscriber. While a durable JMS subscriber is disconnected

from the JMS server, the server stores messages for the subscriber. A durable subscriber is identified

by a unique identifier: It is necessary to provide only the durable subscriber identifier to re-initiate

subscriptions and receive messages published during disconnection. The requestsubscribe that

chooses e-mail as the transport component adds an e-mail address to an existing mailing list. The

requestunsubscribe unsubscribes and removes an existing durable JMS subscriber from a JMS

server, or removes a mail address from an existing mailing list maintained by the publish/subscribe

7. m-NewsBoard: A Case Study 131

Table 7.1: Mapping publish/subscribe methods to JMS and e-mail specific implementations.

Publish/subscribe Web service JMS e-mail

createChannel create JMS topic publishercreate new mailing list

deleteChannel close JMS topic publisher remove an existing mailing list

subscribe create durable JMS add subscriber to an existing

topic subscriber mailing list

unsubscribe remove durable JMS remove subscriber from

topic subscriber a mailing list

publish publish message using JMSsend e-mail message to

topic publisher mailing list members

service. The requestpublishwill invoke either a publish method on an active JMS topic publisher,

or initiate the process of sending messages to addresses of a specified mailing list.

Support for content-based subscriptions and message filtering is adjusted to specific component

characteristics. Table 7.2 depicts a JMS representation of the published news as defined in Figure 7.3.

JMS enables content-based message filtering through message selectors that are defined on JMS mes-

sage properties. Every JMS message has standard properties such as JMSDeliveryMode, or JM-

STimestamp, and application specific properties. We use application specific properties to define

message selectors. For example,keyword=’exam’ is the message selector that is used to refine

a subscription to the JMS topicZZTnews defined in Figure 7.2. A published message that matches

the defined subscription must include the additional JMS propertykeyword with the valueexam.

For e-mail, content-based subscriptions and message filtering need to be implemented additionally

as part of the publish/subscribe service. We suggest the usage of XPath for defining message filters,

e.g. //content/@keyword="exam", and XPath processing tools, such as Xalan-Java [9], for

matching published XML messages to XPath filters.

Here we describe the details of the Java RMI service implementation. Figure 7.10 shows a

class diagram of the server-related classes and proxy classes used for communicating with spe-

cific transport components. Server-related classes areDisseminationServer that registers an

RMI remote object, andDisseminationImpl implementing the remote object interface speci-

fied in Dissemination. Each request that complies with the interface definition is directed to

a specific transport component, and a special proxy object, either an instance ofJMSProxy, or

MailProxy, handles the request and directs it to the appropriate component. Since the type of

the instantiated proxy object is unknown prior to request receipt, we use the Factory Method pat-

tern [53] that enables an object to instantiate an object whose type is specified at run time. In our

solution, theDisseminationImpl instantiatesJMSProxy andMailProxy objects using the

classDissProxyFactory and the abstract classDissProxy. For the SOAP implementation the

server-related classes are adjusted to implement a SOAP servlet. The service description using Web

7. m-NewsBoard: A Case Study 132

Table 7.2: A JMS message representation

channel ZZT news

name Diploma thesis exam - February, 16 2004

id 20040209115511_ivana

valid from 1076281200000

valid to 1096063200000

type content

size 1775435

MIME application/pdf

URL http://aloha.zavod.tel.fer.hr:8080/m-News/data/channels/

20040209115511_ivana/exam16_02_2004.pdf

keyword exam

JMSDeliveryMode 2

JMSMessageID ID:113001

JMSPriority 4

JMSExpiration 1096063202406

JMSTimestamp 1076324113765

MessageBody The schedule of the diploma thesis exam...

+createChannel()
+deleteChannel()
+publish()
+subscribe()
+unsubscribe()

«interface»
Dissemination

+createChannel()
+deleteChannel()
+publish()
+subscribe()
+unsubscribe()

DisseminationImpl

+init()
+startup()
+shutdown()

DisseminationServer
-remoteObject

1 1

Server
Factory

+getInstance()
+createDefaultProxy()

DissProxyFactory

1

-requestedProxy

1

+createChannel()
+deleteChannel()
+publish()
+subscribe()
+unsubscribe()

JMSProxy

+createChannel()
+deleteChannel()
+publish()
+subscribe()
+unsubscribe()

MailProxy

+createChannel()
+deleteChannel()
+publish()
+subscribe()
+unsubscribe()

DissProxy

Figure 7.10: Class diagram of the Java RMI implementation

7. m-NewsBoard: A Case Study 133

Services Description Language (WSDL) and a detailed description of the SOAP-based implementa-

tion can be found in [80].

7.3 A Solution for Personal Mobility

The solution for personal mobility relies on the JMS server functionalities: It uses special JMS queues

for storing the presence information that is accessed on demand in the request/reply style, and JMS

topics for distributing the presence information to active processes that are affected by changes in

the subscriber’s presence status. In the current implementation, a subscriber can either receive e-mail

notifications, or JMS messages in an active JMS receiver. Therefore, the user’s presence data can

either contain a user’s e-mail address, or a URL of a JMS receiver.

The process of news receipt is transport specific: A user needs a mail reader for receiving mail

notifications, and a JMS receiver for JMS-based messages. The design of a JMS receiver is the most

challenging in this context: We describe the design of the JMS receiver that is used for displaying the

received messages in the m-NewsBoard application.

It is important to note that a user can specify a subscription to a single channel in three modes:

e-mail delivery, JMS delivery, and combined e-mail/JMS delivery. The user presence information

does not affect the e-mail based delivery. For the JMS-based delivery we use durable subscriptions to

enable message storage during disconnections, and a special solution for storing and updating active

subscriptions in device-independent style. The special solution is needed because a user can apply

different devices for receiving the content, and no subscription information can be stored on a device.

For the combined e-mail/JMS delivery we assume that JMS delivery is used while a user applies a

JMS receiver, and e-mail is the default delivery mechanism in case when the JMS receiver is inactive.

Receiving the news using JMS. The JMS receiver offers a single functionality: It displays the

messages for an authenticated user that comply with the defined user subscriptions. The receiver needs

to be independent of the applied terminal: A subscriber may start a receiver on one terminal, even in

an applet, receive the published messages, then disconnect and stop the receiver, and later on resume

the receiving process on another device. It is possible that the receiver is activated on a terminal that

is behind a firewall because a JMS subscriber initiates a connection to the JMS server, possibly over

HTTP, and maintains it active while waiting for message publications from the server.

First, the publish/subscribe service should store the published messages matching user’s subscrip-

tion during disconnections. JMS offers the possibility to define durable subscriptions which remain

active while the receiver is disconnected. The JMS server will store messages for a durable subscriber

and deliver them when the durable subscriber reconnects.

The second problem is how to activate subscriptions on a JMS receiver. Note that the JMS receiver

has no knowledge about subscriptions that are processed through the m-NewsBoard Web interface and

activated by the publish/subscribe service. The publish/subscribe management component needs to

notify a JMS receiver application about changes in user subscriptions. We have decided to implement

the interaction between the JMS receiver and the publish/subscribe management component through

7. m-NewsBoard: A Case Study 134

 : JMSReceiver : Queue : WebService

Message2receive(mySubs)

Message3subscribe(myId)

Message4setMessageListener()

Message1onMessage(unsubscribe, myId, aTopic)

myMidlet:
JMS Receiver

myQueue:
Queue

: Pub/Sub
Mng

send(mySubs)

subscription
Update: Topic

publish(unsubscribe, myId, aTopic)

Message3subscribe(mySubs \ aTopic)

Message4setMessageListener()

Figure 7.11: Sequence diagram for JMS-based delivery

queues and topics on the JMS server. During the JMS receiver bootstrap, the receiver subscribes to a

special JMS topic -subscriptionUpdate - with a filter requesting that the user id of the subscrip-

tion update message matches the subscriber id. Accordingly, the publish/subscribe service publishes

the data about the changes in user subscriptions through the topicsubscriptionUpdate and no-

tifies the receiver that the user has changed the subscription. Consequently, in case of a subscription to

a new topic, the receiver sends a new subscription request to the JMS server and starts a new message

listener for the specified topic. In case of unsubscription an existing message listener is stopped.

The third problem is the storage and update of user subscriptions during disconnections since

they cannot be stored on a terminal. User subscriptions are stored in a user’s JMS queue: Prior

to stopping the receiver, current subscriptions are put in the queue. Accordingly, during receiver

bootstrap, the subscriptions are fetched from the queue and a new message listener is created for

each topic subscription. In case there have been changes of subscription during disconnection, this

notification will be received through the topicsubscriptionUpdate.

Figure 7.11 shows a sequence diagram related to terminal-independent operation of the JMS re-

ceiver. Prior to JMS receiver disconnection from a JMS server, active subscriptions are stored in a

special receiver queue,myQueue. The JMS receiver and the publish/subscribe management compo-

nent interact through the topicsubscriptionUpdate. When the subscriber unsubscribes from

aTopic through the m-NewsBoard’s Web interface, the message is stored on the server because of

receiver’s durable subscription to the topicsubscriptionUpdate. When the user restarts the

JMS receiver, possibly from a different terminal, the stored subscriptions are read from the queue

myQueue. Next, it reissues the durable subscription to the topicsubscriptionUpdate, and

7. m-NewsBoard: A Case Study 135

 : JMSReceiver : Queue : WebService

Message3subscribe(myId)

Message4setMessageListener()

myMidlet:
JMS Receiver

presence:
Topic

subscriptionUpdate
: Topic : WebService

:Web-based
Pub/Sub

publish(myId, JMSdisconnect)

notify(myId, JMSconnect)

: Pub/Sub
Mng

publish(myId, JMSconnect)

getSubs(myId,JMS)

subscribe(myId, JMS, mySubs)
publish(myId, mySubs)

onMessage(mySubs)

Message3subscribe(mySubs)

Message4setMessage
Listener()

Message3unsubscribe(mySubs)

Message3unsubscribe(myId)

notify(myId, JMSdisconnect)

getDefaultSubs(myId)

subscribe(myId, email, defaultSubs)

unsubscribe(myId, JMS, mySubs)

Figure 7.12: Sequence diagram for e-mail/JMS delivery

receives the previously published notification about user’s unsubscription from the topicaTopic.

Therefore, the receiver removesaTopic from the list of active subscriptionsmySubs and reacti-

vates active subscriptions.

Receiving the news using e-mail/JMS. The combination of e-mail and JMS notification deliv-

ery uses non-durable subscriptions during JMS-based notification delivery because notifications are

sent in the form of e-mail messages during disconnections. Figure 7.12 depicts a sequence diagram

showing the activation of JMS delivery using a JMS receiver, the operational JMS phase, a deactiva-

tion of the JMS receiver, and activation of the e-mail notification delivery. When a user activates a

JMS receiver, the publish/subscribe management component is notified about the new presence status

through thepresence topic. The management component initiates user’s JMS-based subscriptions

through the publish/subscribe component, and subsequently notifies the JMS receiver to start listeners

for the subscribed topics through thesubscriptionUpdate topic. During the operational phase,

in case the user changes his/her subscriptions, the receiver will be notified about subscription changes

through thesubscriptionUpdate topic. Before stopping the receiver, the information about dis-

connection is sent to the management component through thepresence topic. The management

component subsequently terminates JMS subscriptions and initiates e-mail subscriptions by sending

a subscribe request to the publish/subscribe service.

7. m-NewsBoard: A Case Study 136

7.4 Discussion

We have used m-NewsBoard as a case study to shown the applicability of the proposed reference

architecture for the implementation of an example content dissemination service. m-NewsBoard is a

personalized service that enables true user mobility: Users can define subscriptions and choose the

preferred means for receiving the published content. The published news will be delivered to an active

subscriber’s receiver application independent of the applied device, or an e-mail message will be sent

to the user’s mail server in case the receiver application is inactive.

The presented implementation of the publish/subscribe service in the form of a Web service facil-

itates integration of publish/subscribe functionality into other applications. It offers a generalized in-

terface which provides the common publish/subscribe constructs and maps general requests to method

invocations that are specific to the transport component that performs the actual content dissemination.

The main benefit of the proposed approach is the stability of the publish/subscribe generic interface

and, at the same time, service flexibility and openness which enables the encapsulation of an arbitrary

number of publish/subscribe-enabled components into the service. We are unaware of implemented

solutions for generalized publish/subscribe Web-based services that are suitable for mobile scenarios.

The existing publish/subscribe systems have specific proprietary APIs, although the offered function-

ality and communication patterns are similar. These systems are also primarily intended for use in

stationary scenarios and offer limited support for mobility. Recently, a specification draft for Web

Service Notification has been published [56] which addresses the problem of defining a topic-based

publish/subscribe Web service. The draft is still in its initial phase, and the initial analysis shows that

it has largely been influenced by JMS.

Based on the experience gained during the design and implementation of m-NewsBoard, we con-

clude that the prototype implementation of the Web-based publish/subscribe content dissemination

service exhibits the following properties:

Flexibility and openness. The publish/subscribe service can employ different systems and protocols

for content dissemination ranging from traditional mechanisms, such as mail and SMS, to re-

cently developed infrastructures that implement the publish/subscribe interaction model. The

generic interface of the publish/subscribe service assures system stability and simplifies the in-

tegration of publish/subscribe functionality into other value-added services. The addition of

new transport components can improve service flexibility and performance, not its basic func-

tionality: It will not affect other services requiring publish/subscribe.

Terminal independence and personal mobility. Terminal independence enables users to utilize pub-

lish/subscribe functionality from various devices in different networks. On top of terminal inde-

pendence is personal mobility which offers a higher degree of mobility than terminal mobility

and regards a user as an end communication point which is extremely important for the receipt

of published notifications. Personal mobility does not depend on the publish/subscribe service

itself, but needs to be provided by a particular transport component which performs the actual

7. m-NewsBoard: A Case Study 137

delivery: In the presented JMS solution we have shown the ability to design a receiver using

publish/subscribe principles that is able to receive the content in push-style regardless of the

device where the receiver currently runs. Mail readers for various mobile devices, ranging from

desktop computers, to mobile phones are available. The main drawback of mail in mobile sce-

narios is its pull-style operation which is inappropriate for networks with bandwidth limitations

and intermittent connection. A better solution would employ SMS or MMS instead of mail in

mobile scenarios.

Scalability. Service scalability depends heavily on the performance characteristics of the components

that are used for transporting the content. Here we compare e-mail and JMS, the two compo-

nents that are used in the prototype implementation. The solution that employs mail servers

for content delivery is not scalable because of serious resource consumption if the number of

receivers is high: Each mail message is duplicated and sent separately to each subscriber even

if all subscribers use the same mail server. This puts a high processing load on the sender’s mail

server and causes high network bandwidth consumption. The existing JMS implementations

differ in performance and scalability and load tests are needed to evaluate the performance of

each solution for a particular application domain. The common JMS server implementations

have a centralized architecture and may become a performance bottleneck in case of a large

number of publishers and subscribers scattered in a wide area network. However, distributed

JMS server solutions can significantly improve performance and scalability as discussed in Sec-

tion 5.4.

Chapter 8

Conclusion

Even though notification services in mobile networks are gaining wide acceptance, they currently of-

fer limited support for service customization and personalization. Service users can simply subscribe

to a predefined topic, and receive all notifications published on the topic in the form of SMS or MMS

messages. The concepts found in publish/subscribe systems offer means to remedy this limitation:

Expressive content-based subscriptions enable users to describe the type of notifications that are of

interest to them. The next limitation is that notifications are delivered to a single terminal regard-

less of the user’s presence status, or the terminal the user is currently applying. Personal mobility

management is therefore needed to extend the service and offer flexible usage scenarios to service

users.

The thesis has presented a solution for a flexible, personalized content dissemination service that

supports personal mobility of end users. The service serves as an information bus with filtering ca-

pabilities: Publishers can publish the content for numerous subscribers who define subscriptions to

express their interest in receiving certain content types. The service compares each published notifi-

cation to defined subscriptions and delivers the notification only to subscribers with a matching sub-

scription. Notifications are delivered in push-style to the current subscriber’s communication point in

accordance with the subscriber’s presence status.

8.1 Contributions

The thesis focuses on two aspects of content dissemination: the design and evaluation of a mobility-

enabled publish/subscribe middleware, and the design of a software architecture for content dissemi-

nation services that uses the publish/subscribe middleware as its basic communication component.

Mobility-enabled publish/subscribe middleware. The thesis proposes anevent-based model

for distributed publish/subscribe systems supporting client mobility: The model defines the events

that can occur in the system –publish, subscribe, unsubscribe, notify, connect, anddisconnect – and

change the system state. We introduce proxy subscribers and proxy publishers to model the distribu-

tion of system brokers: Proxy publishers represent publishers connected to neighboring brokers, while

138

8. Conclusion 139

proxy subscribers model subscribers residing on neighboring broker, and enable the communication

and interaction between the brokers. We use the proposed model to define the routing algorithms for

selective dissemination of notifications to subscribers that are mobile and potentially disconnected

from a distributed system.

The definedrouting algorithms use a novel principle that relies on notification persistency to solve

the mobility problem in publish/subscribe systems: Notification publishers define the validity period

for published notifications, the system stores notification during the validity period, and delivers valid

notifications to subscribers when they reconnect to the publish/subscribe system. If a subscriber con-

nects to the system after notification expiry, the notification will not be delivered to the subscriber.

Two different routing algorithms that use persistent notifications have been defined: routing based on

subscription equality, and routing based on subscription covering.

To validate the proposed model and the routing solution, we have implemented a prototype system

that can be distinguished from other publish/subscribe implementations by the inherent support for

publisher and subscriber mobility. Further on, we have used the prototype implementation to evaluate

the performance of the proposed routing solution, and to compare it with the approach based on

queues. The evaluation results show that the routing solution using persistent notifications is superior

to the queuing approach with respect to broker memory consumption and scalability. It places less load

on service brokers in case of the increased number of subscribers in the system which can be expected

in real systems, and does not cause significant performance degradation in terms of notification delay

when compared to the solution that uses queues. Best to the author’s knowledge, this is the first

evaluation of the publish/subscribe system performance in a mobile setting that provides performance

measures regarding the broker load, notifications delay, and bandwidth consumption.

Content dissemination service architecture. We have designed an architecture for a mobile

content dissemination service that enables the delivery of personalized and customized content to

mobile users. The architecture is composed of the components that have been identified through the

analysis of service usage scenarios. It uses a publish/subscribe middleware for realizing the inter-

action between service users, and a special personal mobility component for maintaining the user’s

presence information. We have designed a solution for a Web-based publish/subscribe service that of-

fers a generic set of methods for the implementation of publish/subscribe interactions, and uses other

components, such as mail, SMS, MMS, or JMS for the actual content transport. The design of the

personal mobility component proposes the procedures for the update and retrieval of presence data,

and analyzes the issues regarding security.

Finally, we have used m-NewsBoard, a news dissemination service, as a case study to evaluate the

applicability of the proposed architecture. The m-NewsBoard system offers personalized news dis-

semination and enables true user mobility: Users can define subscriptions and choose the means for

receiving the published content. We currently support e-mail and JMS-based delivery: The published

news is delivered to an active JMS receiver independent of the applied device, or an e-mail message

is sent to the user’s mail server in case the receiver application is inactive. The m-NewsBoard system

8. Conclusion 140

utilizes a Web-based implementation of a publish/subscribe service that offers a generalized interface

with the common publish/subscribe constructs, and maps general requests to method invocations that

are JMS or e-mail specific. The main benefit of the approach is the stability of the publish/subscribe

generic interface and, at the same time, service flexibility and openness which enables the encapsula-

tion of an arbitrary number of publish/subscribe-enabled components into the service. A solution for

terminal independence and personal mobility is implemented using the publish/subscribe and queue-

based communication capabilities offered by the JMS.

8.2 Future Work

The thesis has given answers to certain questions related to mobile publish/subscribe systems, and

content dissemination services. However, a number of interesting research problems have been iden-

tified for the future work.

The initial analysis shows that the presented publish/subscribe model and routing algorithms offer

a solution for the design of a scalable distributed JMS-based broker network that can support client

mobility. Service implementation and experimental evaluation are needed to investigate such claims.

Further on, the presented model and algorithms can be extended by publisher advertisements: Eval-

uation studies show that the usage of advertisements in publish/subscribe systems reduces the traffic

generated by control messages in distributed publish/subscribe systems [79]. We currently support

routing algorithms that are based on reverse path forwarding: It would be interesting to investigate

and evaluate the performance of other approaches, such as the core-based tree routing, and probabilis-

tic gossip-based algorithms [64], in mobile settings. In the current publish/subscribe system design

we assume that the system is fault-free: Mechanisms for designing a fault tolerant solution should be

further investigated.

Moreover, further analysis of the recent attempts to publish/subscribe service standardization are

needed. For example, we should investigate the compliance of the Web Service Notification initia-

tive [56] with the proposed Web-based publish/subscribe service design. Another interesting exten-

sion of the content dissemination service is related to user geographical location. The integration of

location status in the presence data can be used to offer location-based content dissemination.

Bibliography

[1] 3rd Generation Partnership Project. Virtual Home Environment/Open Service Access; (3GPP TS 23.127

V6.0.0), December 2002. http://www.3gpp.org.

[2] 3rd Generation Partnership Project. IP Multimedia Subsystem (IMS); Stage 2 (3GPP TS 23.228 V6.3.0),

September 2003. http://www.3gpp.org.

[3] 3rd Generation Partnership Project. Presence Service; Architecture and functional description; Stage 2

(3GPP TS 23.141 V6.4.0), September 2003. http://www.3gpp.org.

[4] K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained handling of identity in Peer-to-Peer

systems, 2004. To be published in IEEE Transactions on Knowledge and Data Engineering (second

quarter 2004).

[5] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events in a content-

based subscription system. InProceedings of the 18th ACM Symposium on Principles of Distributed

Computing, pages 53–61. ACM Press, 1999.

[6] I. F. Akyildiz and J. S. M. Ho. On location management for personal communication networks.IEEE

Communications Magazine, 34(9):138–45, September 1996.

[7] I. F. Akyildiz, J. McNair, J. S. M. Ho, H. Uzunalioˇglu, and W. Wang. Mobility management in next-

generation wireless systems.Proceeding of the IEEE, 87(8):1347–1384, August 1999.

[8] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemination of

information. InThe VLDB Journal, pages 53–64, 2000.

[9] Apache XML Project. Xalan-Java version 2.5.2, 2004. http://xml.apache.org/xalan-j/.

[10] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri. Generic support

for distributed applications.IEEE Computer, 33(3):68–76, March 2000.

[11] B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M. Satyanarayanan. A conceptual frame-

work for network and client adaptation.Mobile Networks and Applications, 5(4):221–31, December

2000.

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up data in P2P systems.

Communications of the ACM, 46(2):43–48, February 2003.

[13] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT): An architecture for scalable inter-

domain multicast routing. InProceedings of ACM SIGCOMM’93, pages 85–95. ACM Press, September

1993.

[14] S. Banerjee and B. Bhattacharjee. A comparative study of application layer multicast protocols, 2002.

Submitted for review. http://citeseer.nj.nec.com/banerjee01comparative.html.

[15] K. Betz. A scalable stock web service. InProceedings of the 2000 International Conference on Par-

allel Processing, Workshop on Scalable Web Services, pages 145–150, Toronto, Canada, 2000. IEEE

Computer Society.

141

BIBLIOGRAPHY 142

[16] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.ACM Transactions on Computer

Systems, 2(1):39–59, February 1984.

[17] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide. Addison-Wesley,

Reading, Massachusetts, USA, 1999.
[18] E. A. Brewer, R. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes, G. Nguyen, M. Stemm, T. Henderson,

E. Amir, H. Balakrishnan, A. Fox, V. N. Padmanabhan, and S. Seshan. A network architecture for

heterogeneous mobile computing.IEEE Personal Communications, 5(5):8–24, October 1998.

[19] G. Bricconi, E. Di Nitto, A. Fuggetta, and E. Tracanella. Analyzing the behavior of event dispatching

systems through simulation. InProceedings of the 7th International Conference on High Performance

Computing, pages 131–140, December 2000.

[20] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering in publish-subscribe sys-

tems using binary decision diagrams. InProceedings of the 23rd International Conference on Software

Engineering, pages 443–52, 2001. http://www-2.cs.cmu.edu/∼chaki/publications/ICSE-2001.pdf.

[21] M. Caporuscio, A. Carzaniga, and A. L. Wolf. Design and evaluation of a support service for mobile,

wireless publish/subscribe applications.IEEE Transactions on Software Engineering, 29(12):1059–

1071, December 2003.
[22] A. Carzaniga.Architectures for an Event Notification Service Scalable to Wide-area Networks. PhD

thesis, Politecnico di Milano, Milano, Italy, 1998.

[23] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness in an internet-

scale event notification service. InProceedings of the 19th ACM Symposium on Principles of Distributed

Computing, pages 219–227. ACM Press, July 2000.
[24] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event notification

service.ACM Transactions on Computer Systems, 19(3):332–383, August 2001.
[25] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and decentral-

ized application-level multicat infrastructure.IEEE Journal on Selected Areas in Communications,

20(8):100–110, October 2002.
[26] M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing user profiles for data recharging.IEEE

Personal Communications, 8(4):32–8, August 2001.
[27] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive

study.ACM Computing Surveys, 33(4):1–43, December 2001.

[28] W. Consortium. Composite Capabilities/Preference Profiles, September 2003. http://www.w3.org/

Mobile/CCPP/.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms, chapter 24: Minimum

Spanning Trees. MIT Press, 1990.

[30] G. Cugola and H.-A. Jacobsen. Using publish/subscribe middleware for mobile systems.ACM SIGMO-

BILE Mobile Computing and Communications Review, 6(4):25–33, 2002.
[31] G. Cugola and E. D. Nitto. Using a publish/subscribe middleware to support mobile computing. In

Proceedings of the Advanced Topic Workshop on Middleware for Mobile Computing, in association

with IFIP/ACM Middleware 2001, November 2001.

[32] G. Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop complex

distributed systems. InProceedings of the 20th International Conference on Software Engineering,

pages 261–270, April 1998.

[33] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its application to

the development of the OPSS WFMS.IEEE Transactions on Software Engineering, 27(9):827–50,

September 2001.

BIBLIOGRAPHY 143

[34] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and Instant Messaging, February 2000.

RFC 2778. http://www.ietf.org/rfc/rfc2778.txt.

[35] S. E. Deering and D. R. Cheriton. Multicast routing in datagram networks and extended LANs.ACM

Transactions on Computer Systems, 8(2):85–111, 1990.

[36] A. Devlić and I. Podnar. Location-aware content delivery service using publish/subscribe. InProceed-

ings of tcmc 2003, March 2003.

[37] S. Dustdar, H. Gall, and M. Hauswirth.Software-Architekturen f ür Verteilte Systeme. Springer Verlag,

2003.

[38] S. Dustdar, H. Gall, and R. Schmidt. Web services for groupware in distributed and mobile collabora-

tion. Technical Report TUV-1841-2003-24, Distributed Systems Group, Technical University of Vienna,

2003.

[39] A. El-Sayed, V. Roca, and L. Mathy. A survey of proposals for an alternative group communication

service.IEEE Network, 17(1):2–7, 2003.

[40] W. Emmerich. Software engineering and middleware: A roadmap. InThe Future of Software Engineer-

ing - 22th International Conference on Software Engineering (ICSE 2000), pages 117–129. ACM Press,

May 2000.

[41] P. T. Eugster, R. Boichat, R. Guerraoui, and J. Sventek. Effective multicast programming in large scale

distributed systems.Concurrency and Computation: Practice and Experience, 13(6):421–447, May

2001.

[42] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe.

ACM Computing Surveys, 35(2):114–131, 2003.

[43] P. T. Eugster and R. Guerraoui. Content-based publish/subscribe with structural reflection. InProceed-

ings of the 6th USENIX Conference on Object-Oriented Technologies and Systems (COOTS’01), January

2001.

[44] P. T. Eugster, R. Guerraoui, and F. Sventek. Distributed asynchronous collections: Abstractions for

publish/subscribe interaction. InProceedings of the 14th European Conference on Object-Oriented

Programming (ECOOP 2000), volume 1850 ofLecture Notes in Computer Science, pages 252–276.

Springer-Verlag, June 2000.

[45] P. T. Eugster, R. Guerraoui, and J. Sventek. Type-based publish/subscribe. Technical report, Distributed

Programming Laboratory, Swiss Federal Institute of Technology, June 2000.

[46] P. Felber, C.-Y. Chan, M. Garofalakis, and R. Rastogi. Scalable filtering of XML data for web services.

IEEE Internet Computing, 7(1):49–57, January/February 2003.

[47] A. Festag, H. Karl, and G. Sch¨afer. Current developments and trends in handover design for All-IP

wireless networks. Technical Report TKN-00-007, Telecommunication Networks Group, Technical

University Berlin, Germany, 2000.

[48] L. Fiege, F. C. G¨artner, O. Kasten, and A. Zeidler. Supporting mobility in content-based pub-

lish/subscribe middleware. InProceedings of the ACM/IFIP/USENIX International Middleware Confer-

ence (Middleware 2003), volume 2672 ofLecture Notes in Computer Science, pages 103–122. Springer-

Verlag, June 2003.

[49] L. Fiege, G.Mühl, and F. C. G¨artner. Modular event-based systems.Knowledge Engineering Review,

17(4):359–388, 2003.

[50] G. Fox and S. Pallickara. JMS compliance in the Narada event brokering system. InProceedings of the

International Conference on Internet Computing, pages 391–402, 2002.

BIBLIOGRAPHY 144

[51] M. J. Franklin and S. B. Zdonik. A framework for scalable dissemination-based systems. InProceedings

of the 12th ACM Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA ’97), pages 94–105, Atlanta, GA, USA, October 1997.

[52] N. Freed and N. Borenstein. Multipurpose Internet Mail Extension (MIME) Part Two: Media Types,

November 1996. RFC 2046. http://www.ietf.org/rfc/rfc2046.txt.

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements od Reusable Object-

Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley Publishing Com-

pany, New York, NY, 1995.

[54] C. Ghezzi, M. Jazayeri, and D. Mandrioli.Fundamentals of Software Engineering, 2nd edition. Prentice

Hall, 2002.

[55] D. J. Goodman. The wireless Internet: Promises and challlenges.IEEE Computer, 33(7):36–41, July

2000.

[56] S. Graham and P. Niblett (editors). Web Services Notification, specification draft, January 2004. http:

//xml.coverpages.org/ws-notification200401.pdf.

[57] M. Hauswirth. Internet-Scale Push Systems for Information Distribution—Architecture, Components,

and Communication. PhD thesis, Distributed Systems Group, Technical University of Vienna, October

1999.
[58] M. Hauswirth and M. Jazayeri. A component and communication model for push systems. InPro-

ceedings of the ESEC/FSE 99 – Joint 7th European Software Engineering Conference and 7th ACM

SIGSOFT International Symposium on the Fundations of Software Engineering, September 1999.
[59] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment. InProceedings of the 2nd

ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE’01), pages

27–34, May 2001.
[60] J. F. Huber, D. Weiler, and H. Brand. UMTS, the mobile multimedia vision for IMT-2000: A focus on

standardization.IEEE Communications Magazine, 38(9):129–136, September 2000.

[61] C. Huitema.Routing in the Internet, 2nd ed., chapter 12: IP Multicast Routing. Prentice Hall, 2000.

[62] H.-A. Jacobsen. Middleware services for selective and location-based information dissemination in

mobile wireless networks. InProceedings of the Advanced Topic Workshop on Middleware for Mobile

Computing, in association with IFIP/ACM Middleware 2001, November 2001.

[63] S. Kapp. 802.11: Leaving the wire behind.IEEE Internet Computing, 6(1):82–85, January/February

2002.

[64] A. Kermarrec, L. Massoulie, and A. Ganesh. Reliable probabilistic communication in large-scale infor-

mation dissemination systems, 2000.
[65] E. Kirda, C. Kerer, and M. Jazayeri. Supporting multidevice enabled web services: Challenges and

open problems. InProceedings of the 10th IEEE Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE). IEEE Computer Society, June 2001.
[66] T. Kunz, A. A. Siddiqi, and J. Scourias. The peril of evaluating location management proposals through

simulations.Wireless Networks, 7(6):635–643, 2001.

[67] G. Le Bodic.Mobile Messaging Technologies and Services: SMS, EMS and MMS. Wiley, 2003.

[68] S. J. Lefflet, R. S. Fabry, W. N. Joy, P. Lapsley, S. Miller, and C. Torek. An advanced 4.4BSD inter-

process communication tutorial: Unix programmer’s supplementary documents (PSD) 21. Technical

report, Computer Systems Research Group, Depertment of Electrical Engineering and Computer Sci-

ence, University of California, Berkeley, 1993.

[69] T. Liao. Global information broadcast: An architecture for internet push channels.IEEE Internet

Computing, 4(4):16–25, July/August 2000.

BIBLIOGRAPHY 145

[70] Y.-B. Lin and I. Chlamtac.Wireless and Mobile Network Architectures. Wiley, 2001.

[71] I. Lovrek, M. Matijašević, and G. Jeˇzić. Pokretljivost u mreˇzama. In A. Baˇzant et al., editor,Osnovne

arhitekture mreža. Element, 2003.

[72] P. Maniatis, M. Roussopoulos, E. Swierk, K. Lai, G. Appenzeller, X. Zhao, and M. Baker. The Mobile

People Architecture.ACM Mobile Computing and Communications Review, 3(3), July 1999.

[73] C. Mascolo, L. Capra, and W. Emmerich. Middleware for mobile computing (A Survey). InAdvanced

Lectures on Networking - Networking 2002 Tutorials, volume 2497 ofLecture Notes in Computer Sci-

ence, pages 20–58. Springer-Verlag, May 2002.

[74] R. Meier. State of the art review of distributed event models. Technical Report TCD-CS-00-16, Dept.

of Computer Science, Trinity College Dublin, Ireland, 2000.

[75] M. Mi ćin. Usmjeravanje poruka u distribuiranim sustavima objavi/pretplati (In Croatian)—Routing

messages in publish/subscribe systems. Diploma Thesis. FER, University of Zagreb, Croatia, June

2003.

[76] R. Monson-Haefel and D. A. Chappell.Java Message Service. O’Reilly & Associates, 2001.

[77] G. Mühl. Generic constraints for content-based publish/subscribe systems. InProceedings of the 6th

International Conference on Cooperative Information Systems (CoopIS’01), volume 2172 ofLecture

Notes in Computer Science, pages 211–225. Springer-Verlag, 2001.

[78] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt University of

Technology, 2002.

[79] G. Mühl, L.Fiege, F. C. G¨artner, and A. Buchmann. Evaluating advanced routing algorithms for content-

based publish/subscribe systems. InProceedings of the 10th IEEE International Symp. on Modeling,

Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS’02), pages 167–

176. IEEE Computer Society, October 2002.

[80] D. Muhoberac. Implementacija usluge objavi-pretplati primjenom tehnologije Web Services (In

Croatian)—Implementation of a publish/subscribe Web service. Diploma Thesis. FER, University of

Zagreb, Croatia, June 2004. To be published.

[81] C. Noble. System support for mobile, adaptive applications.IEEE Personal Communications, 2(3):44–

49, February 2000.

[82] Object Management Group. CORBA event service specification, version 1.1, March 2001. http://www.

omg.org/technology/documents/formal/eventservice.htm.

[83] Object Management Group. CORBA notification service, version 1.0.1, August 2002. http://www.omg.

org/technology/documents/formal/notificationservice.htm%.

[84] ObjectWeb Open Source Middleware. JORAM - Java Open Reliable Asynchronous Messaging (release

3.6.0), August 2003. http://www.objectweb.org/joram/.

[85] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an architecture for extensible

distributed systems. In B. Liskov, editor,Proceedings of the 14th Symposium on Operating Systems

Principles, pages 58–68, Asheville, NC, USA, December 1993. ACM Press.

[86] C. Peersman, S. Cvetkovic, P. Griffiths, and H. Spear. The global system for mobile communications

short message service.IEEE Personal Communications, 6(3):15–23, June 2000.

[87] J. Pereira, F. Fabret, F. Llirbat, R. Preotiuc-Pietro, K. A. Ross, and D. Shasha. Publish/subscribe on the

Web at extreme speed. InVLDB 2000, Proceedings of 26th International Conference on Very Large

Data Bases, pages 627–630, Cairo, Egypt, September 2000. Morgan Kaufmann Publishers.

[88] C. E. Perkins. Mobile networking through Mobile IP.IEEE Internet Computing, 2(1):58–69, January-

February 1998.

BIBLIOGRAPHY 146

[89] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture. InIn Proceedings

of the 22rd International Conference on Distributed Computing Systems - Workshops (ICDCS 2002

Workshops), pages 611–618. IEEE Computer Society, July 2002.
[90] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in an event-based middleware. In

Proceedings of the 2nd International Workshop on Distributed Event-Based Systems (DEBS’03). ACM

Press, June 2003.
[91] E. Pitoura and G. Samaras. Locating objects in mobile computing.IEEE Transactions on Knowledge

and Data Engineering, 13(4):571–592, July/August 2001.
[92] I. Podnar. Publish/subscribe middleware concepts. Technical Report FER-ZZT-2002-12-01, Department

of Telecommunications, FER, University of Zagreb, December 2002.

[93] I. Podnar. Web-based mobile content dissemination service with publish/subscribe. Technical Re-

port FER-ZZT-2003-09-01, Department of Telecommunications, FER, University of Zagreb, September

2003.
[94] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile Push: Delivering content to mobile users. InPro-

ceedings of the 22nd International Conference on Distributed Computing Systems - Workshops (ICDCS

2002 Workshops), pages 563–568. IEEE Computer Society, July 2002.

[95] I. Podnar and K. Pripuˇzić. m-NewsBoard: A news dissemination service for mobile users. InProceed-

ings of the 7th International Conference on Telecommunications (ConTEL 2003), pages 205–211. FER,

University of Zagreb, June 2003.
[96] G. Pospischil, J. Stadler, and I. Miladinovi´c. Location-based push architectures for the mobile internet.

In S. Dixit and R. Prasad, editors,Wireless IP and Building the Mobile Internet, pages 503–524. Artech

House, 2003.

[97] K. Pripužić. Oblikovanje i razvoj aplikacije za isporuku višemedijskih poruka u mobilnom okru ženju

(In Croatian)—Design and implementation of an application for disseminating multimedia messages in

mobile environments. Diploma Thesis. FER, University of Zagreb, Croatia, September 2003.
[98] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-

addressable networks. InProceedings of the 3rd International Workshop on Networked Group Com-

munication, November 2001.

[99] P. Reinbold and O. Bonaventure. IP micro-mobility protocols.IEEE Communications Surveys and

Tutorials, 5(1):40–57, Third Quarter 2003.

[100] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation and no-

tification. In Proceedings of the 6th European conference on Foundations of Software Engineering

(ESEC/FSE ’97), volume 1301 ofLecture Notes in Computer Science, pages 344–360. Springer / ACM

Press, 1997.

[101] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller, and M. Baker. Person-level routing

in the Mobile People Architecture. InProceedings of the USENIX Symposium on Internet Technologies

and Systems, October 1999.
[102] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for large-scale

peer-to-peer systems. InProceedings of Middleware 2001, pages 329–350, November 2001.
[103] A. K. Salkintzis. Wide-area wireless IP connectivity with the general packet radio service. In S. Dixit

and R. Prasad, editors,Wireless IP and Building the Mobile Internet, pages 27–47. Artech House, 2003.
[104] M. Satyanarayanan. Fundamental challenges in mobile computing. InProceedings of the 15th ACM

Symposium on Principles of Distributed Computing, pages 1–7, May 1996.
[105] H. Schulzrinne and J. Rosenberg. The Session Initiation Protocol: Internet-centric signaling.IEEE

Communication Magazine, 38(10):134–141, October 2000.

BIBLIOGRAPHY 147

[106] H. Schulzrinne and E. Wedlund. Application-layer mobility using SIP.Mobile Computing and Commu-

nications Review, 4(3):47–57, July 2000.

[107] Softwired. iBus//Mobile developer’s manual release 3.1., August 2002. http://www.softwired-inc.com.

[108] Sun Microsystems, Inc. Java Message Service Specification version 1.1, 2002. http://java.sun.com/

products/jms/.

[109] Sun Microsystems, Inc. JavaSpaces Service Specification version 1.2.1, April 2002. http://wwws.sun.

com/software/jini/specs/jini1.2html/js-title.html.

[110] Sun Microsystems, Inc. Java Remote Method Invocation (Java RMI), 2004. http://java.sun.com/

products/jdk/rmi/index.jsp.

[111] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness–Transparent information delivery

for mobile and invisible computing. InProceeding of the IEEE International Symposium on Cluster

Computing and the Grid, pages 277–285. IEEE Computer Society, May 2001.

[112] S. Tai and I. Rouvellou. Strategies for integrating messaging and distributed object transactions. In

Middleware 2000, volume 1795 ofLecture Notes in Computer Science, pages 308–330. Springer-Verlag,

2000.

[113] A. S. Tanenbaum.Computer Networks, 3rd edition, chapter 7.4: Electronic mail. Prentice Hall, 1996.

[114] A. S. Tanenbaum.Computer Networks, 3rd edition, chapter 7.5: Usnet news. Prentice Hall, 1996.

[115] A. S. Tanenbaum and M. van Steen.Distributed Systems: Principles and Paradigms, chapter 12: Dis-

tributed coordination-based systems. Prentice Hall, 2002.

[116] TIBCO Software Inc. TIBCO Rendezvous (version 7.2), 2003. http://www.tibco.com/solutions/

products/activeenterprise/rv/default.js%p.

[117] B. Turk. Usporedba algoritama za usmjeravanje poruka u sustavima objavi-pretplati (In Croatian)—

Comparison of the routing algorithms in publish/subscribe systems. Diploma Thesis. FER, University

of Zagreb, Croatia, September 2004. To be published.

[118] W3C. XML Path Language (XPath), version 1.0, November 1999. http://www.w3.org/TR/xpath.

[119] W3C. Web Services Description Language (WSDL), version 1.1, March 2001. http://www.w3.org/TR/

wsdl.

[120] W3C. SOAP Version 1.2 Part 0: Primer0, June 2003. http://www.w3.org/TR/soap12-part0/.

[121] W3C. Web services architecture, August 2003. http://www.w3.org/TR/ws-arch/.

[122] H. J. Wang, B. Raman, C.-N. Chuah, R. Biswas, R. Gummadi, B. Hohlt, X. Hong, E. Kiciman, Z. Mao,

J. S. Shih, L. Subraimanian, B. Y. Zhao, A. D. Joseph, and R. H. Katz. ICEBERG: An Internet core net-

work architecture for integrated communications.IEEE Personal Communications, 7(4):10–19, August

2000.

[123] E. Yoneki and J. Bacon. Pronto: MobileGateway with publish-subscribe paradigm over wireless net-

work. Technical Report UCAM-CL-TR-559, Computer Laboratory, University of Cambridge, 2003.

[124] S. Young, D. Spanjol, and V. K. Garg. Control of discrete event systems modeled with deterministic

Büchi automata. InProceedings of 1992 American Control Conference, pages 2809–2813, Chicago, IL,

1992.

[125] A. Zeidler and L. Fiege. Mobility support with REBECA. InProceedings of the 23rd International

Conference on Distributed Computing Systems - Workshops (ICDCS 2003 Workshops), pages 354–360,

May 2003.

[126] Y. Zhao and R. E. Strom. Exploiting event stream interpretation in publish-subscribe systems. In

Proceedings of the 20th ACM Symposium on Principles of Distributed Computing, pages 219–228.

ACM Press, August 2001.

BIBLIOGRAPHY 148

[127] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz. Bayeux: An architecture

for scalable and fault-tolerant wide-area data dissemination. InProceedings of the 11th International

Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2001),

June 2001.

Summary

The dissertation presents an architecture and an implementation of efficient and personalized content

dissemination service targeting mobile users. The service enables information publishers to publish

the content for numerous users based on the publish/subscribe interaction style. Service personaliza-

tion is achieved through subscriptions: Users define subscriptions to express their interest in receiv-

ing certain content types. The published content contains non-realtime data of variable bandwidth

demands (short text messages, images or video clips) and the publishing time is usually randomly

determined. Furthermore, the service enables personal mobility, i.e., a user can receive the content in

various networks applying different terminals.

The thesis investigates two aspects of content dissemination. Firstly, a mathematical model of

distributed publish/subscribe systems is presented, followed by the definition of routing algorithms

that support publisher and subscriber mobility. Secondly, the thesis proposes a software architecture

for content dissemination services based on a publish/subscribe Web service.

Keywords
content dissemination, publish/subscribe middleware, mobility, event-driven model, routing

algorithm, software architecture

149

Kratki sadržaj

Disertacija predlaˇze arhitekturu i implementaciju usluge za uˇcinkovitu i personaliziranu isporuku

sadržaja pokretnim korisnicima. Usluga omogu´cuje objavljivanje sadrˇzaja na naˇcelu objavi-pretplati

namijenjenog velikom broju korisnika. Usluga je personalizirana jer korisnici pretplatom izraˇzavaju

interes za primanje odredene vrste sadrˇzaja. Sadrˇzaj čine podaci koji se ne prenose u stvarnom vre-

menu, varijabilnih su prometnih karakteristika (kratke tekst poruke, slike ili video isjeˇcci), a trenutak

njihovog objavljivanja je sluˇcajni dogadaj. Usluga treba omogu´citi pokretljivost osobe, tj. mogu´cnost

primanja sadrˇzaja u raznovrsnim mreˇzama i na razliˇcitim terminalima.

Disertacija daje dva pogleda na uslugu za isporuku sadrˇzaja. Najprije je predloˇzen matematiˇcki

model koji opisuje distribuirane sustave objavi-pretplati, te su definirani algoritmi umjeravanja poruka

koji podržavaju pokretljivost korisnika sustava. Potom je predloˇzena arhitektura usluge za isporuku

sadržaja temeljena na komponenti objavi-pretplati koja je oblikovana primjenom tehnologijeWeb

service.

Ključne riječi
isporuka sadrˇzaja, meduoprema objavi-pretplati, pokretljivost, model voden dogadajima, algoritam

usmjeravanja, arhitektura programskog proizvoda

150

Curriculum Vitae

I was born on October 29th, 1973 in Zagreb. After finishing high school, natural science track, in

Zagreb, I started the undergraduate program at the Faculty of Electrical Engineering and Computing,

University of Zagreb, in 1992. I received my B.S. (Dipl.-Ing.) and M.S. degrees in electrical engi-

neering with a major in telecommunications and information science from the University of Zagreb,

in 1996 and 1999, respectively. The research topic of my Master’s thesis was “Software Mainte-

nance Process Analysis”. I am currently a teaching assistant at the Faculty of Electrical Engineer-

ing, University of Zagreb. I have been affiliated with the Department of Telecommunications at the

named Faculty since 1997. In 2000 and 2001 I was on leave from the University of Zagreb, work-

ing toward my Ph.D. as a research associate at the Information Systems Institute of the Technical

University of Vienna, Austria. My current research interests include distributed information systems,

publish/subscribe systems in particular, and services in mobile networks. I have published 13 papers

on international conferences in the area of distributed systems and software maintenance. I am fluent

in English, German, and Italian. I am a member of IEEE.

151

Životopis

Rodena sam 29. listopada 1973. u Zagrebu. Po zavrˇsetku srednje ˇskole (XV Gimnazija u Za-

grebu), 1992. godine upisujem studij na Fakultetu elektrotehnike i raˇcunarstva Sveuˇcili šta u Za-

grebu, gdje sam i diplomirala u prosincu 1996. godine s temom “Optimalno pridjeljivanje valnih

duljina u sveoptiˇckim mrežama s valnim multipleksom”. Magistrirala sam u prosincu 1999. godine

na Fakultetu elektrotehnike i raˇcunarstva, i time stekla znanstveni stupanj magistra znanosti iz po-

dručja tehničkih znanosti, polje Elektrotehnika, smjer Telekomunikacije i informatika. Tema mog

magistarskog rada je “Analiza procesa odrˇzavanja programske opreme”. Od veljaˇce 1997. godine

sam zaposlena na Zavodu za telekomunikacije Fakulteta elektrotehnike i raˇcunarstva u zvanju asis-

tenta. Tijekom 2000. i 2001. godine sam radila kao znanstveni suradnik na Institutu za informacijske

sustave Tehniˇckog sveuˇcili šta u Beˇcu radi znastvenog usavrˇsavanja u okviru doktorskog studija. Moja

područja istraživanja su distibuirani informacijski sustavi s naglaskom na sustaveobjavi-pretplati i

usluge u pokretnim mreˇzama. Objavila sam 13 radova na medunarodnim konferencijama iz podruˇcja

distribuiranih sustava i odrˇzavanja programske podrˇske. Govorim engleski, njemaˇcki i talijanski jezik.

Član sam udruˇzenja IEEE.

152

