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Abstract

Let K be a convex body in Rn with centroid at 0 and B be the Euclidean
unit ball in Rn centered at 0. We show that

limt→0
|K| − |Kt|
|B| − |Bt|

=
Op(K)
Op(B)

,

where |K| respectively |B| denotes the volume of K respectively B, Op(K)
respectively Op(B) is the p-affine surface area of K respectively B and
{Kt}t≥0, {Bt}t≥0 are general families of convex bodies constructed from
K, B satisfying certain conditions. As a corollary we get results obtained
in [23, 25, 26, 31].

1 Introduction and notation

During the past two decades affine surface area, originally a basic invariant from
the field of affine differential geometry, has become an important tool in convex
geometry. For this to happen affine surface area had first to be extended so
that it was defined on all convex bodies (see e.g. [8, 14, 22, 24, 29]). Work
on the “extension problem” for affine surface area lead to the solution of the
“uppersemicontinuity problem” for affine surface area [14] which has recently had
an impact in the study of affine PDE’s (see e.g. Trudinger and Wang [27] and
Wang [28]). The flurry of activity surrounding affine surface area ultimately led
to the Ludwig-Reitzner Characterization theorem [9] and various deep results in
the area of e.g. combinatorics (see e.g. [1]), polytopal approximation (see e.g.
[5, 13, 25]) and the theory of valuations (see e.g. [10, 11]).
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During the past decade it has come to be seen that the classical Brunn-
Minkowski theory of convex bodies is a part of a more general Lp-Brunn-Minkwoski
theory (see e.g. [2, 19, 20, 21]) and recent advances in this area have influenced
the work in PDE’s and ODE’s of Chen, Chou, Hu, Ma, Shen and Wang [3, 4, 6]
(among others).

Within the Lp-Brunn-Minkwoski theory, Lp-extensions have been found of the
basic affine invariants of classical convex geometry. One of the most important
affine invariants for which Lp-extensions have been discovered is affine surface
area. For 1 < p < ∞, Lp-affine surface area was defined by Lutwak [14, 16] for
all convex bodies K in Rn and extended by Hug [7] to 0 ≤ p < 1:

Op(K) =

∫
∂K

κK(x)
p

n+p

< x,NK(x) >
n(p−1)

n+p

dµ(x).

Here κK(x) is the (generalized) Gaussian curvature and NK(x) the outer unit
normal in x ∈ ∂K, the boundary of K, and µ is the surface measure on ∂K.

The next step was taken by Meyer & Werner [22] who extended the definition
of Lp-affine surface area to all p ∈ (−n,∞) and also gave a geometric definition
of Lp-affine surface area in terms of Lp-Santaló bodies for p ∈ (−n,∞). Schütt &
Werner went on to show how Lp-affine surface area, for all p ∈ [−∞,∞] (except
p = −n) has a natural definition in terms of random polytopes [25], and gave
another definition in terms of the surface bodies [26]. Werner [31] provided yet
another definition, for all p, in terms of Lp-floatation bodies.

It is easy to see that Op(K) is finite for all p with 0 ≤ p ≤ ∞ (see [26]). This
need not to be so for negative values of p [26]. Moreover, O0(K) = n voln(K)
and (for K with ∂K C2 and a.e. strictly positive Gaussian curvature) O±∞ =
n voln(K0), where K0 is the polar body of K (see below). Note also that for all
p 6= −n, Op(B) = voln−1(∂B).

As remarked above, in the Lp-extension process new classes of convex bodies
were discovered through which Lp-affine surface area can be characterized geo-
metrically. This new geometric characterizations have a common feature:
First a specific family {Kt}t≥0 of convex bodies is constructed. This family is dif-
ferent in each of the extensions but of course related to the given convex body K.
The Lp-affine surface area is then obtained by using expressions involving volume
differences |K| − |Kt|. Examples for such families Kt are the Lp-Santaló bod-
ies [23], the Lp-floatation bodies or weighted floating bodies [31] and the surface
bodies [26] (see below for the definitions).

Therefore it seemed natural to ask whether there are completely general condi-
tions on a family {Kt}t≥0 of convex bodies in Rn that (in connection with volume
difference expressions) will give Lp-affine surface area. A positive answer to this
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question was given in [30] in the case p = 1. We show here that this also holds in
the general case.

The author wants to thank Monika Ludwig for initiating this paper and for
many helpful discussions. She contributed so much, she should have been a
coauthor.

She also wants to thank the referee who suggested many improvements to the
paper.

B(a, r) = Bn
2 (a, r) is the n-dimensional Euclidean ball with radius r centered

at a. We put B = B(0, 1) = Bn
2 (0, 1) and r B = B(0, r). By ||.|| we denote the

standard Euclidean norm on Rn, by <.,. > the standard inner product on Rn. For
two points x and y in Rn [x, y] = {αx + (1 − α)y : 0 ≤ α ≤ 1} denotes the line
segment from x to y.

For a set A ⊂ Rn, int(A) is the interior of A. For a convex body K ∈ Rn,
∂K denotes the boundary of K. µ is the usual surface area measure on ∂K.
∂B = Sn−1. For x ∈ ∂K, NK(x) is the outer unit normal vector to ∂K in x.
We denote the n-dimensional volume of K by |K|. H+ and H− are the closed
halfspaces determined by the hyperplane H.

We will assume from now on that a convex body K in Rn is positioned such
that the centroid of K is at the origin. We choose the centroid to be at 0 but we
could have chosen any interior point of K instead. We will then denote by K the
set of convex bodies in Rn with centroid at the origin.

Let K be a convex body in Rn. For x ∈ ∂K let r(x) be the radius of the
biggest Euclidean ball contained in K that touches ∂K at x. It was shown in [24]
that µ-a.e. on ∂K r(x) > 0 and that for 0 ≤ α < 1∫

∂K

r(x)−αdµ(x) < ∞ (1)

It was also noted in [24] that in general α cannot be chosen to be equal to 1.

Therefore, µ-a.e. on ∂K there exists a centered ellipsoid Ec(x) such that

Ec(x) ∩ ∂K = {x}, NK(x) = NEc(x)(x)

|Ec(x)| = | < x,NK(x) > |
n+1

2

(
r(x)

2

)n−1
2

|B|.

Moreover there exists a hyperplane Hc(x) such that

x ∈ int

(
Hc(x)−

)
and Ec(x) ∩H−

c (x) ⊆ K ∩H−
c (x). (2)
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We call Ec(x) a contained ellipsoid . It should be noted that Ec(x) is not unique.
Likewise, the hyperplane Hc(x) such that (2) holds, is not unique: if f.i. Hc(x)

is such that (2) holds, then for any hyperplane H ⊂
(

Hc(x)−
)

parallel to Hc(x)

and with x ∈ int H−, (2) holds as well.

Let K ∈ Rn and x ∈ ∂K with unique outer unit normal vector NK(x) and
strictly positive Gauss curvature κK(x). Then (see f.i. [8, 25]), for ε > 0 given,
there exist centered ellipsoids Ei

a(x) and Ec
a(x) such that

x ∈ ∂Ei
a(x), x ∈ ∂Ec

a(x), (3)

NK(x) = NEi
a(x)(x) = NEc

a(x)(x), (4)

κEi
a(x)(x) =

κK(x)

(1− ε)n−1
, κEc

a(x)(x) =
κK(x)

(1 + ε)n−1
(5)

and such that Ei
a(x) and Ec

a(x) have common axes: of length < x, N(x) > once

and of length

(
(1− ε)<x,N(x)>

κ(x)
1

n−1

) 1
2

respectively

(
(1 + ε)<x,N(x)>

κ(x)
1

n−1

) 1
2

(n− 1)-times.

Thus
|Ei

a(x)| = (1− ε)
n−1

2 | < x,N(x) > |
n+1

2 κ(x)−
1
2 |B| (6)

|Ec
a(x)| = (1 + ε)

n−1
2 | < x,N(x) > |

n+1
2 κ(x)−

1
2 |B|. (7)

Moreover there exists a hyperplane Ha(x, ε) such that x ∈ int

(
Ha(x, ε)−

)
and

such that

Ei
a(x) ∩H−

a (x, ε) ⊆ K ∩H−
a (x, ε) ⊆ Ec

a(x) ∩H−
a (x, ε). (8)

We call Ei
a(x) and Ec

a(x) the approximating ellipsoids . Again, the hyperplane
Ha(x, ε) is not unique. Similar comments as above for Hc(x) apply.

If x ∈ ∂K is such that κK(x) = 0, then it is well known that the indicatrix of
Dupin at x is an elliptic cylinder (see [8, 24]). Hence there is a centered ellipsoid
E0(x) that touches ∂K in x and which has at least one axis that is arbitrarily
large: for all ε > 0 there exists a centered ellipsoid E0(x) with at least one axis
a = a(ε) with a > 1

ε
(see [24]). Moreover there exists a hyperplane H0(x, ε)) (not

unique) such that
E0(x) ∩H−

0 (x, ε) ⊂ K ∩H−
0 (x, ε). (9)

We want to emphazise that above as well as in the following definition the
hyperplanes have a mostly auxiliary function: the only information we need about
K is the behavior near the boundary and the role of the hyperplanes is to express
just that.
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2 Definiton and Examples

Definition

Let p ∈ R, p 6= −n be fixed. For every t ∈ R, t ≥ 0, let Fp
t : K → K, K 7−→

Fp
t (K) = Kp

t be a map. We write in short Kt = Kp
t . We say that

(i) Fp
t is p-limiting if for all invertible linear maps T ,

limt→0
|(T (B)| − |(T (B))t|

|B| − |Bt|
= |detT |

(n−p)
n+p

(ii) Fp
t is C-inclusion preserving, if there exists a constant C = C(K) ≥ 1

such that µ-a.e. on ∂K we have: There exists t1 such that, whenever Ec(x) is
a contained ellipsoid such that (2) holds for some hyperplane Hc(x), then for all
t ≤ t1 (

Ec(x)

)
Ct

∩H−
c (x) ⊆ (K)t ∩H−

c (x).

(iii) Fp
t is local if it is 1-inclusion preserving for the approximating ellipsoids:

Let ε > 0 be given and let x ∈ ∂K with approximating ellipsoids Ei
a(x) and Ec

a(x)
such that (8) holds for some Ha(x, ε). Then there exits t2 = t2(ε, x) such that for
all t ≤ t2(

Ei
a(x)

)
t

∩H−
a (x, ε) ⊆ Kt ∩H−

a (x, ε) ⊆
(

Ec
a(x)

)
t

∩H−
a (x, ε).

(iv) Fp
t is monotone if for every centered ellipsoid E, Et is again a centered

ellipsoid homothetic to E and if the radius r(t) = 1− f(t) of the centered ball Bt

is such that f(0) = 0, f is increasing and there is a constant d (independent of t)
such that

f(Ct) ≤ d f(t),

where C is the constant in (ii).

We would like to make some comments on the definition of the map Fp
t .

Firstly, in the definition we restrict ourselves to considering the case Bt ⊆ B,
Kt ⊆ K for all t ≥ 0. A similar construction can be given for B ⊆ Bt, K ⊆ Kt

for all t ≥ 0 (compare [30]). Then theorems similar to Theorems 1 and 2 below
hold.
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The maps Fp
t are essentially determined by their behavior with respect to

(affine images of) Euclidean balls.

The conditions (ii) and (iii) state that it is enough to know the behavior
locally and close to the boundary of a convex body K. Globally we need only to
know how the maps Fp

t behave for ellipsoids as stated in (i) and (iv). Again, we
want to stress that the hyperplanes Hc(x), Ha(x, ε) and H0(x, ε) play mostly an
auxiliary role: through them we express what counts which is the behavior near
the boundary of K.

Let K and L be convex bodies in K such that L ⊂ K. Then we cannot expect
that Lt ⊂ Kt. We do not even have necessarily, if Ec(x) is the contained ellipsoid,
that

(
Ec(x)

)
t
∩ H−

c (x) ⊆ (K)t ∩ H−
c (x). This is why we require the condition

C-inclusion preserving. Its geometric meaning is that, even if inclusion relation
in general is not preserved passing to the “floating bodies”, it is preserved -at
least with a constant- for the contained ellipsoids.

Consider Bn
∞ = {x ∈ Rn : max1≤i≤n|xi| ≤ 1} and for 0 < ε < 1 let Kε be Bn

∞
with “rounded” vertices. We describe the boundary of Kε in the first quadrant-
the description in the other quadrants is accordingly:

For 0 ≤ xi ≤ 1− ε, 1 ≤ i ≤ n− 1, let xn = 1.
For 1− ε ≤ xi ≤ 1, 1 ≤ i ≤ n− 1, let

∑n
i=1(xi − (1− ε))2 = ε2.

Then the Euclidean unit ball B is the contained ellipsoid of Kε at en = (0, . . . , 1).

For f(x) = f1(x) = κ(x)
1

n+1 , the surface body Bf,t (see the examples below) of B

is the Euclidean ball (1− sn t
2

n−1 ) B, where sn is a constant depending on n only.

For all t > 1
2

εn n−1
n+1 voln−1(∂B), (Kε)f,t = ∅, hence does not contain Bf,t.

For t ≤ 1
2

εn n−1
n+1 voln−1(∂B), (Kε)f,t is contained in the half-space {x ∈ Rn :

xn ≤ 1 − sn t
2

n−1 ε−
n−1
n+1} and thus does not contain (1 − sn t

2
n−1 ) B if ε is small

enough.

Similarily, we cannot expect that the inclusion relations (8) and (9) pass to
the “floating bodies”. Therefore we require it as a condition - locality - which
means geometrically that the inclusion relations (8) and (9) are preserved passing
to the “floating bodies”. Locality is necessary. To see that, consider the following
example (see figure): Let K be the convex body in the plane which consists of a
half circle and a triangle attached to it. We consider the surface body (see below)
KfK ,t of K where the function fK = f1,K is such that it is equal to 0 on the lines
of the triangle and constant equal to 1 on the half circle.

Then, since KfK ,0 does not contain the triangular part of K and since |B| −
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|BfB ,t| = sn t
2

n−1 (see below)

lim
t→0

|K| − |KfK ,t|
|B| − |BfB ,t|

= ∞

while
O1(K)

O1(B)
=

∫
∂K

κ
1

n+1

voln−1(∂B)

is clearly finite. t → KfK ,t is not local. Let x be in the triangular part of the
boundary of K. Then there is a centered ellipsoid E0(x) such that (9) holds. But
E0(x)fE ,0∩H−

0 has non-empty intersection with the triangular part of K and thus
is not contained in KfK ,0 ∩H−

0 .

Examples

1. The Lp-Santaló bodies [23]

Let t ≥ 0 be in R and let K ∈ K. Let β > n+1
2

. Let

Sβ(K, t) = {x ∈ K :

∫
K0

dy

(1− < x, y >)β
≤ 1

t
}. (10)

Here K0 = {y ∈ Rn : < x, y >≤ 1 for all x ∈ K} is the polar body of K.
We assume again that ∂K is C2 with strictly positive Gaussian curvature

everywhere. Then it follows from [23] that the family of Lp-Santaló bodies {Kt =
Sβ(K, t)}t≥0, satisfiy the Definition.

Indeed, if K and L are convex bodies in K such that L ⊂ K, then Sβ(L, t) ⊂
Sβ(K, t). Then (ii) and (iii) of the Definition hold, (ii) with C = 1. We refer to
[23] for the details.
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If B is the Euclidean unit ball in Rn, then Sβ(B, t) is again a ball with radius

r(t) = 1 − (cn,β t)
1

β−n+1
2 . cn,β = 2

n−1
2 |Bn−1

2 (0, 1)| B(n+1
2

, β − n+1
2

) is a constant

depending on β and n only. For x, y > 0, B(x, y) =
∫ 1

0
sx−1(1 − s)y−1ds is the

Beta function. Thus for the Lp-Santaló bodies the function f of (iv) is f(t) =

(cn,β t)
1

β−n+1
2 which satisfies what is required in (iv).

By [23] for all linear invertible maps T : Sβ(T (K), t) = T (Sβ(K, |detT | t)).
This shows that for a centered ellipsoid E, Et is again a centered ellipsoid homo-
thetic to E. Moreover

limt→0
|T (B)| − |(T (B))t|

|B| − |Bt|
= |detT | limt→0

1−
(

1− (cn,β
t

|detT |
)

1

β−n+1
2

)n

1−
(

1− (cn,β t)
1

β−n+1
2

)n

= |detT |
β−n+3

2

β−n+1
2 = |detT |

n−p
n+p ,

for p = n
2β−n−2

.

2. The surface bodies [26]

Let K ∈ K and f : ∂K → R be a nonnegative, integrable function. Let Mf

be the measure Mf = fµ on ∂K. Let t ≥ 0.
The surface body Kf,t is the intersection of all the closed half-spaces H+ whose

defining hyperplanes H cut off a set of Mf -measure less than or equal to t from
∂K. More precisely,

Kf,t =
⋂

Mf (∂K∩H−)≤t

H+ (11)

For −∞ ≤ q ≤ ∞, q 6= −n let the functions fq : ∂K → R be given as follows:
For q = ±∞ put

f±∞(x) = f±∞,K(x) =
κK(x)

< x,NK(x) >n

and for all other values of q

fq(x) = fq,K(x) =
κK(x)

q
n+q

< x,NK(x) >
n(q−1)

n+q

.

We assume also that ∂K is C2 with strictly positive Gaussian curvature every-
where. Then it follows from [26] that K → Kt = Kfq ,t satisfy the Definition.
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Indeed, if ρB is the Euclidean ball with radius ρ , then for all −∞ ≤ q ≤ ∞,

q 6= −n, for all x ∈ ∂(ρB): fq(x) = ρ−
2nq−n−q

n+q . Then (ρB)t is again a ball centered

at 0 with radius r(t) = ρ

(
1−sn ( t

ρ
n

n−q
n+q

)
2

n−1

)
. sn = 1

2(|Bn−1
2 |)

2
n−1

is a constant that

depends on n only.

Thus for the surface bodies the function f of (iv) is f(t) = sn t
2

n−1 which
satisfies what is required in (iv). It follows from [26], Lemma 10 that the surface
body of a centered ellipsoid E is again a centered ellipsoid homothetic to E.

The C-inclusion relation also holds. We give a sketch of the proof-under
somewhat simplified conditions. The proof without any restrictions goes along
the same lines, working with ellipsoids instead of balls and normals NK(x) that
are not parallel to x. The calculations are just longer and more tedious to carry
out but add no further insight. Let x ∈ ∂K such that N = NK(x) = x

‖x‖ . Let

r = r(x) be the radius of the biggest Euclidean ball contained in K that touches
∂K in x. r can be taken as r = min1≤i≤nai where ai is the length of the i-th axis
of the approximating ellispoid Ea = Ea(x). Thus also κ = κ(x) =

∏n−1
i=1

an

a2
i

(see

e.g. [25]). Let Ec = Ec(x) be the contained ellipsoid. Then, by construction of
Ec, for ε > 0 given, there exists a hyperplane H such that

B
(
x− (1− ε)rN, (1− ε)r

)
∩H− ⊂ Ec ∩H− ⊂ B(x− rN, r) ∩H− ⊂ K ∩H−.

And moreover
Ei

a ∩H− ⊂ K ∩H− ⊂ Ec
a ∩H−

Then, as (
(1− ε) r

)n n−q
n+q µ

(
∂B(x− (1− ε)rN, (1− ε)r) ∩H−

)
≤

∫
∂Ec∩H−

fq,Ec∂µEc ≤ rn n−q
n+q µ

(
∂B(x− rN, r) ∩H−

)
,

for t small enough,

(Ec)Ct ∩H− ⊂
(

B
(
x− (1− ε) rN, (1− ε)r

))
Ct

∩H−

= B

(
x− rN, (1− r(1− sn(

Ct

rn n−q
n+q

)
2

n−1

)
∩H−.

To simplify the calculations we assume now in addition that

Ei
a ∩H− = B

(
x− (1− ε)

κ
1

n−1

N,
(1− ε)

κ
1

n−1

)
∩H−.
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Then

(Ei
a)t∩H− = B

(
x− (1− ε)

κ
1

n−1

N,
(1− ε)

κ
1

n−1

((1−sn(
t

((1− ε)κ−1/(n−1))n n−q
n+q

)
2

n−1

)
∩H−,

which is contained in Kt ∩H− as for H suitably chosen∫
∂Ei

a∩H−
fq,Ei

a
∂µEi

a
≤

∫
∂K∩H−

fq,K∂µK ≤
∫

∂Ec
a∩H−

fq,Ec
a
∂µEc

a

and for t small enough
∫

∂Ec
a∩H− fq,Ec

a
∂µEc

a
≤ (1 + ε)

∫
∂Ei

a∩H− fq,Ei
a
∂µEi

a
. Hence it

is enough to show that there exists C such that

B

(
x− rN, r(1− sn

(
Ct

rn n−q
n+q

) 2
n−1

)
∩H− ⊂

B

(
x− (1− ε)

κ
1

n−1

N,
(1− ε)

κ
1

n−1

((1− sn(
t

((1− ε)κ−1/(n−1))n n−q
n+q

)
2

n−1

)
∩H−,

which holds if we choose C ≥ 2a2
max

a2
min

(
amax

amin

)n n−q
n+q

if q ≤ n and C ≥ 2a2
max

a2
min

(
a2

min

a2
max

)n n−q
n+q

if q ≥ n where amin = minx∈∂Kmin1≤i≤nai(x) and amax = maxx∈∂Kmax1≤i≤nai(x).
Similarly one shows the local-property.
Finally, it follows from Theorem 14 and Proposition 9 of [26] that

limt→0
|T (B)| − |(T (B))t|

|B| − |Bt|
=

1

n|B|sn

limt→0
|T (B)| − |(T (B))t|

t
2

n−1

=

Op(T (B))

n|B|
= |detT |

n−p
n+p

Op(B)

n|B|
= |detT |

n−p
n+p

3. The Lp-floatation bodies [31]

Let K ∈ K and t ≥ 0. Let f : K → R be an integrable function such that
f > 0 m-a.e. where m is the Lebesgue measure on Rn.

The Lp-floatation body F (K, f, t) is the intersection of all the closed half-
spaces H+ whose defining hyperplanes H cut off a set of (f m)-measure less than
or equal to t from K. More precisely,

Ff,t = F (K, f, t) =
⋂

R
K∩H− f dm≤t

H+ (12)
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Let −∞ ≤ p ≤ ∞, p 6= −n and let

fp(x) = fp,K(x) =
< x,NK(x) >

n(n+1)(p−1)
2(n+p)

κK(x)
n(p−1)
2(n+p)

, for x ∈ ∂K.

If K is such that fp is continuous on ∂K, we extend fp to all of K such that fp

is continuous on K. We assume also that ∂K is C2 with µ-a.e. strictly positive
Gaussian curvature. Then it follows from [31] that the family {Kt = Ffp,t}t≥0

satisfy the Definition.
This is shown similarly to the surface bodies.

3 The Theorems and their proofs

Theorem 1 Let 0 ≤ p < n
n−2

be fixed. Let t ∈ R, t ≥ 0, let Fp
t : K → K, K 7−→

Fp
t (K) = Kt be a p-limiting, C-inclusion preserving, monotone, local map.

Then

limt→0
|K| − |Kt|
|B| − |Bt|

=
Op(K)

Op(B)
.

Theorem 2 Let p 6= −n be fixed. Let t ∈ R, t ≥ 0, let Fp
t : K → K, K 7−→

Fp
t (K) = Kt, be a p-limiting, C-inclusion preserving, monotone, local map.

Let K ∈ K be such that ∂K is C2 and has strictly positive Gaussian curvature
everywhere. Then

limt→0
|K| − |Kt|
|B| − |Bt|

=
Op(K)

Op(B)
.

Remarks

1. As corollaries to Theorems 1 and 2 we obtain results of [23, 25, 26, 31].
Some of these results were obtained under weaker assumptions.

2. The restriction p < n
n−2

in Theorem 1 is due to (1) (see the proof of
Theorem 1 below). This restriction can be removed if a modified version of (1)
can be proved (see the Remark after the proof of Lemma 4) .

For the proof of Theorems 1 and 2 we need several Lemmas.

Lemma 3 Let K and L be two convex bodies in Rn such that 0 ∈ int(L) and
L ⊆ K. Then

11



|K| − |L| = 1

n

∫
∂K

< x,N(x) >

(
1− (

||xL||
||x||

)n

)
dµ(x),

where xL = [0, x] ∩ ∂L.

The proof of Lemma 3 is standard.

Lemma 4 Let p 6= −n be fixed. Let t ∈ R, t ≥ 0, let Fp
t : K → K, K 7−→

Fp
t (K) = Kt be a p-limiting, C-inclusion preserving, monotone, local map.

Let K ∈ K. Then µ-a.e. on ∂K there exists t0 such that

0 ≤ < x,NK(x) >
1− (

‖xKt‖
‖x‖ )n

|B| − |Bt|
≤ max

{
γ

|B|
(r(x))−

p(n−1)
n+p ,

1

|B| − |Bt0|

}
where xKt = [0, x] ∩ ∂Kt and γ is a constant.

Lemma 5 Let p 6= −n be fixed. Let t ∈ R, t ≥ 0, let Fp
t : K → K, K 7−→

Fp
t (K) = Kt be a p-limiting, C-inclusion preserving, monotone, local map.

Let K ∈ K and x ∈ ∂K. Then

(i) if κK(x) > 0,

lim
t→0

< x,NK(x) >
(
1− (

‖xKt‖
‖x‖ )n

)
|B| − |Bt|

=
κK(x)

p
n+p

|B| < x,NK(x) >
n(p−1)

n+p

.

(ii) if κK(x) = 0 and p > 0 or p < −n

lim
t→0

< x,NK(x) >
(
1− (

‖xKt‖
‖x‖ )n

)
|B| − |Bt|

= 0.

xKt = [0, x] ∩ ∂Kt.

Proof of Theorems 1 and 2
By Lemma 3

limt→0
|K| − |Kt|
|B| − |Bt|

= limt→0
1

n

∫
∂K

< x,NK(x) > (1− (
||xKt ||
||x|| )n)

|B| − |Bt|
dµ(x).

12



By Lemma 4 the functions under the integral sign are uniformly bounded in t by
the function

g(x) = max

{
γ

|B|
(r(x))−

p(n−1)
n+p ,

1

|B| − |Bt0 |

}
.

As assumed in Theorem 1, 0 ≤ p < n
n−2

and therefore g is integrable by (1).
We apply Lebesgue’s convergence theorem to interchange integration and limit.
By Lemma 5 the functions under the integral are converging pointwise.

For the proof of Theorem 2 note that, under the assumptions of the theorem,
the functions under the integral sign are uniformly bounded in t by the constant

max

{
γ

|B|
r
− p(n−1)

n+p

0 ,
1

|B| − |Bt0 |

}
which is integrable for all p and where r0 = min{r(x) : x ∈ ∂K}.

Proof of Lemma 4

Let x ∈ ∂K be such that r = r(x) > 0 and let Ec = Ec(x) be the corresponding
contained ellipsoid such that (2) holds. By the C-inclusion property there exists
C and t1 such that for all t ≤ t1(

Ec(x)

)
Ct

∩H−
c (x) ⊆ (K)t ∩H−

c (x).

Hence for all t ≤ t1

‖x(Ec)Ct
‖ ≤ ‖xKt‖.

where x(Ec)Ct
= [0, x] ∩ ∂(Ec)Ct and thus

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤

1−
(
‖x(Ec)Ct

‖
‖x‖

)n

|B| − |Bt|

By (iv) (Ec)Ct is homothetic to Ec: (Ec)Ct = aE(Ct) Ec, hence
‖x(Ec)Ct

‖
‖x‖ = aE(Ct).

Thus

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤

1−
(
aE(Ct)

)n

|B| − |Bt|
.

Let T be a linear invertible map such that Ec = T (B).

13



As |Ec| = | < x,NK(x) > |n+1
2

(
r(x)
2

)n−1
2 |B|,

|detT | = | < x,NK(x) > |
n+1

2

(
r(x)

2

)n−1
2

. (13)

It follows from property (i) that there is a constant c1 such that for all t ≤ t2 =
t2(x)

|T (B)| − |(T (B))Ct|
|B| − |BCt|

=
|Ec| − |(Ec)Ct|
|B| − |BCt|

=

|Ec|
(

1−
(
aE(Ct)

)n
)

|B| − |BCt|
=

|detT | |B|
(

1−
(
aE(Ct)

)n
)

|B| − |BCt|
≤ c1 |detT |

n−p
n+p .

Hence 1−
(
aE(Ct)

)n ≤ c1
B|−|BCt|
|B| |detT |−

2p
n+p and thus for all t ≤ min{t1, t2}

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤ c1

|detT |
−2p
n+p

|B|
|B| − |BCt|
|B| − |Bt|

(14)

As Ft is monotone, by (iv) there exists t3 such that for all t ≤ t3

|B| − |BCt|
|B| − |Bt|

=
1− (1− f(Ct))n

1− (1− f(t))n
≤ 2d, (15)

where d is the constant from (iv).
Let t0 = min{t1, t2, t3}. Then by (13), (14) and (15), for all t ≤ t0 with a new

constant c2

1− (
‖xKt‖
‖x‖ )n

|B| − |Bt|
≤ c2

|B|

(
r(x)

2

)−p(n−1)
n+p

< x,N(x) >
−p(n+1)

n+p .

Now notice that there is an 0 < β ≤ 1 such that

B(0, β) ⊆ K ⊆ B(0,
1

β
).

and therefore

β3 ≤ < x,N(x) > ≤ 1

β
.
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Thus, with a new constant γ, we get for all t ≤ t0

< x,NK(x) >
1− (

‖xKt‖
‖x‖ )n

|B| − |Bt|
≤ γ

|B|
(r(x))−

p(n−1)
n+p . (16)

Let now t ≥ t0. Then

1− (
‖xKt‖
‖x‖ )n

|B| − |Bt|
≤ 1

|B| − |Bt|
≤ 1

|B| − |Bt0|
.

Remark

For x ∈ ∂K let H be a hyperplane through 0 with normal N(x). H− is such
that x ∈ H−. Let E(x) be a centered ellipsoid such that x ∈ E(x) and such that
E(x) ∩H− ⊂ K. Let v(x) be the maximum volume of such ellipsoids.

Conjecture [12] Let β < 2. Then we have for all K in K∫
∂K

v(x)−βdµ(x) < ∞.

If the conjecture holds true, then (13) can be replaced by |detT | = v(x)
|B| and hence

the right hand side of inequality (16) can be replaced by γ
′ |B|

n−p
n+p v(x)−

2p
n+p . By

the conjecture this is integrable, if 2p
n+p

< 2, which holds for all p > −n.

Proof of Lemma 5

(i) Let x ∈ ∂K be such that κ(x) = κK(x) > 0. Let ε > 0 be given. Let
Ei

a = Ei
a(x) and Ec

a = Ec
a(x) be the corresponding approximating ellipsoids with

properties (3) - (8).
By the locality property (iii) there exists t1 such that for all t ≤ t1(

Ei
a(x)

)
t

∩H−
a (x) ⊆ (K)t ∩H−

a (x) ⊂
(

Ec
a(x)

)
t

∩H−
a (x)

Hence for all t ≤ t1 as in the proof of Lemma 4

1−
(
‖x(Ec

a)t
‖

‖x‖

)n

|B| − |Bt|
≤

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤

1−
(
‖x

(Ei
a)t
‖

‖x‖

)n

|B| − |Bt|

15



By (iv) (Ei
a)t is homothetic to Ei

a and (Ec
a)t is homothetic to Ec

a: (Ei
a)t = ai(t) Ei

a

and (Ec
a)t = ac(t) Ec

a and hence
‖x

(Ei
a)t
‖

‖x‖ = ai(t) and
‖x(Ec

a)t
‖

‖x‖ = ac(t). Thus

1−
(
ac(t)

)n

|B| − |Bt|
≤

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤

1−
(
ai(t)

)n

|B| − |Bt|
.

Let Ti be a linear invertible map such that Ei
a = Ti(B) and let Tc be a linear

invertible map such that Ec
a = Tc(B). Then, as

|Ei
a| = (1− ε)

n−1
2 | < x,N(x) > |

n+1
2 κ(x)−

1
2 |B|

and
|Ec

a| = (1 + ε)
n−1

2 | < x,N(x) > |
n+1

2 κ(x)−
1
2 |B|

|detTi| = |(1− ε)
n−1

2 | < x,N(x) > |
n+1

2 κ(x)−
1
2 , (17)

and
|detTc| = |(1 + ε)

n−1
2 | < x,N(x) > |

n+1
2 κ(x)−

1
2 . (18)

It then follows from property (i) that there is t2 such that for all t ≤ t2 = t2(x)

|Ti(B)| − |(Ti(B))t|
|B| − |Bt|

=
|Ei

a| − |(Ei
a)t|

|B| − |Bt|
=

|detTi| |B|
(

1−
(
ai(t)

)n
)

|B| − |Bt|
≤ (1+ε) |detTi|

n−p
n+p

and

|Tc(B)| − |(Tc(B))t|
|B| − |Bt|

=
|Ec

a| − |(Ec
a)t|

|B| − |Bt|
=

|detTc| |B|
(

1−
(
ac(t)

)n
)

|B| − |Bt|
≥ (1−ε) |detTc|

n−p
n+p .

Hence 1 −
(
ai(t)

)n ≤ (1 + ε) B|−|Bt|
|B| |detTi|−

2p
n+p and 1 −

(
ac(t)

)n ≥ (1 −
ε) B|−|Bt|

|B| |detTc|−
2p

n+p and thus for all t ≤ t0 = min{t1, t2}

(1− ε)
|detTc|

−2p
n+p

|B|
≤

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤ (1 + ε)

|detTi|
−2p
n+p

|B|
(19)

Putting (17 ) and (18) in (19) we get with (new) constants c1 and c2 for all
t ≤ t0

(1− c1ε)

|B|
κK(x)

p
n+p

< x,N(x) >
n(p−1)

n+p

≤
< x,N(x) >

(
1−

(
‖xKt‖
‖x‖

)n)
|B| − |Bt|
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≤ (1 + c2ε)

|B|
κK(x)

p
n+p

< x,N(x) >
n(p−1)

n+p

(ii) Now we consider the case that x ∈ ∂K is such that κ(x) = 0. Then, by
(9), then there is a centered ellipsoid E0(x) that touches ∂K in x and which has
at least one axis that is arbitrarily large and there exists a hyperplane H0(x) such
that

E0(x) ∩H−
0 (x) ⊂ K ∩H−

0 (x).

Then we continue as in the proof of Lemma 4 and find that for all t small enough

0 ≤ < x,N(x) >

1−
(
‖xKt‖
‖x‖

)n

|B| − |Bt|
≤ c1

|detT |
−2p
n+p

|B|
|B| − |BCt|
|B| − |Bt|

≤ c2
|detT |

−2p
n+p

|B|

where c1 and c2 are constants and T is the linear invertible map such that E0(x) =
T (B). Thus |detT | = Πn

i=1ai, where ai, 1 ≤ i ≤ n are the lengths of the principal

axes of E0(x). As |detT |
−2p
n+p =

(
1

Πn
i=1ai

) 2p
n+p

, this finishes the proof of the lemma

as p > 0 or p < −n and as one of the axes is arbitrarily large.
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[1] I.Bárány, Random points, convex bodies, lattices. Proceedings Inter-
national Congress of Mathematicians, vol.III, 527-536, Beijing, (2002)

[2] S. Campi and P. Gronchi, The Lp-Busemann-Petty centroid in-
equality. Advances in Math. 167, 128-141, (2002)

[3] W. Chen, The Lp-Minkowski problem with not necessarily positive
data. Advances in Math. 201, issue I, 77-89, (2006)

[4] Kai-Seng Chou and Xu-Jia Wang, The Lp-Minkowski problem and
the Minkowski Problem in Centroaffine Geometry. Advances in Math.
205, 3-83, (2006)

[5] P. Gruber, Aspects of approximation of convex bodies. Handbook of
Convex Geometry vol.A, 321-345, North Holland, (1993)

[6] Ch. Hu, Xi-Nan Ma and Ch. Shen, On the Christoffel-Minkowski
problem of Fiery’s p-sum. Calc. Var. Partial Differential Equations 21
no. 2, 137-155, (2004)

[7] D. Hug, Contributions to affine surface area. Manuscripta Math. 91
no. 3, 283-301, (1996)

[8] K. Leichtweiss, Zur Affinoberfläche konvexer Körper. Manuscripta
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