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The advance of GPS-enabled devices facilitates people to record their location histories with GPS traces, which 
imply human behaviors and preferences related to travel. In this paper, we perform two types of travel 

recommendations by mining multiple users’ GPS traces. The first is a generic one that recommends a user with 

top interesting locations and travel sequences in a given geospatial region. Here, interesting locations mean the 
culturally important places, such as Tiananmen Square in Beijing, and frequented public areas, like shopping 

malls and restaurants. The second is a personalized recommendation that provides an individual with locations 

matching her travel preferences. To achieve the first recommendation, we model multiple users’ location 
histories with a tree-based hierarchical graph (TBHG). Based on the TBHG, we propose a HITS (Hypertext 

Induced Topic Search)-based inference model, which regards an individual’s access on a location as a directed 

link from the user to that location. This model infers two values, the interest level of a location and a user’s 
travel experience, by taking into account 1) the mutual-reinforcement relation between the two values and 2) the 

geo-region conditions. Considering the inferred values, we mine the classical travel sequences among locations. 

In the personalized recommendation, we first understand the correlation among locations in terms of 1) the 
sequences that the locations have been visited and 2) the travel experiences of the persons accessing these 

locations. Beyond the geo-distance relation, this correlation represents the relation between locations in the 

spaces of human behavior. Later, we incorporate the location correlation into a collaborative filtering (CF)-
based model that infers a user’s interests in an unvisited location based on her locations histories and that of 

others. We evaluated our system based on a real-world GPS trace dataset collected by 107 users over a period of 

one year. As a result, our HITS-based inference model outperformed baseline approaches like rank-by-count 
and rank-by-frequency. Meanwhile, when considering the users’ travel experiences and location interests, we 

achieved a better performance in recommending travel sequences beyond baselines including rank-by-count and 

rank-by-interest. Regarding the personalized recommendation, our approach is more effective than the weighted 
Slope One algorithm with a slightly additional computation. In addition, in contrast to the Pearson correlation-

based CF model, our method is much more efficient while keeping the similar effectiveness. 

 

H.2.8 [Database Management]: Database Applications - data mining, Spatial databases and GIS. H.3.3 
[Information Storage and Retrieval]: Information Search and Retrieval – clustering, retrieval model. 

General Terms: Algorithms, Measurement, Experimentation 

Additional Key Words and Phrases: Location recommendation, Location History, GPS trace, Collaborative 

filtering, GeoLife.  

________________________________________________________________________ 

1. INTRODUCTION  

GPS-enabled devices are changing the way people interact with the Web by using 

locations as contexts. With such a device, a user is able to acquire present locations, 

search for the information around them and find driving directions to a destination. 

Recently, many users start recording their outdoor movements with GPS traces for many  
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reasons, such as travel experience sharing [Counts and Smith 2007; GeoLife 2007], life 

logging [Zheng et al. 2008c and 2008d] and sports activity analysis [SportsDo 2007; 

Bikely 2006]. At the same time, a branch of websites or forums that enable people to 

establish some geo-related Web communities have appeared on the Internet. By 

uploading their GPS traces to such communities, individuals can manage their travel 

experiences on a Web map and share travel knowledge among each other. For instance, a 

person is able to find some attractive places from other people’s travel routes, and plan an 

interesting and efficient journey based on multiple users’ experiences. 

     Although a huge amount of GPS traces have been accumulating, most of these 

applications still directly use raw GPS data, like coordinates and time stamps, without 

much understanding. Being faced with such a large dataset, it is impossible for 

community users to browse GPS traces one by one and identify interesting locations by 

themselves. That is, the travel recommendations provided by these communities are not 

comprehensive and significant enough.  

     Typically, people need two types of recommendations during a journey, generic and 

personalized recommendations. Regarding the generic recommendation, people usually 

desire to know the most popular/interesting locations in a geospatial region and the 

classical travel sequences among these locations. To define interesting location, we mean 

the culturally important places, such as Tiananmen Square in Beijing and the Statue of 

Liberty in New York (i.e. popular tourist destinations), and commonly frequented public 

areas, such as shopping malls/streets, restaurants, cinemas and bars. With the information 

mentioned above, an individual can understand an unfamiliar city in a very short period 

and plan their journeys with minimal effort. Besides the generic recommendation, an 

individual also wants to visit some locations matching her travel preferences 

(personalized). For instance, a food-lover prefers to find some restaurants providing 

delicious foods although these restaurants might not be the most popular places in a city. 

     However, we will meet some challenges when conducting these two types of 

recommendations. First, the interest level of a location does not only depend on the 

number of users visiting this location but also lie in these users’ travel experiences. 

Intrinsically, different people have different degrees of knowledge about a geospatial 

region. In a journey, the users, with more travel experiences about a region, would be 

more likely to visit some interesting locations in that region. For example, the local 

people of Beijing are more capable than overseas tourists of finding out high quality 

restaurants and famous shopping malls in Beijing. Second, an individual’s travel 

experience and interest level of a location are relative values (i.e., it is not reasonable to 

judge whether or not a location is interesting), and are region-related (i.e., conditioned by 

the given geospatial region). A user, who has visited many places in a city like New York, 

might have no idea about another city, such as Beijing. Likewise, the most interesting 

restaurant in a district of a city might not be the most interesting one of the whole city (as 

other restaurants from the remaining districts might outperform it). Third, current CF 

models are not good enough to understand an individual’s travel preferences from her 

location history and predict her interests in an unvisited location. The traditional item-

based methods [Linden et al. 2003; Lemire et al. 2005] have a good online efficiency 

while cannot well model human travel behaviors, such as the visited sequence of 

locations and travel knowledge of different users. Some user-based CF models [Li et al. 

2008; Zheng et al. 2010b] (using user similarity) can model human travel behavior while 

will cause a huge computation loads (as these method needs to compute the similarity 

between each pair of users and the number of users could increase continuously). 
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     In this paper, we conduct both generic and personalized travel recommendations based 

on multiple users’ GPS traces. To achieve the generic recommendation,  

 We propose a tree-based hierarchical graph (TBHG), which can model multiple users’ 

travel sequences on a variety of geospatial scales. 

 Based on the TBHG, we propose a HITS-based model to infer users’ travel 

experiences and interest of a location within a region. This model leverages the main 

strength of HITS to rank locations and users with the context of a geospatial region, 

while calculating hub and authority scores offline. Therefore, we can ensure the 

efficiency of our system while supporting users to specify any geo-regions as queries. 

 Considering an individual’s travel experiences and the interests of a location as well 

as people’s transition probability between locations, we mine the classical travel 

sequences from multiple users’ location histories. 

   To conduct the second recommendation, we first mine the correlation among locations 

from multiple users’ GPS traces in terms of 1) the sequences that the locations have been 

visited and 2) the travel experiences of the users creating these sequences. Later, the 

location correlation is incorporated into a CF-based model that infers a user’s interests in 

an unvisited location based on her locations histories and that of others. 

    The rest of this paper is organized as follows. Section 2 summarizes the related work. 

Section 3 introduces some basic concepts used in this paper and gives an overview of our 

work. Section 4 describes the process of location history modeling. Section 5 presents the 

methodology of mining interesting locations and classical travel sequences. Section 6 

illustrates the method of mining location correlation. Section 7 details the recommenders. 

Section 8 reports on major experimental results followed by some discussions. Section 9 

concludes this article.  

2. RELATED WORK 
 

2.1 Mining Location History 
 

     2.1.1 Mining individual location history.   During the past years, a branch of research 

has been performed based on individual location history recorded in GPS traces. These 

works include detecting significant locations of a user [Ashbrook et al. 2003; Hariharan 

and Toyama 2004], predicting the user’s movement among these locations [Krumm et al. 

2007; Liao et al 2005], and recognizing user-specific activities at each location [Liao et al. 

2004 and Patterson et al. 2003]. As opposed to these works, we aim to model multiple 

users’ location histories and learn patterns from numerous individuals’ behaviors.  

 

     2.1.2 Mining multiple users’ location histories.   Gonotti et al. [2007] mined similar 

sequences from users’ moving trajectories, and Mamoulis et al. [2004] proposed a 

framework for retrieving maximum periodic patterns in spatio-temporal data. MSMLS 

[Krumm et al. 2007] used a history of a driver’s destinations, along with data about 

driving behavior extracted from multiple users’ GPS traces, to predict where a driver may 

be going as a trip progresses. Eagle et al. [2006] aimed to recognize the social pattern in 

daily user activity from the dataset collected by 100 users with a Bluetooth-enabled 

mobile phone. Based on raw GPS data, Zheng et al. [2008a; 2008b; 2010a] classified 

people’s GPS trajectories into different categories of transportation modes consisting of 

driving, walking, taking a bus, and riding a bike. In contrast to these techniques, we 

extend the paradigm of mining users’ location histories from exploring users’ behaviors 

to understanding locations and modeling the relation between users and locations. 
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2.2 Location Recommenders 
 

     2.2.1 Recommenders based on real-time location.    Mobile tourist guide systems 

typically recommend locations and sometimes provide navigation information based on a 

user’s real-time location. Previously, such kinds of systems were somehow naïve as they 

always returned the information close to an individual without understanding the 

individual and the nearby locations. Recently, some researchers aim to filter away from 

the returned results the invisible entities occluded by the nearby building [Beeharee and 

Steed 2007; Simon and Fröhlich 2007 ]. Meanwhile, another branch of work [Abowd et al. 

1997; Park et al. 2007] started involving a user’s location history in these systems to 

provide the user with a more personalized recommendation. In contrast to these 

techniques, we aim to integrate the social environment of an individual into travel 

recommenders by helping the individual deeply understand the locations around them 

with the knowledge mined from not only their own but also other users’ location histories. 

 

     2.2.2 Recommenders based on location history.    Using multiple users’ real-world 

location histories, some recommender systems, such as Geowhiz [Horozov et al. 2006], 

CityVoyager [Takeuchi and Sugimoto 2006], and GeoLife [Zheng et al. 2009a; Li et al. 

2008; Zheng et al. 2010b], have been designed to recommend geographic locations like 

shops or restaurants to users. Horozov et al. [2006] proposed an enhanced collaborative 

filtering solution to generate the recommendation of a restaurant. Takeuchi et al. [2006] 

attempted to recommend shops to users based on their individual preferences estimated 

by analyzing their past location histories. Li and Zheng et al [2008] first mined a user 

similarity from human location history by considering the sequence property of travel 

behaviors and the hierarchical property of geographical spaces. Further, Zheng et al. 

[2010b] incorporate this user similarity into a user-centric CF model to conduct a 

personalized friend & location recommendation. Zheng et al. [2010c] use a collaborative 

learning approach to enable an activity-location recommendation based on GPS traces 

associated with user-generated comments. That is, given an activity like shopping, the 

system will recommend the best k locations where this activity can be performed. 

Meanwhile, by selecting a location, e.g., the Olympic Park of Beijing, a user will be 

recommended with the best k activities that should be conducted in the location. 

     The major difference between these works and ours lies in three aspects. First, we 

differ the travel experiences and knowledge of different users. Therefore, their location 

histories should be treated in different weights. Second, we consider the relation between 

locations and users’ travel experiences, e.g., the mutual reinforcement relation and the 

region-related constraints. Third, although the related recommenders also use CF model 

to predict a user’s interests in a location, they either have a poor online efficiency [Zheng 

et al. 2010b; Zheng et al. 2010c] or cannot well model human travel behaviors [Horozov 

et al. 2006; Takeuchi and Sugimoto 2006], such as the travel sequence and geo-hierarchy. 
 

3. OVERVIEW 
 

3.1 Application Scenarios 
 

     The work reported in this paper is an important component of our project GeoLife 

[Zheng et al. 2008a, 2008b, 2008c, 2008d, 2009a, 2009b; Chen et al. 2010; Zheng et al. 

2010a, 2010b, 1020c], whose prototype has been internally accessible within Microsoft 

since Oct. 2007. So far, we have had 106 individuals using this system.  
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     Figure 1 shows the user interface of our applications running on desktop computers. In 

the right part of this figure, we can view the top five interesting locations and the most 

five experienced users in the region specified by the present view of the Web map. The 

top five classical travel sequences within this region are also displayed on the map. By 

zooming in/out and panning this map, an individual can retrieve such results within any 

regions. In addition, the photos taken at an interesting location will be presented on the 

bottom of the window after a user clicks the icon representing the location on the map. 

Once a user has a certain number of GPS traces accumulated in GeoLife, she can view 

the personalized recommendation that offers locations matching her travel preferences. 
 

 
 

Figure 1. The user interface regarding location recommendation 

 

     As shown in Figure 2, a user with a GPS-phone can find out the top five interesting 

locations as well as the most five classical sequences nearby their present geographic 

position (the red star). In addition, when the user reaches a location, our system would 

provide them with a further suggestion by presenting the top three classical sequences 

start from this location. Of course, users can also view the personalized recommendation 

on a mobile phone as long as they have GPS traces stored in GeoLife. 
 

   
 

Figure 2. Location recommendations on a GPS-phone 
 

3.2 Preliminary 
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     Definition 1. GPS Trace. A GPS trace Tra is a sequence of time-stamped points, 

𝑇𝑟𝑎 = 𝑝0 → 𝑝1 →,… ,→ 𝑝𝑘 , where 𝑝𝑖 = (𝑥, 𝑦, 𝑡) (𝑖 = 0,1, … , 𝑘); (𝑥, 𝑦) are latitude and 

longitude respectively, and 𝑡  is a timestamp. ∀0 ≤ 𝑖 ≤ 𝑘, 𝑝𝑖+1. 𝑡 > 𝑝𝑖 . 𝑡. 
 

     Definition 2. 𝐷𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑗 ) denotes the geospatial distance between two points 𝑝𝑖  and 

𝑝𝑗 , and 𝐼𝑛𝑡(𝑝𝑖 , 𝑝𝑗 )= |𝑝𝑖 . 𝑡 − 𝑝𝑗 . 𝑡| is the time interval between two points. 
     

Definition 3: Stay Point.  A stay point s is a geographical region where a user stayed 

over a time threshold 𝑇𝑟  within a distance threshold 𝐷𝑟 . In a trace, s is characterized by a 

set of consecutive points 𝑃 =  𝑝𝑚 , 𝑝𝑚+1, … , 𝑝𝑛  , where ∀𝑚 < 𝑖 ≤ 𝑛,  𝐷𝑖𝑠𝑡 𝑝𝑚 , 𝑝𝑖 ≤ 𝐷𝑟 , 

𝐷𝑖𝑠𝑡 𝑝𝑚 , 𝑝𝑛+1 > 𝐷𝑟and 𝐼𝑛𝑡(𝑝𝑚 , 𝑝𝑛) ≥ 𝑇𝑟 . Therefore, 𝑠 = (𝑥, 𝑦, 𝑡𝑎 , 𝑡𝑙), where 
 

                𝑠. 𝑥 =  𝑝𝑖 . 𝑥
𝑛
𝑖=𝑚  𝑃  ,                            (1) 

              𝑠. 𝑦 =  𝑝𝑖 . 𝑦
𝑛
𝑖=𝑚  𝑃  ,                            (2) 

 

respectively stands for the average x and y coordinates of the collection 𝑃; 𝑠. 𝑡𝑎 = 𝑝𝑚 . 𝑡 is 

the user’s arriving time on s and 𝑠. 𝑡𝑙 = 𝑝𝑛 . 𝑡 represents the user’s leaving time. 
 

     As shown in Figure 3, {p1, p2,…, p8} formulate a trace, and a stay point would be 

detected from {p3, p4, p5, p6} if 𝑑 ≤ 𝐷𝑟  and 𝐼𝑛𝑡(𝑝3 , 𝑝6) ≥ 𝑇𝑟 . In contrast to a raw point 𝑝𝑖 , 
a stay point carries a particular semantic meaning, such as the shopping mall the user 

accessed and the restaurant they visited. 
 

 
 

Figure 3. A GPS trace and a stay point 
 

     Definition 4: Location History. An individual’s location history h is represented as a 

sequence of stay points they have visited with corresponding transition times, 

              𝑕 =  𝑠0

∆𝑡1
  𝑠1

∆𝑡2
  ,… ,

∆𝑡𝑛−1
    𝑠𝑛  ,                   (3) 

where ∀0 ≤ 𝑖 < 𝑛, 𝑠𝑖  is a stay point and ∆𝑡𝑖 = 𝑠𝑖+1. 𝑡𝑎 − 𝑠𝑖 . 𝑡𝑙  is the time interval 

between two stay points. 
      
     Intrinsically, people generate many trips in their lives. For instance, an individual 

would visit some shopping malls in a trip and start a new trip two days later to go hiking. 

Thus, we need to partition an individual’s location history 𝑕 into some trips if the travel 

time spent between two consecutive locations exceeds a certain threshold 𝑇𝑝 .  
 

     Definition 5: Trip: A trip is a sequence of stay points consecutively visited by a user, 

𝑇𝑟𝑖𝑝 =  𝑠0

∆𝑡1
  𝑠1

∆𝑡2
  ,… ,

∆𝑡𝑛−1
    𝑠𝑛  , where ∀1 ≤ 𝑘 < 𝑛, ∆𝑡𝑘 < 𝑇𝑝  (a threshold). 

 

       However, so far, people’s location histories are still inconsistent as the stay points 

detected from various individuals’ traces are not identical. To address this issue, we 

propose the TBHG to model multiple users’ location histories. Generally speaking, a 

TBHG is the integration of two structures, a tree-based hierarchy H and a graph G on 

each level of this tree. The tree expresses the parent-children (or ascendant-descendant) 

p4

p3

p5

p6

p7

a stay point s

p1

p2

p8

d
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relation of the nodes pertaining to different levels, and the graphs denote the peer relation 

among the nodes on the same level.  

     As demonstrated in Figure 4, in our system two steps need to be performed when 

building a TBHG. 1) Formulate a tree-based Hierarchy H: We put together the stay 

points detected from users’ GPS logs into a dataset. Using a density-based clustering 

algorithm, we hierarchically cluster this dataset into some geospatial regions (a set of 

clusters C) in a divisive manner. Thus, the similar stay points from various users would 

be assigned to the same clusters on different levels. 2) Build graphs on each level: Based 

on the tree-based hierarchy H and users’ location histories, we can connect the clusters of 

the same level with directed edges. If consecutive stay points from one trip are 

individually contained in two clusters, a link would be generated between the two clusters 

in a chronological direction according to the time serial of the two stay points. 

      

 

Figure 4. Building a tree-based hierarchical graph 
    

     Definition 6. Tree-Based Hierarchy H: H is a collection of stay point-based clusters 

C with a hierarchy structure L. 𝐻 =  𝐶, 𝐿 , 𝐿 =  𝑙1, 𝑙2 , … , 𝑙𝑛  denotes the collection of 

levels of the hierarchy, and 𝐶 =  𝑐𝑖𝑗  1 ≤ 𝑖 ≤  𝐿 , 1 ≤ 𝑗 ≤  𝐶𝑖   means the collection of 

clusters on different levels. Here, 𝑐𝑖𝑗  represents the jth cluster on level 𝑙𝑖 ∈ 𝐿, and 𝐶𝑖  is 

the collection of clusters on level 𝑙𝑖 . 
 

     Definition 7. Tree-Based Hierarchical Graph (TBHG): Formally, a TBHG is the 

integration of H and G, TBHG=(H, G). H is defined in Definition 6, and G={ 𝑔𝑖 =
 𝐶𝑖 , 𝐸𝑖 , 1 ≤ 𝑖 ≤ |𝐿|}. On each layer 𝑙𝑖 ∈ 𝐿, gi ∈G includes a set of vertexes Ci and the 

edges Ei connecting 𝑐𝑖𝑗 ∈ 𝐶𝑖 . 
 

     Based on the TBHG, we can substitute a stay point in a user’s location history 𝑕 with 

the cluster ID the stay point pertains to. Supposing 𝑠0 ∈ 𝑐31 , 𝑠1 ∈ 𝑐32 , 𝑠𝑛 ∈ 𝑐3𝑛 , Equation 

(3) can be replaced with  

                                            𝑕 =  𝑐31

∆𝑡1
  𝑐32

∆𝑡2
  ,… ,

∆𝑡𝑛−1
    𝑐3𝑛 .                (4) 

 

     Therefore, a trip can be represented as a set of consecutive stay-point-clusters 

sequence (∀0 ≤ 𝑘 ≤ 𝑛, ∆𝑡𝑘 < 𝑇𝑝 ), and h can be partitioned into a set of trips on different 

levels of the hierarchy, 𝑕 =  𝑇𝑟𝑖𝑝 .  
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     Notations: In the rest of this paper, we use the following notations to simplify the 

descriptions. 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛}  represents the collection of users in a community, 

𝑢𝑘 ∈ 𝑈, 1 ≤ 𝑘 ≤ |𝑈|denotes the kth user, and  𝑇𝑟𝑎𝑘 , 𝑆𝑘 , 𝑕𝑘  and 𝑇𝑃𝑘  respectively stand 

for the uk’s GPS traces, stay points, location history and trips. 
 

3.2 Architecture 
 

     Figure 5 shows the architecture of our system, which is comprised of three parts: 

location history modeling, knowledge mining, and recommendation. The first two 

operations can be performed off-line, while the last process should be conducted online 

based on the geo-region specified by a user.  
 

 
 

Figure 5. The architecture of our recommendation system 
 

     3.2.1 Location history modeling.    Given multiple users’ GPS traces, we build a 

TBHG off-line. In this structure, a graph node stands for a cluster of stay points, and a 

graph edge represents a directed transition between two locations (clusters). In contrast to 

raw GPS points, these clusters denote the locations visited by multiple users, hence 

would carry more semantic meanings, such as culturally important places and commonly 

frequented public areas. In addition, the hierarchy of the TBHG denotes different 

geospatial scales (alternatively, the zoom level of a Web map), like a city, a district and a 

community. In short, the tree-based hierarchical graph can effectively model multiple 

users’ travel sequences on a variety of geospatial scales (Refer to Section 4 for details). 
 

     3.2.2 HITS-based inference model.    With the TBHG, we propose a HITS-based 

inference model to estimate users’ travel experiences and location interests in a given 

region. In this model, an individual’s visit to a location (cluster) is regarded as a directed 

link from the individual to that location. Thus, a user is a hub if they have visited many 

locations, and a location is an authority if it has been accessed by many users. Further, a 

user’s travel experience (hub score) and the interest of a location (authority score) have a 

mutual reinforcement relation. Using a power iteration method, we can generate the final 

scores for each user and location, and find out the top n interesting locations and the top k 

experience users in a given region. As a user’s travel experience is region-related, we 
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need to specify a geospatial region as the context for the inference model. Actually, each 

cluster of the TBHG specifies an implied region for its descendant clusters (locations). 

Therefore, we are able to mine in advance each individual’s travel experience and 

interests of locations conditioned by the regions of clusters on different levels. In other 

words, a user would have multiple hub scores based on different regions, and a location 

would have multiple authority scores specified by their ascendant clusters on different 

levels. This strategy takes the advantage of a HITS model in ranking locations and users 

based on a region context (query topic), while making the calculations of authority and 

hub scores offline. (Refer to Section 5.2 for details). 
 

     3.2.3 Mining classical travel sequence.    We calculate a classical score for each 

location sequence within a given region considering two factors: the travel experiences of 

the users taking this sequence and the interests of the locations contained in the sequence. 

Since there would be multiple paths starting from a location, the interest of this location 

should be shared among all the paths, with which it points to other locations. The location 

interest distributed to a path is based on the probability of users’ taking the path. Later, 

the sequences with a relatively high classical score will be retrieved as classical travel 

sequences. As people would not travel to too many places in a journey, classical 

sequences containing two or three locations would be more useful than longer ones. 
 

     3.2.4 Mining location correlation.     Based on the TBHG, we compute the correlation 

between locations by integrating the travel experiences of the users who have visited 

these locations in a trip in a weighted manner. Beyond the geo-distance relation and the 

business category similarity between locations, the location correlation describes the 

relation between locations in the space of human behavior. 
 

     3.2.5 Recommendation.    This component provides a user with both generic and 

personalized recommendations according to a user-specified geo-region on web maps. 

About the generic recommendation, the inferred location interest, user experience and 

classical score of a sequences are employed to rank locations, users and travel sequences 

fallen in the given region. Later, the top n interesting locations, top m classical travel 

sequences and top k experienced users are recommended. With regard to the personalized 

recommendation, we incorporate the mined location correlation into an item-based CF 

model to infer a user’s interests in a location that has not been visited by the user. Then, 

we rank these locations in terms of the predicted ratings, and recommend the user the top 

n locations with relatively high ratings. 
 

4. MODELING LOCATION HISTORY 
 

     In this Section, we detail the process of modeling multiple users’ location histories 

with a tree-based hierarchical graph. Figure 6 gives a formal description of this operation.  

     First, we extract stay points (𝑆𝑘) from each user 𝑢𝑘 ’s traces by seeking the spatial 

regions where the 𝑢𝑘  stayed within a distance threshold 𝐷𝑟  over a time spans 𝑇𝑟  (refer to 

[Li et al. 2008] for details). Then, we formulate a location history (𝑕𝑘 ) for 𝑢𝑘  with these 

stay points and partition 𝑕𝑘  into some trips 𝑇𝑃𝑘 . 

     Second, we put these stay points together into a dataset 𝑆𝑃 = {𝑆𝑘 , 1 ≤ 𝑘 ≤ |𝑈|}, and 

hierarchically cluster 𝑆𝑃 into some geospatial regions C in a divisive manner by using a 

density-based clustering algorithm. Thus, the similar stay points from various users will 

be assigned to the same clusters on different levels of the hierarchy H. In addition, we 

would filter away the clusters, which might represent users’ homes. If an individual has 
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visited to a cluster with a frequency exceeding a threshold, we believe this cluster may be 

the individual’s home or working place.  

     Third, based on the tree-based hierarchy H, we replace the stay points in each user’s 

trips 𝑇𝑃𝑘  with the cluster IDs these stay points belong to. Later, we build connections 

among the clusters on the same level in terms of the 𝑇𝑃𝑘 , and construct a graph g for 

each level of the H. Finally, the hierarchy H and graph collection G formulate the TBHG. 

 
Algorithm LocHisModeling(𝛗,𝑫𝒓, 𝑻𝒓, 𝑻𝒑) 

Input: The collection of all users’ GPS traces: φ = {𝑇𝑟𝑎𝑘 , 1 ≤ 𝑘 ≤ |𝑈|}, a distance threshold 

𝐷𝑟  and time threshold 𝑇𝑟  for stay point detection, and a time threshold 𝑇𝑝  for trip partition. 

Output: a tree-based hierarchical graph: TBHG. 

1.   Foreach 𝑢𝑘 ∈ 𝑈 do 

2.           𝑆𝑘 ← StayPointDetection(𝑇𝑟𝑎𝑘 , 𝐷𝑟 , 𝑇𝑟 );  

3.           𝑕𝑘 ← PersonalLocHist(𝑆𝑘 , 𝑇𝑟𝑎𝑘);      //build individual location history  

4.           𝑇𝑃𝑘 ← TripPartition(𝑕𝑘 ,𝑇𝑝);         //divide 𝑕𝑘  into some trips 

4.           SP.Add(𝑆𝑘);                                       //get the collection of stay points 

5.   H← HierarchicalClustering (SP);                //build the hierarchy based on stay points 

6.   Foreach 𝑙𝑖 ∈ 𝐻. 𝐿 do                                   //build a graph on each level 

7.             𝑔𝑖 . 𝐶𝑖 ← 𝐻. 𝐶𝑖 ;                      //each cluster represents a node in the graph 

8.             Foreach 𝑢𝑘 ∈ 𝑈 do 

9.                     𝑇𝑃𝑘 ← LocHistRepresentation(𝑇𝑃𝑘 , 𝐶𝑖);  //replace stay points with the clusters  

10.                   𝑔𝑖 ← GraphBuilding(𝑔𝑖 , 𝑇𝑃
𝑘);    //connect nodes based on the trips 

11.          G.Add(𝑔𝑖);     

12.   TBHG ← (H, G); 

13.   Return TBHG;   

 

Figure 6. The algorithm for location history modeling 
      

5. MINING INTERESTING LOCATIONS AND TRAVEL SEQUENCES  
 

     In this Section, we first briefly introduce the key idea of HITS and then describe our 

HITS-based inference model. Later, using such inference results, we mine the classical 

travel sequences from each graph of the TBHG. 
 

5.1 Basic Concepts of HITS 
 

     HITS stands for hypertext induced topic search, which is a search-query-dependent 

ranking algorithm for Web information retrieval. When the user enters a search query, 

HITS first expands the list of relevant pages returned by a search engine and then 

produces two rankings for the expanded set of pages, authority ranking and hub ranking. 

For every page in the expanded set, HITS assigns them an authority score and a hub score.  
 

 

 

Figure 7. The basic concept of HITS model 

Authorities Hubs

An authority

A Hub
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     As shown in Figure 7, an authority is a Web page with many in-links, and a hub is a 

page with many out-links. The key idea of HITS is that a good hub points to many good 

authorities, and a good authority is pointed to by many good hubs. Thus, authorities and 

hubs have a mutual reinforcement relation. More specifically, a page’s authority score is 

the sum of the hub scores of the pages it points to, and its hub score is the integration of 

authority scores of the pages pointed to by it. Using a power iteration method, the 

authority and hub scores of each page can be calculated. The main strength of HITS is 

ranking pages according to the query topic, which may provide more relevant authority 

and hub pages. However, HITS needs some time consuming operations, such as on-line 

expanding page sets and calculating the hub and authority scores. 
 

5.2 Our HITS-Based Inference Model 
 

     5.2.1 Model Description     Using the third level of the TBHG shown in Figure 4 as a 

case, Figure 8 illustrates the main idea of our HITS-based inference model. Here, a 

location is a cluster of stay points, like 𝑐31  and 𝑐32 . We regard an individual’s visit to a 

location as an implicitly directed link from the individual to that location. For instance, 

cluster 𝑐31  contains two stay points respectively detected from 𝑢1 and 𝑢2’s GPS traces, 

i.e., both 𝑢1  and 𝑢2  have visited this location. Thus, two directed links are generated 

respectively to point to 𝑐31  from 𝑢1 and 𝑢2. Similar to HITS, in our model, a hub is a user 

who has accessed many places, and an authority is a location which has been visited by 

many users. Therefore, users’ travel experiences (hub scores) and the interests of 

locations (authority scores) have a mutual reinforcement relation. 
 

 

Figure 8. Our HITS-based inference model  

 

     5.2.2 Strategy for Data Selection      Intrinsically, a user’s travel experience is region-

related, i.e., a user who has much travel knowledge in a city might have no idea about 

another city. Also, an individual, who has visited many places in a part of a city, might 

know little about another part of the city (if the city is very large, like New York). This 

feature is aligned with the query-dependent property of the HITS. Thus, before 

conducting the HITS-based inference, we need to specify a geospatial region (a topic 

query) for the inference model and formulate a dataset that contains the locations fallen in 

this region. However, using an online data selection strategy, (i.e., specify a region based 

on an individual’s input), we need to perform lots of time consuming operations, which 

may reduce the feasibility of our system. Actually, on a level of the TBHG, the shape of a 

graph node (cluster of stay points) provides an implicit region for its descendent nodes. 

These regions covered by the clusters on different levels of the hierarchy might stand for 

various semantic meanings, such as a city, a district and a community. Therefore, we are 

able to calculate in advance the interest of every location using the regions specified by 
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their ascendant clusters. In other words, a location might have multiple authority scores 

based on the different region scales it falls in. Also, a user might have multiple hub scores 

conditioned by the regions of different clusters.   
 

     Definition 8. Location Interest: In our system, the interest of a location (𝑐𝑖𝑗 ) is 

represented by a collection of authority scores 𝐼𝑖𝑗 = {𝐼𝑖𝑗
1 , 𝐼𝑖𝑗

2 , … , 𝐼𝑖𝑗
𝑙 }. Here, 𝐼𝑖𝑗

𝑙  denotes the 

authority score of cluster 𝑐𝑖𝑗  conditioned by its ascendant nodes on level l, where 

1 ≤ 𝑙 < 𝑖. 
 

     Definition 9. User Travel Experience: In our system, a user’s (e.g., 𝑢𝑘 ) travel 

experience is represented by a set of hub scores 𝑒𝑘 = {𝑒𝑖𝑗
𝑘 |1 ≤ 𝑖 <  𝐿 , 1 ≤ 𝑗 ≤  𝐶𝑖 } 

(refer to definition 6), where 𝑒𝑖𝑗
𝑘  denotes 𝑢𝑘’s hub score conditioned by the region of 𝑐𝑖𝑗 . 

 

     Figure 9 demonstrates these definitions. In the region specified by cluster 𝑐11 , we can 

respectively calculate an authority score (𝐼21
1  and 𝐼22

1 ) for cluster 𝑐21  and 𝑐22 . Meanwhile, 

within this region, we are able to infer authority scores (𝐼31
1 , 𝐼32

1 , 𝐼33
1 , 𝐼34

1  and 𝐼35
1 ) for 

cluster  𝑐31 , 𝑐32 , 𝑐33 , 𝑐34  and 𝑐35 . Further, using the region specified by cluster 𝑐21 , we 

can also calculate another authority score (𝐼31
2  and 𝐼32

2 ) for 𝑐31 and 𝑐32 . Likewise, the 

authority scores (𝐼33
2 , 𝐼34

2  and 𝐼35
2 ) of 𝑐33 , 𝑐34  and 𝑐35  can be re-inferred with the region of 

𝑐22 . Therefore, each cluster on the third level has two authority scores, which would be 

used in various occasions based on users’ inputs. For instance, as depicted in the Figure 9 

A), when a user selects a region only covering location 𝑐31and 𝑐32 , the authority score 𝐼31
2  

and 𝐼32
2  can be used to rank these two locations. However, as illustrated in Figure 9 B), if 

the region selected by a user covers the locations from two different parent clusters (𝑐21  

and 𝑐22), the authority value 𝐼32
1 , 𝐼33

1  and 𝐼34
1  should be used to rank these locations. 

     The strategy that sets multiple hub scores for a user and multiple authority scores for a 

location has two advantages. First, we are able to leverage the main strength of HITS to 

rank locations and users with the contexts of geospatial region (query topic). Second, 

these hub and authority scores can be calculated offline. Therefore, we can ensure the 

efficiency of our system while allowing users specify any regions on a map.  
 

 
 

Figure 9. Some cases demonstrating the data selection strategy 

 

     5.2.3 Inference      Given the locations pertaining to the same ascendant cluster, we are 

able to build an adjacent matrix M between users and locations based on the users’ 
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accesses on these locations. In this matrix, an item 𝑣𝑖𝑗
𝑘  stands for the times that 𝑢𝑘  (a user) 

has visited to cluster 𝑐𝑖𝑗 (the jth cluster on the ith level). Such matrixes can be built offline 

for each non-leaf node. For example, the matrix M formulated for the case shown in 

Figure 8 can be represented as follows, where all the five clusters pertain to 𝑐11 . 
 

𝑀 =

𝑐31  𝑐32  𝑐33  𝑐34  𝑐35

𝑢1
𝑢2

𝑢3
𝑢4

 

1 1 0 0 0
1 1 2 0 0
0 0 1 2 0
0 0 0 1 1

 
              (5) 

 

Then, the mutual reinforcement relationship of user travel experience 𝑒𝑖𝑗
𝑘  and location 

interest 𝐼𝑖𝑗
𝑙  is represented as follows: 

 

                                       𝐼𝑖𝑗
𝑙 =  𝑒𝑙𝑞

𝑘 × 𝑣𝑖𝑗
𝑘

𝑢𝑘∈𝑈
;                    (6) 

                                     𝑒𝑙𝑞
𝑘 =  𝑣𝑖𝑗

𝑘 × 𝐼𝑖𝑗
𝑙

𝑐𝑖𝑗 ∈𝑐𝑙𝑞
;                  (7) 

 

Where 𝑐𝑙𝑞 is 𝑐𝑖𝑗 ’s ascendant node on the lth level, 1 ≤ 𝑙 < 𝑖. For instance, as shown in 

Figure 9, 𝑐31’s ascendant node on the first level of the hierarchy is 𝑐11 , and its ascendant 

node on the second level is 𝑐21 . Thus, if 𝑙 = 2, 𝑐𝑙𝑞  stands for 𝑐21  and  (𝑐31  , 𝑐32) ∈ 𝑐21 . 

Also, if 𝑙 = 1, 𝑐𝑙𝑞  denotes 𝑐11 , (𝑐31 , 𝑐32 , … , 𝑐35) ∈ 𝑐11 . 

Writing them in the matrix form, we use 𝓣 to denote the column vector with all the 

authority scores, and use E to denote the column vector with all the hub scores. 

Conditioned by the region of cluster 𝑐11 , 𝓣 =(𝐼31
1 , 𝐼32

1 , … , 𝐼35
1 ), and E=(𝑒11

1 , 𝑒11
2 , . . . , 𝑒11

4 ). 
 

                                        𝓣 = 𝑴T ∙ 𝑬                                   (8) 

      𝑬 = 𝑴 ∙ 𝓣                                     (9) 
 

    If we use 𝓣𝑛  and 𝑬𝑛  to denote authority and hub scores at the nth iteration, the 

iterative processes for generating the final results are                             

     𝓣𝑛 = 𝑴T ∙ 𝑴 ∙ 𝓣𝑛−1                     (10) 

     𝑬𝑛 = 𝑴 ∙ 𝑴T ∙ 𝑬𝑛−1                      (11) 
 

Starting with 𝓣0 = 𝑬0 = (1,1, … ,1), we are able to calculate the authority and hub scores 

using the power iteration method. 

     Figure 10 depicts an off-line algorithm for inferring each user’s hub scores and the 

authority scores of each location conditioned by the different regions. Here 𝐶𝑥  is the 

collection of clusters on xth level. 𝐶𝑥 ′ ⊂ 𝐶𝑥  denotes the collection of 𝑐𝑖𝑗 ′s descendant 

clusters on the xth level. For instance, the 𝐶2′ of 𝑐11  is {𝑐21 , 𝑐22}, and 𝐶3′ of 𝑐11  is {𝑐31 , 

𝑐32 , … , 𝑐35}.  𝐼𝑥
𝑖
  represents the collection of authority scores of the locations contained in 

𝐶𝑥  conditioned by their ascendant node on the ith level. 

 

5.3 Mining Classical Travel Sequences 
 

With users’ travel experiences and the interests of locations, we calculate a classical 

score for each location sequence within the given geospatial region. The classical score of 

a sequence is the integration of the following three aspects. 1) The sum of hub scores of 
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the users who have taken this sequence. 2) The authority scores of the locations contained 

in this sequence. 3) These authority scores are weighted based on the probability that 

people would take a specific sequence. 
      

Algorithm LocationInterestInference (𝑇𝐵𝐻𝐺, 𝐿𝑜𝑐𝐻) 

Input: A TBHG=(H, G) and a collection of users’ location histories LocH= {𝑕𝑘 |1 ≤ 𝑘 ≤ |𝑈|}.  
Output: the collection of users’ hub scores 𝑬, and the collection of locations’ authority scores 𝓣. 

1.  𝑬=𝓣 = ∅; 

2.  For 𝑖 = 1; 𝑖 <  𝐿 ; 𝑖 + +                //for each level  

3.        For 𝑗 = 1; 𝑗 ≤  𝐶𝑖  ; 𝑗 + +       // for each cluster on this level 

4.              For 𝑥 = 𝑖 + 1; 𝑥 ≤  𝐿 ; 𝑥 + + //search the descendant levels 

5.                          𝐶𝑥 ′=LocationCollecting (x, 𝑐𝑖𝑗 , 𝐻); 

6.                          M=MatrixBuilding(𝐶𝑥 ′, 𝐿𝑜𝑐𝐻);  

7.                          ( 𝑒𝑖𝑗
𝑘  ,  𝐼𝑥

𝑖  )=HITS-Inference(M);  

8.                         𝓣 = 𝓣 ∪  𝐼𝑥
𝑖  ; 

9.                          𝑬 = 𝑬 ∪  𝑒𝑖𝑗
𝑘  ; 

10. Return (𝑬, 𝓣);            

  

Figure 10. The algorithm for inferring the authority and hub scores 

 

Using a graph of TBHG, Figure 11 demonstrates the calculation of the classical score 

for a 2-length sequence, AC. In this figure, the graph nodes (A, B, C, D and E) stand 

for locations, and the graph edges denote people’s transition sequences among them. The 

number shown on each edge represents the times users have taken the sequence. Equation 

(11) presents the classical score of sequence AC, which includes the following three 

parts. 1) The authority score of location A (𝐼𝐴) weighted by the probability of people’s 

moving out by this sequence (𝑂𝑢𝑡𝐴𝐶). Clearly, there are seven (5+2) links point out to 

other nodes from node A, and five out of seven of these links direct to node C. So, 

𝑂𝑢𝑡𝐴𝐶 =
5

7
 , i.e., only five sevenths of location A’s authority (𝐼𝐴) should be offered to 

sequence AC, and the rest of 𝐼𝐴  should be provided to AB. 2) The authority score of 

location C (𝐼𝐶) weighted by the probability of people’s moving in by this sequence (𝐼𝑛𝐴𝐶 ). 

3) The hub scores of the users (𝑈𝐴𝐶) who have taken this sequence. 
 

 

Figure 11. Demonstration on mining classical travel sequences from a graph  
 

 

                                  𝑆𝐴𝐶 =  (𝐼𝐴 ∙ 𝑂𝑢𝑡𝐴𝐶 + 𝐼𝐶 ∙ 𝐼𝑛𝐴𝐶 + 𝑒𝑘𝑢𝑘∈𝑈𝐴𝐶
)             (12) 

                                         =  𝑈𝐴𝐶  ∙  𝐼𝐴 ∙ 𝑂𝑢𝑡𝐴𝐶 + 𝐼𝐶 ∙ 𝐼𝑛𝐴𝐶 +  𝑒𝑘𝑢𝑘∈𝑈𝐴𝐶
 

                                         = 5 ×  
5

7
× 𝐼𝐴 +

5

8
𝐼𝐶 +  𝑒𝑘𝑢𝑘∈𝑈𝐴𝐶

. 

 

Following this method, we calculate the classical score of sequence CD,  
 

                                 𝑆𝐶𝐷 = 1 ×  
1

7
× 𝐼𝐶 +

1

7
𝐼𝐷 +  𝑒𝑘𝑢𝑘∈𝑈𝐶𝐷

.               (13) 

A

B
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Thus, the classical score of sequence ACD equals to: 
 

                                                       𝑆𝐴𝐶𝐷 = 𝑆𝐴𝐶 + 𝑆𝐶𝐷 .                                 (14) 
      
     Using this paradigm we are able to calculate the classical score of any n-length 

sequences. Later, the top m n-length sequences with relatively high scores can be 

retrieved as n-length classical travel sequences. However, it is not necessary to find out 

the classical sequences with a long length, as people would not visit many places in a trip. 

Moreover, the process of searching for n-length classical sequences is time consuming, 

although this operation can be performed offline. Thus, in this paper, we start with 

mining 2-length classical sequences, and then try to find out some 3-lenth classical 

sequences by extending these 2-length sequences. 
 

6. MINING LOCATION CORRELATION 
  

     In this section, we present the algorithm that computes the correlation between 

locations by considering the user travel experience and the sequence of the locations.  

     First, we claim that the correlation between two locations does not only depend on the 

number of users visiting the two locations but also lie in these users’ travel experiences. 

The locations sequentially accessed by the people with more travel knowledge would be 

more correlated than those visited by those having little idea about the region. For 

instance, some overseas tourists might randomly visit some places in Beijing as they are 

not familiar with this city. However, the local people of Beijing are more capable than 

them of arranging a more proper and reasonable way to visit some places in Beijing.  

     Second, the correlation between two locations, A and B, also depends on the 

sequences, in which the two locations have been visited. 1) This correlation between A 

and B, 𝐶𝑜𝑟(𝐴, 𝐵), is asymmetric; i.e., 𝐶𝑜𝑟(𝐴, 𝐵) ≠ 𝐶𝑜𝑟(𝐵, 𝐴). The semantic meaning of 

a travel sequence AB might be quite different from BA. For example, on a one-way 

road, people would only go to B from A while never traveling to A from B. 2) The two 

locations continuously accessed by a user would be more correlated than those being 

visited discontinuously. Some users would reach B directly from A (AB) while others 

would access another location C before arriving at B (ACB). Intuitively, the 

𝐶𝑜𝑟(𝐴, 𝐵) indicated by the two sequences might be different. Likewise, in a sequence 

ACB, 𝐶𝑜𝑟(𝐴, 𝐶) would be greater than 𝐶𝑜𝑟(𝐴, 𝐵), as the user continuously accessed 

AC while traveling to B after visiting C.  

     In short, the correlation between two locations can be calculated by integrating the 

travel experiences of the users visiting them in a trip in a weighted manner. Formally, the 

correlation between location 𝐴 and 𝐵 can be calculated as Equation 15.  
 

                                        𝐶𝑜𝑟 𝐴, 𝐵 =  𝛼 ∙ 𝑒𝑘𝑢𝑘∈𝑈
′ ,                      (15) 

 

where 𝑈′  is the collection of users who have visited 𝐴 and B in a trip; 𝑒𝑘 is 𝑢𝑘’s travel 

experience conditioned by the first shared ascendant regions (a cluster in TBHG) by the 

two locations, 𝑢𝑘 ∈ 𝑈′ . 0 < 𝛼 ≤ 1  is a dumping factor, which will decrease as the 

interval between these two locations’ index in a trip increases. For example, in our 

experiment we set 𝛼 = 2−(|𝑗−𝑖|−1), where 𝑖 and 𝑗 are indices of 𝐴 and B in the trip they 

pertain to. That is, the more discontinuously two locations being accessed by a user (|𝑖-𝑗| 
would be big, thus 𝛼 will become small), the less contribution the user can offer to the 

correlation between these two location. 
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     As depicted in Figure 12, three users (𝑢1, 𝑢2, 𝑢3) respectively access locations (A, B, C) 

in different manners and create three trips (𝑇𝑟𝑖𝑝1 , 𝑇𝑟𝑖𝑝2 , 𝑇𝑟𝑖𝑝3 ). The number shown 

below each node denotes the index of this node in the sequence. According to Equation 

(15), from 𝑇𝑟𝑖𝑝1  we can calculate 𝐶𝑜𝑟 𝐴, 𝐵 = 𝑒1 and 𝐶𝑜𝑟 𝐵, 𝐶 = 𝑒1 , since these 

locations have been consecutively accessed by 𝑢1(i.e., 𝛼 = 1). However, 𝐶𝑜𝑟 𝐴, 𝐶 =
1

2
∙

𝑒1 (i.e., 𝛼 = 2−(|2−0|−1) =
1

2
) as 𝑢1  traveled to B before visiting C. In other words, the 

correlation (between location A and C) that we can sense from 𝑇𝑟𝑖𝑝1  might not that 

strong as if they are consecutively visited by 𝑢1. Likewise, we can learn 𝐶𝑜𝑟 𝐴, 𝐶 = 𝑒2 , 

𝐶𝑜𝑟 𝐶, 𝐵 = 𝑒2 , 𝐶𝑜𝑟 𝐴, 𝐵 =
1

2
∙ 𝑒2  from 𝑇𝑟𝑖𝑝2 , and infer 𝐶𝑜𝑟 𝐵, 𝐴 = 𝑒3, 𝐶𝑜𝑟 𝐴, 𝐶 =

𝑒3, 𝐶𝑜𝑟 𝐵, 𝐶 =
1

2
∙ 𝑒3 from 𝑇𝑟𝑖𝑝3 . Later, we can integrate these correlation inferred from 

each user’s trips and obtain the following results. 
 

                         𝐶𝑜𝑟 𝐴, 𝐵 = 𝑒1 +
1

2
∙ 𝑒2;       𝐶𝑜𝑟 𝐴, 𝐶 =

1

2
∙ 𝑒1 + 𝑒2 + 𝑒3; 

                         𝐶𝑜𝑟 𝐵, 𝐶 = 𝑒1 +
1

2
∙ 𝑒3;       𝐶𝑜𝑟 𝐶, 𝐵 = 𝑒2; 𝐶𝑜𝑟 𝐵, 𝐴 = 𝑒3. 

 

 
 

Figure 12. A case calculating the correlation between locations 
 

      Figure 13 formally describes the algorithm for inferring correlation between locations. 

Here, 𝑏 is a constant, which is set to 2 in our experiment.  𝑇𝑟𝑖𝑝  stands for the number of 

locations contained in the 𝑇𝑟𝑖𝑝 and 𝑇𝑟𝑖𝑝[𝑖]  represents the ith location in 𝑇𝑟𝑖𝑝 . For 

example, regarding 𝑇𝑟𝑖𝑝1  shown in Figure 12,  𝑇𝑟𝑖𝑝 = 3 , 𝑇𝑟𝑖𝑝 0 = 𝐴  (the first 

location), 𝑇𝑟𝑖𝑝 1 = 𝐵 , 𝐶𝑜𝑟 𝑇𝑟𝑖𝑝[0], 𝑇𝑟𝑖𝑝[1] = 𝐶𝑜𝑟(𝐴, 𝐵) . For the sake of 

simplification, we demonstrate the algorithm only using one layer of the hierarchy. 
 

CalculateLocationCorrelation (𝐶, 𝐸, 𝑇𝑃,) 

Input:  A collection of locations (stay point clusters) C, A collection of users’ 

travel experiences 𝐸 and their location histories represented by trips TP. 

Output: A matrix Cor describing the correlation between locations. 

1. Foreach location 𝑐𝑝 ∈ 𝐶 Do 

2.        Foreach location 𝑐𝑞 ∈ 𝐶, 𝑝 ≠ 𝑞 Do 

3.                   𝐶𝑜𝑟 𝑐𝑝 , 𝑐𝑞 = 0;                     //initialize the location correlation 

4. Foreach Trip in TP Do 

5.           For  𝑖 = 0; 𝑖 <  𝑇𝑟𝑖𝑝 ; 𝑖 + +         //𝑖th location contained in Trip 

6.                         For 𝑗 = 𝑖 + 1; 𝑗 <  𝑇𝑟𝑖𝑝 ; 𝑗 + +   

7.                                  𝛼 = 𝑏−(𝑗−𝑖−1) ;        // dumping factor, b is a constant  

8.                                𝐶𝑜𝑟 𝑇𝑟𝑖𝑝[𝑖], 𝑇𝑟𝑖𝑝[𝑗] += 𝛼 ∙ 𝑒𝑘  ;      

9. Foreach 𝑐𝑝 ∈ 𝐿 Do     

10.        Foreach  𝑐𝑞 ∈ 𝐿, 𝑝 ≠ 𝑞 Do             //normalization 

11.                    𝐶𝑜𝑟 𝑐𝑝 , 𝑐𝑞 = 𝐶𝑜𝑟 𝑐𝑝 , 𝑐𝑞 / 𝐶𝑜𝑟 𝑐𝑝 , 𝑐0 ,… , 𝐶𝑜𝑟 𝑐𝑝 , 𝑐|𝐶|−1  1
 

12. Return 𝐶𝑜𝑟; 

 

Figure 13. Algorithm learning the correlation between locations 

A B C A C B CA

u1 u2 u3Trip1 Trip2 Trip3

B

1 20 1 20 1 20
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     Supposing we have n trips in a dataset and the average length of a trip is m, this 

mining algorithm takes 𝛰(2 𝐶 2 +
𝑚 𝑚−1 

2
∙ 𝑛)  time. So, the overall computing 

complexity 𝑄 of our approach is the combination of inferring user travel experience and 

calculating location correlation, i.e., 𝑄 = 𝛰(2𝑤 𝐶  𝑈 + 2 𝐶 2 +
𝑚 𝑚−1 

2
∙ 𝑛). 

 

7. RECOMMENDATION 
 

7.1 The Generic One 
 

A user can specify any geospatial regions as an input by zoom in/out and panning a Web 

map. According to the zoom level, our recommender can find out the corresponding 

hierarchical level in the TBHG, and then collect the locations (clusters) fallen in the given 

region on this level. The hub and authority scores conditioned by the first shared 

ascendant cluster of these locations will be used to rank locations and users (refer to 

Figure 9). Later, the most k experienced users, top n interesting locations and top m 

classical travel sequences within the specified region can be returned to the users as the 

generic recommendations. 

 

7.2 The Personalized One 
 

     7.2.1 Collaborative Filtering      Collaborative filtering is a well-known model widely 

used in recommendation systems. The CF model can be partition into two categories; the 

user-based and item-based inference methods. 
 

Notations: As shown in Equation (5), we have a matrix M describing the relation 

between each user and each location. Here, we can regard the times an individual has 

stayed in a location as their implicit ratings on the location. The ratings from a user 𝑢𝑝 , 

called an evaluation, is represented as an array 𝑅𝑝 =  𝑟𝑝0, 𝑟𝑝1 , … , 𝑟𝑝𝑛  , where 𝑟𝑝𝑗  is 𝑢𝑝 ’s 

implicit ratings (the occurrences) in location 𝑗. 𝑆 𝑅𝑝  is the subset of the 𝑅𝑝 , ∀𝑟𝑝𝑗 ∈

𝑆 𝑅𝑝 , 𝑟𝑝𝑗 ≠ 0, i.e., the set of items (locations) that has been rated (visited) by 𝑢𝑝 . The 

average of ratings in 𝑅𝑝  is denoted as 𝑅𝑝
    , and the number of elements in a set 𝑆 is |𝑆|. 

The collection of all evaluations in the training set is 𝒳 . 𝑆𝑗 (𝒳)  means the set of 

evaluations containing item 𝑗, ∀𝑅𝑝 ∈ 𝑆𝑗 (𝒳), 𝑗 ∈ 𝑆 𝑅𝑝 . Likewise, 𝑆𝑖 ,𝑗 (𝒳) is the set of 

evaluations simultaneously containing item 𝑖 and 𝑗. 
 

     1) The Pearson correlation-based CF. The Pearson correlation reference scheme 

[Adomavicius and Tuzhhilin 2005] is the most popular and accurate user-based CF model 

using the similarity between users, 𝑠𝑖𝑚 𝑢𝑝 , 𝑢𝑞 , to weight the ratings from different 

individuals. Equation (16) and (17) give a formal description on calculating 𝑃(𝑟𝑝𝑗 ), the 

predicted 𝑢𝑝 ’s ratings on location 𝑗. As the number of users in a system is much larger 

and increases much faster than the number of items, the user-based CF models are not 

that efficient than the item-based methods. 
 

                   𝑠𝑖𝑚 𝑢𝑝 , 𝑢𝑞  = 
  (𝑟𝑝𝑖−𝑅𝑝    )∙𝑖∈𝑆(𝑅𝑝 )∩𝑆(𝑅𝑞) (𝑟𝑞𝑖−𝑅𝑞    )

  (𝑟𝑝𝑗 −𝑅𝑝    )2 ∙𝑗∈𝑆(𝑅𝑝 )∩𝑆(𝑅𝑞)  (𝑟𝑞𝑗 −𝑅𝑞    )2
𝑗∈𝑆(𝑅𝑝 )∩𝑆(𝑅𝑞)

     (16) 
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                   𝑃(𝑟𝑝𝑗 ) = 𝑅𝑝
    +

 𝑠𝑖𝑚  𝑢𝑝 ,𝑢𝑞 𝑅𝑞∈𝑆𝑗 (𝒳) ×(𝑟𝑞𝑗 −𝑅𝑞    )

 𝑠𝑖𝑚  𝑢𝑝 ,𝑢𝑞 𝑅𝑞∈𝑆𝑗 (𝒳)
;                            (17) 

 

      2) The Slope One algorithms [Lemire and Maclachlan 2005] are famous and 

representative item-based CF algorithms, which are easy to implement, efficient to query 

and reasonably accurate. Given any two items 𝑖 and 𝑗 with ratings 𝑟𝑝𝑗  and 𝑟𝑝𝑖  respectively 

in some user evaluation 𝑅𝑝 ∈ 𝑆𝑗 ,𝑖(𝒳), we consider the average deviation of item 𝑖 with 

regard to item 𝑗 as Equation (18).  

 

                                            𝑑𝑒𝑣𝑗 ,𝑖 =  
𝑟𝑝𝑗 −𝑟𝑝𝑖

|𝑆𝑗 ,𝑖(𝒳)|𝑅𝑝∈𝑆𝑗 ,𝑖(𝒳) ,                                    (18) 

 

     Given that 𝑑𝑒𝑣𝑗 ,𝑖 + 𝑟𝑝𝑖  is a prediction for 𝑟𝑝𝑗  based on 𝑟𝑝𝑖 , a reasonable predictor 

might be the average of all the predictions. 

 

                                       𝑃 𝑟𝑝𝑗  =
1

|𝒲𝑗 |
 (𝑑𝑒𝑣𝑗 ,𝑖 + 𝑟𝑝𝑖 )𝑖∈𝒲𝑗

,                          (19) 

 

where 𝒲𝑗 = {𝑖|𝑖 ∈ 𝑆 𝑅𝑝 , 𝑖 ≠ 𝑗,  𝑆𝑗 ,𝑖 𝒳  > 0} is the set of all relevant items. Further, 

the number of evaluations simultaneously contain two items has been used to weight the 

prediction regarding different items. Intuitively, to predict 𝑢𝑝 ’s rating of item A given  

𝑢𝑝 ’s ratings of item B and C, if 2000 users rated the pair of A and B whereas only 20 

users rated pair of A and C, then 𝑢𝑝 ’s ratings of item B is likely to be a far better predictor 

for item A than 𝑢𝑝 ’s ratings of item C is. 

 

                                          𝑃 𝑟𝑝𝑗  =
 (𝑑𝑒𝑣 𝑗 ,𝑖+𝑟𝑝𝑖 )∙|𝑆𝑗 ,𝑖(𝒳)|𝑖∈𝑆 𝑅𝑝  ∧𝑖≠𝑗

 |𝑆𝑗 ,𝑖(𝒳)|𝑖∈𝑆 𝑅𝑝  ∧𝑖≠𝑗

 .                    (20) 

 

     7.2.2 Our Method       We integrate the location correlation into the Slop One 

algorithm to achieve a more effective and accurate item-based CF model. Intuitively, to 

predict 𝑢𝑝 ’s rating of location A given 𝑢𝑝 ’s ratings of location B and C, if location B is 

more related to A beyond C, then 𝑢𝑝 ’s ratings of location B is likely to be a far better 

predictor for location A than 𝑢𝑝 ’s ratings of location C is. In contrast to the number of 

observed ratings (i.e., the number of people who have visited two locations) used by the 

weighted Slope One algorithm, the location correlation mined from multiple users’ 

location histories considers more human travel behavior, such as the travel sequence, user 

experience, and transition probability between locations. Formally, our approach can be 

represented as 

 

                                            𝑃 𝑟𝑝𝑗  =
 (𝑑𝑒𝑣 𝑗 ,𝑖+𝑟𝑝𝑖 )∙𝑐𝑜𝑟 𝑗𝑖𝑖∈𝑆 𝑅𝑝  ∧𝑖≠𝑗

 𝑐𝑜𝑟 𝑗𝑖𝑖∈𝑆 𝑅𝑝  ∧𝑖≠𝑗

,                       (21)     

 

where 𝑐𝑜𝑟𝑗𝑖  denotes the correlation between location 𝑖 and 𝑗, and 𝑑𝑒𝑣𝑗 ,𝑖  is still calculated 

as Equation (18). Using Equation (20), we can predict an individual’s ratings on the 

locations they have not accessed, and then rank these locations in terms of the predicted 
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ratings. Later, the top n locations with relatively high ratings can be recommended to the 

individual.  

8. EXPERIMENTS 
 

In this Section, we first present the experimental settings. Second, we introduce the 

evaluation approaches. Third, major results are reported followed by some discussions. 

8.1 Settings 

      8.1.1 Devices and Users      Figure 14 shows the GPS devices we chose to collect data. 

They are comprised of stand-alone GPS receivers (Magellan Explorist 210/300, G-Rays 2 

and QSTARZ BTQ-1000P) and GPS phones. Except for the Magellan 210/300, these 

devices are set to receive GPS coordinates every two seconds. Regarding the Magellan 

devices, we configure their settings to record GPS points as densely as possible because 

they are not allowed to be configured for recording data by fixed time interval. When an 

individual changes his/her heading direction or speed to some extent, a GPS point is 

recorded with such devices. Carrying these GPS-enabled devices, 107 users (49 females 

and 58 males) recorded their outdoor movements with GPS logs from May 2007 to Oct. 

2008. Figure 15 presents demographic statistics on these users. 

 

   
 

Figure 14. GPS devices used in our experiment 
 

    
 

Figure 15. Demographic statistics of our experiment 

 

     8.1.2 GPS Data        Figure 16 depicts the distributions of the GPS data used in the 

experiments. Most parts of this dataset were created in Beijing, China, and other parts 

covered 36 cities in China as well as a few cities in the USA, South Korea, and Japan. 

The volunteers were motivated to log their outdoor movements as much as possible by 

the payments based on the distance of GPS traces collected by them; the more data 

collected by them, the more money they obtained. As a result, the total distance of the 

GPS logs exceeded 166,372 kilometers, and the total number of GPS points is over 5 

million. Considering the privacy issues, we use these datasets anonymously. 
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                       A) Data distribution in China               B) Data distribution in Beijing 
Figure. 16 Distribution of the GPS dataset we used in this experiment 

 

     8.1.3 Parameter Selection         

     Stay point detection: We set Tr to 20 minutes and Dr to 200 meters for stay point 

detection. In other words, if an individual stays over 20 minutes within a distance of 200 

meters, a stay point is detected. These two parameters enable us to find out some 

significant places, such as restaurants and shopping malls, while ignoring the geo-regions 

without semantic meanings, like the places where people wait for traffic lights or meet 

congestion (refer to [Li et al. 2008] for details). As a result, we extracted 10,354 stay 

points from the dataset. 

     Clustering: We use a density-based clustering algorithm, OPTICS (Ordering Points 

To Identify the Clustering Structure), to hierarchically cluster stay-points into geospatial 

regions in a divisive manner. As compared to an agglomerative method like K-Means, 

the density-based approach is capable of detecting clusters with irregular structures, 

which may stand for a set of nearby restaurants or shopping streets. In addition, this 

approach would filter out a few sparsely distributed stay points, and ensure each cluster 

has been accessed by some users. As a result, a four-level TBHG is built based on our 

dataset (see Table I for details). 
 

Table I. Information of the TBHG used in the experiment 
 

Level 
Num. of 

Clusters 

Average size of 

clusters KM 

Average num of 

user/cluster 

Average num stay 

points/cluster 

1 1 11,450.7 107 10,354 

2 32 14.5 6.7 267.5 

3 70 2.1 8 112.7 

4 159 0.26 6.5 46.2 

 

Trip partition: Based on the commonsense knowledge, we set 𝑇𝑝=15 hours and obtain 

5,318 trips (the average length of these trips is 3.2). 

 

8.2 Evaluation Approaches 

     8.2.1 Evaluation Framework       Figure 17 illustrates the framework of the evaluation, 

in which we respectively explore the effectiveness of the generic and personalized 
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recommendations by performing a user study. In this study, 29 subjects (14 females and 

15 males), who have been in Beijing for more than 6 years, were invited to answer the 

evaluation questions. At the same time, all of them have an 3-month+ GPS trace set 

accumulated in our system. Given the region within the fourth ring road of Beijing, we 

respectively retrieved the top 10 interesting locations, top 5 classical travel sequences and 

top 10 personalized locations by using our methods and some baselines.  
      

 
 

Figure 17. Framework of the evaluation 
 

     Regarding the interesting locations from the generic recommendation, we conduct the 

following two aspects of evaluations. One is the Presentation, which stands for the 

ability of the retrieved interesting locations in presenting a given region. The other is the 

Rank, which represents the ranking performance of the retrieved locations based on 

relative interests. 

    1) Presentation. Each subject answers the following evaluation questions:  

 Representative: How many locations in this retrieved set are representative of 

the given region (0-10)?  

 Comprehensive: Do these locations offer a comprehensive view of the given 

region (1-5)? 

 Novelty: How many locations in this retrieved set have interested you even 

though they only appeared recently (0-10)? In the study, the subjects were able 

to view the points of interests (POIs) fallen in each location as well as the 

photos taken there.  

     2) Rank. Each subject had to individually rate the interest of each retrieved location 

with a value (-1~2) shown in table II. Then, we aggregated these subjects’ ratings for 

each location, and select the mode of the ratings for the location. If the mode of two 

rating levels is identical, we prefer the lower ratings.  
     

Table II. Users’ interests in a location 
 

Ratings Explanations 

2 I’d like to plan a trip to that location. 

1 I’d like to visit that location if passing by. 

0 I have no feeling about this location, but don’t oppose others to visit it. 

-1 This location does not deserve to visit. 

Representative Rating (0-10)

Comprehensive Rating (1-5)

Novelty Rating (0-10)

User Desirability Rating 

on each location (-1,0,1,2)

nDCG & 

MAP

Top 10 interesting 
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Top 5 classical 

travel sequences

Top 10 personalized 

locations

A geographic region

Presentation

Rank

User Desirability Rating 

on each location (-1,0,1,2)

User Desirability Rating 

on each location (-1,0,1,2)

nDCG & 

MAP

Mean & 

Classic Rate

Generic Recommendation

Personalized Recommendation
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     With regard to evaluating the retrieved classical travel sequences, we required the 

subjects to rate each sequence in the set with the scores shown in table III. Also, we 

aggregate these ratings as the method mentioned above.  
 

Table III. Users’ interests in a travel sequence 
 

Ratings Explanations 

2 I’d like to plan a trip with this travel sequence. 

1 I’d like to take that sequence if visiting the region. 

0 I have no feeling about this sequence, but don’t oppose others to choose it. 

-1 It is not a good choice to select this sequence. 

 

     Different from evaluating the top n interesting locations (first aggregate the ratings of 

different users and then study the ranking performance of the aggregated result), we first 

respectively calculate the ranking performance of the top 10 personalized locations 

retrieved for each user (a user’s rating on a personalized location is also based on Table II) 

and then aggregate ranking performance of different users. 

 

     8.2.2 Measurements        

      Measurements for presentation: We compare our method with the baselines using 

the mean score of the ratings offered by the subjects. In addition, we perform a T-test for 

each comparison to justify the significant advantages of our method.  

     Measurements for ranking: We employ two criteria, nDCG (normalized discounted 

cumulative gain) and MAP (Mean Average Precision), to measure the ranking 

performance of the retrieved interesting locations. MAP is the most frequently used 

summary measure of a ranked retrieval run. In our experiment, it stands for the mean of 

the precision score after each interesting location is retrieved. Here, a location is deemed 

as an interesting location if its interest level equals to 2. For instance, the MAP of an 

interest rating vector, 𝐺 =< 2, 0, 2,0,1, 0, 0, 2, 0, −1 > , for the top 10 location, is 

computed as follows. 
 

                                                     𝑀𝐴𝑃 =
1+2 3 +3 8 

3
= 0.681. 

 

      nDCG is used to compute the relative-to-the-ideal performance of information 

retrieval techniques. The discounted cumulative gain of G is computed as follows: (In our 

experiments, b = 3.)  
 

𝐶𝐺 𝑖 =  

 
 

 
𝐺 1 ,                              𝑖𝑓 𝑖 = 1

𝐷𝐶𝐺 𝑖 − 1 + 𝐺 𝑖 ,     𝑖𝑓 𝑖 < 𝑏

𝐷𝐶𝐺 𝑖 − 1 +
𝐺 𝑖 

𝑙𝑜𝑔𝑏 𝑖
,    𝑖𝑓 𝑖 ≥ 𝑏

  

 

Given the ideal discounted cumulative gain DCG’, then nDCG at i-th position can be 

computed as 𝑁𝐷𝐶𝐺 𝑖 = 𝐷𝐶𝐺 𝑖 /𝐷𝐶𝐺 ′ [𝑖]. 

     Measurement for classical sequence: We use the mean score of these subjects’ 

ratings, along with a T-test for each comparison, to distinguish our method from 
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baselines. At the same time, we investigated the classical rate, which represents the ratio 

of sequences with a score of 2 in the set, of different methods. 

 

8.2.3 Baselines 

     Baselines for mining interesting locations: Here, we explore the effectiveness of two 

baseline methods, rank-by-count and rank-by-frequency. Regarding the former one, the 

more users visiting a location the more interesting this location might be. In the latter, the 

more frequent people accessed a location the more interesting this location might be. The 

visited frequency of a location is the ratio between the number of the users visiting this 

location and the time span, from the first day one user accessed this location to the last 

day at least one individual visited it. 

     Baselines for mining classical travel sequences: We compare our method with three 

baselines; rank-by-count, rank-by-interest and rank-by-experience. With regard to the 

first baseline, we rank a sequence based on the number of the users who have taken this 

sequence. Regarding the second one, we only take into account the interests of the 

locations contained in a sequence to rank the travel sequences. In the third baseline 

method, we only consider the experiences of the users who have taken this sequence. 

     Baseline for the personalized recommendation: We respectively investigate the 

performance of three baseline schemes: 1) Our approach only using user travel 

experience, i.e., each pair of locations occurring in a trip share the same correlation. 2) 

Our method only considering the sequence between locations, i.e., all users has the same 

travel experiences. 3) the Pearson Correlation-based approach described in Section 7.2.1. 

 

8.3 Results 

8.3.1 Related to Interesting Locations 

      Presentation ability: Figure 18 illustrates the top 10 interesting locations, which were 

respectively inferred out by our method and two baselines using the region within the 

fourth ring road of Beijing (the zoom level corresponds to the 3
rd

 level of the TBHG).  

 

      
 

          A) Our method              B) Rank-by-count                 C) Rank-by-frequency 

Figure 18. Top 10 interesting locations of different approaches 

 

     Based on these results, 29 subjects individually answered the evaluation questions 

with the ratings mentioned in Table II. As shown in Table IV, our method is more 

capable than the baselines of finding out representative locations in the give region (T-

test result: p1<0.01, the comparison between ours and the Rank-by-count; p2<0.01, the 

comparison between ours and Rank-by-frequency). Meanwhile, the top 10 locations 

retrieved by our method presented a more comprehensive view of this region over the 

baselines (p1<<0.01, p2<<0.01). In addition, using our method, more novel locations that 
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interest the subjects have been retrieved (p1<0.01, p2<0.01). These regions represent the 

development of new Beijing, while having not been noticed by many people. Regarding 

the baselines, Rank-by-count outperformed rank-by-frequency in finding out the 

representative locations (p<0.01) and presenting a comprehensive view of the region 

(p<0.01). However, the former method does not show a clear advantage beyond the latter 

in detecting the novel interesting locations (p>0.2). 
 

Table IV. Comparison on the presentation ability of different methods 
 

 Ours Rank-by-count Rank-by-frequency 

Representative 5.4 4.5 3.1 

Comprehensive 4 3.4 2.3 

Novelty 3.4 2.4 2.2 

 

     Ranking ability: Table V depicts the ranking ability of different methods using 

nDCG@5, nDCG@10 and MAP as measurements. Although the set of interesting 

locations retrieved by our method and rank-by-count had a 60 percents overlap, our 

method showed clear advantages beyond baseline methods in effectively ranking this 

location set.  
 

Table V. Ranking ability of different methods 
 

 Ours Rank-by-count Rank-by-frequency 

nDCG@5 0.823 0.714 0.598 

nDCG@10 0.943 0.848 0.859 

MAP 0.759         0.532            0.365 

 
     8.3.2 Results Related to Classical Sequences       Using two measurements (mean 

score and classical rate), Table VI distinguishes the performance of our method from the 

baselines in finding out the classical sequences in the given region. Clearly, our method 

considering both users’ travel experiences and location interests outperforms rank-by-

count (p<<0.01), rank-by-interest (p<0.01) and rank-by-experience (p<0.01). Meanwhile, 

when respectively taking into account users’ travel experiences (p<0.01) or location 

interests (p<0.01), the performance of rank-by-count had been significantly improved. 

These results proved that user travel experience and location interests respectively play 

an important role in retrieving the classical travel sequences and offered a greater 

contribution when being used together. (See 8.2.2 for the meaning of classical rate) 
 

Table VI. Performance of different methods in finding classical sequences 

 

 Ours (Interest 

+ Experience) 

Rank-by-

count 

Rank-by-

interest 

Rank-by-

experience 

Mean score 1.6 1.2 1.4 1.5 

Classical Rate  0.6 0.3 0.4 0.4 

 

8.3.2 Related to Personalized Recommendation        

     Effectiveness: Using the average NDCG and MAP, Table VII compares the 

effectiveness of different methods in conducting the personalized location 
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recommendation. Clearly, our approach (Experience + Sequence) outperforms the 

weighted Slope One algorithm (T-Test of NDCG@5, p=0.0053<0.01; T-Test of MAP, 

p=0.0049<0.01). Although our method is slightly weaker than the Pearson correlation-

based CF model in terms of the average NDCG and MAP, the T-test result (NDCG@5, 

p=0.678>>0.01; MAP, p=0.741>>0.01) shows that the advantage of the Pearson 

correlation is not significant. In short, some users thought the recommendation generated 

by our method is even better than that of the Pearson correlation-based scheme. Thus, we 

can claim that at least our method is as effective as the Pearson correlation-based one.  

 

Table VII. Ranking performance of different methods (personalized recommendation) 

 

 
Ours 

The Pearson Correlation-

Based CF model 

The Weighted Slope 

One Algorithm 

NDCG@5 0.840 0.862 0.762 
NDCG@10 0.922 0.938 0.891 

MAP 0.798 0.804 0.665 
 

     Efficiency: Suppose we have such a GPS dataset generated by T users. From this 

dataset, we discover k locations and n trips; the average length (number of locations) of a 

trip is m. Thus, to predict a user’s interest level in a location, the upper bound of 

computing complexity (times) of different methods are as follows:      
 

The Pearson correlation-based CF model: 𝑂(𝑘 × (𝑇 − 1)2);  

The Weighted Slope One algorithm:         𝑂(𝑇 × 𝑘(𝑘 − 1)); 

Our method (Exp + Seq):                           𝑂(𝑇 × 𝑘 𝑘 − 1 + 𝑄),  
 

where 𝑄 = 2𝑤𝑘𝑇 + 2𝑘2 + 𝑚 𝑚 − 1 𝑛/2 is the total computing complexity of inferring 

the location correlation, and w is the iteration times. 

     Using the given GPS dataset, Figure 19 depicts the upper bound of computing 

complexity of different methods in calculating a prediction. Clearly, our method is much 

more efficient than the Pearson correlation-based CF model, while being slightly slower 

than the weighted Slope One algorithm. In short, our algorithm is as effective as the 

Pearson correlation-based model and almost as efficient as the weighted Slope one 

algorithm. Alternative, we can say our method is more efficient than the Pearson 

correlation-based model and more effective than the Weighted Slope One algorithm. 
 

 
 

Figure 19. Average computing complexity in computing a prediction 
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8.4 Discussions  
 

     8.4.1 Discussion on Human Location History      Beyond the static POI/YP dataset, 

people’s location histories can provide us with richer knowledge of geographical spaces.  

      First, from the location history we are able to discover some places, which attract 

multiple users’ interests, using a data-driven approach. Thus, 1) it is not necessary to 

manually pre-define some locations; 2) the detected locations would be more reasonable 

to be recommended to others; 3) we can find out the geo-regions with irregular structures, 

such as a shopping street and a lake; 4) the places developed recently can be 

automatically discovered. 

     Second, from the location history, we can discover the correlated locations pertaining 

to different business categories. For example, our method can detect that a restaurant is 

correlated with a cinema, or a lake and a museum are highly correlated. 

     Third, the location history implies some key factors, such as the travel time, distance, 

reachability and sequentiality between locations, which should be taken into account to 

plan a trip or perform a travel recommendation. For example, if two locations A and B 

co-occurred in multiple users’ trips, at least we can guarantee these two locations are 

reachable. Further, if people always travel to location B from A, it might imply that there 

would be a one-way road between these two locations. Meanwhile, people prefer to travel 

to a shopping mall nearby them rather than a distant one unless the quality of the distant 

one deserves a relatively long travel.  

      Given the above-mentioned reasons, we believe that human location history is a much 

better data source than others, like POI/YP datasets, in revealing the correlation between 

locations. 

 

     8.4.2 Discussion on Interesting Locations     With data shown in Table IV, we observe 

that users’ travel experiences are useful in not only retrieving representative locations in a 

region but also finding out more novel and interesting locations beyond baseline methods. 

Intuitively, some interesting places, which contain high-quality restaurants or nice 

shopping malls developed recently, would not be visited by many people. However, a 

location covering some landmarks, which is not that interesting but with a relatively long 

history, might be accessed by more people. Hence, the rank-by-count cannot handle this 

kind of problem well. Meanwhile, a user would frequently access the restaurant nearby 

their working place for convenience rather than food quality or having fun. Therefore, a 

location frequently visited by people might not be interesting. 

 

     8.4.3 Discussion on Classical Travel Sequences    The results shown in Table VI 

justify the contributions of users’ travel experiences and location interests in mining 

classical travel sequences. First, intuitively, without considering such information, the 

sequence from a railway station to a nearby hotel might be detected as a classical travel 

sequence because some tourists usually stay in the hotels nearby the station. Obviously, 

this is not a good recommendation for users. Second, if only using individuals’ travel 

experiences, we would mine out some life routine of an experienced user rather than 

classical sequences. For instance, sometimes, an experienced user would have dinner at a 

restaurant nearby their home and then go to a supermarket not far away from this 

restaurant. Since the user has a relatively high hub score, their life routine, like from the 

restaurant to the supermarket, might be detected as a classical travel sequence. Third, if 

only considering location interest, some impractical sequences would be found out. For 
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example, the Summer Palace and the Forbidden City are two very interesting locations in 

Beijing. An experienced user would not visit them in a sequence as they are far from each 

other and each deserves a one day tour. However, a few tourists without much travel 

knowledge about Beijing might carelessly visit these two places in a sequence, hence 

make this sequence classical. 

 

      8.4.3 Discussion on Location Correlation       1) User Travel Experience: As shown 

in Table IV, our methods considering a user’s travel experience is more capable than the 

Pearson correlation of predicting the correlation between locations. Intuitively, if we do 

not differentiate the experiences of various users, the locations randomly visited by some 

tourists without much knowledge about the given geo-region would also become 

correlated. Thus, the recommended locations might not be that interesting as if they are 

generated from some experienced users’ location histories. With a user’s travel 

experience, we can also reduce to some extent the cold start problem in the existing 

recommendation systems, where a location would not be recommended until this location 

has been rated (accessed) by many people. In our method, if a place has been visited by 

some experienced users, the place would become correlated with other locations, hence 

might be retrieved as a recommendation. So, people are more likely to discover some 

newly developed landmarks or shopping malls. 

     2) Sequentiality: As depicted in Table IV and Tabel V, our methods considering the 

sequentiality feature have shown clear advantages beyond the Person correlation-based 

mobile tour guide and the weighted slope one algorithm. At the first glance, people would 

argue that sometimes the locations accessed by an individual in a trip might share the 

same degree of correlation among each other. For example, A, B, C are three similar 

shopping malls. The perfect inference result should be 𝐶𝑜𝑟 𝐴, 𝐵 = 𝐶𝑜𝑟 𝐴, 𝐶 =
𝐶𝑜𝑟(𝐵, 𝐶) . However, an individual would access these locations in a sequence of 

ABC. According to our approach weighting the user travel experience by the 

sequentiality the locations has been visited, 𝐶𝑜𝑟 𝐴, 𝐵 = 𝐶𝑜𝑟 𝐵, 𝐶 > 𝐶𝑜𝑟 𝐴, 𝐶 . This 

looks not right. But, remember we have many users’ location histories; if these locations 

really share the similar degree of correlation, different users would access them in a 

variety of sequences, such as ACB and BAC. Therefore, the finally integrated 

results would be correct. On the contrary, if people always travel to another three places 

D, E, F in a sequence of DEF there must be some reason behind the phenomena; 

that is the different degree of correlation between locations. 

9. CONCLUSION 
     

     In this article, we learn the generic and personalized travel recommendations from a 

large number of user-generated GPS traces. In the generic recommendation, we model 

multiple users’ location histories with TBHG, and mine the top n interesting locations and 

the top m classical travel sequences in a given geospatial region based on the TBHG and a 

HITS-based inference model. This HITS-based infers the interest of a location and a 

user’s travel experience by taking into account 1) the mutual-reinforcement relation 

between the two values and 2) the geo-region conditions. Considering these two inferred 

values, we mine the classical travel sequences among locations. To achieve the 

personalized recommendation, we first calculate the correlation between locations by 

employing the user travel experiences and the sequence that locations have been visited. 

Then, we incorporate this correlation into an item-based CF model, which predict a user’s 

interest in an unvisited location in terms of the user’s location history and that of others.  
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    To evaluate these two types of recommendations, we perform a user study based on a 

real-world GPS trace dataset collected by 107 users over a period of one year. In this 

study, we invite 29 users living in Beijing for more than 6 years and request them to rate 

the recommendations generated by different methods. As a result, our method showed 

clear advantages beyond rank-by-count and rank-by-frequency by providing a better 

presentation ability and ranking performance. Meanwhile, when employing both users’ 

travel experiences and location interests, we achieved the best performance in detecting 

classical travel sequences. Regarding the personalized location recommendation, our 

approach is more effective than the weighted Slope one algorithm with a slightly 

additional computation. In addition, in contrast to the Pearson correlation-based CF 

model, our method is much more efficient while keeping the similar effectiveness. 
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