
- 1 -

Abstract

Software evolution and reuse is more likely to
receive higher payoff if high-level artifacts—such
as architectures and designs—can be reused and can
guide low-level component reuse. In practice, how-
ever, high-level artifacts are often not appropriately
captured. This paper presents an approach to captur-
ing and assessing software architectures for evolu-
tion and reuse. The approach consists of a
framework for modeling various types of relevant
information and a set of architectural views for re-
engineering, analyzing, and comparing software
architectures. We have applied this approach to
large-scale telecommunications systems, where the
approach is useful to reveal areas for improvement
and the potential for reuse.

Keywords: Software architectures, product lines,
analysis, software evolution, software reusability,
scenarios

1. Introduction

Software evolution and reuse are two critical topics
in industry, because of the huge expense involved
and because of global competition. However, soft-
ware systems are becoming increasingly complex,
further complicating the already difficult problem of
evolving or reusing software assets and products. To
systematically support the process for the ever
growing complexity of software, higher levels of
abstraction are needed. Kruchten [9] noted that “for
a software reuse technique to be effective, it must
reduce the cognitive distance between the initial

1. Kazman’s current address: Software Engineering
Institute, Carnegie Mellon Univ., Pittsburgh, PA,
15213. E-mail: kazman@sei.cmu.edu

concept of a system and its final executable imple-
mentation” (p. 136). Software architectures are criti-
cal artifacts in bridging the gap between the initial
concept of a system and the system’s implementa-
tion; its low-level software components.

This paper presents a framework and a set of archi-
tectural views that were developed to assess soft-
ware architectures for evolution and reuse built
upon a scenario-based approach [7]. This frame-
work is used to model different types of informa-
tion, namely, stakeholder information [2,4],
architecture information, quality information, and
scenarios. Stakeholders can include, for example,
designers, managers, and end-users. The informa-
tion for stakeholders describes their objectives.
Architecture information deals with the critical
design principles or architectural objectives. Quality
information refers to the non-functional attributes
such as performance, modifiability, availability, and
integrability. Scenarios are narratives that describe
use cases of a system. Scenarios can be used to cap-
ture the system’s functionality. Scenarios that are
not directly supported by the current system can be
used to detect possible flaws or to assess the archi-
tecture’s support for potential enhancements. A set
of scenarios is derived from the stakeholder objec-
tives, architectural objectives, and desired system
quality attributes or objectives. Section 2 will give a
more detailed discussion on this topic.

Objectives provide boundaries and drive the analy-
sis. Architectural views are important for evolution
and reuse, because various views provide different
perspectives, which are useful in understanding, re-
engineering, and analyzing systems. In addition,
these architectural views support analysis of sys-
tems developed using different paradigms. For
example, one application that we have made of the

An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan  Rick Kazman1

Software Engineering Analysis Lab. Department of Computer Science
Nortel University of Waterloo

Ottawa, Ontario, Canada K1Y 4H7             Waterloo, Ontario, Canada N2L 3G1
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca



- 11 -

ture, IEEE Software, Nov 1996.

[8] P. B. Kruchten. The 4+1 View Model of Archi-
tecture, IEEE Software, Nov 1995, pp. 42-50.

[9] C. Krueger, Software Reuse, ACM Computing
Surveys, 24(2), 1992, pp. 131-183.

[10] C.-H. Lung and J. Urban. An Expanded View of
Domain Modeling for Software Analogy. Proc.
19th Annual Int’l Comp Software & Applica-
tions Conf - COMPSAC, pp.77-82, 1995.

[11] C.-H. Lung, Empirical Experiences in Analyz-
ing Software Architecture Sensitivity, in Proc.
of COMPSAC, pp. 164-165, 1997.

[12] C.-H. Lung and K. Kalaichelvan, Metrics for
Software Architecture Robustness Analysis,
submitted for publication.

[13] S. Wage, Preventive Software Maintenance:
Prevention is Better Than Cure, Tech. Report,
School of Info. Science and Technology, Liver-
pool Polytechnic, 1988.



- 10 -

scenarios to reveal the coverage of each quality
attribute. An imbalance factor is then calculated for
each quality attribute by dividing coverage by qual-
ity priority. If the imbalance factor is less than 1, we
may need to develop more scenarios to address the
quality attribute in accord with stakeholder, archi-
tectural, and quality importances. For instance, if
the relative priority of performance is 18 and the
coverage of performance by the scenarios is 9, the
imbalance factor is 0.5. This suggests that more sce-
narios need to be developed to address performance.

6. Summary

This paper presented a framework and a set of archi-
tectural views for the analysis of software architec-
ture for evolution and reusability. The approach was
developed from empirical studies on large-scale
telecommunications systems for the assessment of
reuse across applications and for system evolution.
The scenarios are aligned with stakeholder objec-
tives, architectural objectives, and quality attributes.
The scenarios can also be reused across applica-
tions. More importantly, the analysis reveals the
sensitivity of a system due to the change in or the
importance of objectives, and future requirements.

The method also could facilitate the comparison of
different architectures developed in the same
domain using different paradigms (e.g. OO vs. func-
tional decomposition) by using concrete scenarios
aligned with the other views. In Section 5, analysis
results for one architecture were illustrated. Should
another architecture developed in different para-
digm be in place for comparison, the comparison
would be performed by identifying components that
need to be modified, added, or removed based on
scenarios mapped onto the other architectural views.
The effort required to make the modifications for
different architectures could also be estimated based
on complexity information, architectural views, and
historical data for comparison.

Due to proprietary reasons, detailed architectural
and analysis results could not be presented. In
SEAL, we have used this technique to analyze a
system for better understanding and project evolu-
tion. The technique was also used to compare two
complex call processing systems with respect to
their fitness for a new project. The critical successes
of using the technique included better understanding
of target systems, better communications among
various stakeholders, identification of development

of reusable assets, and extraction of problem areas
or sites of complexity. Furthermore, the technique
even helped the senior designers better understand
architectural issues in their own systems. The cap-
ture of architectural views and mapping of various
objectives also were useful information for existing
systems, especially personnel changes are practical
and training for new employee is important.

In SEAL, we have other teams that are working on
the complexity measurement of high-level design
and code. This measurement provides insights of
complicated components for detailed analysis and
more accurate estimation of the effort required for
the changes. In other words, life cycle end-to-end
analysis is supported for various software products.
We are also developing and validating of a set of
metrics for quantitative assessment of software
architectures [12].

References
[1] D. Belanger, et al., Architecture Styles and Ser-

vices: An Experiment Involving the Signal Op-
erations Platforms-Provisioning Operations
System, AT&T Technical Journal, Jan/Feb
1996, pp. 54-63.

[2] S. Bot, C.-H. Lung, and M. Farrell, A Stake-
holder-Centric Software Architecture Analysis
Approach, in Proc. ISAW 2 - Int’l Software Ar-
chitecture Workshop, 1996.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Som-
merlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns, John Wiley
& Sons, 1996.

[4] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm.
On the Definition of Software System Architec-
ture, in Proc. of ICSE 17 Software Architecture
Workshop, April 1995.

[5] D. Garlan and M. Shaw. An Introduction to
Software Architecture, Advances in Software
Engineering and Knowledge Engineering, vol.
1, 1993.

[6] R. Kazman, G. Abowd, L. Bass, M. Webb,
SAAM: A Method for Analyzing the Properties
of Software Architectures, in Proceedings of
the 16th International Conference on Software
Engineering, May 1994, pp. 81-90.

[7] R. Kazman, G. Abowd, L. Bass, P. Clements.
Scenario-Based Analysis of Software Architec-



- 9 -

We adopted and extended SAAM [7] by not only
identifying, for each scenario, required changes, but
also estimating the effort required (low, medium, or
high) to make the changes based on the required
changes and domain experts experiences. These two
types of information together gave us a better idea
of how the system could support each of the objec-
tives or the risk levels for system evolution or reuse
across applications than just counting the number of
changes.

Further, the analysis could qualitatively reveal the
reusability aspect of an architecture. By identifying
and analyzing areas that are reusable, tailorable, or
not reusable based on explicit scenarios and various
insight views, rather than design from scratch, the
development time for the architecture and high-
level design for a new one project in the same prod-
uct line was reduced. For instance, the service han-
dler and service initiator in Figure 4 are highly
reusable, and are easy to modify or enhance based
on the current control and communication mecha-
nisms. On the contrary, the risk level of reusing the
existing resource handler shown in Figure 4 could
be high due to its idiosyncratic implementation.
Similar results were obtained for a real project,
where parts of the architecture got reused and some
areas were overhauled for a new project.

Three different tabular representations are also used
to summarize the results. One representation shows
the analysis results based on objectives. A summary
is also attached for each objective to address identi-
fied changes and overall effort required or risk level
involved for the required changes for evolution, or
suitability of the architecture for another project.
The second representation demonstrates scenario
interactions. For each component, the list of scenar-
ios that cause changes to it are listed. The third rep-
resentation is a summary based on quality attributes.
Similar to the previous representation, the scenarios
that have significant impact on the qualities are
listed. We found these representations highly useful
devices for communicating with stakeholders.

The role of views. The scenarios are the main driv-
ers to evaluate various areas of an architecture. The
architectural views can reveal deeper information,
however. Scenarios describe important functionality
that the system must support or identifies where the
system may need to be changed over time. Scenar-
ios and the structural view are effective in identify-
ing components that need to be modified. From the
maintenance perspective, scenarios are useful for

adaptive and preventive maintenance activities [13],
but are less effective in corrective and perfective
maintenance activities. Other architectural views
must be used to support the analysis.

For instance, analysis of scenario interaction is a
critical step in SAAM. A high degree of scenario
interaction may indicate that a component is poorly
isolated [7]. However, the style view may show that
this is just the nature of a particular architectural
pattern. For instance, the blackboard in the black-
board model highly interacts with other compo-
nents. In this case, the focus is shifted from scenario
interaction to consistency checking of the architec-
ture and its style. The dynamic view may then be
appropriate to examine the behavioral aspect to val-
idate that the control and communication are han-
dled in an expected manner. Another example is that
an identified violation or shortcut in the existing
system for performance purposes may not be
needed in the future if the system is ported to a
faster platform. Another possible reason for viola-
tions could be legacy systems. A project that we
dealt with overhauled a legacy system. In this case,
some known violations were not carried into the
new design. Hence, the maintainability of the sys-
tem could be improved by removing the violation.
Violations were also used to validate the conform-
ance of the implementation to the architecture. Sim-
ilarly, the mapping between components and
functions can reveal the cohesion and coupling
aspects of the system. This view is useful for system
partitioning and maintenance, especially for “ripple
effect” analysis.

Scenario generation. Another often asked question
about scenario-based analysis is “When to stop gen-
erating scenarios?” [7]. Two approaches were used
in our study in SEAL. First, scenario generation is
closely tied to various types of objectives: stake-
holder, architectural, and quality. We spent a lot of
effort in identifying the information up front. Based
on the objectives, we worked with domain experts
closely and iteratively to identify scenarios and
cluster these scenarios to make sure each objective
is well covered.

QFD (Quality Function Deployment) was then used
to validate the balance of scenarios with respect to
the objectives. A cascade of matrices are generated
to show the relational strengths from stakeholder
objectives, architectural objectives, to quality
attributes [2]. Priorities are calculated for each
objective. Finally, quality attributes are translated to



- 8 -

circumstances.

Some reasons for the violations could be legacy sys-
tems, modifications for performance, understand-
ability, and discrepancies in the levels of
abstraction. The violations must be explicitly docu-
mented to reduce potential problems caused by
ambiguity or inconsistency. The documentation can
also support system maintainability. Architectural
violations are as important as normal architectural
features and must be identified before reuse occurs
to reduce unnecessary maintenance effort.

4. Examples of Scenarios and Analyses

To make a concrete evaluation for the architecture, a
number of explicit scenarios are developed based on
stakeholder and architectural objectives. Elicitation
questions are prepared for each objective and are
used in interviewing domain subject experts. These
interviews are used to better understand systems and
to develop scenarios for analysis.

Each objective may consist of a set of scenarios.
Moreover, the scenarios developed for each objec-
tive could be categorized for complex applications,
creating a reusable checklist of architectural con-
cerns. In telecommunications systems, for instance,
interactions of complex services or features need to
be validated. Those feature interactions are grouped
into different classes to have better scenario cover-
age and to facilitate evaluations.

In addition to the scenarios developed directly from
objectives, a group of scenarios for basic uses of the
system may need to be generated. Often, analyses
will focus on potential future changes to a system.
Basic needs are thus usually neglected. Basic needs
are not and product differentiators, yet one cannot
have a product without the basic functionality. For
example, a basic call service must exist no matter
how complex the communications may be. Basic
needs are thus critical for architectural analysis, but
often are not explicitly expressed by stakeholders.

For each scenario, the effect on the architecture is
identified. Typically, there is either no effect (no
change to the architecture required) since the sce-
nario is directly supported by the architecture, or
changes in the architecture are required to satisfy
the scenario. In addition, the effort required to make
the necessary changes is also estimated based on the
types of changes and components. Issues for further
analysis are addressed if more specific information

is needed to perform the analysis.

The following highlights a couple of scenarios and
partial analysis results for the objectives shown in
Table 1. The analysis is based on the hypothetical
architecture depicted in Figure 4.

Scenario 1: A third party develops a new feature to
interwork with the architecture.

Architecture Impact: Interfaces for third party have
not been implemented. Proxies are needed to com-
municate with third party applications. Further, new
features need to added to the service source and ser-
vice plan shown in the structural view in Figure 4.
More explicit information on new features need to
be identified for further analysis, however.

Scenario 2: The system will be delivered with basic
capabilities. New features for complex call process-
ing will be incrementally introduced.

Architecture Impact: The architecture supports
incremental development because of the separation
of concerns, decoupling of functionality through the
blackboard, the controlled mechanism for service
interactions, and a mechanism used specifically for
incremental delivery. Further analysis on perfor-
mance and memory capacity needs to be conducted.

Scenarios could be described in different levels of
detail. Based on the stakeholder objectives and pre-
liminary analysis results, some scenarios may be
further refined or other scenarios in the same cate-
gory may need to be developed. For an application,
just a few scenarios were initially developed collab-
oratively with the architect. After the analysis and
discussion with the architect, a lot more scenarios
were generated for further evaluation.

5. Lessons Learned

We have applied this framework and set of views to
several projects within Nortel. The analysis is
heavily based on stakeholder objectives. For exam-
ple, in one project we grouped the stakeholder
objectives into five categories and added additional
two to cover as many areas as possible. One was for
basic needs, the other one was for potential future
changes that were not described in the stakeholder
objectives. Over thirty scenarios were then devel-
oped and classified based on the objectives for this
exercise. For another much smaller project, we
ended up with more scenarios than the previous
example for deeper analysis.



- 7 -

Various methods could be used to model the behav-
ioral aspect of a system. Examples include state
machines, message sequence charts, and Petri nets.
A generic causal representation is presented in Fig-
ure 5 as an illustration [10]. The tail of an arrow
reveals the cause, while the head of an arrow depicts
the effect. For each function in the functional flow,
there is a corresponding causal diagram to reveal the
behavioral aspect. Figure 5 is an example of “create
process” demonstrated in the functional flow (as
shown in Figure 3.)

The behavioral aspect is important to understand the
system before reuse occurs. In addition, the dynamic
view also supports maintainability as a system
evolves. For instance, if modifications are made the
static architectural representations may stay the
same, but some of the system’s behaviors may be
modified. The modification of behaviors should be,
but typically can not be, explicitly represented by
static architectural views. Another example is that if
personnel changes or the architect leaves, there may
be different interpretations for the static view by
other designers or new employees.

Identification of Architectural Styles. An architec-
ture can be classified into more than one style and an
architecture allows coexistence of multiple styles
[5,8]. The primary purposes of the style or pattern is
to impose an overall structural interpretation on a
software system or subsystem for consistency check-
ing, and to support human to human communica-
tions of the software.

For the example shown in Figure 4, the behavior of
the architecture is similar to a blackboard [3,5], since
the system has a centralized control, called a service
handler, to coordinate a group of components. The
identification of an architectural style help focus on
critical features such as the control mechanism of a
style, the communication mechanism between com-
ponents, and the integrability of new component, or
the modifiability of existing components. These
important features for the blackboard model are
identified for more detailed analyses as listed in
Table 4.

Table 1: Features to Focus on for the
Analysis of the Blackboard Model

In addition, the analysis can support the decision-
making process in choosing an appropriate style for
the target domain or trade-off analysis. The appro-
priate style can then be reused for the target domain,
even if the architecture itself is evaluated to be risky
to be directly reused for the target. For large systems
where multiple styles may exist, analysis of style
interoperability is important. Style interoperability
is directly related to system integritymaintainability.
It is important to identify and analyze how one par-
ticular style communicates with other styles [1].

Identification of Design Violations. This view
deals with the components or links that are missing
or are not represented properly, and the control or
communication mechanisms that violate the policy
of the identified architectural style. The architec-
tural style may only reveal an “idealized” or “as-
intended” software architecture initially developed
by a group of software designers. This view, on the
other hand, recovers the “as-built” aspect of an
architecture supported by the causal representations.
For instance, the blackboard’s control mechanism
requires a single point of contact between the cen-
tral control unit and the other cooperative compo-
nents, but the architecture that follows the style, in
fact, has multiple points of contact under certain cir-

Control/
Registration
mechanism

• When the blackboard wants to send a
message to some units, does it
broadcast the message to all the units
or simply send the message to the
registered units?

• Does the model support independent
control or broadcast control?

• Is the control single-threaded or multi-
threaded?

• Is the message control, data, or both?

Communicatio
n mechanism

• Is there a specific point of contact or
multiple points of contact between the
blackboard and the computational
units?

Violations • Are there any links that violate the
control or communication policy?

Integrability
and
modifiability

• If new components are added to the
system, will they be integrated into the
blackboard the same way as existing
components?



- 6 -

Table 3 shows the mapping of components to func-
tions for a particular scenario. The mapping sup-
ports the identification of the functions that a
component contributes. The functions identified for
the mapping do not have to be specific to a system.
In other words, these functions could also be generic
to a application area such as a set of reference func-
tions for the purpose of comparing different sys-
tems. When sets of functions are broadly agreed
upon and re-used, we have a reference model.

The tables, though conceptually simple, are useful
in demonstrating different aspects of functions and
components. The concept is similar to spreadsheet
software where diverse representations can be

Table 3: Mapping of Components to
Functions: An Example

Component Functions Involved

Dial Plan Digit Collection

Service
Handler

Digit Collection, Call Connection,
Answer Handling

Line Interface Digit Collection, Call Connection,
Answer Handling

quickly generated based on a user’s needs. The
tables can also be used as a quick-and-dirty analysis
of functional cohesion and coupling. If a function
involves too many components, this function may
need to be decomposed further into several sub-
functions. In addition, the information could be used
to cluster components based on the cooperations
and dependencies of components. For instance, the
components Service Handler and Line Interface pre-
sented in Table 3 show higher functional cohesion
as both components are related to a set of common
functions.

Causal Diagram. Architectural representations
most commonly describe static features, things like:
components, the relationship between components,
high-level functionality, and allocation to hardware.
The behavioral aspect of the system is important for
high-level understanding, communication among
stakeholders, architecture evolution, and re-
engineering. This view also supports the
development of an accurate static view and helps
validate the consistency of the other representations.

FIGURE 5. Dynamic View: An Illustration of “Create Process” for the
Hypothetical Call Processing System

O.S.

Interrupt handler
sets the default-
receiver to

Receiver
component sends
original message
to Object1

Object2
creates
Object3

Object1 initiates

to Object5
Object5 sends
the event to
Object2    Object2 sends

 a command
 to Object5

Object5
creates
Object7 Object5

creates
Object6

Object5 sends
a reference

Object5 sends
a reference

Object1
creates
Object2

Object3
creates
Object4

an event
Receiver

to Object6 so
that Object6
points to Object7

to Object1,
so that Object1
points to Object6

Function 2

Function 3



- 5 -

especially if there is any modification to be made to
the system. Two different representations are used
for the mapping. Table 2 shows the mapping of the
system’s main functions or features to components,
whereas Table 3 demonstrates an example of the
mapping of components to functions or features.
The components involved are tied back to those
shown in the structural view as shown in Figure 4.
The table helps locate all components involved for a
particular function. The book-keeping effort in cre-
ating and maintaining such views, and the links
between them, is crucial to supporting analysis.
Humans can not be expected to keep all the details
in their heads, all the time.

Table 2: Mapping of Functions to
Components: An Example

Function Components Involved

Digit
Collection

Dial Plan, Line Interface, Service Handler,
Service Initiator

Call
Connection

Service Handler, Line Interface, Billing
Handler

Answer
Handling

Service Handler, Line Interface, Connection

Blackboard

Service Handler

    Control

Translation

Service Initiator

Service

Service
Supplier

Digit Analyzer

Connection

Selector Route
Selector

Account
Information

Service
Source

Process

Computation

Active Data Repository

Logical Grouping

Control Flow

Data Flow

Synchronization

Passive Data Repository

Dial
Plan

Resource
Handler

Update
Account

Billing
Handler

Line
Interface

Service
Events

Service
Plan

Service
Base

Service
Directory

Digit
Collector

Physical
Connection

Digit
Translator

FIGURE 4. Structural View for a Hypothetical Call Processing System



- 4 -

Figure 2 demonstrates a real usage of these views
for a project. The structural view corresponds to the
static view. The functional flow and the causal dia-
gram belong to the dynamic view. The map view
consists of three items as just described. The
resource view was not incorporated for this exercise
primarily because the main objective focused on
evolution and reuse perspective, and a separate
team was working on the performance issues. The
views and their relationships are described next.

FIGURE 2. An Example of the
Usage of Architectural Views

Scenarios. In this study, scenarios are the main
driver for the capture of other architectural views
and for the analysis of an architecture. To begin the
analysis process, a few scenarios are typically
selected to identify and understand the system’s
critical functionality.

Functional Flow. The functional (sometimes called
operational) flow, in this context, refers to the
sequence of functions that are identified based on a
set of scenarios. This view reveals how the system
works to realize particular scenarios.

Most architectural representations emphasize only
static entities: the system’s “boxes” (components)
and “links” (connectors). A high-level functional
flow view aids understanding by showing the critical
system functions and the processing of these func-
tions: an operational view of the system. This view

Functional

 Causal Mapping of
 functionality
 & component

Identification
  of design

Structural

Functionality and
non-functional aspects

Process of

critical

functions

Static relationships Architecture

Components
 & links

ExplicitDynamic
between functions
and components

       relationships
between components features and

Scenarios

diagram

and systems behaviors

  violations

Identification
   of styles

     flow

consistency
violations &
rationales

view

is simple but useful. In our experience it is par-
ticularly useful for an object-oriented system
where frequently only the modelled real-world
entities are described rather than showing how
the system actually functions.

To return to our telecommunications example, there
are large number of features in an advanced tele-
communications system. Understanding the system
as a whole is an enormous and daunting task. So, a
typical scenario for beginning to understand such a
system would be to model a normal telephone call.
A simplified functional flow for a normal phone call
in a call processing system is shown in Figure 3.

FIGURE 3. Functional View for a
Hypothetical System

Structural View. Existing legacy systems
usually do not have appropriate pre-existing
architectural representations. Consequently, to
analyze a software architecture, a
representation is needed that shows the overall
system topology. This view integrates and
extends two methods presented in [5] and [6]
to address the classification and generalization
of a system’s components and functions, and
the connections between components.

The classification and generalization of components
and connections also facilitates the estimation of
cost or effort required for changes to be made. For
instance, the cost for a change to be made to a pro-
cessing unit normally would be higher than a
change to be made to a data repository. Such early
(and intentionally crude) estimates help in determin-
ing where to place more effort in an architectural
analysis.

Mapping between Functions and Components.
The mapping between functions and components
provides a view that supports traceability analysis,

 provide
 prompt

  create
 process

 collect
   digit

analyze
  digit

 connect
   call

handle
 answer



- 3 -

objectives and the results are fed into corresponding
objectives at the next level.

Analyzing. This phase focuses on specific software
architecture analysis and generation of artifacts to
do the analysis. Examples of artifacts include:
domain models (which help in comparing compet-
ing architectures within the same functional area
[6]); relevant architectural views; scenarios; envi-
ronmental assumptions and constraints; and trade-
off rationale. SAAM (Software Architecture Analy-
sis Method) [7] is adopted and extended for the
analysis. Explicit scenarios are mapped onto an
architecture for analysis of quality attributes.

Evaluating. This phase focuses on drivers for archi-
tectural development. In this phase recommenda-
tions are made, “hot spots” in the architecture (areas
of high predicted complexity, large numbers of
changes, performance bottlenecks, etc.) are located
and strategies for their mitigation are enumerated,
common reference models (independent of architec-
ture capture) are identified. It is important that this
phase ties back to the stakeholders’ values, as they
are the drivers of the analysis in the first place.

2.1 Example of Modeling of Objectives

Having described the framework, we now give an
example in the domain of telecommunication
switching software. In this example we show a cou-
ple of stakeholder objectives, architectural objec-
tives, and quality objectives, and the alignment of
these three types of objective in Table 1.

A set of scenarios are then developed based on the
stakeholder and architectural objectives. Each
objective may consist of a set of scenarios or sce-
nario classes. Each scenario class in turn consists of
various number of scenarios or sub-classes. An

Table 1: Stakeholder-Architectural-Quality
Objectives: An Example

Stakeholder
Objectives Architectural Objectives

Quality
Attributes

Allow interworking
with other products
and third.
parties

Expose functionality
which provides the
implementation of stan-
dardized third party
application program-
ming interfaces.

Reliability
Modifiability
Portability

Allow independent
development and
incremental deliv-
ery of new features.

Decouple functionalities
and use of virtual inter-
faces.

Reliability
Modifiability
Integrability

example of scenarios will be presented in Section 4.
The objectives also are important factors in deter-
mining when to stop generating more scenarios.
This concept will be addressed in Section 4 as well.

3. Architectural Views for Evolution and
Reusability Analysis

The development of a complex software system
involves various stakeholders. Diverse stakeholders
have different needs and perspectives of the system.
Each perspective represents a partial description of
a system. A complete description of a system
requires multiple viewpoints. In addition, various
viewpoints may be needed at various stages in the
life cycle. An architectural view, in this context, is a
perspective that satisfies the expressed needs of a
stakeholder.

SEAL has adopted various architectural views that
are critical for software architecture analysis. The
set of views includes: a static view, a map view, a
dynamic view, and a resource view [11]. Each view
and some commonly used methods are briefly
described below.

• Static view. The static view shows the overall
topology. The methods that can be used for this
view include logical diagram, structure dia-
gram, object diagram, and module diagram.

• Map view. The map view identifies the style,
design violations, and the mapping between
components and functions or features. An
example will be presented in the next section.

• Dynamic view. The dynamic view addresses
the behavioral aspects of a system. This view
can be supported by functional or operational
diagram, causal diagram, messaging diagram or
message sequence chart, object interaction dia-
gram, state machine, and Petri net.

• Resource view. The resource view deals with
the utilization aspect of the system resources.
Various techniques have been used in support
of this view, including the identification of the
mapping of software onto hardware, queuing
model, simulation and performance.

The development of the views does not have be car-
ried out in a strict sequential manner. Rather, the
process is iterative in nature. Further, not all the
views may be needed for each evaluation and each
view is not constrained by a particular method or
notation. Selection of appropriate views and suitable
methods depend on the specific application environ-
ment and stakeholder values.



- 2 -

views is to compare systems developed using func-
tional decomposition and object-oriented design in
the same problem area.

The main objective of the approach was to
assess an existing architecture for project
evolution or reuse in a future project in the
same problem domain or product line. The
work reflects empirical experience gathered
by an external review team to evaluate the
sensitivity of an architecture to changes in
key customer value parameters. An example
of a customer value is scalability. For
instance: what is the sensitivity of an archi-
tecture if the system is to be modified so that
it supports fifteen features, instead of the pre-
vious ten, and at the same time the system is
to be scaled from processing fifty calls to
eighty calls per minute?

The remainder of this paper is organized as follows:
Section 2 demonstrates the framework for analysis.
Section 3 describes the context of architectural
views and various architectural views adopted for
the analysis of software architectures. Examples of
the views are also demonstrated in this section. Sec-
tion 4 highlights some example scenarios and partial
analysis results. Section 5 presents some important
lessons learned from applying the approach to sev-
eral telecommunications systems. Finally, Section 6
gives our concluding remarks.

2. Framework for Information
Gathering and Analysis

To ensure that the software architecture analysis
process is organized and scientific (and hence,
repeatable), a framework for architecture informa-
tion gathering and analysis was formulated, as
described in Figure 1. The activities described in the
framework are performed iteratively instead of in a
strict sequential manner.

Gathering. This phase focuses on becoming aware
of the available and required information to do the
analysis, and then to collect and compile it. Cur-
rently four categories of information are being
addressed: stakeholder, architecture, quality, and
scenarios or use cases. In the future, the information
categories may be extended, to include for example,
competitive analysis.

FIGURE 1.
Framework for Architecture Information

Gathering and Analysis

Modeling. Once it is gathered, the information is then
aligned across information categories. The focus
here is on mapping stakeholder, architecture, quality,
and scenario information into usable artifacts. This
information is used to direct the capture of the archi-
tecture  (if it is
not already recorded in a usable form) and to drive
the analysis. It is also a critical vehicle in providing
feedback in the latter phases.

Modeling is a critical phase, since if it is not done
correctly, it can mislead and skew the rest of the
analysis. In the modeling phase both the breadth and
depth of the analysis are taken into account. The
breadth aspect describes the relationships between:
stakeholders objectives, architectural objectives,
quality attributes, and scenarios. For example, it is
useful to form a matrix of quality attributes and
stakeholders, to ensure that each attribute is at least
considered from the perspective of each stakeholder.

The depth aspect deals with the levels of abstraction
at which the stakeholder objectives are represented
(and hence analyzed). A single stakeholder objective
or an architectural objective could be represented by
several quality attributes or scenarios, each describ-
ing one aspect of the objective. The depth at which
various types of information are represented will
affect the accuracy (and cost) of the analysis. Model-
ing of the depth aspect is supported by adopting soft-
ware QFD (quality function deployment) [2], where
relational matrices are used to prioritize high-level

Stakeholder
Information

Architecture
Information

  Quality
Information Scenarios

Stakeholder
    Entity

Architecture
   Entity

Quality
  Entity

Scenarios

Architectural Analysis and Artifacts

Architectural Drivers

Gathering

Modeling

Analyzing

Evaluating



- 1 -

Abstract

Software evolution and reuse is more likely to
receive higher payoff if high-level artifacts—such
as architectures and designs—can be reused and can
guide low-level component reuse. In practice, how-
ever, high-level artifacts are often not appropriately
captured. This paper presents an approach to captur-
ing and assessing software architectures for evolu-
tion and reuse. The approach consists of a
framework for modeling various types of relevant
information and a set of architectural views for re-
engineering, analyzing, and comparing software
architectures. We have applied this approach to
large-scale telecommunications systems, where the
approach is useful to reveal areas for improvement
and the potential for reuse.

Keywords: Software architectures, product lines,
analysis, software evolution, software reusability,
scenarios

1. Introduction

Software evolution and reuse are two critical topics
in industry, because of the huge expense involved
and because of global competition. However, soft-
ware systems are becoming increasingly complex,
further complicating the already difficult problem of
evolving or reusing software assets and products. To
systematically support the process for the ever
growing complexity of software, higher levels of
abstraction are needed. Kruchten [9] noted that “for
a software reuse technique to be effective, it must
reduce the cognitive distance between the initial

1. Kazman’s current address: Software Engineering
Institute, Carnegie Mellon Univ., Pittsburgh, PA,
15213. E-mail: kazman@sei.cmu.edu

concept of a system and its final executable imple-
mentation” (p. 136). Software architectures are criti-
cal artifacts in bridging the gap between the initial
concept of a system and the system’s implementa-
tion; its low-level software components.

This paper presents a framework and a set of archi-
tectural views that were developed to assess soft-
ware architectures for evolution and reuse built
upon a scenario-based approach [7]. This frame-
work is used to model different types of informa-
tion, namely, stakeholder information [2,4],
architecture information, quality information, and
scenarios. Stakeholders can include, for example,
designers, managers, and end-users. The informa-
tion for stakeholders describes their objectives.
Architecture information deals with the critical
design principles or architectural objectives. Quality
information refers to the non-functional attributes
such as performance, modifiability, availability, and
integrability. Scenarios are narratives that describe
use cases of a system. Scenarios can be used to cap-
ture the system’s functionality. Scenarios that are
not directly supported by the current system can be
used to detect possible flaws or to assess the archi-
tecture’s support for potential enhancements. A set
of scenarios is derived from the stakeholder objec-
tives, architectural objectives, and desired system
quality attributes or objectives. Section 2 will give a
more detailed discussion on this topic.

Objectives provide boundaries and drive the analy-
sis. Architectural views are important for evolution
and reuse, because various views provide different
perspectives, which are useful in understanding, re-
engineering, and analyzing systems. In addition,
these architectural views support analysis of sys-
tems developed using different paradigms. For
example, one application that we have made of the

An Approach to Software Architecture Analysis for
Evolution and Reusability

Chung-Horng Lung, Sonia Bot, Kalai Kalaichelvan  Rick Kazman1

Software Engineering Analysis Lab. Department of Computer Science
Nortel University of Waterloo

Ottawa, Ontario, Canada K1Y 4H7             Waterloo, Ontario, Canada N2L 3G1
{lung | sdbot | kalai}@nortel.ca rnkazman@cgl.uwaterloo.ca


