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ABSTRACT

We study the joint behavior of the yield and volatility curves in the US Treasury market. Using almost two

decades of high-frequency bond data, we obtain a so far unexplored view of the comovement between the yield

curve states, structure of volatilities and their interactions with interest rates themselves. Based on that insight,

we design a tractable model able to explain and decompose the dynamics of the two curves. The empirical success

of our approach hinges upon two elements: a multivariate volatility whose sources of shocks and persistence

are detached from those spanning yields, and the identification of volatility states with the support of realized

covolatility proxies and filtering. The model separates three economically distinct elements of yield volatility:

(i) a more erratic short-end state, (ii) a smoother long-end state, and (iii) a covolatility component capturing

interactions between the long and the intermediate region of the curve. We show that the model-implied factors

carry an interpretation and feature different responses to the economic environment. Expectations and uncertainty

about the future path of key macro aggregates—rather than their realized numbers—can explain up to 95% of

the latent factor variation. Interest rate volatility provides new information about the economic landscape that

cannot be learned from observing yields at infrequent intervals. We find that different volatility states efficiently

reflect the duration structure of uncertainties in the economy.
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1. Introduction

With rich evidence collected on the evolution of the US interest rates, the yield volatility curve leaves

several questions and controversies open. This paper studies the structure, economic content and pricing

implications of the fluctuating covariance matrix of interest rates. Using almost two decades of tick-by-tick

bond transaction data, we obtain a novel look into the development of interest rates and their volatilities,

and show how these two pieces complement each other. This knowledge allows us to design a no-arbitrage

term structure model able to simultaneously accommodate the dynamics of both curves.

We contribute to the existing yield curve literature along several dimensions. In contrast to previous

studies that mainly focus on a simple volatility specification, we explain yield covolatilities across the whole

spectrum of available maturities, and quantify their impact on the yield curve itself. The strong empirical

fit and forecasting performance of our framework is just a first stage that stimulates a number of economic

questions. Most importantly, we show that different volatility states efficiently encode the duration structure

of uncertainties in the economy.

Our inquiry proceeds in several steps. In a model-free setup, we establish a set of empirical facts about the

covariation of yields. We document strong and persistent movements in the conditional correlation between

the level, slope and curvature that run counter the traditional logic of principal components. Although we

do find a clear leading factor (most of the time the level), the portion of yield variation it explains can shift

from 95% down to 50%. In those vibrant periods, other types of moves may well become more important.

As such, static decompositions of interest rates into the level, slope and curvature fail to capture the full

extent of the interest rates dynamics. The covariance matrix of yields does vary over time, and we uncover

that at least three different forces are at work in determining those moves. While state variables generating

volatilities appear largely detached from those generating yields—a phenomenon which has earned the label

of the unspanned stochastic volatility (USV)1—we find an asymmetric coincidence between the level of

interest rates and volatilities: The Fed’s moves correspond to periods of elevated rate volatility, and its shift

is more pronounced during cuts than it is during hikes.

Such combination of features presents a challenge for those seeking to explain interest rates jointly with

their second moments. The assumption underlying many term structure models—that three factors are

enough—appears unsuited in context of this goal. While three factors suffice for modeling interest rates

alone, additional flexibility is required to capture volatilities. We exploit this intuition when translating

empirical results into the model. First, the model has three standard yield curve factors. On top of it,

to generate an adequate variation in the covariance matrix of yields, we introduce a dynamic dependence

between those factors. The stochastic covariance process we adopt gives rise to a three-variate model of yield

volatilities, and thus aligns well with the empirical properties of the realized yield covariation. Second, we are

careful about the weak relationship between yields and volatilities. The USV models impose their separation

by an explicit parametric restriction. Our approach is milder. We take as a clue the simple observation that

yields and volatilities are governed by distinct statistical rules. Thus, it is unlikely that the same variable

1See Collin-Dufresne and Goldstein (2002) for the origins of this expression. We survey this work in the literature review
section below.
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plays an equal role in determining both. Our specification discriminates between the sources of persistence

and shocks in yield factors from those in volatilities. With sufficient flexibility along both dimensions, no

additional parameter constraints turn out to be required to explain the data.

While few would contend that higher-dimensional settings are key to explain the interest rate risk (e.g.

Joslin, 2007; Kim, 2007b; Andersen and Benzoni, 2009), the most comprehensive models typically do not

exceed dimension four and allow at most two volatility states. Going beyond this scope appears empirically

desirable, yet it also raises two important concerns: (i) high parametrization, and (ii) the inability to

identify bond volatilities from yields alone.2 The structure we consider here adds flexibility for modeling

volatility, but with 13 parameters in the physical dynamics it remains tractable by the standards of affine

term structure models (ATSMs). As for the second concern, we do agree that identification of volatilities

from the low-frequency yield data could frustrate any model. However, by constructing a close proxy for the

stochastic covariance matrix of yields, and exploiting it in estimation, we are not troubled by this point.

The model achieves good performance in explaining the yield covariance matrix across a range of maturi-

ties without sacrifices in fitting yields. Its statistical record authorizes our investigation of the model-implied

states, which so far has not been ventured in the literature. Several findings are worth highlighting.

First, the identified volatility states correspond closely with the roles of the respective yield curve factors.

In both, we disentangle short- versus long-end components that play distinct roles along the curve. Those

shorter-term factors, governing yields and volatilities at maturity of two to three years, are more transient

and erratic. The longer-term ones, instead, that are responsible for maturities from beyond five years, exhibit

more persistent and smoother dynamics. Additionally, we identify a covolatility state, which captures the

comovement between the long and the intermediate region of the curve. The presence of several volatility

variables extends the evidence pertaining to the preferred affine models, A1(n),3 which have dominantly

focused on the single factor short-rate volatility.

Second, while we do not exclude volatility states from entering the cross-section of yields, we find their

cross-sectional importance to be quantitatively negligible compared to that of the interest rate states. In

fact, only the long-end volatility factor can move the yield curve by a visible amount. But its impact does

not exceed seven basis points on average, and is limited to maturities above five years. There is little hope

that the information about volatilities can be extracted from the cross-section of yields alone. We show

that the backing-out approach, i.e. inverting the term structure equation from a subset of yields to recover

states, fails at identifying even one, let alone three volatility factors. For that reason, our estimation relies

on filtering and extra spot covolatility measurements. This latter choice sets our evidence apart from the

literature relying on interest rate derivatives that, in general, are not delta-neutral, and involve an additional

2Joslin (2006, 2007) discusses a model with two conditionally Gaussian and two CIR states, one of which is dedicated to
volatilities. The volatility state is identified from interest rate derivatives. By Dai and Singleton (2000) such a model is
classified as A2(4). Outside the pure latent factor domain, macro-finance delivers some examples of models with more than
two variables displaying stochastic volatility. We discuss them in the literature review below. An important group of papers
studies high dimensional HJM settings (e.g. Trolle and Schwartz, 2009; Han, 2007). Yet, by taking the current yield curve
as given, these are not of direct comparison to the equilibrium motivated ATSMs.

3The naming convention used here follows the convenient taxonomy of ATSMs introduced by Dai and Singleton (2000). Am(n)
denotes an n-factor model, in which m factors feature stochastic volatility.
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layer of modeling assumptions. The use of realized covolatility, instead, gives us a clean view of the volatility

factors, and allows a precise assessment of their interactions with the yield curve.

Last but not least, we find that the model-implied factors contain economic information, even though

they are not directly linked to specific macro quantities by design. Given the notion that prices should reflect

economic prospects more than past events, we use survey-based forecasts about key macro variables instead

of their realized numbers. The combination of expectation and uncertainty proxies turns out to be highly

informative about the filtered dynamics, being able to explain up to above 90% and 50% of variation in

the yield and volatility factors, respectively. Importantly, macro variables related to short- versus long-run

states form disjoint sets. Stemming from long-duration bonds, the longer-end volatility shows a pronounced

response to the persistent real activity measures such as expectations of GDP growth, or uncertainty about

unemployment. The short-term volatility, in turn, is linked to the uncertainty and expectations about the

monetary policy, and uncertainties surrounding inflation and industrial production, both of which give a

more short-lived description of the economic conditions in our sample. Prospects of the housing sector

emerge as the only variable with a jointly significant effect on short- and long-end components. Finally, the

covolatility state is associated with uncertainty proxies on monetary policy and the real economy, showing

that those variables influence the correlation between the intermediate and long region of the curve.

Our work evolves around the central theme that interest rates and their volatilities live separate lives.

Intuitively, the yield curve at any point in time represents a set of equilibrium prices of bonds—or equivalently

risk-adjusted consensus expectation about the future path of interest rates—after market forces have been at

work. Interest rate volatility, in contrast, tracks mainly the process of finding those equilibrium expectations

over time. An increased uncertainty about the real and nominal sectors or monetary policy usually makes it

more challenging for the market participants to find equilibrium prices which, in turn, boosts the volatility.

In this way, interest rate volatility captures a complementary piece of information that cannot be learned

from observing yields at infrequent intervals.

Recent term structure environment gives a good illustration of the complexity of the two objects. In

Table 1, we gather major moves in the yield and volatility curves from 2000 to 2004, and provide snapshots

of the underlying economic circumstances. This interesting period covers the longest easing cycle in our

sample, during which the Fed brought interest rates down to a (then) unprecedented level of just 1%. When

the uncertainty about economic outcomes is high, the volatility curve shows motion. Indeed, at least part

of the variation in interest rate risk should be associated with the varying perceptions about key macro

variables (e.g. Kim, 2007a). Since our volatility measures arise from active trading in liquid bonds, we would

expect them to give a timely reflection of changing market expectations and fears. Fed officials watch this

uncertainty to take their interest rate decisions. The transcripts from the FOMC meetings provide a good

record of this point, e.g. “Uncertainty about key interactions in the economy is a good reason to wait” (Mr.

Donald Kohn, October 3, 2000).4 Our event Table 1 shows that the volatility curve can be at least as rich

a source of information as yields themselves. In this paper, we take an attempt towards its comprehensive

modeling and thus hope to contribute to a more complete understanding of the behavior of interest rates.

4See the FOMC transcript at http://federalreserve.gov/monetarypolicy/files/FOMC20001003meeting.pdf.
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Related literature

Recent research into interest rate volatility has evolved in at least three loosely related directions. Below,

we provide a review of their different leading themes: (i) unspanned factors, (ii) realized volatility and

jumps, (iii) non-Gaussian models. Our work touches upon these three strands.

Unspanned volatility. As a prediction of ATSMs, bond markets are complete. Empirically, however,

bond market incompleteness tends to reveal itself through a poor performance of bond portfolios in hedging

interest rate derivatives, and more generally, in hedging interest rate volatility risk. Several papers document

a weak relation between the bond volatility, realized as well as derivative-based, and the spot yield curve

factors. Collin-Dufresne and Goldstein (2002, CDG), Heidari and Wu (2003), and Li and Zhao (2006), among

others, all conclude that movements in yields explain at best only about a half of the variation in interest

rate derivatives.

Not surprisingly, the hypothesis of such unspanned risk in the bond market has provided for both active

research and a controversy in the affine term structure literature. CDG (2002) formalize its intuition for

the standard three-factor ATSMs under the name of unspanned stochastic volatility. The USV label reveals

the only possible source of incompleteness in ATSMs: If anything, unspanned must be the volatility. CDG

(2002) characterize parameter restrictions such that the instantaneous interest rate volatility does not affect

the cross-section of yields.

By providing testable predictions, the USV theory has triggered increased interest in the ATSMs’ ability

to explain the yield volatility dynamics. Here the evidence is mixed. In support of the unspanning hypothesis,

Collin-Dufresne, Goldstein, and Jones (2008, CDGJ) report that, over the 1988–2005 sample, variance series

generated by the standard A1(3) model are essentially unrelated to the model-free conditional volatility

measures. Jacobs and Karoui (2009) find a correlation up to 75% using the same model estimated on

Treasury yields over the 1970–2003 period. In the more recent sample 1991–2003, however, this correlation

breaks down and becomes slightly negative at the long end of the curve.

While imposing the USV restriction does improve the ability of low-dimensional ATSMs to fit the time-

series of volatilities, it also comes at a cost of higher cross-sectional pricing errors. As a consequence,

several papers reject the USV in favor of an unconstrained model (Bikbov and Chernov, 2009; Joslin, 2007;

Thompson, 2008). This evidence mostly concerns ATSMs with four factors5 and a univariate volatility

structure. What lies at the heart of the unspanning hypothesis, however, is an economic effect more than a

failure of a specific model restriction. In line with this intuition, Kim (2007b) highlights a major demand for

term structure models, not necessarily USV ones, with sufficient flexibility to match jointly yields and their

volatility dynamics. Our analysis focuses on designing, implementing, and deriving the implications of such

a model. For the 1992–2007 sample period, the model-generated term structure of conditional volatilities

consistently tracks the observed series with an R2 exceeding 96%.

5Bikbov and Chernov (2009) test the USV in the A1(3) model studied by CDG (2002). Thompson (2008) extends the evidence
to the A1(4) USV model. A2(4) is considered in Joslin (2007).
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Realized volatility. In combination with recent advances in high-frequency finance, the USV debate has

encouraged a new model-free look into the statistical properties of bond volatility. Andersen and Benzoni

(2009, AB) test empirically the linear spanning restriction of ATSMs using measures of realized volatility

over the 1991–2000 period. They confirm that systematic volatility factors are largely independent from the

cross section of yields, and call for essential extensions of the popular models on the volatility front. While

our model is cast within the general affine framework, we attain this goal by combining two ingredients: the

rich form of covolatility states plus their identification from the realized data.

The availability of high-frequency observations from spot and futures fixed income markets has revived

interest in the impact of economic news releases on bond return volatility and jumps. As such, this literature

has remained mostly empirical. Across studies, a consensus view is that a large fraction (about 70%) of big

moves in bond prices and thus in realized volatilities occurs on pre-scheduled macroeconomic announcements

(e.g., Beechey and Wright, 2008; Dungey, McKenzie, and Smith, 2009; Jiang, Lo, and Verdelhan, 2009).6

Focusing on the discontinuities in bond returns, Wright and Zhou (2009) show for instance that the mean

jump size extracted from the 30-year interest rate futures has a significant predictive power for expected

excess bond returns. Indeed, relative to other liquid asset markets, bond prices tend to provide the most clear

and pronounced reaction to economic news (Andersen, Bollerslev, Diebold, and Vega, 2007; Jones, Lamont,

and Lumsdaine, 1998). These studies suggest that a rich economic content is present in bond volatilities.

We provide a model-based decomposition of the volatility curve, and find that its components have different

reactions to measures of economic conditions.

From latent to macro-motivated models. Our knowledge of the links between interest rate volatility and

the macroeconomy coming from no-arbitrage yield curve models is still sparse. Most of the macro-finance

term structure literature, cast in a Gaussian-affine framework, has by construction remained silent about

the yield volatility.7

Several recent papers mark an important development by going beyond the standard Gaussian setup.

Examples include Campbell, Sunderam, and Viceira (2009, CSV), Adrian and Wu (2009), Hautsch and Ou

(2008), Bekker and Bouwman (2009) or Haubrich, Pennacchi, and Ritchken (2008, HPR). Some features

unify the economics of these models. In particular, volatility is multivariate, and reflects different sources of

risk. Both, Adrian and Wu (2009) and CSV highlight the importance of stochastic covariation between the

real pricing kernel and (expected) inflation in determining excess bond returns. Likewise, Hautsch and Ou

(2008) find ex post that the extracted persistent volatility factors are important for explaining bond excess

returns. HPR introduce a similar effect through the relationship between inflation and the real interest rate.

In an extension of the latent factor approach, these models attach economic labels to different yield

volatility components. To the extent that the volatility itself remains unobservable or is extracted from an

6The interpretation of these results is limited to short spans of data. For Treasury bonds, the longest sample is considered
in Andersen and Benzoni (2009), who use the GovPX database covering years 1991 through 2000. Samples used in other
studies typically do not exceed four years. For instance, the analysis in Jiang, Lo, and Verdelhan (2009) is limited to a
two-year period of 2005–2006 marking a particular time, in which bond market volatility stroke historically lowest level.
Longer samples are considered in studies involving interest rate futures.

7The literature using Gaussian-affine no arbitrage setting in conjunction with macro factors is vast. Notable examples of such
models are Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2007), Bikbov and Chernov (2008), Duffee (2006, 2007).
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auxiliary model, the identification and interpretation of its components relies on specific model assumptions.

Indeed, explaining the volatility curve per se is not in direct focus of those models. We, in contrast, start

completely latent, and having explained yields and volatilities, try to understand the impact of economic

quantities on the states forming both curves.

2. Empirical evidence

This section describes our data set. We discuss the properties of yield covolatilities and their relation

with the yield curve. Evidence collected here sets the stage for our model design in Section 3.

2.1. Data

This paper is a first attempt to analyze yield volatility with the help of high-frequency Treasury bond

data spanning two long expansions, one recession and three monetary cycles in the US economy. We obtain

16 years’ worth of high-frequency price data of US Treasury securities covering the period from January 1992

through December 2007. We construct the sample by splicing historical observations from two inter-dealer

broker (IDB) platforms: GovPX (1992:01–2000:12) and BrokerTec (2001:01–2007:12). The merged data set

covers the majority of transactions in the US Treasury secondary market with a market share of 60% and

61% for GovPX and BrokerTec, respectively (Mizrach and Neely, 2006). As such, our dataset provides a

comprehensive description of the contemporary yield curve environment. Beside the unavailability of high

frequency Treasury bond data prior to 1991 when the GovPX started operating, other reasons speak against

considering longer samples. Most importantly, there is empirical evidence that the conduct of monetary

policy changed significantly during the eighties (e.g., Ang, Boivin, Dong, and Loo-Kung, 2009). The market

functioning has also shifted dramatically with the advent of computers (automated trading), interest rate

derivative instruments, and the swap market. Capturing such institutional features is not the object of our

analysis.

GovPX comprises Treasury bills and bonds of maturities: three, six and 12 months, and two, three, five,

seven, ten and 30 years. BrokerTec, instead, contains only Treasury bonds with maturities: two, three, five,

ten and 30 years. In the GovPX period, we identify on-the-run securities and use their mid-quotes for further

analysis. Unlike GovPX, which is a voice-assisted brokerage system, BrokerTec is a fully electronic trading

platform attracting vast liquidity and thus allowing us to consider traded prices of the on-the-run securities.

In total, we work with around 37.7 million on-the-run Treasury bond quotes/transactions. Appendix A.1

reports the average number of quotes and trades per day that underlie our subsequent analysis.

The US Treasury market is open around the clock, but the trading volumes and volatility are concentrated

during the New York trading hours. Roughly 95% of trading occurs between 7:30AM and 5:00PM EST (see

also Fleming, 1997). This interval covers all major macroeconomic and monetary policy announcements,

which are commonly scheduled either for 9:00AM EST or 2:15PM EST. We consider this time span as a

trading day. Especially around US bank holidays, there are trading days with a very low level of trading

activity. In such cases, we follow the approach of Andersen and Benzoni (2009) and delete days with no

trading for more than three hours.
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We sample bond prices at ten-minute intervals taking the last available price for each sampling point. We

choose this sampling frequency so that it strikes the balance between the non-synchronicity in trading and the

efficiency of the realized volatility estimators (Zhang, Mykland, and Ait-Sahalia, 2005). The microstructure

noise does not appear to be an issue in our data, as indicated by the volatility signature plots and very low

autocorrelation of equally spaced yield changes (see Appendix A.2).

While the raw data set contains coupon bonds, it is crucial for our analysis to have precise and timely

estimates of zero coupon yields. Using equally-spaced high-frequency price data, we construct the zero

coupon yield curve for every sampling point. To this end, we apply smoothing splines with roughness

penalty as described in Fisher, Nychka, and Zervos (1994). We purposely avoid using the Nelson-Siegel type

of method because it seems to wash out some valuable information, as reported by Cochrane and Piazzesi

(2008). The technical details on our zero coupon yield curve estimation are collected in Appendix A.3.

The liquidity in the secondary bond market is concentrated in two-, three-, five- and ten-year securities

(see also Fleming and Mizrach, 2008, Table 1). We assume that the dynamics of this most liquid segment

spans the information content of the whole curve. Since any bootstrapping method is precise for maturities

close to the observed yields, for subsequent covolatility analysis we select yields which are closest to the

observed coupon bond maturities.

2.2. Realized yield covariances

Our analysis of interest rate risks focuses on nominal bonds. The high-frequency zero curve serves as an

input for the calculation of the realized covariance matrix of yields. We consider zero yields with two, three,

five, seven and ten-year maturities. Let yt be the vector of yields with different maturities observed at time

t. Time is measured in daily units. The realized covariance matrix is constructed by summing up outer

products of a vector of ten-minute yield changes, and aggregating them over the interval of one day [t, t+1]:

RCov(t, t + 1; N) =
∑

i=1,...,N

(
yt+ i

N
− yt+ i−1

N

)(
yt+ i

N
− yt+ i−1

N

)′

. (1)

N = 58 is the number of equally spaced bond prices (yields) per day t implied by the ten-minute sampling, and

i denotes the i-th change during the day. The weekly or monthly realized covariances follow by aggregating

the daily measure over the corresponding time interval. To obtain annualized numbers, we multiply RCov by

250 for daily, 52 for weekly or 12 for monthly frequency, respectively. Based on Jacod (1994) and Barndorff-

Nielsen and Shephard (2004), for frequent sampling the quantity (1) converges to the underlying quadratic

covariation of yields. In Section 7, we positively assess the robustness of this estimator, and compare it to

the alternatives proposed in the literature.

We aim to ensure that our volatility measures reflect views of active market participants rather than

institutional effects. This motivates the following two choices: First, our construction of RCov dynamics

relies exclusively on the within-day observations, thus excluding the volatility patterns outside the US trading

hours. Even though between- and within-day volatilities track each other fairly closely, we observe several

instances of substantial differences and abrupt spikes in the between-day volatility pattern, which we cannot
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relate to any major news on the US market. To account for the total magnitude of volatility, we add to

the within-day number the squared overnight yield change from close (5:00PM) to open (7:30PM). We then

compute the unconditional average of the total and within-day realized yield covariation, respectively, and

each day scale the within-day RCov dynamics by the total-to-within ratio.

The second choice lies in focusing on the intermediate and long maturities (two to ten years), i.e. very

liquid and frequently traded bonds. The short end of the curve (maturities of one year and below) is

deliberately excluded from the realized covariance matrix computations for several reasons. Over our sample

period, this segment of the curve exhibited a continuing decline in trading and quoting activity, and was

completely suspended in March 2001 (see Appendix A.1).8 A lower liquidity at the short end of the on-the-

run curve is documented by Fleming (2003). Moreover, relative to the latter part, the dynamics of the short

segment is complicated by its interactions with the LIBOR market and monetary policy operations. Such

distortions, while interesting in their own right, are not directly relevant to the analysis we perform.

2.3. Information in second moments of yields

Table 2 reports summary statistics for weekly yields (panel a) and realized volatilities (panel b). Fig. 1

plots average curves, both unconditional and contingent upon the monetary policy cycle. A monotonically

increasing term structure of average yields is accompanied by a humped term structure of volatilities, with

the hump occurring at the three-year maturity. In our sample, monetary easing not only increases the slope

of the first curve, but also lifts the level in the latter and the magnitude of the hump. While both exhibit

non-normalities, the statistical properties of the two objects are very different. Not surprisingly, the non-

normality becomes more pronounced in the term structure of volatilities. Compared to the smooth evolution

of yields, the volatility curve experiences periods of elevated and abruptly changing dynamics apparent in

Fig. 2. This autonomy of the volatility process encourages a more detailed look into its behavior. In the

remainder of this section we examine the second moments of yields along three dimensions: (i) changes in

their dynamic properties, (ii) the number of underlying factors, and (iii) their potential link to the yield

levels.

[Fig. 2 about here]

Level, slope and curvature viewed dynamically. Much of the intuition about factors driving the zero

curve has been obtained from the principal component analysis (PCA) of the unconditional covariances of

yields (Litterman and Scheinkman, 1991). Such analysis aggregates decades of yield curve information into

a single set of numbers. In contrast, Eq. (1) combined with the high-frequency data provides a proxy for

the unobservable conditional covariance matrix, and allows its dynamic decomposition. This step tells us

that the unconditional PCA, usually applied to motivate three-factor models, washes away some valuable

information about factors driving yields. While dynamically we do find three main factors, their relative

importance fluctuates over time. The nature of factors can change with instances of slope moves taking the

8The decline in the trading of short maturity bonds is not particular to GovPX or BrokerTec data. A similar development
took place in the interest rate futures market.
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lead over level moves, and curvature moves—over the slope. The portion of yield variation explained by the

level factor, typically exceeding 90%, can at times drop to just above 50%.9

If the standard PCA gives an incomplete description of yields, this shall be revealed in the time-varying

comovement of factors it implies. To investigate this channel, we decompose the unconditional covariance

matrix of four yields with maturities two, three, five and ten years. Factor loadings from the unconditional

PCA serve to construct the level, slope and curvature tick-by-tick, and to estimate their realized correlations

as plotted in Fig. 3.10 All correlations display a persistent pattern over time. For instance, the correlation

between the slope and the level factor oscillates between ±50%, and is generally lower during periods of

monetary easings. Intuitively, interest rate cuts tend to increase the slope of the curve on concerns of

looming inflation. Instead, periods of monetary stability make the short and long end of the curve more

independent. However, the superposition of these correlations against the Fed regimes in Fig. 3 also shows

that interactions between factors are more complex than just a monetary policy response. For the modeling,

this picture translates into the requirement of time-varying dependence between state variables determining

yields.

[Fig. 3 about here]

Factors in volatilities. The time-varying nature of loadings in the conditional PCA suggests that multiple

stochastic volatility factors act on the second moments of yields. We find that yield volatilities do not move

on a single determinant. Similar to the cross-section of yields, at least three factors are also needed to explain

the dynamics of the realized volatility curve, which exhibits the familiar level, bent slope and curvature-like

movements (panel a, Fig. 4). The first three principal components explain 90.2%, 6.1% and 2.3% of its

variation (panel b). Importantly, this observation comes from analyzing middle to long yields only, and thus

is not driven by idiosyncratic volatility at the very short end of the curve.

[Fig. 4 about here]

From the modeling perspective, this result raises a natural question: Are factors driving volatilities related

to those those typically found in yields?

Link between interest rates and volatilities. Much of the theoretical and empirical evidence points to a

link between the level of interest rates and their volatility. The affine or quadratic models, for instance,

9Details of the dynamic decomposition are omitted to conserve space and are available upon request. Additionally, we perform
a formal log-likelihood test (see e.g. Fengler, Härdle, and Villa (2001) for details of the testing procedure). We find a
strong rejection of: (i) a constant covariance matrix hypothesis (constant eigenvalues and eigenvectors), and (ii) a common
principal component hypothesis (constant eigenvectors but time-varying eigenvalues). Both hypotheses are tested against
the alternative under which the covariance matrices do not have a constant factor structure across subsamples. In addition
to performing the test over the whole sample period, we check the stability of monthly conditional covariances year-by-year.
The test consistently rejects both hypotheses. While the rejection of the first one is not surprising and could easily arise
from changing yield volatilities, the latter one is more important: It confirms that the space spanned by eigenvectors, giving
rise to the level, slope and curvature interpretation, is in fact not stable across periods.

10The results persist if we follow a different portfolio construction that is immunized to all but one type of yield curve movements,
and rebalanced at the beginning of each month. The dynamics of factor correlations are very close to those obtained with
the unconditional PCA loadings.
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imply that the same subset of factors determines both yields and their volatilities. As one simple example,

a single-factor CIR model suggests that the volatility is high whenever the short rate is high—a prediction

that remained valid through the early 1980s (Chan, Karolyi, Longstaff, and Sanders, 1992).

More recently, however, the USV literature has argued that the yield-volatility relation is in fact weak. We

add to this evidence by showing their more complex interactions than those implied by the linear regressions

used in the USV tests. Fig. 5 scatter-plots weekly realized volatilities against the level of interest rates with

a matching maturity. The shape of the nonparametric regression fitted to the data discards the possibility of

a positive correlation between yields and volatilities in our sample period. If any, the relationship appears to

be asymmetrically U-shaped, which clearly contrasts with the early 1980s’ episode. The volatility is low for

the intermediate interest rates range, and increases when rates move to either end of the spectrum. The rise

in volatility is more pronounced in low interest rate regimes, and thus explains the negative unconditional

correlations between yields and volatilities reported in panel c of Table 2. The last panel of Fig. 5 provides

a simple illustration of this point: Federal funds rate cuts induce a stronger upward revision in volatility

than do tightenings. The asymmetry is most pronounced for shorter maturities (two years) and decays at

the longer end of the curve.11

Not surprisingly, evidence on the relationship between interest rates and volatility is mixed and con-

troversial. Fig. 6 provides one explanation to the lacking consensus. We plot beta-coefficients and R2’s

in regressions of realized volatilities on yields with two-, five- and ten-year maturities performed on daily

data over a four-month rolling window. The yield-volatility link turns out to be highly state dependent. It

reveals large fluctuations in the R2 and switching signs of the regression coefficients. Yet, despite the obvious

instability, it is hard to argue that the link is completely non-existing and should be discarded as a matter

of principle.

[Fig. 5 and Fig. 6 about here]

For the sake of model design, we can learn how shocks in yields and volatilities are interrelated by

estimating a VAR for the joint system. We include three bond portfolios mimicking the level, slope and

curvature of the yield curve plus three realized volatility factors: the level RV 2Y
t , the slope (RV 10Y

t −RV 2Y
t )

and the covariance RCov5Y,10Y
t . The highest cross-correlation between shocks is 16% (the yield level portfolio

and the volatility level). This low correlation is economically intuitive: To the degree that the volatility is

related to the process of finding equilibrium, its shocks should not be correlated with those in the equilibrium

process (the yield curve).

11To understand the type of non-linearity in the yield-volatility relationship, we fit a generalized additive model (GAM) with
a linear and a spline part, i.e. vτ

t = β0 +β1yτ
t + s(yτ

t )+ εt. The result of the exercise is twofold. For short and intermediate
maturities (of two and five years) both components are significant, with a negative β1 loading and an asymmetric spline
component. For the long end of the curve (ten years), in turn, we find no support of a linear component, and a weak
confirmation of the U-shaped asymmetry.
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3. The model

Evidence of the previous section provides guidelines for our modeling approach. First, to generate a

sufficiently rich variation in covariances of yields, we allow a multivariate volatility and dynamic interactions

between factors. Second, while our empirical findings do invoke the notion of unspanning, we remain cautious

about imposing it within the model. In fact, we show that such restriction is not required to fit yields and

volatilities jointly. Rather, given findings on the number of factors in yields and volatilities, we do not expect

a low-dimensional model (whether or not USV) to perform well on both fronts. In the remainder of this

section, we formulate a sufficiently flexible model, and later verify its viability in terms of the econometric

fit and economic interpretation of factors.

Our benchmark model is cast in a reduced-form continuous-time framework. In specifying the state

dynamics, we take an agnostic view on factor labels, but assign them to two groups: (i) expectations factors

Xt, and (ii) covariance factors Vt. The physical dynamics are given by the system:

dXt = (µX + KXXt)dt +
√

VtdZ
P
X,t (2)

dVt = (ΩΩ′ + MVt + VtM
′) dt +

√
VtdW P

t Q + Q′dW P′
t

√
Vt, (3)

where Xt is a n-vector, and Vt is a n×n process of symmetric positive definite matrices—a covariance matrix

process proposed by Bru (1991) and studied by Gourieroux, Jasiak, and Sufana (2005). Accordingly, ZP
X

and W P are a n-dimensional vector and a n×n matrix of independent Brownian motions.12 µX is a n-vector

of parameters and KX , M and Q are given as n×n parameter matrices. To ensure a valid covariance matrix

process Vt, we specify ΩΩ′ = kQ′Q with an integer degrees of freedom parameter k such that k > n− 1, and

require that Q is invertible. This last condition guarantees that Vt stays in the positive definite domain (see

e.g., Gourieroux, 2006).

The short interest rate is an affine function of Xt variables, but contains an additional source of persistent

shocks:

rt = γ0 + γ′

XXt + γfft. (4)

The state ft evolves as:

dft = (µf + Kfft + KfXXt)dt + σfdZP
f,t, (5)

with ZP
f,t denoting a single Brownian motion independent of all other shocks in the economy. γf ,Kf and

σf are scalars, and γ′

X and KfX are (1 × n)-vectors of parameters. For convenience, we collect Xt and ft

factors in a vector Yt = (X ′
t, ft)

′
, whose dynamics can be compactly expressed as:

dYt = (µY + KY Yt) dt + ΣY (Vt)dZ
P
t , (6)

12It is straightforward to introduce correlations between ZX and W by setting dZ = dWρ +
√

1 − ρ′ρdB for some constant
vector ρ, where dB is an n-dimensional Brownian motion independent of columns in dW . We state the general solution for
ρ 6= 0 in the Appendix C. However, based on empirical findings of Section 2, in particular the very low correlation of shocks
between volatilities and yields, we believe that this extension has no merit for the problem at hand.
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with a block diagonal matrix ΣY (Vt)ΣY (Vt)
′ =



 Vt 0

0 σ2
f



 and KY =



 KX 0n×1

KfX Kf



.

Bonds in this economy are priced using the standard no-arbitrage argument. By its convenience, we

can abstract from a particular preference structure, and specify a general reduced-form compensation ΛY,t

required by investors to face shocks in the state vector:

ΛY,t = Σ−1
Y (Vt)

(
λ0

Y + λ1
Y Yt

)
, (7)

where λ0
Y is a (n+1)-vector and λ1

Y is a (n+1)×(n+1) matrix of parameters. To be viable, this formulation

requires the invertibility of each block of matrix ΣY (Vt), which is ensured by the positive-definiteness of
√

V t,

and with σf different from zero. In Eq. (7) we assume that only Z shocks are priced. Therefore, the risk

neutral dynamics of Xt follow from the standard drift adjustment:

µQ
Y = µY − λ0

Y (8)

KQ
Y = KY − λ1

Y , (9)

and the dynamics of Vt remain unchanged. It is technically possible to introduce a priced volatility risk

without loosing the flexibility of the framework. However, in the presence of a weak spanning of volatility

states by bonds it is difficult (if not impossible) to identify the market price of risk for volatility from bonds

alone. For this, additional volatility-sensitive instruments such as bond options are needed.

Prices of nominal bonds are obtained by solving P τ
t = EQ

t

(
e−

∫
τ

0
rsds

)
. By the Feynman-Kac argument,

and using the infinitesimal generator for the joint process {Yt, Vt}, the solution for the nominal term structure

has a simple affine form (see Appendix C):

P (t, τ) = eA(τ)+B(τ)′Yt+Tr[C(τ)Vt], (10)

where Tr(·) denotes the trace operator. The coefficients A(τ), B(τ) and C(τ) solve a system of ordinary

differential equations:

∂A (τ)

∂τ
= B(τ)′µQ

Y +
1

2
B2

f (τ)σ2
f + kTr [Q′QC(τ)] − γ0 (11)

∂B (τ)

∂τ
= KQ′

Y B(τ) − γY (12)

∂C (τ)

∂τ
=

1

2
BX(τ)BX(τ)′ + C(τ)M + M ′C(τ) + 2C(τ)Q′QC(τ), (13)

where we split the B(τ) loadings as B(τ) = [BX(τ)′, Bf (τ)]
′
and γY = (γ′

X , γf )′. The boundary conditions

for the system (11)–(13) are A(0) = 01×1, B(0) = 0(n+1)×1 and C(0) = 0n×n. The B(τ) loadings have a

simple form typical to the Gaussian models, and allow an immediate solution. The C(τ) matrix solves a

matrix Riccati equation.

Defining yτ
t = − 1

τ
ln P τ

t , the term structure of interest rates has the form:

12



yτ
t = −A(τ)

τ
− B(τ)

τ

′

Yt − Tr

[
C(τ)

τ
Vt

]
. (14)

As a consequence of the dynamics (2)–(3), yields are an affine function of the entire state vector (Yt, vec(Vt)
′)′.

Under uncorrelated shocks dZ and dW , and the short rate (4), we leave only one channel open through which

volatility states appear in the yield curve equation, i.e. the diffusive term in the Yt dynamics (6). Thus, the

instantaneous yield covariation is exclusively driven by the covariance factors:

v
τi,τj

t :=
1

dt
〈dyτ1

t , dyτ2
t 〉

=
1

τ1τ2
{Tr [BX(τ2)BX(τ1)

′ + 4C(τ2)Q
′QC(τ1)] Vt + Bf (τ1)Bf (τ2)σ

2
f}. (15)

3.1. Discussion

In the basic setup, we consider three variables in Yt, i.e. ft plus a two-dimensional vector Xt. The

latter is equipped with a 2 × 2 covariance matrix Vt. The form of Vt leads to a two-plus-one-variate process

with two volatility plus a covariance factor. Thus, it presents a three-factor model of yield volatilities. The

combination of six factors gives us a scope to fit both yields and their volatilities.

Even though we choose to follow the latent state tradition, the non-observability of factors does not

preclude an attempt of their interpretation. We think of ft as a short-term monetary policy factor. Xt,

instead, represents longer-term forces that reflect expectations about the key elements of the economic

landscape, e.g. the real and nominal sector. Naturally, they can impact the conditional expectation of ft. It

is through the longer-term factors that the time-varying volatility enters into the picture: Vt describes the

amount of risk present in the economy, with its out-of-diagonal element V12 determining the conditional mix

between Xt’s.

Our split between volatility and expectation variables evokes the Am(n) classification of Dai and Singleton

(2000). Still, at least two differences are worth highlighting. First, Vt represents a complete covariance

matrix dynamics (i.e. volatilities plus covariances), and as such involves components which can switch sign.

In contrast, independent CIR processes in ATSMs generate stochastic volatility one-by-one. Therefore, the

covariances they imply are a linear combination of the volatility factors. Second, to make the roles of factors

precise and interpretable, our specification intentionally excludes any interactions between Vt and Xt via the

drift. Even though in ATSMs such interactions are usually allowed, we show in estimation that they are not

called for by the data.

As dimensions grow, flexibility typically comes at the price of parsimony. The A1(4) version estimated

by Joslin (2007) and Thompson (2008) involve over 20 parameters after excluding the market prices of risk.

By these standards, the state space we consider is comparably large, but with six factors at work, it involves

no more than 13 identified parameters (excluding ΛY,t).

The presence of Vt in expression (14) sets our approach apart from the USV settings, which explicitly

prevent volatility factors from entering the cross section of yields. Collin-Dufresne, Goldstein, and Jones

(2008) expose that such separation improves the ATSMs’ fit to the spot volatility of yields. Considering our
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empirical results, however, there appear to be few reasons—except statistical ones—for such constraint to

hold in reality. In fact, there are at least two channels through which volatility variables could appear in the

term structure, in particular at its long end. As stressed by Joslin (2007), one is the well-known convexity

bias through which volatility is revealed in bond prices (see also Phoa, 1997). A second, and economically

more important one, is the relation between the amount of uncertainty and the term premiums. In that the

bond term premiums compensate for risks, they should be related to the changing amount of interest rate

volatility.

In the benchmark model, we do not incorporate macroeconomic variables, and rely exclusively on the

information contained in the yield curve itself. This choice is motivated by a simple fact. Namely, the

Taylor rule—the basis of no-arbitrage macro finance—has been questioned as a model of the US monetary

policymaking during the last two decades. And this for at least three reasons:13 First and by definition,

simple rules rely on a limited number of variables—maybe too limited to describe a complex economy like

the one of the United States. Second, given the anticipatory nature of financial markets in general, and bond

markets in particular, current or lagged values of a few macro variables may not provide sufficient guidance

to the future economic conditions, let alone to the formation of the yield curve. Finally, the transmission

of the monetary policy to the real sector in the US is strongly dependent on the capital markets. Since

interest rates impact the value of equities, the stock market has important implications for the household

wealth, consumer spending and investment. As such, it represents an important variable influencing the

conduct of monetary policy. With model estimates at hand, in Section 6 we provide an empirical support

to the economic roles of model-identified factors, and show that the information they aggregate transcends

the content of the standard Taylor rule.

4. Model estimation

A practical implication of the weak link between yields and volatilities is that not all factors can be

identified directly from yields. Thus, the backing-out technique—inverting Eq. (14) from observed yields

to latent factors—would not work in our setting. We estimate the model on a weekly frequency (∆t = 1
52 )

combining pseudo-maximum likelihood with a filtering technique. Since Yt and Vt factors are unobservable,

we express the model in a state-space form. At every date t, we filter the latent state by exploiting information

both in yields and in volatilities.

4.1. Transition dynamics

The transition equation for Yt is specified as an Euler approximation of the physical dynamics (6):14

13The speeches by Fed officials clearly demonstrate these points. See, for instance, the “John Taylor Rules” speech by the Fed’s
vice-chairman Donald Kohn on October 12, 2007.

14In Appendix B.2, we provide expressions for an exact discretization of the Yt dynamics. We find that the use of the Euler
scheme is virtually immaterial when ∆t = 1/52, but offers a considerable increase in computational speed compared to the
exact discretization. Therefore, the results presented here rely on the expression (16).
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Yt+∆t = µ̄Y,∆t + ΦY,∆tYt + uY
t+∆t, (16)

where uY
t is a vector of heteroskedastic innovations uY

t = ΣY (Vt)
√

∆tǫt+∆t, and

µ̄Y,∆t =
(
eKY ∆t − I

)
K−1

Y µY (17)

ΦY,∆t = eKY ∆t. (18)

The transition equation for the matrix process Vt is obtained by an exact discretization of the dynamics (3):

Vt+∆t = kµ̄V,∆t + ΦV,∆tVtΦ
′

V,∆t + uV
t+∆t, (19)

where uV
t represents a symmetric matrix of heteroskedastic innovations. Parameter matrices ΦV,∆t and µ̄V,∆t

are given as:15

µ̄V,∆t =

∫ ∆t

0

ΦV,sQ
′QΦ′

V,sds (20)

ΦV,∆t = eM∆t. (21)

For ease of subsequent notation, we recast Eq. (19) in a vector form:

vec(Vt+∆t) = kvec(µ̄V,∆t) + (ΦV,∆t ⊗ ΦV,∆t)vec(Vt) + vec(uV
t+∆t). (22)

Since the process Vt lives in the space of symmetric matrices, its lower triangular part preserves all in-

formation. Let us for convenience define two linear transformations of some symmetric matrix A: (i) an

elimination matrix: Envec(A) = vech(A), where vech(·) denotes half-vectorization, (ii) a duplication matrix:

Dnvech(A) = vec(A). Using half-vectorization, we define V̄t := vech(Vt) = Envec(Vt), which contains

n̄ = n(n + 1)/2 unique elements of Vt:

V̄t+∆t = kEnvec(µ̄V,∆t) + En(ΦV,∆t ⊗ ΦV,∆t)DnV̄t + Envec(uV
t+∆t). (23)

Collecting all elements, we can redefine the state as: St = (Y ′
t , V̄ ′

t )′, whose transition is described by the

conditional mean:

Et (St+∆t) =




(
eKY ∆t − I

)
K−1

Y µY + eKY ∆tYt

kEnvec(µ̄V,∆t) + En(ΦV,∆t ⊗ ΦV,∆t)DnV̄t



 , (24)

and the conditional covariance of the form:

Covt (St+∆t) =



 Covt(Yt+∆t) 0n×n̄

0n̄×n Covt

(
V̄t+∆t

)



 . (25)

15The closed form solution for the integral µ̄V,∆t is given by
∫ ∆t

0
ΦV,sQ′QΦ′

V,sds = −Ĉ12(∆t)Ĉ′
11(∆t), where

(
Ĉ11(∆t) Ĉ12(∆t)

Ĉ21(∆t) Ĉ22(∆t)

)
= exp

[
∆t

(
M −Q′Q
0 −M ′

)]
.

See Van Loan (1978) for the proof.
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The block diagonal structure in the last expression follows from our assumption that shocks in Yt be

independent of shocks in Vt. The respective blocks are given as:

Covt(Yt+∆t) = ΣY (Vt)ΣY (Vt)
′∆t (26)

Covt

(
V̄t+∆t

)
= EnCovt (Vt+∆t) E ′

n

= En (In2 + Kn,n)
[
ΦV,∆tVtΦ

′
V,∆t ⊗ µ̄V,∆t + k (µ̄V,∆t ⊗ µ̄V,∆t) + µ̄V,∆t ⊗ ΦV,∆tVtΦ

′
V,∆t

]
E ′

n, (27)

where Kn,n denotes a commutation matrix (see e.g., Magnus and Neudecker, 1979). Buraschi, Cieslak, and

Trojani (2008) provide the derivation of the last expression. Details are collected in Appendix B.

4.2. Measurements

We introduce two types of measurement equations based on yields (yτ
t ) and their quadratic covariation

(v
τi,τj

t ):

yτ
t = f(St; Θ) +

√
Ryey

t (28)

v
τi,τj

t = g(Vt; Θ) +
√

Rve
v
t . (29)

Functions f(St; Θ) and g(Vt; Θ) denote model-implied expressions (14) and (15) corresponding to the ob-

served measurements yτ
t and v

τi,τj

t ; Θ collects model parameters. v
τi,τj

t is obtained from the high-frequency

zero curve using estimator (1).

The weekly realized covariance matrix estimator is still quite noisy. It contains a significant portion of

short-lived volatility which is not directly related to economic fundamentals but rather to various institutional

effects, such as inventory management of primary dealers or calendar effects due to the Treasury bond

auctions. To alleviate these effects, we construct every week a four week rolling realized covariance matrix.

Such an adjustment makes it easier for the Kalman filter to distinguish between the noise and the fundamental

volatility.

We assume additive, normally distributed measurement errors ey
t and ev

t with zero mean and a constant

covariance matrix. In estimation, we use six yields with maturities of six months and two, three, five,

seven and ten years. Yields share an identical standard deviation of measurement errors. Hence, their error

covariance matrix is Ry = σ2
yI6. Additionally, we include three volatility measurements which comprise

variances of the two- and ten-year bond and the covariance between the five- and ten-year bond. The

assumption of constant and identical measurement errors in yields is innocuous and intuitive. Lacking a

similar prior for volatility measurements, we allow for different errors across equations, i.e. Rv = diag(σi
v),

where i = 1, 2, 3, and diag(·) denotes a diagonal matrix.

Implicit in our choice of measurements are two approximations. The first one is the assumption that the

realized and the instantaneous covariance matrices of yields are equivalent. Indeed, neglecting ev
t , Eq. (29)

implies that: 1
dt
〈dyτ

t 〉 = vτ
t and 1

dt
〈dyτi

t , dy
τj

t 〉 = v
τi,τj

t , where dt = 1/52. In a strict sense and in absence

of jumps, however, the estimator (1) converges to the integrated—rather than instantaneous—covariance
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matrix of yields. We recognize that the measurement (29) is not exact, but on a weekly frequency the error

due to the approximation can be assumed negligible.

Our assumption about the absence of jumps necessarily leads the second approximation. Even though

extensions including discontinuities are readily possible, we specify the benchmark model as a pure diffusion.

At the same time, the bi-power variation test applied to our high-frequency sample indicates that jumps are

indeed present in the bond data. At the 99.8% confidence level, we find jumps on about 8% of days in our

sample on average across maturities. These results are available upon request. Importantly, vast portion of

jumps in the term structure appears at deterministic times (scheduled macro announcements). By nature,

these jumps differ from the Poisson type of events. This motivates our choice of a purely diffusive model.

Here, the weekly horizon comes in handy again: In the context of term structure models, one week appears

a sufficiently long period to avoid the break-down of a pure diffusion.

4.3. Pseudo-maximum likelihood estimation

Despite linearity of the transition and measurement equations, the filtering approach introduced by

Kalman (1960) is not directly applicable in our setting due to the non-Gaussian properties of the underlying

state dynamics. In order to handle the non-Gaussianity we use the Unscented Kalman Filter (UKF),

proposed by Julier and Uhlmann (1997), and recently applied in finance by e.g., Carr and Wu (2007) or

Christoffersen, Jacobs, Karoui, and Mimouni (2009, CJKM). To approximate the conditional distribution,

the UKF propagates the state through a set of deterministically chosen “sigma” points. Compared to the

particle filter, it avoids costly simulations and thus offers a considerable gain in computational speed. This

has a particular value for the estimation of multidimensional models like ours. Wan and van der Merwe

(2001) argue that the approximation works well for purely diffusive settings. Indeed, CJKM (2009) show

that the gain from using the UKF over the extended Kalman filter (EKF) is particularly visible for models

with stochastic volatility. Details on the UKF implementation are provided in Appendix D.

Collecting all measurements in vector mt+1, let m̂−

t+1 and P̂−

m,t+1 denote the time-t forecasts of the time-

(t + 1) values of the measurement series and of their conditional covariance, respectively, as returned by

the filter (for convenience 1 means one week). By normality of measurement errors, we can compute the

quasi-log likelihood value for each time point in our sample:

lt+1(Θ) = −1

2
ln |P−

m,t+1| −
1

2

(
m̂−

t+1 − mt+1

)′ (
P−

m,t+1

)−1 (
m̂−

t+1 − mt+1

)
, (30)

and obtain parameter estimates by maximizing the criterion:

Θ̂ := arg min
Θ

L
(
Θ, {mt}T

t=1

)
with L

(
Θ, {mt}T

t=1

)
=

T−1∑

t=0

lt+1 (Θ) . (31)

with T = 845 weeks. The initial log-likelihood is evaluated at the unconditional moments of the state vector

(see Appendix B for the expressions).
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As a common problem in term structure modeling, the optimization of the loss function (31) is complicated

by a high dimensionality of the parameter space, presence of multiple stochastic volatility factors, and com-

plex interactions between parameters. Such circumstances leave little hope for standard local optimization

methods, even when combined with a grid search. Therefore, to secure against local minima, we use the

differential evolution (DE) algorithm designed for an efficient search of global optima in multidimensional,

non-monotone, and multimodal problems (Price, Storn, and Lampinen, 2005). We confirm that the algorithm

achieves the global minimum by repeating the estimation several times.

4.4. Identification

The latent nature of factors spells out the possibility that two distinct sets of parameters lead to observa-

tionally equivalent yields. To ensure econometric identification, we consider invariant model transformations

of the type Ỹt = v + LYt and Ṽt = LVtL
′, for a scalar v and an invertible matrix L. Such transformations

result in the equivalence of the state variables, the short rate and thus yields (Dai and Singleton, 2000). If

allowed, they can invalidate the results of an estimation.

To prevent the invariance, we adopt several normalizations for the physical dynamics of the process Yt: (i)

Setting µY = 0 allows to treat γ0 as a free parameter. (ii) Restricting γf = 1 makes σf identified. (iii) Since

both KX and Vt determine interactions between the elements of Xt, they are not separately identifiable. We

set KX to a diagonal matrix, and allow correlations of the Xt factors to be generated solely by Vt. By the

same token, the last row of matrix KY , i.e. (KfX ,Kf ) is left unrestricted, as ft does not interact with Xt

via the diffusion term.

The identification of volatility factors Vt is ensured with three restrictions: (i) M is lower triangular

and (ii) Q is diagonal with positive elements. (iii) The diagonal elements of Q are uniquely determined

by setting γX = 1n×1, where 1n×1 is a vector of ones. These normalizations protect Vt against affine

transformations and orthonormal rotations of Brownian motions. Finally, to guarantee the stationarity of

the state, we require that the mean reversion matrices KY and M be negative definite. Due to the lower

triangular structure of both, this is equivalent to restricting the diagonal elements of each matrix to be

negative.

5. Estimation results

We discuss the parameter estimates and in-/out-of-sample model performance. Then, we study the dy-

namics of the filtered states and their respective contributions to the term structure of yields and volatilities.

5.1. Model performance

Table 3 provides parameter estimates for our model indicated by the label G3SV3 (meaning: three

conditionally Gaussian plus three volatility factors). To obtain a comprehensive picture of its statistical

properties, we consider two specifications: (i) a risk-neutral case, in which all parameters in ΛY,t have been

set to zero, and (ii) a risk premia case, with some of ΛY,t parameters left free. On the level of explaining

18



yields, we compare the performance of the estimated models to their corresponding Gaussian three-factor

counterparts (G3SV0), which have a proven track record on this front. We estimate the purely Gaussian

models with the standard Kalman filter. This comparison puts to a test whether volatility factors, while

beneficial for capturing second moments of yields, introduce a risk of misspecification on the side of yields.

That we consider models without risk compensation might surprise at first. Zero bond risk premiums are

clearly untenable from an empirical perspective (e.g., Campbell and Shiller, 1991). Our motivation for this

step is twofold. First, the ability of a model to describe the joint dynamics of yields and volatilities should be

revealed from the structure of the underlying states rather than by adding new parameters. Indeed, we expect

and demonstrate the risk premium specification to have a second-order effect on our model’s performance in

matching conditional volatilities. Second, while we certainly recognize that risk compensation exists in the

bond market, we also find that the identification of price of risk parameters in ΛY,t is a difficult task. Even

for simple models, the estimates of premiums tend to have a low precision. With the inclusion of several

parameters in ΛY,t, the search for a global optimum of (31) becomes slow and cumbersome. For this reason,

we adopt a parsimonious form by judiciously selecting only two parameters in ΛY,t. We defer the details of

this choice to Section 7.3. Interestingly, we find Xt’s to be the only factors which have a significant impact

on the term premiums.

Parameter estimates. After imposing identification restrictions, our preferred model presented in Table

3 has nine parameters which drive the yield curve (two of those describe market prices of risk), and six

parameters which drive the term structure of volatilities. Even though the unobservability of states makes

the interpretation of single estimates relatively uninteresting, several points stand out. Within each factor

type at least one variable is more persistent and one faster-moving. While this observation may be common

for the yield dynamics, our estimates indicate that it also holds for the volatility curve. Still, the most

prominent difference between Vt states comes in their respective volatilities (vol of vol), as captured by the

Q parameters. The volatility of the V11 and V12 state is just about a half of V22. Such distinction is a first

indication that a multivariate volatility is actually required by the data.

We also note large differences in the speed of mean reversion between Yt and Vt factors: as expected, the

autocorrelation coefficients decline much more rapidly for the volatility states. That variables generating

yields have distinct statistical properties from those generating volatilities is consistent with the empirical

findings of Section 2. Despite its intuitive appeal, this fact frustrates the volatility fit of many (especially

three-factor) term structure models. But it is confirmed in our estimates of the Vt dynamics, specifically in

the estimated degrees of freedom k. This single parameter controls the extent of non-Gaussianity present in

the volatility factors: the higher the k the more Gaussian the dynamics.16 Across all estimated versions, the

model consistently selects k = 2. This low value reflects the need for factors with a pronounced right tail.

Although such property suits the observed behavior of volatilities, it is less obvious how it could emerge in

the term structure of interest rates. We interpret it as supportive of our design that separates distributional

qualities of yields from those of volatilities.

16Buraschi, Cieslak, and Trojani (2008) discuss the role the degrees of freedom parameter in the Vt dynamics. See also Appendix
B.1 for the properties and construction of the Vt process. The representation of Vt as the sum of k outer products of the
multivariate Ornstein-Uhlenbeck process provides the key intuition for the role of k.
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In-sample fit. The last section of Table 3 provides the log-likelihood values for each estimated specification.

For comparison with the purely Gaussian benchmark, we split the log-likelihood implied by our model into

two portions measuring the fit to yields and to volatilities, respectively. A look at the numbers indicates

that all versions have similar abilities in explaining yields. In particular, the improvement in volatility

modeling offered by G3SV3 spells no sacrifice in terms of fitting interest rates (see Fig. 7). Across a

spectrum of maturities, the model replicates the observed weekly dynamics of yields with a high accuracy.

Simultaneously, it is able to explain well the evolution of the second moments. Fig. 8 superimposes the

observed and model-implied behavior of the level and the slope of the volatility curve, and the covariance

between the five- and ten-year yield. Level and slope are proxied by the two-year volatility and the spread

between the ten- and two-year volatility, respectively. The plot shows that the model-implied dynamics track

observed quantities very closely in terms of magnitudes, persistence, and signs. By being consistent with

both the level and the slope, our setting provides a good description of the volatility at the short and the

long end of the curve.

[Fig. 7 and 8 about here.]

Table 4 confirms these conclusions. We provide two yardsticks of in-sample model performance: the

root mean squared errors (RMSE) and the percentage of variation in yields and volatilities explained by the

model. The latter is measured with the R2 coefficient from a regression of the observed on the model-implied

dynamics. The RMSEs show that on average the model misses the true yield by about two basis points. As

such, it is able to explain virtually the total of observed variation in yields. Its performance is very similar

to the purely Gaussian case. The match to the volatility dynamics is less perfect than that to yields, still

we are able to explain from 94% to 98% of variation in the second moments dynamics.

Yield forecasting performance. When assessed in sample, our model can conceal distortions coming with

a richer form of the state space, if misspecified. This should be revealed in a quick deterioration of its

performance out of sample. To check this possibility, we re-estimate the model on the data from January

1992 through December 2004, and use the remaining part of the sample (January 2005 through December

2007) for out-of-sample evaluation. For comparison, we take the same approach for the purely Gaussian

setting. With new estimates, we obtain predictions of yields over horizons of one, four, 12 and 52 weeks.

Table 5, panel b summarizes the results. The yield forecasting ability implied by our model is very close to

the purely Gaussian case. It is well-known, yet unfortunate, that the existing term structure models fail in

outperforming the random walk predictions out-of-sample (see e.g. Duffee, 2002; Moench, 2008). While at

the very short forecast horizons (i.e. one week) both settings are outpaced by a simple random walk, they

do a decent job in forecasting yields over longer term (e.g. one year). The upshot is that the additional

volatility factors do not induce instability in the model performance.

Volatility benchmarks. In terms of explaining the volatility curve, the model we propose has no direct

benchmark in the literature. The interpretation of the existing results is intricate as approaches differ by the

data and sample period used (Treasury or swap rates, with or without interest rate derivatives), restrictions

imposed (with or without USV), and estimation methods applied. These discrepancies often lead to opposing
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conclusions, thus making a direct comparison difficult.17 We take A1(4) models estimated by CDGJ (2008),

and Thompson (2008) as a benchmark. A consensus emerging from those papers is that the A1(4) model

can do reasonably well in matching volatility at the short end of the curve, but its performance deteriorates

quickly with the yield’s maturity. For instance, CDGJ report that instantaneous volatility of the ten-year

yield implied by the A1(4) model is 18 times less volatile than the rolling window volatility estimates,

suggesting that more than one state variable is needed to capture the term structure of volatilities. The

corresponding number returned by our model is 7%, and is coupled with the ability to explain 98% of the

variation in the slope of the volatility curve.

Similar to the yield forecasting exercise, we compare volatility forecasts to a random walk. Given the fast

decay of volatilities, their forecasts at horizons longer than a couple of months are not meaningful. Table

5, panel b summarizes the results. Our model performs particularly well for four and 12 week horizons,

even though the out-of-sample period (2005:01–2007:12) privileges the random walk due a consistently low

and stable level of volatilities. Across the maturity spectrum, the volatility of the five- and ten-year yield

is predicted with the highest accuracy. This outperformance is explained by the presence of an additional

volatility state which, as we argue below, is dedicated to capturing precisely this segment of the curve.

5.2. Filtered states

In that the model gives a reliable description of the data, it should reflect the key drivers underlying the

formation of the curve. This section discusses their properties and roles.

Fig. 9 plots the state variables extracted by the unscented Kalman filter. Panels on the left display the

evolution of the three yield curve factors, Y = (X1, X2, f), those on the right show the covariance factors

V̄ = (V11, V12, V22).

[Fig. 9 about here.]

This autonomous behavior of the two factor groups reveals no obvious candidate variable that could

be acting equally on yields and on their second moments. This does not mean, however, that factors lack

common interpretation. Quite the opposite: when fed with the data, the model puts the right pieces of its

structure into the right places. Most importantly, the roles it assigns to the Xt states correspond neatly

with the covariance interpretation of the respective volatility factors Vt.

To see this, it is useful to study the effects that different variables have on the yield curve. Fig. 10 plots

the responses of yields to shocks in each element of the state vector. Panels on the left (a1, a2, a3) display

the reaction of the curve to perturbations of the Yt variables; panels on the right (b1, b2, b3)—to shocks

in Vt variables. In each subplot, the solid line depicts the yield curve when all variables are held at their

17The best example comes from comparing the results reported by Thompson (2008) versus those reported by CDGJ (2008).
Both papers estimate the A1(4) model with and without USV using swap and LIBOR rates, yet reach different conclusions.
Thompson (2008) shows the model can track volatility dynamics similarly well whether or not the USV is imposed. CDGJ
demonstrate, in contrast, that the USV restriction significantly improves the model’s performance. By relying on the spot
and option price data, the results for the A1(4) and A2(4) specification reported in Joslin (2007) are less well suited for
drawing comparisons here.
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unconditional means. Instead, the dashed and dotted lines plot the yield curve response when a given factor

is set to its 10th and 90th percentile, respectively. Let us for the moment focus on the impact of the yield

curve factors. Several points emerge. The effect of the ft state is most pronounced at the short end of the

curve. A downward (upward) shift in ft moves the short yield significantly below (above) its unconditional

mean. The effect diminishes with the maturity, and is consistent with the filtered time-series pattern of ft

which closely tracks the shortest yield (see Fig. 9c). The two Xt factors influence the longer segment of the

curve. X2 is most active at intermediate maturities (two–three years), inducing changes in the curvature.

X1 acts predominantly at long maturities, thus changing the slope.18 The identification of Xt states as those

impacting on longer maturities concurs with the form of the market price of risk we adopt (see discussion

in Section 7.3). Recall that our preferred specification chooses the Xt factors to be informative about risk

compensations, which are most pronounced in the longer segment of the curve.

The roles of Xt factors are in line with the identified volatility states. Indeed, V11 generates the volatility

at longer maturities, while V22 is responsible for capturing the shorter end of the volatility curve. To support

this conclusion, Table 6 reports t-statistics obtained by regressing observed yield volatilities and covariances

on the elements of the state vector. The significance of V11 and V22 factors for explaining the observed

volatility curve has an opposite pattern: The effect of V22 is decreasing with the maturity, in contrast the

effect V11 is increasing with the maturity. The out-of-diagonal element V12 is overwhelmingly significant, but

has the largest impact on the yield covariance dynamics.

5.3. Short and long-end volatility: two episodes

The split of volatility factors into the short- and long-end components is also evident in their filtered

dynamics. The long-term factor V11 reflects major moves in the volatility of the ten-year yield. The short-

term factor V22, in turn, captures the two-year volatility. To illustrate this point, let us consider two salient

moments in the volatility history (marked with circles in Fig. 9). In the last months of 2003, the large

move of the V11 factor mirrors a rapid increase in volatility that affected the long end of the curve, but was

barely visible at its short end (panel d). The main trigger for the elevated volatility in this period came from

the real part of the economy. In June, the Fed lowered rates to 1% and was communicating no tightening

for a foreseeable future. This anchored certainty about the short end of the curve. At the same time, the

second half of 2003 welcomed first signs of recovery, but they continued to be mixed: Increases in retail sales

and productivity gains mingled with still weak payroll figures. Investors were struggling to interpret the

implications of these numbers for the long term, spurring a new thrust of volatility at the long segment of

the curve.

Quite a different, but consistent, story is related to an earlier volatility episode in June 1995 highlighted in

panel f of Fig. 9. This moment, which marks the largest move in volatility of the two-year rate, is manifestly

captured by the V22 dynamics. Yet, it does not appear more than a usual blip either in the other two factors,

or in the volatility of longer yields. Accordingly, this time the trigger to the event had a short-end nature.

18Since factors are latent, we do not discuss the direction of their impacts when at the tenth or 90th percentile. The particular
sign is a consequence of the identifying normalization we impose. ft factor is an exception, given its close resemblance to
the short rate.
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In mid-1995 the monetary policy easing was imminent. The market was expecting that the Fed would take

an aggressive pace to prop up the economy, as indicated by the BlueChip Economic Indicators survey. In

May the expectations of the three-month T-bill rate plunged remarkably by over 1%. Though the Fed did

ease in the end, it did so by much less then expected. This raised confusion at the short end of the curve,

but left the long-end almost intact.

However incidental, the two volatility episodes expose well the roles of factors that move the volatility

curve. In particular, they back our finding of long- versus short-run volatility components. To provide

further support for this interpretation, in Section 6 we establish more rigorously the link between factors

and observable economic quantities. Before doing so, however, we turn to exploring whether and how the

volatility states influence the yield curve.

5.4. Are volatility factors revealed by the yield curve?

To understand how our model answers this question, let us focus again on Fig. 10. Its right-hand panels

(b1, b2, b3) plot the response of the yield curve to large perturbations in the volatility states. Relative to the

strong reaction induced by the Yt factors, the impact of the volatility states on the cross section of yields

turns out much weaker. Even spectacular shifts in the V22 and V12 factors—recall that we consider their

tenth and 90th percentile values—do not exert a visible effect on interest rates of any maturity. The impact

of V11 is only revealed at maturities beyond five years, still it does not exceed a few (on average seven)

basis points. This fact has an intuitive meaning: Abstracting from the potential volatility impact on the

term premiums, we would expect the long-term volatility factor V11 to show up at longer maturities via

the convexity effect. Since this effect is mainly present in long yields, the response to V22 should be less

pronounced, or even negligible.

To illustrate this effect over time, Fig. 11 plots the model-implied yields yτ
t = − 1

τ
{A(τ) + B(τ)′Xt +

Tr[C(τ)Vt]} against hypothetical yields produced by removing Vt, i.e. yτ
t = − 1

τ
{A(τ) + B(τ)′Xt}. The

graph makes our earlier point more explicit: Volatility factors contribute a tiny margin to the dynamics of

yields. The curve is virtually indistinguishable whether or not Vt factors are included. With τ → 0, the

impact of Vt is excluded by construction of the short rate in Eq. (4). It turns out, however, that also in

matching longer yields the model chooses not to employ the volatility states.

Our estimates suggest that matrix of factors loadings, whose rows are given by

[
−B(τi)

τi

′

,−vech
(

C(τi)
τi

)′
]
,

i = 1, . . . , 6, is close to singular (condition number of 9000). It is thus hardly possible to back out a complete

set of volatility states from yields. Still, we might be able to recover at least one of them. We reduce the

dimension of the loadings’ matrix to four and select only factor V11, i.e.
[
−B(τi)

τi

′

,−C11(τi)
τi

]
. This matrix

becomes easily invertible (condition number of 16), but it is still difficult to empirically disentangle the

elements of Xt from the volatility factor as both have to be identified from the same long-end yields. The

quality of inversion depends on the subset of yields chosen, which explains why the backing-out technique

has troubles identifying volatility states.
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5.5. Filtered factors versus principal components

Finally, we would like to understand how our extracted factors relate to the usual yield curve metrics—

the orthogonal principal components. How does their interdependence and the presence of Vt states impact

the interpretation? Table 7 presents contemporaneous regressions of filtered states on the five principal

components (PCs). Each of our yield curve factors is strongly related to two PCs. Factor X1 is linked to

PC1 (level) and PC2 (slope) exactly as factor f is. But while X1 loads with the same sign on the level and

slope, factor f loads positively on level but negatively on the slope. Our intuition is that a positive shock to

f—a positive monetary policy shock—is linked to a higher level but a lower slope due to, e.g., the decreased

inflation expectations. Alternatively, one can interpret factors X1 and f as two levels, a long- and a short-

term, respectively. These levels respond to economically distinct shocks (see Section 6) and are connected

in a nontrivial way through the monetary policy transmission mechanism. Interestingly, support to our

two-level interpretation of factors is given in a recent Wall Street Journal article by the ex-Fed Chairman

Alan Greenspan, as he discusses the decoupling of the monetary policy from the long-term rates after the

year 2000 (Greenspan, 2009). Factor X2 is related to the level and to PC3 (curvature) with the opposite

signs, and captures the monetary transmission up to the medium term.

Our volatility states pick up tiny movements in the curve embedded in principal components of higher

order (PC4 and PC5). But not only. Vt’s are also related to the slope (PC2). Empirical evidence in Section

2 helps explain this fact: Monetary easing in our sample, raising the slope of the term structure, coincides

also with a pronounced boost of the volatility curve (see e.g., Fig. 1). Therefore, and despite their very

different roles for the yield curve, both volatility states and the slope happen to respond to a common factor.

In terms of higher-order PCs, the long-end volatility V11 and the covariance term V12 load with large and

significant coefficient on the PC4. While more weakly linked to the filtered states, PC5 is also significant

across the board.

This section leads us to several conclusions. There appears to be little evidence that one and the same

variable generates both the term structure of interest rates and of interest rate volatilities. In combination

with the knowledge that three factors are needed to explain just yields, such discrepancy is a tall order

for any three-factor model. Precisely for this reason, the USV restriction may come in handy as a tool for

separating roles of factors in low-dimensional settings. Without such restriction, three-factor models face

misspecification risk on the volatility modeling front. Consequently, more factors are needed, and just one

more may not be enough. There is little support that volatility factors can be identified from the cross section

of yields. Rather, help of extra information from interest rate options, instantaneous volatility proxies (like

the ones we apply), and estimation methods (filtering) is required.

6. Factors and surveys

The current section takes two steps to investigate the economic content of factors. First, we seek additional

evidence for our interpretation of latent states using forecasts about the future direction of US interest rates.

Then, we relate the filtered dynamics to expectations and uncertainties about macro aggregates. We rely
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on surveys rather than realized numbers motivated by the notion that prices and state variables shall reflect

economic prospects better than past events. Our monthly survey data are spliced from two sources. To obtain

forecasts of macro variables, we use the BlueChip Economic Indicators (BCEI) survey. BlueChip Financial

Forecasts (BCFF), in turn, supply us with predictions of interest rates. As evident in the transcripts of the

FOMC meetings, these surveys are regularly used by policymakers at the Fed to read market expectations.

Appendix A.4 provides details about the survey data including their timing within month. We use responses

of individual panelists to construct proxies for the consensus forecast and for the uncertainty. Each month,

the consensus is computed as the median survey reply. The uncertainty is measured with the mean absolute

deviation of individual forecasts.

6.1. Expectations and uncertainties about the yield curve . . .

Our previous findings suggest an important distinction between factors. To prop this conclusion without

resorting to price data used in our estimation, surveys about the evolution of US interest rates are useful. We

construct monthly observations of filtered states by averaging weekly series within each month, and merge

them with the most contemporaneous survey results. Table 8 reports regressions of factors on expectations

and uncertainty about US interest rates, respectively denoted with E and σ. Every coefficient is additionally

equipped with a qualifier (hQ1, hQ4) indicating the horizon for which the forecast of a given yield was made

(next quarter versus four quarters ahead). The different horizons turn out to be mutually exclusive, i.e. we

do not observe situations, in which both hQ1 and hQ4 are jointly significant. In Table 8, we preserve only

significant explanatory variables.

Let us consider the regressions of yield curve factors (X1, X2, f) first. Consensus rate forecasts are

able to explain 76%, 78% and 93% of their variation, respectively. The significance of respective loadings

confirms the split of yield curve factors into long-, intermediate- and short-run. Accordingly, X1 is most

strongly related to the forecasts of the ten- and 30-year rates, X2 captures the two-year yield forecast, and

f is almost entirely linked to the consensus federal funds rate. This consistency carries forward onto the

volatility states. The long-run volatility factor V11 is associated with the uncertainty surrounding the long

end of the yield curve from above five to 30 years. In contrast, the short-run volatility factor V22 loads only

on the uncertainty about the two-year yield.

Interestingly, the short- versus long-run effects have an additional dimension revealed in the pattern of

the forecast horizon identifiers. We find that X1 and its volatility V11 are both most strongly linked to yield

predictions at longer horizons (hQ4). This reverses for factors which we diagnosed as shorter-run. Table

8 shows that shorter-lived predictions (hQ1) play a dominant role for explaining all state variables except

X1 and V11. Incidentally, distinct segments of yield and volatility curves appear to capture how the market

assesses economic prospects and uncertainties at different horizons into the future.

6.2. . . . and the macroeconomy

While it seems natural that different regions of the yield curve are driven by different underlying forces,

current discussion suggests that the same holds true for their volatilities. Therefore, it is tempting to
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understand which economic variables might stand behind those moves. Table 9 presents the regressions

of factors on consensus and uncertainty proxies about macroeconomic quantities. For clarity, we include

only significant loadings. The macro variables we use represent three standard domains: (i) real activity is

captured by real GDP growth (RGDP), industrial production (IP), unemployment (UNEMPL), and housing

starts (HOUST); (ii) the federal funds rate (FFR) describes the stance of the monetary policy, and (iii)

inflation is reflected through the CPI forecasts. The combination of expectations and uncertainty proxies

constructed from these measures turns out to be overwhelmingly informative about our filtered states. We

are able to explain up to about 90% and 50% of variation in the yield curve and volatility factors, respectively.

The picture emerging from those regressions has many angles, but some general observations can be

made. The distribution of loadings among the yield curve factors confirms their distinct responses to the

economic environment. The long-term yield factor X1 is strongly driven by the expectations about the real

sector, with unemployment emerging as its key mover. Being an intermediate state, X2 straddles both the

real and nominal effects and puts additional weight onto uncertainties. X1 and X2 load both on consensus

and uncertainty about the real GDP. Still, the magnitude of their reactions to either component is different,

and stronger for X1. Finally, in addition to being almost completely explained by the monetary policy, the

short-end factor ft responds somewhat to the CPI inflation and the current stance of the real activity. The

latter is timely captured by the industrial production. Not surprisingly, the monetary policy is significant

for all yield curve states, but its impact diminishes with the state’s maturity, telling us how the monetary

impulse is transmitted to the longer segments of the curve.

Macroeconomic conditions are also reflected in the Vt states. V11 shows the strongest response to

measures of real activity, and is pronouncedly influenced by the real GDP growth, the uncertainty about

unemployment, and expectations on housing starts. Such configuration is consistent with its interpretation as

the long-run volatility state. Quite different variables have explanatory content for the short-term volatility

state, instead. V22 is linked to the uncertainty about inflation, industrial production and monetary policy.

Notably, shocks to these variables are almost contemporaneously observed and rather short-lived, thus

providing a contrast to more sticky metrics as the real GDP.19 Indeed, variables inducing long- versus

short-run volatility movements form virtually disjoint sets. Expectations of a monetary policy easing, for

instance, spur an increase in V22, but do not appear to have any visible effect on V11. This gives a meaning

to our finding in Section 2 that volatilities of shorter yields respond more to interest rate cuts than do

volatilities of longer yields: It is the short-run volatility component that provides for the asymmetry.

To better understand the difference between the volatility states, in panels a through e of Figure 12 we

plot their impulse-responses to various sources of macro uncertainty. The respective reactions differ in terms

of magnitude and persistence as well as types of variables which are important. Uncertainties about FFR

and inflation have an effect on short volatility which can last up to six months, but their impact on the

long volatility remains negligible. This pattern reverts for the real GDP uncertainty, whose role persists at

19Ranking inflation as short-lived may be surprising. This can be partially explained by the sample period we use (1992:01–
2007:12). Looking at the term structure of inflation expectations provided by BCFF surveys, we notice that while short-run
forecasts (for the current quarter) are surprisingly volatile, their volatility dies out very rapidly. Starting already from
one-quarter-ahead, inflation expectations become extremely smooth. In his speech on January 3, 2004 at the American
Economic Association meetings, Mr. Bernanke mentions this feature explicitly.
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the long end but is only contemporaneously important at the short end. Interestingly, V11 has a significant

impact on V22, but not vice versa, as visible in panel f . The intuition for this result comes with a simple

example. Imagine a situation in which uncertainty about the GDP growth picks up, and elevates V11. The

same news likely spurs uncertainty about near-term activity measures such as industrial production that

affect V22 on the way. However, inverting the scenario and recognizing a higher duration of the long-term

volatility, we do not necessarily expect a symmetric effect in the opposite direction to take place.

Admittedly, interactions between model-implied factors and macro variables deserve a deeper discussion

than the one we venture here. A simple analysis is unlikely to reflect the complexity of lead-lag relations

between different variables. While exploring these relations in depth is beyond the current scope of this

paper, here we provide one example. Housing starts are significant across the board, and as a sole variable

simultaneously appear in the short- and long-run volatility components. The key to understand this fact lies

in the role that housing plays for the real economy and thus monetary policy in the US. The slowdown in the

housing market is thought to have a significant effect on the real GDP growth via reductions in consumer

spending (negative household wealth effect and decline in mortgage equity withdrawals, see e.g. Mishkin

(2007)). In conditions of contained inflation as in our sample, the Fed is expected to counteract this negative

development by lowering the interest rates. This double-edged sword effect of housing on the real economy

and monetary policy shows that the apparently confusing presence of this variable in both V11 and V22 can

actually be consistent with the overall interpretation of these factors.

Turning to the interpretation of the out-of-diagonal covariance factor, we find that—under our iden-

tification scheme20—V12 is highly positively linked to the realized correlation of the long-to-medium part

of the yield curve (see Figure 2, panel c). Contingent on this observation, we can interpret its signs in

survey regressions. V12 is associated with uncertainty measures about the real GDP, unemployment, housing

starts, and monetary policy, all of which load with a negative sign. An increase in uncertainty about the

macroeconomy implies a decline in V12, and a lower correlation between the long and medium part of the

yield curve. Intuitively, the different segments tend to move more independently when the curve changes

shape. This, in turn, usually occurs in times of increased uncertainty such as April–June 2001, which is the

only NBER-proclaimed recession in our sample (see our collection of major curve moves in Table 1). V12

captures precisely those moves.

7. Discussion and robustness

This section discusses the robustness and efficiency of the realized second moment estimator (1) that are

critical for our results. We also address the market price of risk specification, and its selection approach we

follow in estimation.

20Our latent states are subject to identification restrictions which preclude direct interpretation of factor signs (except for
V11 and V22, which are always positive). Recognizing this fact, we seek to establish factor signs that give their natural
interpretation in terms of observable quantities.
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7.1. Realized covariance matrix estimation

In case of asynchronous trading, the realized covariance matrix estimator defined in Eq. (1) can be biased

toward zero (see e.g. Hayashi and Yoshida, 2005; Audrino and Corsi, 2007). The bias is to a large extent

generated by the interpolation of non-synchronously traded assets, and its severity depends on the difference

in liquidity of the assets considered.21 Hayashi and Yoshida (2005, HY) propose a covariance estimator

which corrects for the bias in (1). The estimator sums up all cross-products of returns which have an overlap

in their time spans, and thus no data is thrown away. The covariance of two bond yields reads:

RCovHY
i,j (t, t + h; Ni, Nj) =

Ni∑

k=1

Nj∑

l=1

(
yti+

kh
Ni

− y
ti+

(k−1)h
Ni

) (
ytj+

lh
Nj

− y
tj+

(l−1)h
Nj

)
I (τi ∩ τj 6= 0) (32)

where τi and τj denote the interval of the return on the first and second bond, respectively.

To verify the robustness of our realized covariance estimator (1), we implement the HY approach for

the realized covariance of ten- and five-year bond. Both estimators deliver very similar results in terms of

magnitude and covariance dynamics. They are highly correlated (90%) and the t-test for the difference in

means does not reject the null that µouter = µHY (p-val = 0.57).

There at least two reasons why we stick to the simple outer-product realized covariance estimator (1).

For one, estimators of Hayashi and Yoshida (2005), Audrino and Corsi (2007) are not directly applicable in

our case because for the construction of the zero curve we require a synchronized set of yield changes. More

importantly, on-the-run Treasury bonds are largely homogenous in terms of liquidity, which is well proxied

by the average number of quotes/trades per day reported in Table A-1 of Appendix A.2.

7.2. Alternatives to the realized covolatility estimator

Instead of the realized second moments, one could resort to other volatility measures. To assess the gain

from using high-frequency data, we consider two alternatives: (i) the DCC-GARCH model proposed by

Engle and Sheppard (2001), and (ii) the realized covolatility computed from the daily data.

In a first step, we estimate the DCC-GARCH(1,1) specification on demeaned yield changes at daily,

weekly and monthly frequency. Estimation results are available upon request. We see several reasons to

prefer the realized estimator to the GARCH. Most of all, the realized covolatility has a richer economic

content that is embedded in the intraday yield movements. The residuals from a regression of realized

volatility on the GARCH volatility still carry significant economic information. Almost 30% of the variation

in residuals can be explained by macroeconomic surveys. Second, the realized measure is nonparametric

and thus not prone to a misspecification. Third, GARCH estimates cannot be easily aggregated to lower

frequencies (Drost and Nijman, 1993). Based on monthly data, GARCH estimates are imprecise compared

to the realized volatility. Thus, if using GARCH, our analysis in Section 6 would be less reliable. Finally, the

DCC-GARCH model has difficulties in matching the abrupt changes in correlation evident in the realized

correlation estimates.

21Audrino and Corsi (2008) offer a thorough discussion of the bias in realized covariance.
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In a second step, we compare our realized covolatility measure to the one estimated on the daily data.

This exercise gives us a view on the additional value coming from the intraday data. The daily estimator

can explain a significant part (around 70%) of the variation in the realized covolatility. However, similar

to above, the residuals from the regression of realized volatility measures on the volatility from the daily

data are still informative. Up to 20% of their variation can be explained by the economic forecasts. The

importance of including intraday observations increases with maturity.

Those comparisons show that the reason for using high-frequency data is beyond the standard statistical

efficiency arguments. The incremental economic content of intraday observations is consistent with our inter-

pretation of realized volatility as providing complementary piece of information towards yields themselves.

7.3. Specification of bond premiums

Both economically and statistically, it is hard to identify all parameters of market prices of risk ΛY

driving excess returns of bonds. Therefore, we reduce the number of parameters to be estimated to a

necessary minimum. This section describes our selection procedure.

We write log excess holding period return from a simple strategy of buying an n-year bond at time t and

selling it in one year, i.e. for weekly data at t + 52, the strategy is financed by rolling over one year bond:

rx
(n)
t+52 ≡ p

(n−1)
t+52 − p

(n)
t − y

(1)
t , (33)

where p
(n)
t denotes log of bond price P

(n)
t , and n is expressed in years. To understand how excess returns

are related to the yield curve, we regress the realized excess returns of two- to ten-year zero bonds defined

in Eq. (33) on the vector of filtered states (Y ′
t , vech(Vt)

′)′:

rx
(n)
t+52 = α(n) + β

(n)
Y Yt + β

(n)
V vech(Vt) + ǫ

(n)
t+52. (34)

Because at this point we are agnostic about the structure of model-implied risk prices ΛY , we obtain factors

for the above regression from a model estimated with zero market prices of risk for all shocks. There is a

reason for keeping all states in the predictive regression: The six factors are in the information set of an

investor at time t, i.e. having high-frequency bond data the investor can filter all of them. While those

regressions explain between 41% (two-year) and 33% (ten-year) of variation in realized excess returns, based

on Hansen-Hodrick standard errors only X1 and X2 turn out statistically significant at the 1% level.

The part of bond excess return that can be predicted using the yield curve information has the following

form:

Et

[
rx

(n)
t+52

]
= α(n) + β

(n)
Y Yt + β

(n)
V vech(Vt). (35)

In a first step, we determine the main sources of the time-variation in excess returns. Similar to Cochrane

and Piazzesi (2008), we stack expected excess returns across maturities and extract principal components. A

single factor—the first PC—can explain about 98% of the return variation and its loading increases with the

bond maturity. Importantly, around 80% of the movements in this dominant PC can be captured by X1 and
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X2. This finding has immediate implications for modeling premiums. In particular, the return-forecasting

factor is largely spanned by our first two yield curve states.22 Hence, we let X1 and X2 drive the variation

in excess returns, both of which exhibit stochastic volatility and a nontrivial correlation.

In a second step, to establish which shocks are priced, we estimate a VAR system for the filtered yield

curve factors Yt, and compute covariances of factor shocks with the realized excess returns across maturities.

Covariances of shocks to X1 and X2 with the realized excess returns are much larger than those of f , and in

both cases rise with maturity: covariance of X1 increases linearly and of X2 has a hump-shape. This pattern

suggests that shocks to factors X1 and X2 are priced. Therefore, from Eq. (7), we specify:

ΣY,tΛY,t =




0

0

0


 +




λ1
11 0 0

0 λ1
22 0

0 0 0







X1,t

X2,t

ft


 . (36)

In order to corroborate this choice, we turn again to regressions of yield factors on surveys (Section 6.2,

Table 9). Yield factors are to a large degree explained by the expectations and uncertainties about the macro

conditions. As such, their innovations should subsume shocks in those expectations and uncertainties. Factor

f captures rather short-lived shocks stemming from industrial production and inflation. Instead, the likely

candidates for impacting premiums on longer-duration bonds in our sample—output growth, unemployment

and housing market—enter the yield curve precisely through factors X1 and X2.

While with specification (36) we aim to provide a decent description of the time-varying portion of

premiums, we remain moderately optimistic about its ability to capture the full economic content of expected

excess returns. Several symptoms foster our caution. For instance, the residuals from regressions (34)

of realized excess returns on yield curve factors (or similarly on the Cochrane-Piazzesi factor) are highly

autocorrelated (0.96). This points to the existence of other return predictors outside the yield and volatility

curve. Moreover, we find it possible to significantly increase the R2’s of those regressions by including the

cross-products of yield curve factors. Unfortunately, such market prices of risk are hard to implement in

our model without sacrificing its tractability. The convenient affine property of both the physical and risk

neutral dynamics is potentially traded off for some misspecification on the side of term premiums. With our

approach to selecting ΛY , we try to introduce a minimal misspecification while following the basic economic

intuition, and ensuring stable parameter estimates. Indeed, including the unconstrained matrix ΛY can

considerably hamper the optimization of the loss function (31), and thus distort the identification of latent

states.

8. Conclusions

We study and model the joint behavior of the yield and the volatility curve. Understanding the interest

rate volatility requires an additional effort as its dynamics is hidden from the perspective of the cross-section

22Recall that the states we filter out differ from the traditional PCs extracted from yields. Therefore, the explanatory power
of Xt’s for the return-forecasting factor is not in contradiction with the results of Cochrane and Piazzesi (2005, 2008), who
show that their factor goes beyond the standard PCs.
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of yields. However, with 16 years’ worth of tick-by-tick Treasury bond transaction data, we obtain a good and

contemporaneous description of the evolution of yields and their realized covariances. Several facts emerge

from the analysis of the realized series: The level, slope and curvature portfolios comove in a nontrivial way,

so that an unconditional PCA neglects potentially important interactions between states forming the curve.

Interest rate volatility curve does not move on a single factor, rather several states are needed to comprise

its dynamics. Finally, while the yield-volatility link is weak on average, we also show that it is time-varying

and subject to the influence of the monetary policy.

We take the empirical observation as a clue for the model design. To decompose the two objects, we

develop a no-arbitrage model able to capture jointly the observed dynamics of yields and their volatilities.

While additional restrictions (e.g. the USV) are not called for by the data, the model’s empirical performance

relies on two elements: one is the multivariate volatility structure separating factors in volatilities from those

spanning yields, the latter is the identification of volatility states with support of the filtering and of the

realized covolatility proxies.

The model disentangles clear long- and short-run volatility components which correspond to the respective

yield curve states, and consequently, yield durations. An additional covolatility factor accommodates the

interactions between the long and intermediate region of the curve. Neither of those states manifests itself

in the cross section of yields: If at all, the most pronounced impact comes from the long-end volatility, but

it does not exceed a few basis points and is only visible at maturities of beyond five years.

We start by being agnostic about factor names, and only after having shown their explanatory content, we

link them to the forward-looking economic quantities using surveys. Factors differ by shocks to which they

respond. The short-run volatility reflects the impacts of changing expectations and uncertainties about short-

lived, at least in our sample, economic variables (e.g. inflation, monetary policy, and industrial production).

The longer-run volatility is associated with more sticky measures of macroeconomic conditions (e.g. real

GDP growth, unemployment). The covolatility term is sensitive to uncertainties about the real activity and

the Fed, all of which contribute negatively to the correlation between the middle-to-long segment of the yield

curve.

As such, the latent factors do not appear to be void. Each of them compounds influences of several

variables, and shows how they are transmitted throughout the term structure. Restricting the discussion

up front to few macro variables, instead, could obscure some important effects uncovered by the current

approach. Still, while yield curve states are well explained with the combination of surveys, a large portion

(about half) of volatility remains nonfundamental from the perspective of the economic variables we consider.

Interactions with the stock and other markets, that are beyond the scope of this study, are potential

ingredients contributing to the unexplained part.

This work can be extended in several directions. Most importantly, we could spend more time on

specifying and studying prices of risk, and their relationship with the amount of risk in interest rates.

Though this aspect is of second-order importance when explaining the yield volatility curve, it is key for

understanding the bond term premiums. This direction is the focus of our research in future.
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Appendix A.

This Appendix gives a brief description of the high-frequency Treasury data, our zero curve construction method-
ology, and macroeconomic surveys.

A.1. GovPX and BrokerTec

Table A-1 reports some basic statistics on the Treasury bond transaction data in the period 1992:01 through
2007:12. For the GovPX period (1992:01–2000:12), we report the average number of quotes per trading day and for
the BrokerTec period (2001:01–2007:12) we report the average number of transactions per trading day. The number
of Treasury bonds and bills totals to 1005 in our sample period. These were transacted or quoted more than 37.7
million times in the on-the-run secondary market.

Table A-1 Average number of quotes/trades per day in the GovPX and BrokerTec databases

Bond maturity GovPX period BrokerTec period

3M 374 –

6M 352 –

2Y 2170 1035

3Y 1385 773

5Y 3128 1987

7Y 637 –

10Y 2649 1956

30Y 793 633

A.2. Testing for microstructure noise

To avoid potential bias in the estimates of the realized volatility using high-frequency data, we apply several
tests for the presence of noise caused by the market microstructure effects. In a first step, we compute the first
order autocorrelation in high-frequency price returns. Table A-2 reports the first order autocorrelation of equally-
spaced ten-minute yield changes in the US Treasury zero curve in the period 1992:01–2007:12. The autocorrelation is
statistically significant for the maturities of three, five and ten years. However, the magnitude of all autocorrelations
is very small, which makes them economically insignificant.

Table A-2 Autocorrelation of high-frequency yield changes

2Y 3Y 5Y 7Y 10Y

Autocorrelation 0.0039 0.0154 -0.0064 -0.0040 -0.0175

p-value (0.0648) (0.0001) (0.0025) (0.0589) (0.0001)

In a second step, we use the volatility signature plots displaying the average realized volatility against the sampling
frequency (Fig. A-1). In the presence of microstructure noise, the average realized volatility increases with the
sampling frequency. The reason is the dominance of noise at the very high-frequency sampling (see e.g., Bandi and
Russell, 2008). None of the above diagnostics suggests that the microstructure noise present in our data is large and
could overwhelm our results.

A.3. Extracting zero coupon yield curve from high-frequency data

We fit the discount curve using smoothing splines. One of the important steps in the procedure is to select the
appropriate number of knot points. We make the number of knot points dependent on the number of available bonds
and locate them at the bond maturities. In our setting, the number of knot points varies between three and six.
The fact that we consider only one specific part of the zero coupon yield curve allows us to use constant roughness
penalty as in Fisher, Nychka, and Zervos (1994) for estimating the whole curve. Waggoner (1997) proposes a varying
roughness penalty for the smoothing splines procedure with a low penalty at the short end and a high penalty at the
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Fig. A-1. Volatility signature plot

We plot the average weekly realized volatility (RV) against the sampling frequency for the whole sample 1992:01–2007:12. We
consider five maturities in the zero coupon curve: two, three, five, seven, and ten years.

Table A-3 Correlation of zero coupon yields with CMT and GSW yields

2Y 3Y 5Y 7Y 10Y

Corr CMT 1.000 1.000 0.999 0.996 0.997
Corr GSW 1.000 0.999 0.999 0.998 0.997

very long end of the curve. In the period 2001:01–2007:12, the intraday quotes on Treasury bills are not available
from the BrokerTec database. In order to anchor the very short end for the smoothing splines procedure, we include
the daily data on the three-month Treasury bill obtained from the FRED database at the FRB St. Louis. Before
using the constructed zero curve for the realized volatility estimation, we compare our zero coupon yields with the
daily Constant Maturity Treasury rates (CMT) from the Fed, as well as with zero yields compiled by Gurkaynak,
Sack, and Wright (2006) (GSW). Our daily yields are virtually perfectly correlated with the CMTs as well as with
the GSW yields. Table A-3 summarizes the results.

A.4. Survey data

BlueChip Financial Forecasts. BlueChip Financial Forecasts (BCFF) survey contains monthly forecast of yields,
inflation and GDP growth given by approximately 45 leading financial institutions. The BCFF is published on the
first day of each month, but the survey itself is conducted over a two-day period, usually between the 23rd and 27th
of each month. The exception is the survey for the January issue which generally takes place between the 17th and
20th of December. The precise dates as to when the survey was conducted are not published. The BCFF provides
forecasts of constant maturity yields across several maturities: three and six months, one, two, five, ten, and 30 years.
The short end of the term structure is additionally covered with the forecasts of the Fed funds rate, prime bank rate
and three-month LIBOR rate. The forecasts are quarterly averages of interest rates for the current quarter, the next
quarter out to five quarters ahead. The figures are expressed as percent per annum. In addition, panelist provide
forecasts for macroeconomic quantities: real GDP, GDP price index and Consumer Price Index (CPI). The numbers
are seasonally adjusted quarter-on-quarter changes.

BlueChip Economic Indicators. The BlueChip Economic Indicators (BCEI) survey contains individual and
consensus forecasts of about 50 professional economists from leading financial and advisory institutions. The survey
is compiled on a monthly basis, and contains predictions of key financial and macroeconomic indicators, e.g. real and
nominal GDP, GDP deflator, CPI, three-month T-bill rate, industrial production, unemployment, housing starts.
The survey is conducted over two days, generally beginning on the first business day of each month. The newsletter
is typically finished on the third day following completion of the survey and published on the tenth of a month. Every
month, panelists provide two types of forecasts: (i) average figure for the current calendar year and (ii) average
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figure for the next calendar year. For instance, in January 2001 the survey contains forecasts for 2001 and 2002. In
February 2001, the forecast horizon shrinks to 11 months for the current year, and to 23 months for the next year,
and so on. The diminishing forecast horizon implies that the cross-sectional uncertainty measures computed from the
individual responses display a visible seasonal pattern. To gauge uncertainty, every month we use the mean absolute
deviation of individual forecasts. To remove the problem of seasonality, we adjust the series with a X-12 ARIMA
filter. Consensus forecast is defined as the median of individual forecasts in a given month.
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Appendix B.

This Appendix derives moments of the state variables necessary for the implementation of the unscented Kalman
filter.

B.1. Moments of the Vt process

The first conditional moment of the volatility process Vt is given as:

Et (Vt+∆t) = kµ̄V,∆t + ΦV,∆tVtΦ
′
V,∆t, (37)

where

ΦV,∆t = e
M∆t (38)

µ̄V,∆t =

∫ ∆t

0

e
M∆t

Q
′
Qe

M′∆t
ds = −1

2
Ĉ12(∆t)Ĉ′

11 (∆t) , (39)

with (
Ĉ11(∆t) Ĉ12(∆t)

Ĉ21(∆t) Ĉ22(∆t)

)
= exp

[
∆t

(
M −2Q′Q

0 −M ′

)]
.

Assuming stationarity (i.e. negative eigenvalues of M), the unconditional first moment of Vt follows as:

lim
∆t→∞

vecEt (Vt+∆t) = kvec (µ̄V,∞) = −k [(I ⊗ M) + (M ⊗ I)]−1 vec(Q′
Q). (40)

The conditional and unconditional covariance matrix of Vt reads:

Covt [vec (Vt+∆t)] = (In2 + Kn,n)
[
ΦV,∆tVtΦ

′
V,∆t ⊗ µ̄V,∆t + k (µ̄V,∆t ⊗ µ̄V,∆t) + µ̄V,∆t ⊗ ΦV,∆tVtΦ

′
V,∆t

]
. (41)

lim
∆t→∞

Covt [vec (Vt+∆t)] = (In2 + Kn,n) k (µ̄V,∞ ⊗ µ̄V,∞) . (42)

Kn,n is the commutation matrix with the property that Kn,nvec(A) = vec(A′). These moments are derived in
Buraschi et al. (2008) and thus are stated without a proof.

Gourieroux et al. (2005) show that when ΩΩ′ = kQ′Q, k integer, the dynamics of Vt can be represented as the
sum of outer products of k independent Ornstein-Uhlenbeck processes with a zero long-run mean:

Vt =

k∑

i=1

v
i
tv

i′
t (43)

v
i
t+∆t = ΦV,∆tv

i
t + ǫ

i
t+∆t, ǫ

i
t ∼ N(0, µ̄V,∆t). (44)

Taking the outer-product implies that the exact discretization of Vt has the form:

Vt+∆t = kµ̄V,∆t + ΦV,∆tVtΦ
′
V,∆t + u

V
t+∆t, (45)

where the shock uV
t+∆t is a heteroskedastic martingale difference sequence.

B.2. Moments of the Yt dynamics

We assume that the dimension of Xt is n = 2 and ft is a scalar process. Let Yt = (X ′
t, ft)

′
:

dYt = (µY + KY Yt) dt + Σ(Vt) dZt. (46)

It is straightforward to show that the conditional and unconditional first moment of Yt has the form:

Et (Yt+∆t) =
(
e
KY ∆t − I

)
K−1

Y µY + e
KY ∆t

Yt (47)

lim
∆t→∞

Et (Yt+∆t) = −K−1
Y µY , (48)

where KY is assumed to be lower triangular with negative eigenvalues.

To compute the conditional covariance of Yt, let VY (t, T ) := Covt (YT ) . Following Fisher and Gilles (1996), the
application of Ito’s lemma to Ŷ (t, T ) := Et (YT ) reveals that:
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dŶ (t, T ) = σ̂Y (t, T ) dZt, (49)

where σ̂Y (t, T ) := ΦY (t, T )Σ (Vt) , with

ΦY (t, T ) = e
KY (T−t) (50)

and

ΣY (Vt) =

( √
Vt 0
0 σ2

f

)
. (51)

Then, integrating dŶ (t, T ) yields:

YT = ŶT,T = Ŷt,T +

∫ T

s=t

σ̂Y (s, T ) dZs. (52)

Therefore, we have:

VY (t, T ) = Covt

[∫ T

s=t

σ̂Y (s, T )dZY
s

]
= Et

[∫ T

s=t

σ̂Y (s, T )σ̂Y (s, T )′ds

]
(53)

=

∫ T

s=t

ΦY (s, T )Et

(
Vs 0
0 σ2

f

)
Φ′

Y (s, T )ds. (54)

Note that since KY is lower triangular, ΦY (t, T ) = eKY (T−t) is also lower triangular, and we have:

ΦY (t, T ) =

(
ΦX (t, T ) 0
ΦXf (t, T ) Φf (t, T )

)
. (55)

Let us for convenience define two matrices:

M1Y (t, T ) =




ΦX (t, T ) ⊗ ΦX (t, T )
ΦX (t, T ) ⊗ ΦfX(t, T )
ΦfX(t, T ) ⊗ ΦX (t, T )
ΦfX(t, T ) ⊗ ΦfX(t, T )


 and M0Y =

(
08×1

Φ2
f (t, T )σ2

f

)
. (56)

With help of simple matrix algebra applied to (54), the conditional covariance of Yt has the (vectorized) form

vecVY (t, T ) =

∫ T

s=t

M1Y (s, T ) [ΦV (s, T ) ⊗ ΦV (s, T )]ds × vec (Vt) +

∫ T

s=t

kM1Y vec [µ̄V (t, s)] ds +

∫ T

s=t

M0Y (s, T )ds.

(57)

The unconditional covariance of Y is given as:

lim
T→∞

vecVY (t, T ) = lim
T→∞

∫ T

s=t

kM1Y (s, T )vec [µ̄V (t, s)]ds +

∫ T

s=t

M0Y (s, T )ds. (58)

This expression exists if the mean reversion matrices M and KY are negative definite.

The expressions for the conditional mean (47) and covariance (57) give rise to an exact discretization of the
process Yt.

Remark 1. In order to avoid the numerical integration, we can resort to a discrete-time approximation of the
unconditional covariance matrix of Y factors. To this end, we discretize the dynamics

dYt = (µY + KY Yt) dt + ΣY (Vt) dZt (59)

as

Yt+∆t = µ̄Y,∆t + ΦY,∆tYt + ΣY (Vt)
√

∆tεt+∆t, (60)

where µ̄Y,∆t =
(
eKY ∆t − I

)
K−1

Y µY . The second moment of the discretized dynamics is straightforward to obtain as:

vecE
(
Y Y

′) = (I − ΦY,∆t ⊗ ΦY,∆t)
−1 ×

×vec
{
µ̄Y,∆tµ̄

′
Y,∆t + µ̄Y,∆tE

(
Y

′
)
Φ′

Y,∆t + ΦY,∆tE (Y ) µ̄
′
Y,∆t + E

[
ΣY (Vt)ΣY (Vt)

′
]
∆t

}
(61)

vec [V ar (Y )] = vecE
(
Y Y

′
)
− vecE (Y ) [vecE (Y )]′ .

We check that for the weekly discretization step ∆t = 1
52

this approximation works well, and implies a significant
reduction of the computational time.
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Appendix C.

We provide a solution for the general version of the model, which incorporates both correlation between the dW

and dZ shocks and a general form of the market prices of risk. Based on arguments presented in the body of the
paper, we analyze a restricted version of the model, in which the correlation parameter is set to zero and only dZ

shocks are priced.

C.1. Dependence between X and V factors

In the general case, Xt and Vt can be correlated, i.e.:

dZX = dWρ +
√

1 − ρ′ρ dB (62)

= dWρ + ρ̃dB, (63)

where dB is a (2× 1)-vector of Brownian motions which is independent from dW , and ρ is a (2× 1)-vector such that
ρ ∈ [−1, 1] and ρ′ρ < 1 (e.g., da Fonseca, Grasselli, and Tebaldi, 2006; Buraschi, Porchia, and Trojani, 2009). We
use short notation ρ̃ :=

√
1 − ρ′ρ.

C.2. General form of the market prices of risk

Let us write the shocks to Y under the physical dynamics as (for brevity we omit the superscript P):

dZ =

(
dZX

dZf

)
=

(
dWρ + ρ̃dB

dZf

)
=

(
dWρ

01×2

)
+

(
ρ̃I2×2 02×1

01×2 11×1

)

︸ ︷︷ ︸
R

(
dB

dZf

)

︸ ︷︷ ︸
dZ̃

=

(
dWρ

01×2

)
+ RdZ̃, (64)

where

R =

(
ρ̃I2×2 02×1

01×2 11×1

)
, dZ̃ =

(
dB

dZf

)
. (65)

The change of drift is specified as:

dZ̃ = dZ̃
Q − ΛY,tdt (66)

dW = dW
Q − ΛV,tdt (67)

ΛY,t = Σ−1
Y (Vt)

(
λ

0
Y + λ

1
Y Yt

)
(68)

ΛV,t =
(√

Vt

)−1

Λ0
V +

√
VtΛ

1
V , (69)

where λ0
Y and λ1

Y are a (n+1)-vector and (n+1)× (n+1) matrix of parameters, and Λ0
V and Λ1

V are n×n constant
matrices. To exclude arbitrage, the market price of risk requires that the parameter matrix Q be invertible, so that
Vt stays in the positive-definite domain. This specification implies the risk-neutral dynamics of Yt given by:

dYt =

[(
µY −

(
Λ0

V ρ

0

)
− Rλ

0
Y

)
+

(
KY − Rλ

1
Y

)
Yt −

(
VtΛ

1
V ρ

0

)]
dt + ΣY (Vt) dZ

Q
t . (70)

Let:

µ
Q
Y = µY −

(
Λ0

V ρ

0

)
− Rλ

0
Y (71)

KQ
Y = KY − Rλ

1
Y . (72)

The dynamics of Vt is given as:

dVt =
[(

ΩΩ′ − Λ0
V Q − Q

′Λ0′
V

)
+

(
M − Q

′Λ1′
V

)
Vt + Vt

(
M

′ − Λ1
V Q

)]
dt +

√
VtdW

Q
t Q + Q

′
dW

Q′
t

√
Vt. (73)

Let

ΩQΩQ′ = ΩΩ′ − Λ0
V Q − Q

′Λ0′
V = (k − 2v) Q

′
Q (74)

M
Q = M − Q

′Λ1′
V , (75)
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where, to preserve the same distribution under P and Q, we assume Λ0
V = vQ′ for a scalar v such that (k − 2v) > n−1.

C.3. Solution for bond prices

Since both components of the state vector, i.e. Yt, Vt, are affine, bond prices are of the form:

F (Yt, Vt; t, τ ) = exp
{
A (τ ) + B (τ )′ Yt + Tr [C (τ ) Vt]

}
. (76)

By discounted Feynman-Kac theorem, the drift of dF equals rF, thus:

L{Y,V }F +
∂F

∂t
= rF, (77)

where L{Y,V } is the joint infinitesimal generator of the couple {Yt, Vt} under the risk neutral measure. We have:

L{Y,V }F = (LY + LV + LY,V ) F (78)

LY F =
∂F

∂Y ′

[
µ

Q

Y + KQ

Y Y −
(

VtΛ
1
V ρ

0

)]
+

1

2
Tr

[
∂F

∂Y ∂Y ′
ΣY (V ) Σ′

Y (V )

]
(79)

LV F = Tr
[(

ΩQΩQ′ + M
Q
V + V M

Q′
)
RF + 2V RQ

′
QRF

]
(80)

LY,V F = 2Tr

[(
RQ

′
ρ

∂

∂X ′

)
FV

]
. (81)

R is a matrix differential operator: Rij :=
(

∂
∂Vij

)
. Substituting derivatives of (76) into (77) gives:

B
′
τ

(
µ

Q

Y + KQ

Y Y
)
− Tr

(
Λ1

V ρB
′
X,τV

)
+

1

2
Tr

(
BX,τB

′
X,τV

)
+

1

2
B

2
f,τ σ

2
f (82)

+ Tr
(
ΩQΩQ′

Cτ

)
+ Tr

[(
CτM

Q + M
Q′

Cτ + 2CτQ
′
QCτ

)
V

]
(83)

+ Tr
[(

CτQ
′
ρB

′
X,τ + BX,τρ

′
QCτ

)
V

]
(84)

=
∂Aτ

∂τ
+

∂Bτ

∂τ

′

Y + Tr

(
∂Cτ

∂τ
V

)
+ γ0 + γ

′
Y Y (85)

By matching coefficients, we obtain the system of equations:

∂A

∂τ
= B

′
τµ

Q

Y +
1

2
B

2
f,τσ

2
f + Tr

(
ΩQΩQ′

Cτ

)
− γ0 (86)

∂B

∂τ
= KQ′

Bτ − γY (87)

∂C

∂τ
=

1

2
BX,τB

′
X,τ + Cτ

(
M

Q + Q
′
ρB

′
X,τ

)
+

(
M

Q′ + BX,τρ
′
Q

)
Cτ + 2CτQ

′
QCτ − Λ1

V ρB
′
X,τ (88)

To obtain the solution provided in the text, set ρ = 02×1, Λ0
V = 02×2 and Λ1

V = 02×2.

C.4. Instantaneous volatility of yields

The instantaneous volatility of yields is given as:

1

dt
〈dy

τ1
t , dy

τ2
t 〉 =

1

τ1τ2
Tr

[
Bf,τ2Bf,τ1σ

2
f +

(
BX,τ1B

′
X,τ2

+ 2Cτ2Q
′
ρB

′
X,τ1

+ 2Cτ1Q
′
ρB

′
X,τ2

+ 4Cτ1Q
′
QCτ2

)
Vt

]
. (89)

Proof. The only term which requires clarification is B′
τ1

dYt × Tr [Cτ2dVt] = B′
X,τ1

dXt × Tr [Cτ2dVt]

B
′
X,τ1

dXt × Tr [Cτ2dVt] = B
′
X,τ1

√
V dZX × Tr

[
Cτ2

(√
V dWQ + Q

′
dW

′
√

V
)]

= B
′
X,τ1

√
V (dWρ + ρ̃dB) × 2Tr

(
QCτ2

√
V dW

)

= 2Tr
(
Cτ2Q

′
ρB

′
X,τ1

V
)

Where we use the following fact:
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Tr
[
C

(√
V dWQ + Q

′
dW

′
√

V
)]

= 2Tr
(
QC

√
V dW

)
. (90)

C.5. Conditional covariance of X and V

We consider the conditional covariance matrix of X and V

d

〈


Xt,1

Xt,2

ft


 ,




Vt,11

Vt,12

Vt,22




〉
=




d (X1, V11) d (X1, V12) d (X1, V22)
d (X2, V11) d (X2, V12) d (X2, V22)
d (f, V11) d (f, V12) d (f, V22)


 (91)

The elements of the covariance matrix are given by:

d 〈Xk, Vij〉 = ρ
′ (Q:,jVik + Q:,iVjk) , (92)

where Q:,j denotes the j-th column of matrix Q.

Proof. The expression follows by simple algebra:

1

dt
d 〈Vij , Xk〉 =

[
e
′
i

(√
V dWQ

)
ej + e

′
i

(
Q

′
dW

′
√

V
)

ej

] (
e
′
k

√
V dWρ

)

= Tr
(
eje

′
i

√
V dWQ

)
× Tr

(
ρe

′
k

√
V dW

)
+ Tr

(
eje

′
iQ

′
dW

′
√

V
)
× Tr

(
ρe

′
k

√
V dW

)

= vec
(√

V eie
′
jQ

′
)′

vec
(√

V ekρ
′
)

+ vec
(√

V eje
′
iQ

′
)′

vec
(√

V ekρ
′
)

= Tr
(
Qeje

′
iV ekρ

′
)

+ Tr
(
Qeie

′
jV ekρ

′
)

= ρ
′ (Q:,jVik + Q:,iVjk) , (93)

where ei is the i-th column of the identity matrix.

C.6. Discrete approximation to the unconditional covariance matrix of X and V

We can use the discretized dynamics of X and V to compute the unconditional covariance matrix:

Xt+∆t = µ̄X,∆t + ΦX,∆tXt +
√

Vt∆t (Ut+∆tρ + ρ̃bt+∆t) (94)

Vt+∆t = kµ̄V,∆t + ΦV,∆tVtΦ
′
V,∆t +

√
Vt∆tUt+∆tQ + Q

′
U

′
t+∆t

√
Vt∆t, (95)

where Ut is a 2 × 2 matrix of Gaussian shocks, and bt is a 2-vector of Gaussian shocks. The covariance between X

and V is computed as :

Cov [X, vec(V )] = E
[
Xvec (V )′

]
− E (X)E

[
vec (V )′

]
. (96)

The element E
[
Xvec (V )′

]
reads:

vecE
[
X (vecV )′

]
= [In3 − (ΦV ⊗ ΦV ) ⊗ ΦX ]−1 (vecA + vecB) , (97)

where A is given as:

A = µ̄Xvec (kµ̄V )′ + µ̄Xvec
[
ΦV E (Vt)Φ′

V

]
+ ΦXE(Xt)vec(kµ̄V )′, (98)

and the elemtent (k, ij) of matrix B, associated with the covariance of Xk and Vij has the form:

Bk,ij = ρ
′ (Q:,jVik + Q:,iVjk) ∆t, (99)

where B =

(
B1,11 B1,12 B1,21 B1,22

B2,11 B2,12 B2,21 B2,22

)
. Note that the second and third columns of B are identical.
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Appendix D.

This Appendix summarizes the algorithm for the unscented Kalman filtering.

We recast the transition and measurement equations above into one state space. The compound transition
equation is given by:

St+∆t = A + BSt + εt+∆t, (100)

and the compound measurement equation is given by:

mt = h(St; Θ) + ϑt. (101)

St = (Y ′
t , V̄ ′

t )′ and A are (n + n̄ + 1) × 1-dimensional vectors, A is given by:

A =

(
(ΦY,∆t − I)K−1

Y µY

k · Envec(µ̄V,∆t)

)
. (102)

B is a block-diagonal matrix of the form:

B =

(
ΦY,∆t 0n×n̄

0n̄×n En(ΦV,∆t ⊗ ΦV,∆t)Dn

)
. (103)

The vector shocks is of the form:

εt+∆t =

(
uY

t+∆t

Envec(uV
t+∆t)

)
, (104)

and its covariance matrix is given by a block-diagonal matrix:

Covt(εt+∆t) =

(
Covt(Yt+∆t) 0n×n̄

0n̄×n Covt(V̄t+∆t)

)
. (105)

mt is a vector of observed yields and volatility measures given by mt = (yτ
t , v

τi,τj

t )′. Model implied yields and
volatilities are affine in the state vector. Function h(·) translates the state variables to model implied yields and
volatilities:

h(St; Θ) =

(
f(St; Θ)
g(Vt; Θ)

)
. (106)

The vector of measurement errors:

ϑt =

( √
Rye

y
t√

Rvev
t

)
(107)

is Gaussian with the covariance matrix, for six yields and three volatility measurements, is given by:

Cov(ϑt) =

(
σ2

yI6 06×3

03×6 diag(σ2
i,v)i=1,2,3

)
. (108)

The core of UKF is the unscented transformation which approximates a distribution of a nonlinear transformation
of any random variable by a set of sample points. In the UKF framework, we apply the unscented transformation
recursively to B and h(·).

We define LS := n + n̄ + 1. Assume that we know the mean S̄ and the covariance PS of St at each point in time
t. We form a matrix S of 2LS + 1 sigma vectors:

S0 = S̄ (109)

Si = S̄ +
(√

(LS + λ)PS

)

i
, i = 1, ..., LS (110)

Si = S̄ −
(√

(LS + λ)PS

)

i−LS

, i = LS + 1, ..., 2LS , (111)

where λ = α2(LS − κ) − LS is a scaling parameter governing the spread of sigma points around the mean and(√
(LS + λ)PS

)

i
is the i-th column of matrix PS. Sigma points S are propagated through function h(·) to get M.

The first two moments of mt are approximated by:
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m̄ ≈
2LS∑

i=0

W
µ
i Mi (112)

PS ≈
2LS∑

i=0

W
σ
i (Mi − m̄)(Mi − m̄)′, (113)

where W µ and W σ denote weights for the mean and the covariance matrix, respectively and are defined as:

W
µ
0 =

λ

LS + λ
(114)

W
σ
0 =

λ

LS + λ
+ 1 − α

2 + β, i = 1, ..., LS (115)

W
µ
i = W

σ
i =

λ

2(LS + λ)
, i = LS + 1, ..., 2LS . (116)

Parameters α and β, mainly determine higher moments of the distribution.

The UKF Algorithm

1. Initialize at unconditional moments:23

Ŝ0 = E[S0] (117)

PS0 = E[(S0 − Ŝ0)(S0 − Ŝ0)
′] (118)

for k ∈ 1, ...,∞:

2. Compute the sigma points:

Sk−1 =
[

Ŝk−1 Ŝk−1 +
√

(LS + λ)PS,k−1 Ŝk−1 −
√

(LS + λ)PS,k−1

]
(119)

3. Time update:

Sa
k|k−1 = B(Sk−1) (120)

Ŝ
−
k =

2LS∑

i=0

W
µ
i Sa

k|k−1 (121)

P
−
Sk =

2LS∑

i=0

W
σ
i (Sa

ik|k−1 − Ŝ
−
k )(Sa

ik|k−1 − Ŝ
−
k )′ + Covt(εt+∆t) (122)

4. Augment sigma points:

Sk|k−1 =
[

Sa
k|k−1 Sa

0k|k−1 +
√

(LS + λ)Covt(εt+∆t) Sa
0k|k−1 −

√
(LS + λ)Covt(εt+∆t)

]
(123)

Mk|k−1 = h(Sk|k−1) (124)

m̂
−
k =

2LS∑

i=1

W
σ
i Mi,k|k−1 (125)

5. Measurement equations update:

23We borrow the algorithm from Wan and van der Merwe (2001).
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P
−
mk

=

2LS∑

i=0

W
σ
i (Mik|k−1 − m̂

−
k )(Mik|k−1 − m̂

−
k )′ + Covt(ϑt+∆t) (126)

PSkmk
=

2LS∑

i=0

W
σ
i (Sik|k−1 − Ŝ

−
k )(Mik|k−1 − m̂

−
k )′ (127)

Kk = PSkmk
P

−1
mk

(128)

F̂k = F̂
−
k + Kk(mk − m̂

−
k ) (129)

Pk = P
−
k −KkP

−
mk

K′
k. (130)
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Fig. 1. Yield and volatility curves

The figure plots the yield and volatility curves: unconditional mean for the whole sample 1992:01–2007:12, and means conditional
on the Fed’s tightening and easing cycles. The cycles are regarded as easing or tightening if at least three subsequent moves in
the federal funds rate target have been in the respective direction. In our sample, out of total 3955 days, we identify 646 days
as the easing regime, and 958 days as the tightening regime. The realized volatility curves are computed from the daily data
and annualized (×250).
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Fig. 2. Evolution of yields and volatilities

The figure plots the dynamics of weekly yields, realized volatilities and correlation over the 1992:01–2007:12 period. Yields
include maturities of six months and two, five, and ten years. Realized volatilities are constructed from the actively traded
bonds of two, five and ten years to maturity.
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Fig. 3. Realized correlations of yield factors

The figure plots realized correlations between yield curve factors (left-hand axis) constructed from the high-frequency zero
curve. Level, slope and curvature factor loadings are obtained from the PCA decomposition of the unconditional covariance
matrix of yields with maturities: two, three, five and ten years. Daily realized correlations are smoothed over a three-month
window. In each panel, correlation dynamics are juxtaposed against the Fed regimes: cut, no change, hike (right-hand axis).
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Fig. 4. Factors in yield volatilities

The figure shows the principal component decomposition of the yield volatility curve. We use the unconditional correlation
matrix of realized weekly volatilities computed for two-, three-, five-, seven- and ten-year zero bonds. Panel a plots the loadings
of factors on volatilities. Panel b displays the percentage of variance explained by each factor.

46



1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Yield (% p.a.)

R
V

(b
p
s

p
.a

.)

a. 2Y

2 3 4 5 6 7 8
0

50

100

150

200

250

300

Yield (% p.a.)

R
V

(b
p
s

p
.a

.)

b. 5Y

3 4 5 6 7 8
0

50

100

150

200

250

300

Yield (% p.a.)

R
V

(b
p
s

p
.a

.)

1

c. 10Y

Cut No chg Hike
60

80

100

120

140

160

180

Fed fund change

R
V

(b
p
s

p
.a

.)

d. RV reaction to Fed fund rate changes

2Y
5Y
10Y

Fig. 5. Yield level versus yield volatility

The figure depicts the relationship between yield level and yield volatility for bonds with two-, five- and ten-year maturity
(based on weekly data). In panels a–c, circles denote data points, and the lines represent the fits of the nonparametric kernel
regression together with the 99% confidence bound. Panel d shows the level of the realized volatility conditional on the change
in the Fed funds target rate (cut, no change, hike). During our sample period 1992:02–2007:12 there were 23 rate cuts, 31 hikes,
and 3901 days on which the rate did not change.
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Fig. 6. Regressions of realized volatility on the yield level

The figure plots the rolling regression coefficients, 90% confidence bands (left panels) and R2’s (right panels) in regressions
of realized volatilities on yields of corresponding maturities. The regressions use daily data on yields and realized volatilities
rolled over the window of 3 months. For clarity, all regression statistics have additionally been smoothed using a window of 50
observations. All variables have been standardized.
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Fig. 7. In-sample fit to yields

The figure compares the in-sample fit of the model-implied yields to the observed yields with maturities: six months, two, five,
and ten years over the period 1992:01–2007:12. Yields are presented in percentage p.a., and are measured on weekly frequency.
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Fig. 8. In-sample fit to the second moment dynamics of yields

The figure plots the model-implied in-sample fit to the yield second moments. The level is defined as the variance of the two-year
yield. The slope is computed as the difference between the realized variance of the ten- and the two-year yield. Finally, the
covariance is between the five- and the ten-year yield.
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Fig. 9. Filtered factor dynamics

The figure plots the model-implied factor dynamics extracted by the unscented Kalman filter under the estimated parameters of
the G3SV3 model. The left-hand panels present factors driving the yield curve. The right-hand panels display factors generating
time-variation in conditional second moments. The circles in panels d and f mark examples of important events that had a
strong impact on the evolution of the volatility curve in our sample period. We discuss them in Section 5.2. For presentation,
the X states have been multiplied by −1.
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Fig. 10. Factor shocks and yield curve responses

The graph presents the response of the yield curve to shocks in the state variables. The left-hand panels (a1, a2, a3) display
the effect of the yield curve factors Yt = (X1t, X2t, ft)′, the panels on the right (b1, b2, b3) display the effects of the volatility
factors V̄t = (V11t, V12t, V22t)′. In each subplot, the solid line shows the yield curve generated by setting all state variables to
their unconditional means. Circles indicate the maturities used in estimation, i.e. six months, two, three, five, seven, and ten
years. The dashed and dotted lines are obtained by setting a given state variable to its tenth and 90th percentile, respectively,
and holding the remaining factors at their unconditional average. For presentation, factors X1, X2 have been multiplied by −1
so that both correlate positively with yields.
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Fig. 11. Contribution of Xt and Vt to model-implied yields

The figure plots the model-implied yields for maturities of six months and two, five and ten years. Each panel compares
hypothetical yields that would be generated by Xt factors after Vt factors have been excluded (yτ

t = − 1
τ
{A(τ) + B(τ)′Xt})

against those produced by Xt and Vt jointly (yτ
t = − 1

τ
{A(τ)+B(τ)′Xt +Tr[C(τ)Vt]}). For the ease of comparison, we magnify

selected regions of each graph.
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Fig. 12. Impulse-response functions of volatility factors V11 and V22 to macroeconomic uncertainty proxies

Panels a–e display the impulse-response functions of volatility factors to macroeconomic uncertainties extracted from the
surveys. Uncertainty is proxied with the mean absolute deviation of forecasts made by individual panelists. Panel f shows
mutual responses of factors to each other. The impulse responses are based on a VARMAX model with first order AR
component, allowing for contemporaneous and lagged effects of exogenous macro variables. The impulse responses exclude
insignificant exogenous regressors. All variables have been standardized; lags are in months.
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Table 1 Major moves in the U.S. Treasury yield and volatility curves in the period 2000–2004 (1st part)

31-Jul-2000, 31-Aug-2000. The main topics are the
labor productivity, level of NAIRU and change in the
trend of potential output of the US economy. Market
participants expect that the increased productivity
should keep the inflation lower. At the same time,
the economy is slowing from the record GDP growth.
All these facts contribute to the rapid decline in the
long term interest rates.
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30-Mar-2001, 30-Apr-2001. Leading indicators point
to a recession. This leads to the repricing of the short
end of the curve as markets expect the Fed to cut
interest rates significantly even after the surprising -
50 bps move in April 2001.
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30-Apr-2001, 31-May-2001. The flow of disappointing
data starts already in April: payrolls, unemployment,
all pointing toward recession. Long term yields
increase due the concerns that the Fed might be easing
too much. In the context of a general market belief:
the unemployment data lags the business cycle. The
volatility curve moves in the opposite direction to the
yield curve and gets hump-shaped.
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31-May-2001, 30-Jun-2001. Recession is being priced-
in, as the Fed cuts the rate only by 25 bps instead of
50 bps expected. The volatility increases significantly
and changed its shape.
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Table 1 Major moves in the US Treasury yield and volatility curves in the period 2000–2004 (2nd part)

31-Jul-2003, 31-Aug-2003, 30-Sep-2003. The upward
shift in yields is caused by the strong labor produc-
tivity data, whereas the subsequent downward shift
in September is due to the weak August employment
data. The FOMC minutes from August meeting
are published on September 19th, FOMC members
stress the output gap. This leads market participants
(together with the worsening data) to revise their
expectations.
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31-Dec-2002, 31-Jan-2003. The ISM data read better
than expected, the new orders index increases to 63.3%
from 49.9%—the third biggest monthly gain since data
is available. The positive news on ISM takes market
participants by surprise, this in turn increases the
volatility substantially. 0 2 4 6 8 10
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28-Feb-2004, 31-Mar-2004, 30-Apr-2004. The first
downward shift in yields is caused by the disappointing
data on jobless claims and retail sales. The upward
move in yields in April is due to the improved economic
data (especially manufacturing), but markets still do
not expect Fed’s tightening. 0 2 4 6 8 10
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Table 2 Descriptive statistics of weekly yields and realized volatilities

The table contains descriptive statistics of weekly yields (panel a) and realized yield volatilities (panel b) based on the period

1992:01–2007:12. JB denotes the Jarque-Bera normality test (critical value 5.91). Panel c shows unconditional correlations

between yields and volatilities. Numbers in italics indicate correlations which are not significant at the 1% level.

Panel a. Yields (% p.a.)

6M 2Y 3Y 5Y 7Y 10Y

Mean 3.97 4.50 4.73 5.06 5.28 5.50

Skew -0.60 -0.46 -0.35 -0.12 0.09 0.31

Kurt 2.15 2.46 2.47 2.30 2.17 2.13

JB 76.22 40.62 27.69 19.08 25.21 40.03

Panel b. Realized yield volatilities (bps p.a.)

2Y 3Y 5Y 7Y 10Y

Mean 108.33 114.44 113.31 108.35 104.62

Stdev 46.73 49.75 45.87 40.75 38.52

Skew 1.47 1.57 1.40 1.18 1.72

Kurt 6.41 7.23 5.98 4.78 9.17

JB 712.90 977.33 589.98 309.12 1755.34

Panel c. Unconditional correlations of yields and realized volatilities

y6M
t y2Y

t y3Y
t y5Y

t y7Y
t y10Y

t v2Y
t v3Y

t v5Y
t v7Y

t v10Y
t

y6M
t 1

y2Y
t 0.94 1

y3Y
t 0.89 0.99 1

y5Y
t 0.77 0.93 0.97 1

y7Y
t 0.66 0.85 0.91 0.99 1

y10Y
t 0.54 0.76 0.84 0.95 0.99 1

v2Y
t -0.21 -0.18 -0.15 -0.10 -0.05 -0.01 1

v3Y
t -0.24 -0.18 -0.15 -0.07 -0.01 0.05 0.96 1

v5Y
t -0.27 -0.22 -0.20 -0.14 -0.09 -0.04 0.90 0.89 1

v7Y
t -0.29 -0.23 -0.20 -0.13 -0.08 -0.02 0.85 0.86 0.97 1

v10Y
t -0.26 -0.19 -0.15 -0.08 -0.02 0.03 0.77 0.78 0.86 0.89 1
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Table 3 Parameter estimates

This table reports parameter estimates for four model specifications. “G3SV0 risk-neutral” is a Gaussian three-factor model

without risk premiums. “G3SV0” denotes a Gaussian three-factor model with essentially affine market prices of risk. “G3SV3

risk-neutral” is our six-factor model without risk premiums with three conditionally Gaussian factors for the yield curve and

three volatility factors. Model specification “G3SV3” additionally contains affine risk compensations. The purely Gaussian

specifications follow Duffee (2002), and are diffusion-normalized according to the identification scheme of Dai and Singleton

(2000). This type of normalization allows to treat γY as a free parameter vector. BHHH standard errors are in parentheses.

The last section of the table shows the log-likelihood values. For comparison, in models with stochastic volatility, we split the

log-likelihood values into the yield component and the volatility component: Loglik yτ
t and Loglik vτ

t .

G3SV0 risk–neutral G3SV0 G3SV3 risk–neutral G3SV3

KY,11 -0.001 -0.506 -0.014 -0.033

(0.001) (0.289) (0.001) (0.008)

KY,21 -0.181 -1.653 – –

(0.151) (0.077) – –

KY,22 -0.786 -0.434 -1.233 -1.947

(0.266) (0.103) (0.032) (0.309)

KY,31 -1.696 -2.900 -2.797 -2.768

(0.115) (0.116) (0.182) (0.175)

KY,32 -2.828 -0.800 -7.275 -7.668

(0.096) (0.034) (0.433) (0.479)

KY,33 -0.786 -0.021 -0.500 -0.498

(0.267) (0.001) (0.009) (0.008)

σf – – 0.006 0.006

– – (6.96e-5) (7.05e-5)

k – – 2.000 2.000

– – (1.335) (1.067)

Q11 – – 0.001 0.001

– – (1.14e-4) (1.14e-4)

Q22 – – 0.004 0.003

– – (2.68e-4) (2.63e-4)

M11 – – -0.069 -0.113

– – (0.044) (0.038)

M21 – – -0.260 -0.185

– – (0.184) (0.177)

M22 – – -0.518 -0.685

– – (0.090) (0.127)

γ0 1.306 0.118 0.172 0.159

(1.121) (0.004) (0.038) (0.026)

γ11 – 0.002 – –

– (2.58e-4) – –

γ12 0.001 0.003 – –

(5.64e-4) (2.24e-4) – –

γ13 0.006 0.006 – –

(1.18e-4) (1.42e-4) – –

λ1
Y,11 – 0.629 – -0.018

– (0.290) – (0.020)

λ1
Y,22 – 0.150 – -0.703

– (0.101) – (0.310)

σ2
y 8.34e-8 8.01e-8 8.02e-8 7.84e-8

(1.42e-9) (1.33e-9) (1.44e-9) (1.40e-9)

Loglik yτ
t 35443 35530 35315 35341

Loglik vτ
t – – 26264 26260
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Table 4 In-sample model fit

This table gives the in-sample fit for four model specifications presented in Table 3. The performance of our model (G3SV3)

in matching yields is compared with the purely Gaussian setting (G3SV0). Additionally, we report its ability to match the

volatility dynamics. In panels a1 and b1, we report root mean squared error (RMSE) in bps per annum. The fit of volatilities

is also stated as RMSE. To obtain easily comparable numbers, we convert the covariance matrix of yields into covolatilities:

Since the slope and covariance can be negative, we take the square root of their absolute values. This serves as an input for

computing the RMSE for the term structure of volatilities. Panels a2 and b2 show the percentage of variation in observed yields

and volatilities explained by the respective model-implied quantities. The numbers represent the R2’s from the regression of

the observed variable on the fitted one.

G3SV0 risk-neutral G3SV0 G3SV3 risk-neutral G3SV3

Panel a. Term structure of yields

a1. RMSE in bps

6 months 1.3 1.3 1.3 1.5

2 year 2.4 2.3 2.3 2.2

3 year 1.6 1.6 1.5 1.6

5 year 2.9 2.8 2.7 2.6

7 year 1.8 1.7 1.7 1.7

10 year 2.8 2.8 2.5 2.5

a2. Explained variation (%)

6 months 99.99 99.99 99.99 99.99

2 year 99.97 99.97 99.98 99.98

3 year 99.99 99.99 99.99 99.99

5 year 99.94 99.94 99.95 99.97

7 year 99.97 99.98 99.98 99.99

10 year 99.93 99.93 99.94 99.96

Panel b. Term structure of volatilities

b1. RMSE in bps

v2Y
t – – 6.1 5.8

v10Y
t − v2Y

t – – 6.1 5.8

v
5Y,10Y
t – – 4.7 4.7

b2. Explained variation (%)

v2Y
t – – 95.92 96.22

v10Y
t − v2Y

t – – 98.23 98.30

v
5Y,10Y
t – – 96.92 96.89
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Table 5 Out-of-sample yield forecasting

This table reports RMSEs in bps for forecasting horizons h = 1, 4, 12 and 52 weeks. The models are estimated using weekly

data from 1992:01 through 2004:12. Forecasts are performed over the period 2005:01 through 2007:12.

Panel a. Yield forecasting

Yield Maturity Forecast Horizon (h weeks) Random Walk G3SV0 G3SV3

6 months 1 9.29 13.54 13.62

2 years 1 10.93 14.89 15.10

3 years 1 11.36 14.80 14.81

5 years 1 10.77 14.13 14.30

7 years 1 9.98 13.56 13.67

10 years 1 9.17 13.11 13.59

6 months 4 21.16 23.03 22.81

2 years 4 22.74 26.99 27.16

3 years 4 23.27 27.04 27.08

5 years 4 22.37 25.63 25.85

7 years 4 20.88 24.11 24.38

10 years 4 19.08 22.27 23.23

6 months 12 43.18 39.69 38.66

2 years 12 43.47 43.16 43.33

3 years 12 42.40 42.37 42.58

5 years 12 38.28 38.99 39.80

7 years 12 34.64 36.12 37.53

10 years 12 31.05 33.19 36.21

6 months 52 146.56 89.37 82.77

2 years 52 110.02 70.27 67.87

3 years 52 92.73 63.88 63.57

5 years 52 66.82 53.43 59.00

7 years 52 53.12 47.10 57.99

10 years 52 44.64 41.74 60.48

Panel b. Volatility forecasting

Volatility Maturity Forecast Horizon (h weeks) Random Walk G3SV0 G3SV3

2 years 1 11.28 n.a. 13.62

5 years 1 11.75 n.a. 10.96

10 years 1 9.76 n.a. 9.71

2 years 4 25.81 n.a 22.33

5 years 4 26.12 n.a. 16.47

10 years 4 22.78 n.a. 15.19

2 years 12 33.14 n.a. 29.08

5 years 12 34.13 n.a. 26.35

10 years 12 30.90 n.a. 26.41
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Table 6 Regressions of yield realized second moments on filtered states

This table reports the t-statistics and adjusted R2’s obtained by regressing the yield realized variances (first five columns)

and covariances (last three columns) on the latent factors extracted from our model, i.e. X1, X2, f, V11, V12, V22. The sample

covers the 1992:01–2007:12 period, which amounts to 845 weekly observations. t-statistics are corrected using the Newey-West

adjustment with 12 lags.

RV & RCov 2Y 3Y 5Y 7Y 10Y (5Y,2Y) (10Y,2Y) (10Y,5Y)

const. 2.53 2.86 -0.08 1.45 1.32 2.52 -0.10 -0.03

X1 1.27 -2.56 1.03 -1.17 1.44 0.52 0.73 -2.51

X2 1.25 1.94 1.12 2.45 1.16 1.32 -2.22 0.17

f 3.83 1.25 0.68 0.61 3.75 2.75 -0.13 -2.74

V11 5.81 3.70 7.74 9.06 19.48 13.76 12.90 17.46

V12 28.52 8.58 19.50 24.96 29.54 34.95 27.87 68.45

V22 43.01 29.89 12.67 11.74 7.43 25.12 16.29 25.78

Adj. R2 0.97 0.88 0.87 0.90 0.93 0.94 0.93 0.97

61



Table 7 Regressions of filtered states on yield curve principal components

This table reports regressions of model-implied factors on principal components extracted from the yield curve. The sample

covers the 1992:01–2007:12 period, which amounts to 845 weekly observations. Standard errors are corrected using Newey-West

adjustment with 12 lags and are reported in parentheses. Both left- and right-hand side variables are standardized to make the

regression coefficients directly comparable. X1 and X2 have been multiplied by −1.

Regressors X1 X2 f V11 V12 V22

PC1 0.544 0.784 0.875 -0.102 0.013 -0.138

(0.003) (0.004) (0.001) (0.070) (0.068) (0.087)

PC2 0.818 -0.124 -0.458 0.533 -0.397 0.358

(0.004) (0.005) (0.001) (0.080) (0.085) (0.079)

PC3 0.184 -0.604 0.155 0.158 -0.233 0.184

(0.003) (0.005) (0.001) (0.061) (0.057) (0.086)

PC4 -0.002 0.028 -0.012 -0.345 0.463 -0.205

(0.003) (0.004) (0.001) (0.062) (0.064) (0.082)

PC5 -0.012 0.013 0.006 -0.182 0.151 -0.109

(0.003) (0.005) (0.001) (0.060) (0.057) (0.089)

Adj. R2 1.00 1.00 1.00 0.47 0.45 0.23
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Table 8 Regressions of filtered states on interest rate forecasts

This table reports regressions of the model-implied factors on survey-based expectations and uncertainty about US interest

rates. Monthly factors are obtained by averaging the weekly numbers returned from the estimation. As explanatory variables,

we use yield curve forecasts compiled by the BCFF survey. E(·) denotes the consensus, defined as a median forecast; σ(·) proxies

for the uncertainty, and is computed as the mean absolute deviation of individual forecasts. The sample covers the 1992:01–

2007:12 period, which amounts to 192 monthly observations. Standard errors are corrected using Newey-West adjustment with

four lags and are reported in parentheses. Both the latent factors and the survey data are standardized in order to make the

regression coefficients directly comparable. The qualifiers hQ1, hQ4 at each coefficient denote the horizon for which panelists

in BCFF report their forecast. hQ1 is the one-quarter-ahead prediction (i.e. prediction for the next quarter), hQ4 is the

four-quarter-ahead prediction. Table contains results only for significant variables. For the ease of interpretation, X1 and X2

have been multiplied by −1, so that they have a positive correlation with the ten-year yield and two-year yield, respectively.

Regressors X1 X2 f V11 V12 V22

E(FFR) – – 0.967hQ1 – – –

– – (0.066) – – –

E(y2Y) – 1.558hQ1 – – – –

– (0.172) – – – –

σ(y2Y) – – – – – 0.430hQ1

– – – – – (0.101)

E(y5Y) – 0.763hQ1 – – – –

– (0.162) – – – –

σ(y5Y) – – – 1.040hQ4 -0.921hQ1 –

– – – (0.244) (0.170) –

E(y10Y) 1.035hQ4 – – – – –

(0.093) – – – – –

σ(y10Y) – – – -0.483hQ4 0.325hQ1 –

– – – (0.129) (0.111) –

E(y30Y) -0.216hQ4 – – – – –

(0.092) – – – – –

σ(y30Y) – – – -0.520hQ4 0.634hQ1 –

– – – (0.251) (0.136) –

Adj. R2 0.76 0.78 0.93 0.20 0.22 0.18
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Table 9 Regressions of filtered states on macroeconomic surveys

This table reports regressions of the model-implied factors on macroeconomic surveys. Monthly factors are obtained by averaging

the weekly numbers returned from the estimation. We splice monthly data from two surveys: BCFF and BCEI compiled over

the period 1992:01–2007:12. This amounts to 192 monthly observations. The following variables are used: real GDP (RGDP),

unemployment (UNEMPL), housing starts (HOUST), federal funds rate (FFR), industrial production (IP), consumer price

index (CPI). RGDP and FFR forecasts are obtained from BCFF, while the remaining variables are from BCEI. E(·) denotes

the consensus, defined as a median forecast; σ(·) proxies for the uncertainty, and is computed as the mean absolute deviation of

individual forecasts. Standard errors are corrected using Newey-West adjustment with four lags and are reported in parentheses.

Both the latent factors and the survey data are standardized in order to make the regression coefficients directly comparable.

The table contains only significant variables. For the ease of interpretation, X1 and X2 have been multiplied by −1, so that

they have a positive correlation with the two-year yield and ten-year yield, respectively.

Regressor X1 X2 f V11 V12 V22

E(RGDP) 0.350 0.236 – 0.664 – –

(0.065) (0.077) – (0.065) – –

σ(RGDP) 0.248 0.188 – – -0.257 –

(0.063) (0.057) – – (0.117) –

E(UNEMPL ) 0.770 – – 0.238 – –

(0.093) – – (0.089) – –

σ(UNEMPL) – – – 0.385 -0.197 –

– – – (0.081) (0.100) –

E(HOUST) -0.417 – – -0.310 – -0.315

(0.098) – – (0.080) – (0.052)

σ(HOUST) – -0.232 – – -0.386 –

– (0.053) – – (0.079) –

E(FFR) 0.516 0.862 0.868 – – -0.285

(0.086) (0.088) (0.026) – – (0.098)

σ(FFR) – – 0.041 – -0.144 0.299

– – (0.021) – (0.078) (0.073)

E(IP) – – -0.108 – – –

– – (0.028) – – –

σ(IP) – – -0.057 – – 0.305

– – (0.023) – – (0.078)

E(CPI) – – 0.074 – – –

– – (0.021) – – –

σ(CPI) – -0.172 – – – 0.254

– (0.061) – – – (0.071)

Adj. R2 0.81 0.73 0.96 0.52 0.29 0.47
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