International Mathematical Forum, 5, 2010, no. 24, 1179 - 1183

Comaximal Submodules of Multiplication Modules

Saeed Rajaee

Department of Mathematics, Faculty of Science Payame Noor University of Mashhad, Mashhad, Iran saeed_rajaee@pnu.ac.ir

Abstract

Let *M* be a multiplication module over a commutative ring *R*. In this paper we investigate some results on prime comaximal submodules of a prime multiplication module *M*.

Mathematics Subject Classification: 13C05, 13C13, 13A15

Keywords: Multiplication module, Prime submodule, Prime module, Comaximal submodules

1 Introduction

Throughout this work, *R* denotes a commutative ring with identity and *M* denotes a unital *R*-module. For a submodule *N* of *M*, the set

$$
(N:_{R} M) = \{r \in R : rM \subseteq N\}
$$

is called colon of *N* and it is an ideal of *R*. Let *I* be an ideal of *R*, the submodule $(N : M I)$ of *M* is defined by

$$
(N:_{M} I) = \{ m \in M \mid im \in N, \forall i \in I \}
$$

Similarly, for an element $s \in R$, the submodule $(N : M s)$ is defined by:

$$
(N: _Ms) = \{m \in M \mid sm \in N\}
$$

we investigate some properties of multiplication modules. It is clear that every cyclic module is multiplication, and that a multiplication module over a local ring is cyclic, see $[2]$, $[8]$, $[11]$.

In this paper, we obtain some results on the prime comaximal submodules of a prime multiplication module *M*, which are concern to comaximal ideals.

2 Multiplication modules

Definition 2.1. An *R*-module *M* is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that $N = IM$. In this case we can take $I = (N :_R M)$ and *I* is called a presentation ideal of N.

Definition 2.2. A submodule *N* of *R*-module *M* is called prime submodule if $N \neq M$ and for $r \in R$ and $m \in M$, we have

$$
rm \in N \Rightarrow r \in (N :_R M)
$$
 or $m \in N$

Equivalently, if $rm \in N$ for some $r \in R$ and $m \in M \setminus N$, then $rM \subseteq N$. In the special case in which $N = 0$, the ideal $(0 :_R M) = Ann_R(M)$ of R is called the annihilator of *M*.

Lemma 2.3. *Let N be a prime submodule of M, then*

$$
p = (N : M) \in spec(R)
$$

proof: Let $ab \in (N : M)$, and $a \notin (N : M)$, then $abM \subseteq N$, hence for any $m \in M$,

$$
(ab)m=(ba)m=b(am)\in N\qquad (*)
$$

Since $a \notin (N : M)$, hence $aM \nsubseteq N$, then there exists $s \in M$, where $as \notin N$. Since *N* is prime by (∗) we have

$$
(ab)s = b(as) \in N \Rightarrow b \in (N : M) \text{ or } as \in N
$$

Since $as \notin N$, hence $b \in (N : M)$.

Definition 2.4. Let N be a prime submodule of M, then $p = (N : M)$ is a *prime ideal of R and N is said to be p- prime submodule.*

Theorem 2.5. [[10] Theorems 1.3, 1.5]*Let P be a proper submodule of a multiplication R-module M. Then the following statements are equivalent: (i) P is a prime submodule;*

(ii) for every submodules
$$
N, K \subseteq M
$$
, we have

$$
NK \subseteq P \Longrightarrow N \subseteq P \text{ or } K \subseteq P
$$

(iii) for every $m, n \in M$, if $mn \subseteq P$ then $m \in P$ or $n \in P$. *(iv)* $Ann_R(M/P)$ *is a prime ideal of* M *.* (v) $P = QM$ *for some prime ideal* Q *of* R *with* $Ann_R(M) \subseteq Q$ *.*

Definition 2.6. *Let N be a submodule of R-module M and I an ideal of R, then*

$$
(N :_M I) = \{ m \in M \mid Im \subseteq N \} = \{ m \in M \mid im \in N, \forall i \in I \}
$$

is a submodule of M.

In the special case in which $N = 0$, the submodule $(0 :_M I) = Ann_M(I)$ of *M* is called the annihilator of *I* in *M*. Similarly, for an element $s \in R$, the *submodule* (*N* :*^M s*) *is equal to:*

$$
(N: _Ms) = \{m \in M \mid sm \in N\}
$$

In particular, if $I = (i_1, \ldots, i_k)$ *be a finitely generated ideal of R, then*

$$
(N:_{M} I) = \bigcap_{s=1}^{k} (N:_{M} i_{s})
$$

Theorem 2.7. Let M_1 and M_2 be R-modules, then $M = M_1 \oplus M_2$ is a *multiplication R-module if and only if M*¹ *and M*² *be multiplication modules.* **proof.** Let $M = M_1 \oplus M_2$ be a multiplication module and N_1 be a submodule of *M*¹ and thereby a submodule of *M*. Therefore there exists an ideal *I* of *R*, where $N_1 = IM = I(M_1 \oplus M_2) = IM_1 \oplus IM_2$.

Since $IM_1 \cap IM_2 = 0$, hence $N_1 = IM_1$, which implies that M_1 is multiplication. Similarly, M_2 is a multiplication R -module.

Conversely, let $N \neq M$ be a submodule of M, then there exist submodules N_1 and N_2 respectively of M_1 and M_2 such that $N = N_1 + N_2$ and $N_1 \cap N_2 = 0$. There exist two ideals *I* and *J* of *R*, where $N_1 = IM_1$ and $N_2 = JM_2$. Therefore $N = N_1 + N_2 = IM + JM = (I + J)M$, where $I + J$ is an ideal of *R*, which implies that *M* is a multiplication module. In this case $I = (N_1 :_R M_1)$ and $J = (N_2 : R M_2)$, then $r \in I \cap J$ if and only if $rM_1 \subseteq N_1$ and $rM_2 \subseteq N_2$ if and only if $rM = r(M_1 + M_2) = rM_1 + rM_2 \subseteq N_1 + N_2$ if and only if $r \in (N_1 + N_2 : R M)$. Therefore $(N_1 : R M_1) \cap (N_2 : R M_2) = (N_1 + N_2 : R M)$.

Corollary 2.8. *Let* $\{M_i\}_{i \in \Lambda}$ *be a finite collection of R-modules, then the* $direct sum M = \bigoplus_{i \in \Lambda} M_i$ *is a multiplication module if and only if each of* M_i *is multiplication module.*

Corollary 2.9. *Let* $0 \longrightarrow M_1 \longrightarrow M \longrightarrow M_2 \longrightarrow 0$ *be a split exact sequence of R-modules, then M is a multiplication module if and only if M*¹ *and M*² *are multiplication modules.*

3 Comaximal submodules

Definition 3.1. *Let M be an R-module and M*¹ *and M*² *are submodules of M*, then M_1 and M_2 are called comaximal, whenever $M = M_1 \oplus M_2$.

Definition 3.2. *An R-module M is called a prime module if zero submodule of M is prime submodule of M. It is clear that M is a prime module if and only if* $Ann_R(M) = Ann_R(m)$ *, for every nonzero* $m \in M$ *.*

Definition 3.3. *An R-module M is a weak cancellation module, whenever* $IM = JM$ *for some ideals I* and *J* of *R*, then $I + Ann_R(M) = J + Ann_R(M)$. In particular, if $Ann_R(M) = 0$, then *M* is called a cancellation module.

Proposition 3.4. [[10] Proposition 3.5] *Every prime multiplication module is weak cancellation module and hence is finitely generated.*

Theorem 3.5. Let M be a prime multiplication R -module, N_1 and N_2 be *comaximal prime submodules of* M *, where* $N_1 = IM$ *and* $N_2 = JM$ *for some ideals I and J of R, then I and J are comaximal ideals of R.* **proof.** Since $M = N_1 \oplus N_2$, hence $N_1 \cap N_2 = 0$ and $M = N_1 + N_2$. We have $I = (N_1 : M)$ and $J = (N_2 : M)$, and hence *I* ∩ *J* = (N_1 : *M*) ∩ (N_2 : *M*) = (N_1 ∩ N_2 : *M*) = (0 : *M*) = *Ann_R*(*M*). Whereas *M* is a prime module, then $Ann_R(M) = 0$, hence $I \cap J = 0$. On the other side, $M = RM = N_1 + N_2 = IM + JM = (I + J)M$. Every prime multiplication module is weak cancellation module and thereby $R +$ $Ann_R(M) = (I + J) + Ann_R(M)$ and since $Ann_R(M) = 0$, hence $R = I + J$. Therefore $R = I \oplus J$.

Definition 3.6. *A submodule Q of an R-module M is called primary submodule, if* $Q \neq M$ *and for* $r \in R$ *and* $m \in M$ *, we have*

$$
rm \in Q \Rightarrow r \in \sqrt{(Q:M)} \text{ or } m \in Q
$$

Lemma 3.7. *Let Q be a primary submodule of an R-module M, then ideal* (*Q* : *M*) *is a primary ideal of R.*

proof: Let $ab \in (Q : M)$, and $a \notin (Q : M)$, we must show that there exists a positive integer number *n*, where $b^n \notin (Q : M)$. We have $abM \subseteq Q$ and $aM \nsubseteq Q$, hence for at least one $s \in M$, $as \notin Q$.

$$
(ab)s = (ba)s = b(as) \in (ab)M \subseteq Q \stackrel{as \notin Q}{\longrightarrow} b \in \sqrt{Q : M}
$$

Therefore there exists $n \in \mathbb{N}$, where $b^n \notin (Q : M)$, hence $(Q : M)$ is a primary ideal of *R*.

If Q be a primary submodule of an R -module M , then $(Q: M)$ is a primary ideal of *R*, and we say that *Q* is a *q*- primary submodule, where $q = \sqrt{Q : M}$ is a prime ideal of *R*.

If *Q* be a *q*-primary submodule of *M* and $q = (Q : M)$, then *Q* is a prime submodule of *M* (see [4] Proposition 1).

Corollary 3.8. *Let Q*¹ *and Q*² *be comaximal primary submodules of M, where* $q_1 = (Q_1 : M)$ *and* $q_2 = (Q_2 : M)$ *, then* $R = q_1 \oplus q_2$ *.*

References

- [1] ATIYAH, M.F. AND I.G. MACDONALD, *Introduction to commutative Algebra,* New York, Addison-Wesley Publishing Company, 1969.
- [2] A. Barnard,, *Multiplication modules,* J. Algebra **71** (1981), no.1, 174- 178.
- [3] Bourbaki, Nicolas, *Commutative Algebra,* Paris: Hermann, Publishers in Arts and Science, 1972.
- [4] C.-P.Lu, *Prime submodules of modules*, Comm. Math. Univ. Sancti Pauli, **33** (1984) pp. 61-69.
- [5] D.EISENBUD, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
- [6] J. Jenkins and P. F. Smith., *On the prime radical of a module over a commutative ring,* Comm. Algebra, **20** (1992), 3593-3602.
- [7] Matsumura, Hideyuki., *Commutative ring theorey,* Cambridge: Cambridge University Press, 1980.
- [8] P.F. Smith., *Some remarks on multiplication modules,* Arch. Math., **50** (1988), 223-235.
- [9] R. Ameri, *On the prime submodules of multiplication modules,* International Journal of Mathematics and Mathematical Science (2003), no.27, 1715-1724.
- [10] R.Jahani-Nezhad and M.H. Naderi., *On Prime and Semiprime Submodules of Multiplication Modules,* International Mathematical Forum, **4** (2009), no.26, 1257-1266.
- [11] Z. A. El-Bast and P.F. Smith., *Multiplication modules,* Comm. Algebra, **16** (1988), no.4, 755-779.

Received: January, 2010