International Mathematical Forum, 5, 2010, no. 24, 1179 - 1183

Comaximal Submodules of Multiplication Modules

Saeed Rajaee

Department of Mathematics, Faculty of Science Payame Noor University of Mashhad, Mashhad, Iran saeed_rajaee@pnu.ac.ir

Abstract

Let M be a multiplication module over a commutative ring R. In this paper we investigate some results on prime comaximal submodules of a prime multiplication module M.

Mathematics Subject Classification: 13C05, 13C13, 13A15

Keywords: Multiplication module, Prime submodule, Prime module, Comaximal submodules

1 Introduction

Throughout this work, R denotes a commutative ring with identity and M denotes a unital R-module. For a submodule N of M, the set

$$(N:_R M) = \{r \in R : rM \subseteq N\}$$

is called colon of N and it is an ideal of R. Let I be an ideal of R, the submodule $(N :_M I)$ of M is defined by

$$(N:_M I) = \{m \in M \mid im \in N, \forall i \in I\}$$

Similarly, for an element $s \in R$, the submodule $(N :_M s)$ is defined by:

$$(N:_M s) = \{m \in M \mid sm \in N\}$$

we investigate some properties of multiplication modules. It is clear that every cyclic module is multiplication, and that a multiplication module over a local ring is cyclic, see [2], [8], [11].

In this paper, we obtain some results on the prime comaximal submodules of a prime multiplication module M, which are concern to comaximal ideals.

Multiplication modules 2

Definition 2.1. An *R*-module *M* is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that N = IM. In this case we can take $I = (N :_R M)$ and I is called a presentation ideal of N.

Definition 2.2. A submodule N of R-module M is called prime submodule if $N \neq M$ and for $r \in R$ and $m \in M$, we have

$$rm \in N \Rightarrow r \in (N :_R M) \text{ or } m \in N$$

Equivalently, if $rm \in N$ for some $r \in R$ and $m \in M \setminus N$, then $rM \subseteq N$. In the special case in which N = 0, the ideal $(0 :_R M) = Ann_R(M)$ of R is called the annihilator of M.

Lemma 2.3. Let N be a prime submodule of M, then

$$p = (N : M) \in spec(R)$$

proof: Let $ab \in (N : M)$, and $a \notin (N : M)$, then $abM \subseteq N$, hence for any $m \in M$,

$$(ab)m = (ba)m = b(am) \in N \qquad (*)$$

Since $a \notin (N : M)$, hence $aM \nsubseteq N$, then there exists $s \in M$, where $as \notin N$. Since N is prime by (*) we have

$$(ab)s = b(as) \in N \Rightarrow b \in (N:M) \text{ or } as \in N$$

Since $as \notin N$, hence $b \in (N : M)$.

Definition 2.4. Let N be a prime submodule of M, then p = (N : M) is a prime ideal of R and N is said to be p-prime submodule.

Theorem 2.5. [[10] Theorems 1.3, 1.5]Let P be a proper submodule of a multiplication R-module M. Then the following statements are equivalent: (i) P is a prime submodule; (ii) fo

i) for every submodules
$$N, K \subseteq M$$
, we have

$$NK \subseteq P \Longrightarrow N \subseteq P \text{ or } K \subseteq P$$

(iii) for every $m, n \in M$, if $mn \subseteq P$ then $m \in P$ or $n \in P$. (iv) $Ann_R(M/P)$ is a prime ideal of M. (v) P = QM for some prime ideal Q of R with $Ann_R(M) \subseteq Q$. **Definition 2.6.** Let N be a submodule of R-module M and I an ideal of R, then

$$(N:_M I) = \{m \in M \mid Im \subseteq N\} = \{m \in M \mid im \in N, \forall i \in I\}$$

is a submodule of M.

In the special case in which N = 0, the submodule $(0 :_M I) = Ann_M(I)$ of M is called the annihilator of I in M. Similarly, for an element $s \in R$, the submodule $(N :_M s)$ is equal to:

$$(N:_M s) = \{m \in M \mid sm \in N\}$$

In particular, if $I = (i_1, \ldots, i_k)$ be a finitely generated ideal of R, then

$$(N:_M I) = \bigcap_{s=1}^k (N:_M i_s)$$

Theorem 2.7. Let M_1 and M_2 be *R*-modules, then $M = M_1 \oplus M_2$ is a multiplication *R*-module if and only if M_1 and M_2 be multiplication modules. **proof.** Let $M = M_1 \oplus M_2$ be a multiplication module and N_1 be a submodule of M_1 and thereby a submodule of M. Therefore there exists an ideal I of R, where $N_1 = IM = I(M_1 \oplus M_2) = IM_1 \oplus IM_2$.

Since $IM_1 \cap IM_2 = 0$, hence $N_1 = IM_1$, which implies that M_1 is multiplication. Similarly, M_2 is a multiplication *R*-module.

Conversely, let $N \neq M$ be a submodule of M, then there exist submodules N_1 and N_2 respectively of M_1 and M_2 such that $N = N_1 + N_2$ and $N_1 \cap N_2 = 0$. There exist two ideals I and J of R, where $N_1 = IM_1$ and $N_2 = JM_2$. Therefore $N = N_1 + N_2 = IM + JM = (I + J)M$, where I + J is an ideal of R, which implies that M is a multiplication module. In this case $I = (N_1 :_R M_1)$ and $J = (N_2 :_R M_2)$, then $r \in I \cap J$ if and only if $rM_1 \subseteq N_1$ and $rM_2 \subseteq N_2$ if and only if $rM = r(M_1 + M_2) = rM_1 + rM_2 \subseteq N_1 + N_2$ if and only if $r \in (N_1 + N_2 :_R M)$. Therefore $(N_1 :_R M_1) \cap (N_2 :_R M_2) = (N_1 + N_2 :_R M)$.

Corollary 2.8. Let $\{M_i\}_{i \in \Lambda}$ be a finite collection of *R*-modules, then the direct sum $M = \bigoplus_{i \in \Lambda} M_i$ is a multiplication module if and only if each of M_i is multiplication module.

Corollary 2.9. Let $0 \longrightarrow M_1 \longrightarrow M \longrightarrow M_2 \longrightarrow 0$ be a split exact sequence of *R*-modules, then *M* is a multiplication module if and only if M_1 and M_2 are multiplication modules.

3 Comaximal submodules

Definition 3.1. Let M be an R-module and M_1 and M_2 are submodules of M, then M_1 and M_2 are called comaximal, whenever $M = M_1 \oplus M_2$.

Definition 3.2. An *R*-module *M* is called a prime module if zero submodule of *M* is prime submodule of *M*. It is clear that *M* is a prime module if and only if $Ann_R(M) = Ann_R(m)$, for every nonzero $m \in M$.

Definition 3.3. An *R*-module *M* is a weak cancellation module, whenever IM = JM for some ideals *I* and *J* of *R*, then $I + Ann_R(M) = J + Ann_R(M)$. In particular, if $Ann_R(M) = 0$, then *M* is called a cancellation module.

Proposition 3.4. [[10] Proposition 3.5] Every prime multiplication module is weak cancellation module and hence is finitely generated.

Theorem 3.5. Let M be a prime multiplication R-module, N_1 and N_2 be comaximal prime submodules of M, where $N_1 = IM$ and $N_2 = JM$ for some ideals I and J of R, then I and J are comaximal ideals of R. **proof.** Since $M = N_1 \oplus N_2$, hence $N_1 \cap N_2 = 0$ and $M = N_1 + N_2$. We have $I = (N_1 : M)$ and $J = (N_2 : M)$, and hence $I \cap J = (N_1 : M) \cap (N_2 : M) = (N_1 \cap N_2 : M) = (0 : M) = Ann_R(M)$. Whereas M is a prime module, then $Ann_R(M) = 0$, hence $I \cap J = 0$. On the other side, $M = RM = N_1 + N_2 = IM + JM = (I + J)M$. Every prime multiplication module is weak cancellation module and thereby $R + Ann_R(M) = (I + J) + Ann_R(M)$ and since $Ann_R(M) = 0$, hence R = I + J.

Definition 3.6. A submodule Q of an R-module M is called primary submodule, if $Q \neq M$ and for $r \in R$ and $m \in M$, we have

$$rm \in Q \Rightarrow r \in \sqrt{(Q:M)} \text{ or } m \in Q$$

Lemma 3.7. Let Q be a primary submodule of an R-module M, then ideal (Q:M) is a primary ideal of R.

proof: Let $ab \in (Q : M)$, and $a \notin (Q : M)$, we must show that there exists a positive integer number n, where $b^n \notin (Q : M)$. We have $abM \subseteq Q$ and $aM \notin Q$, hence for at least one $s \in M$, $as \notin Q$.

$$(ab)s = (ba)s = b(as) \in (ab)M \subseteq Q \xrightarrow{as \notin Q} b \in \sqrt{Q:M}$$

Therefore there exists $n \in \mathbb{N}$, where $b^n \notin (Q:M)$, hence (Q:M) is a primary ideal of R.

If Q be a primary submodule of an R-module M, then (Q:M) is a primary ideal of R, and we say that Q is a q- primary submodule, where $q = \sqrt{(Q:M)}$ is a prime ideal of R.

If Q be a q-primary submodule of M and q = (Q : M), then Q is a prime submodule of M (see [4] Proposition 1).

Corollary 3.8. Let Q_1 and Q_2 be comaximal primary submodules of M, where $q_1 = (Q_1 : M)$ and $q_2 = (Q_2 : M)$, then $R = q_1 \oplus q_2$.

References

- [1] ATIYAH, M.F. AND I.G. MACDONALD, Introduction to commutative Algebra, New York, Addison-Wesley Publishing Company, 1969.
- [2] A. BARNARD, Multiplication modules, J. Algebra 71 (1981), no.1, 174-178.
- [3] BOURBAKI, NICOLAS, *Commutative Algebra*, Paris: Hermann, Publishers in Arts and Science, 1972.
- [4] C.-P.LU, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984) pp. 61-69.
- [5] D.EISENBUD, Commutative algebra with a view toward algebraic geometry, Springer-Verlag, New York, 1995.
- [6] J. JENKINS AND P. F. SMITH., On the prime radical of a module over a commutative ring, Comm. Algebra, 20 (1992), 3593-3602.
- [7] MATSUMURA, HIDEYUKI., *Commutative ring theorey*, Cambridge: Cambridge University Press, 1980.
- [8] P.F. SMITH., Some remarks on multiplication modules, Arch. Math., 50 (1988), 223-235.
- [9] R. AMERI, On the prime submodules of multiplication modules, International Journal of Mathematics and Mathematical Science (2003), no.27, 1715-1724.
- [10] R.JAHANI-NEZHAD AND M.H. NADERI., On Prime and Semiprime Submodules of Multiplication Modules, International Mathematical Forum, 4 (2009), no.26, 1257-1266.
- [11] Z. A. EL-BAST AND P.F. SMITH., Multiplication modules, Comm. Algebra, 16 (1988), no.4, 755-779.

Received: January, 2010