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Abstract—This paper presents a review of the current liter-
ature on rough set and near set-based approaches to solving
various problems in medical imaging such as medical image
segmentation, object extraction and image classification. Rough
set frameworks hybridized with other computational intelligence
technologies that include neural networks, particle swarm op-
timization, support vector machines and fuzzy sets are also
presented. In addition, a brief introduction to near sets and
near images with an application to MRI images is given. Near
sets offer a generalization of traditional rough set theory and a
promising approach to solving the medical image correspondence
problem as well as an approach to classifying perceptual objects
by means of features in solving medical imaging problems. Other
generalizations of rough sets such as neighborhood systems,
shadowed sets, and tolerance spaces are also briefly considered
in solving a variety of medical imaging problems. Challenges to
be addressed and future directions of research are identified and
an extensive bibliography is also included.

Index Terms—Computational Intelligence, Rough Sets, Near
Sets, Medical Imaging, Image Segmentation, Image Classification,
Hybrid Rough Image Processing

I. I NTRODUCTION

COMPUTATIONAL intelligence techniques and ap-
proaches encompass various paradigms dedicated to ap-

proximately solving real-world problems in decision making,
pattern classification and learning [1]–[3]. Prominent among
these paradigms are fuzzy sets, neural networks, genetic
algorithms, rough sets, and a generalization of rough sets
called near sets. Fuzzy sets provide a natural framework for
dealing with uncertainty. It offers a problem-solving tool be-
tween the precision of classical mathematics and the inherent
imprecision of the real world. For example, imprecision in
a segmented image can be represented and analyzed using
fuzzy sets. Neural networks provide a robust approach to
approximating real-valued, discrete-valued and vector-valued
functions. The well-known back propagation algorithm that

∗A.E. Hassanien is with the Information Technology Department,
FCI, Cairo University, 5 Ahamed Zewal Street, Orman, Giza,
Egypt, and System Department, CBA, Kuwait University, Kuwait,
a.hassanien@fci-cu.edu.eg,abo@cba.edu.kw

A. Abraham is with the Center for Quantifiable Quality of Service in
Communication Systems, Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

J.F. Peters is with the Computational Intelligence Laboratory, Department
of Electrical & Computer Engineering, University of Manitoba, Winnipeg,
Manitoba R3T 5V6 Canada

G. Schaefer is with the School of Engineering and Applied Science, Aston
University Birmingham, U.K.

C. Henry is a Ph.D. student with the Computational Intelligence Laboratory,
Department of Electrical & Computer Engineering, University of Manitoba,
Winnipeg, Manitoba R3T 5V6 Canada

uses gradient descent to tune network parameters to best fit
the training set with input-output pair, has been successfully
applied to a variety of problems. Genetic algorithms [3]
are stochastic search techniques based on the principles of
evolution. Extensive research has been performed exploiting
the robust properties of genetic algorithms and demonstrating
their capabilities across a broad range of problems. These evo-
lutionary methods have gained recognition as general problem
solving techniques in many applications, including function
optimization, image processing, classification and machine
learning, training of neural networks, and system control.
Other approaches like case based reasoning and decision
trees [4], [5] are also widely used to solve data analysis
problems.

Recently, various published algorithms have been applied to
build a computer-aided analysis system in the medical field [6],
[7]. The most commonly used algorithms are neural networks,
Bayesian classifiers, genetic algorithms, decision trees, and
fuzzy theory [8]–[12]. Unfortunately, the techniques developed
have not been sufficient to introduce an effective computer-
aided analysis in clinical use. A survey of the area can be
found in [6].

Rough set theory introduced by Pawlak during the early
1980s [13] spans a quarter century (see,e.g., [14]–[17]). The
rough set approach to approximation of sets leads to useful
forms of granular computing that are part of computational
intelligence [3]. The basic idea underlying the rough set
approach to information granulation is to discover to what
extent a given set of objects (e.g., pixel windows in an
image) approximates another set of objects of interest. Objects
are compared by considering their descriptions. A recent
generalization of rough set theory has led to the introduction
of near sets [18]–[20] and a consideration of the affinities
(nearness) of objects [21]. In a near set approach to object
classification, an object description is modeled as a vector
function that represent object features [20]. Included in the
near set approach is a provision for an object feature to be
represented by one or more functions,e.g., color represented
by functions that measure intensity, hue, and saturation.

Near sets and rough sets are very much like two sides of
the same coin. From a rough set point-of-view, the focus is
on the approximation of sets with non-empty boundaries. By
contrast, in a near set approach, the focus is on the discovery
of sets having matching descriptions that does not require
a consideration of approximation boundaries. In the context
of medical image analysis, an image is viewed as a set of
points. That assumption ushers in either a rough set or near
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set approach to medical image analysis. There are a number
of practical outcomes of the near set approach,e.g., feature
selection [22]–[24], objective evaluation of image segmenta-
tions [25], image classification [26]–[30], object recognition in
images [19], [26], granular computing [31], and various forms
of machine learning [31], [32].

The objective of this article is twofold: present to the rough
set and medical imaging research communities the state-of-
the art in rough set-based applications to image processing
and pattern recognition (in general) with a specific focus on
medical imaging (in particular), and motivate research in new
trend-setting directions. We review and discuss some represen-
tative methods to provide inspiring examples to illustratehow
rough sets can be applied to solve medical imaging problems
and how medical images can be analyzed, processed, and
characterized by rough sets. These examples include, among
others, rough representation of a region of interest, rough
image entropy, rough c-means clustering, and rough neural
intelligent approach for image classification.

This article has the following organization. Section II pro-
vides an explanation of the basic framework of rough set
theory, along with some of the key definitions. Section III gives
an introduction to rough image processing including rough
images, rough representation of a region of interest, rough
image entropy, and rough-based medical image applications
including object extraction and medical image segmentation
and clustering. Some useful measures are presented in Sec-
tion IV. Section V provides a brief review of rough sets
combined with other computational intelligence approaches
such as rough neural networks, rough fuzzy and rough ge-
netic algorithms as well as Bayesian methods, particle swarm
optimization and support vector machines coupled with rough
sets. An introduction to near sets, near images and the near set
approach to image segmentation is given in Section VI while
other generalization approaches of rough sets are presented in
Section VII. Finally. challenges and future trends are discussed
in Section VIII.

II. ROUGH SETS: FOUNDATIONS

Due to space limitations we provide only a brief explanation
of the basic framework of rough set theory, along with some
of the key definitions. A more comprehensive review can be
found in sources such as [14].

Rough sets theory provides a novel approach to knowledge
description and to approximation of sets. Rough theory was
introduced by Pawlak during the early 1980s [13] and is based
on an approximation space-based approach to classifying sets
of objects. In rough sets theory, feature values of sample
objects are collected in what are known as information tables.
Rows of a such a table correspond to objects and columns
correspond to object features.

Let O,F denote a set of sample objects and a set of
functions representing object features, respectively. Assume
that B ⊆ F , x ∈ O. Further, letx∼B

denote

x/∼B
= {y ∈ O | ∀φ ∈ B,φ(x) = φ(y)} ,

i.e., x ∼B y (description ofx matches the description ofy).
Rough sets theory defines three regions based on the equivalent

classes induced by the feature values: lower approximation
BX, upper approximationBX and boundaryBNDB(X).
A lower approximation of a setX contains all equivalence
classesx/∼B

that are proper subsets ofX, and upper approx-
imation BX contains all equivalence classesx/∼B

that have
objects in common withX, while the boundaryBNDB(X)
is the setBX \ BX, i.e., the set of all objects inBX that are
not contained inBX. Any setX with a non-empty boundary
is roughly known relative,i.e., X is an example of a rough
set.

The indiscernibility relation∼B (also written asIndB) is
a mainstay of rough set theory. Informally,∼B is a set of all
classes of objects that have matching descriptions. Based on
the selection ofB (i.e., set of functions representing object
features),∼B is an equivalence relation that partitions a set
of objectsO into classes (also called elementary sets [13]).
The set of all classes in a partition is denoted byO/∼B

(also
by O/IndB). The setO/IndB is called the quotient set.
Affinities between objects of interest in the setX ⊆ O and
classes in a partition can be discovered by identifying those
classes that have objects in common withX. Approximation
of the setX begins by determining which elementary sets
x/∼B

∈ O/∼B
are subsets ofX.

III. ROUGH IMAGE PROCESSING

Various rough image processing methodologies have been
applied to handle the different challenges posed by medi-
cal imaging. We can define rough image processing as the
collection of all approaches and techniques that understand,
represent and process the images, their segments and features
as rough sets (see,e.g., [10], [33]–[35]). In this section, we
first describe the ability of rough sets to handle and represent
images and color images, followed by the various rough based
approaches developed for handling the different functional
aspects to solve medical imaging problems.

A. The ability of rough sets to handle images

Rough sets provide reasonable structures for the overlap
boundary given domain knowledge. The case study for images
of the heart on cardiovascular magnetic resonance (MR)
images also extends to handling multiple types of knowledge
including: myocardial motion, location and signal intensity.
A study concerned with distinguishing different picture types
of the central nervous system is introduced in [36]. Research
involving color images appears in [37]. Histons (i.e., encrus-
tations of a histogram) are used as the primary measure and
as a visualization of multi-dimensional color information. The
basic idea of a histon is to build a histogram on top of the
histograms of the primary color components red, green, and
blue. The authors show that the base histogram correlates with
the lower approximation, whereas the encrustation correlates
with the upper approximation. The problem of a machine
vision application where an object is imaged by a camera
system is considered in [38]. The object space can be modeled
as a finite subset of the Euclidean space when the objects
image is captured via an imaging system. Rough sets can
bound such sets and provide a mechanism for modeling the
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spatial uncertainty in the image of the object. This work
introduced a rough sets approach for building pattern matching
systems that can be applicable with a wide range of images
in medical sciences.

B. Rough images

In grayscale images boundaries between object regions are
often ill defined because of grayness or spatial ambigui-
ties [39], [40]. This uncertainty can be effectively handled by
describing the different objects as rough sets with upper (or
outer) and lower (or inner) approximations. Here the concepts
of upper and lower approximation can be viewed, respectively,
as outer and inner approximations of an image region in terms
of granules [40].

Definition 1: (Rough image) Let the universeU be an
image consisting of a collection of pixels. Then, if we partition
U into a collection of non-overlapping windows of sizem×n,
each window can be considered as a granuleG. Given this
granulation, object regions in the image can be approximated
by rough sets.

A rough image is a collection of pixels along with the
equivalence relation induced partition of an image into sets
of pixels lying within each non-overlapping window over
the image. With this definition, the roughness of various
transforms (or partitions) of an image can be computed using
image granules for windows of different sizes.

C. Rough representation of a region of interest

A region of interest (ROI), is a selected subset of samples
within an image identified for a particular purpose. The
concept of ROI is commonly used in medical imaging. For
example, the boundaries of a tumor may be defined on an
image or in a volume, for the purpose of measuring its size.
The endocardial border may be defined on an image, perhaps
during different phases of the cardiac cycle, say end-systole
and end-diastole, for the purpose of assessing cardiac function.

Hirano and Tsumoto [41] introduced the rough direct rep-
resentation of ROIs in medical images. The main advantage
of this method is its ability to represent inconsistency between
the knowledge-driven shape and image-driven shape of a ROI
using rough approximations. The method consists of three
steps. First, they derive discretized feature values that describe
the characteristics of a ROI. Secondly, using all features,they
build up the basic regions (categories) in the image so that each
region contains voxels that are indiscernible on all features.
Finally, according to the given knowledge about the ROI, they
construct an ideal shape of the ROI and approximate it by
the basic categories. Then the image is split into three setsof
voxels, which are:
(1) certainly included in the ROI (positive region),
(2) certainly excluded from the ROI (negative region),
(3) possibly included in the ROI (boundary region).

The ROI is consequently represented by the positive region
associated with some boundary regions.

Hirano and Tsumoto [33], [41] described procedures for
rough representation of ROIs under single and multiple types
of classification knowledge. Usually, the constant variables

defined in the prior knowledge, for example some threshold
values, do not meet the exact boundary of images due to inter-
image variances of the intensity. The approach tries to roughly
represent the shape of the ROI by approximating the given
shapes of the ROI by the primitive regions derived from feature
of the image itself. It is reported that the simplest case occurs
when we have only information about the intensity range of
the ROI. In this case intensity thresholding is a conventional
approach to obtain the voxels that fall into the given range.Let
us denote the lower and upper thresholds byThL andThH ,
respectively. Then the ROI can be represented by:

ROI = {x(p) | ThL ≤ I(x)P ≤ ThH}, (1)

wherex(p) denotes a voxel at locationp andI(x(p)) denotes
intensity of voxelx(p).

Fig. 1 illustrates the concept of rough ROI representation.
The left image is an original grayscale image. Assume that
the ROIs are three black circular regions: ROI1, ROI2, and
ROI3. Also assume that we are given a prior knowledge about
the ROIs, that is, the lower threshold valueThL of the ROIs,
derived from some knowledge base. With this knowledge we
can segment an ideal ROIX ˆROI as follows:

X ˆROI = {x(p)|ThL ≤ I(p)}. (2)

Fig. 1. Rough ROI representation. Left: an original image. Middle:
elementary categories. Right: roughly segmented ROI [41]

However, X ˆROI does not correctly match the expected
ROIs. This is becauseThL was too small to separate the
ROIs.ThL is a global threshold determined on the other sets,
therefore, it should not be directly applied to this image.

D. Rough Image Entropy

Entropy-based information theoretic approaches have re-
ceived considerable interest in image analysis approaches
such as image registration [42]. Previous work on entropic
thresholding is based on Shannon’s entropy. The idea is
to calculate Shannon’s entropy based on a co-occurrence
matrix and use it as a criterion for selecting an appropriate
threshold value. The approach using relative entropy for image
thresholding has been shown very competitive compared to
Pal’s methods, where the relative entropy is chosen to be
a thresholding criterion of measuring mismatch between an
image and a thresholded image. Currently there are various
published approaches using relative entropy and applying it
to medical images, multispectral imagery, temporal image
sequences, multistage thresholding and segmentation.

Pal et al. [40] presented a new definition of image entropy
in a rough set theoretic framework, and its application to
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the problem of object extraction from images by minimizing
both object and background roughness. Granules carry local
information and reflect the inherent spatial relation of the
image by treating pixels of a window as indiscernible or
homogeneous. Maximization of homogeneity in both object
and background regions during their partitioning is achieved
through maximization of rough entropy; thereby providing
optimal results for object background classification.

Definition 2: (Rough Image Entropy) [40] Rough image
entropy(RIE) is defined by:

RIE = −
e

2
[ROT

loge(ROT
) + RBT

loge(RBT
)]. (3)

RIE lies between 0 and 1 and it has has a maximum value
of unity when ROT

= RBT
= 1

e , and minimum value of
zero whenROT

, RBT
∈ {0, 1}. Fig. 2 shows a sample plot of

rough entropy for various values of roughness of the object
and background [40].

Fig. 2. Rough entropy for various values [40]

Pal et al. reported that a maximization of homogeneity in
both object and background regions during their partitioning is
achieved through maximization of rough entropy; thereby pro-
viding optimum results for object-background classification.
Also, maximization of the rough entropy measure minimizes
the uncertainty arising from vagueness of the boundary region
of the object. Therefore, for a given granule size, the threshold
for object-background classification can be obtained through
its maximization with respect to different image partitions.
The rough entropy concepts is applicable for many medical
imaging problems such as feature extraction and medical
image segmentation problems.

E. Rough Sets for Object Extraction

Identification of anatomical features is a necessary step for
medical image analysis. Automatic methods for feature iden-
tification using conventional pattern recognition techniques
typically classify an object as a member of a predefined
class of objects, but do not attempt to recover the exact
or approximate shape of that object. For this reason, such
techniques are usually not sufficient to identify the borders of
organs when individual geometry varies in local detail, even
though the general geometrical shape is similar.

Pal et al. [40] demonstrated a new application of rough
sets for object extraction from grayscale image. In grayscale

images boundaries between object regions are often ill-defined.
This uncertainty can be handled by describing the different
objects as rough sets with upper (outer) and lower (inner)
approximations. The set approximation capability of rough
sets is exploited in the present investigation to formulate
an entropy measure, called rough entropy, quantifying the
uncertainty in an object-background image. LetT denote a
set of thresholds (which are application dependent). An image
object and the background are viewed as two sets with their
rough representation by computing the inner approximationof
the object (Q

T
), outer approximation of the object (QT ), inner

approximation of the background (BT ) and outer approxima-
tion of the background (BT ) as follows:

Q
T

=
⋃

Gi|pj > T,∀j = 1, . . . ,mn, (4)

QT =
⋃

Gi,∃j, pj > T, j = 1, . . . ,mn, (5)

BT =
⋃

Gi|pj > T,∀j = 1, . . . ,mn, (6)

BT =
⋃

Gi,∃j, pj ≤ T, j = 1, . . . ,mn, (7)

wherepj is a pixel inGi. The rough set representation of the
image for a givenIm×n depends on the value ofT .

Palet al. define the roughness (R) of the objectOT and the
backgroundBT as follows:

ROT
= 1 −

|Q
T
|

|QT |
, (8)

RBT
= 1 −

|BT |

|BT |
, (9)

where the notation|S| denotes the cardinality of the setS.
This method can be used in many applications in image
processing and in particular in medical imaging problems
such as automatically identifying the myocardial contours
of the heart, segmentation of knee tissues in CT image or
segmentation of brain tissues in MR images.

F. Rough Sets in Medical Image Segmentation

The basic idea behind segmentation-based rough sets is that
while some cases may be clearly labeled as being in a setX
(called the positive region in rough sets theory), and some
cases may be clearly labeled as not being in setX (called
the negative region), limited information prevents us from
labeling all possible cases clearly. The remaining cases cannot
be distinguished and lie in what is known as the boundary
region.

Among many difficulties in segmenting MRI data, the
partial volume effect arises in volumetric images when more
than one tissue type occurs in a voxel. In such cases, the
voxel intensity depends not only on the imaging sequence
and tissue properties, but also on the proportions of each
tissue type present in the voxel. Widzet al. [11] discussed
the partial volume effect problem in the segmentation of
magnetic resonance imaging data that entails assigning tissue
class labels to voxels. They employ rough sets to automatically
identify the partial volume effect, which occurs most often
with low resolution imaging.
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An interesting strategy for color image segmentation using
rough set theory has been presented by Mohabeyet al. [37].
A new concept of encrustation of the histogram, called histon,
has been proposed for the visualization of multi-dimensional
color information in an integrated fashion and its applicability
in boundary region analysis has been shown. The histon
correlates with the upper approximation of a set such that
all elements belonging to this set are clarified as possibly
belonging to the same segment or segments showing similar
color value. The proposed encrustation provides a direct means
of segregating a pool of inhomogeneous regions into its com-
ponents. Experimental results for various images have been
presented in their work. They also introduced a hybrid rough
set theoretic approximations and fuzzy c-means algorithm for
color image segmentation. They segmented natural images
with regions having gradual variations in color value. The
technique extracts color information regarding the numberof
segments and the segments’ center values from the image
itself through rough set theoretic approximations, and presents
it as input to a fuzzy c-means block for the soft evaluation
of the segments. The performance of the algorithm has been
evaluated on various natural and simulated images.

Many clustering algorithms [43] have been developed and
applied in medical imaging problems, although most of them
cannot process objects in hybrid numerical/nominal feature
space or with missing values. In many of them, the number
of clusters has to be manually specified while the clustering
results are sensitive to the input order of the objects to be
clustered. This clearly limits their applicability and reduces the
quality of clustering. An improved clustering algorithm based
on rough sets and entropy theory was presented by Chena
and Wang [44] which aims to avoid the need to pre-specify
the number of clusters while also allowing clustering in both
numerical and nominal feature space with the similarity intro-
duced to replace the distance index. At the same time, rough
set theory endows the algorithm with the function to deal
with vagueness and uncertainty in data analysis. Shannon’s
entropy was used to refine the clustering results by assigning
relative weights to the set of features according to the mutual
entropy values. A novel measure of clustering quality was also
presented to evaluate the clusters. The experimental results
confirm that performances of efficiency and clustering quality
of this algorithm are improved.

Widz et al. [11] introduced an automated multi-spectral
MRI segmentation technique based on approximate reducts
derived from the theory of rough sets. They utilized T1, T2
and PD MRI images from a simulated brain database as a
gold standard to train and test their segmentation algorithm.
The results suggest that approximate reducts, used alone orin
combination with other classification methods, may providea
novel and efficient approach to the segmentation of volumetric
MRI data sets. Segmentation accuracy reaches 96% for the
highest resolution images and 89% for the noisiest image
volume. They tested the resultant classifier on real clinical
data, which yielded an accuracy of approximately 84%.

G. Adaptation of C-Means to Rough Set Theory

C-means clustering is one of the most popular statistical
clustering techniques used in segmentation of medical images
[45]–[47]. Let us assume thatn objects are represented bym-
dimensional vectors. The objective is to assign thesen objects
to k clusters. Each of the clusters is also represented by anm-
dimensional vector, which is the centroid or mean vector for
that cluster. The process begins by randomly choosingk ob-
jects as the centroids of thek clusters. The objects are assigned
to one of thek clusters based on the minimum value of the dis-
tanced(v, x) between the object vectorv = (v1, ..., vj , ..., vm)
and the cluster vectorx = (x1, ..., xj , ..., xm). After the
assignment of all the objects to various clusters, the new
centroid vectors of the clusters are calculated as:

xj =

∑

v∈x vj

SOC
, 1 ≤ j ≤ m, (10)

whereSOC is the size of clusterx. Lingras [48] observes that
incorporating rough sets into c-means clustering requiresthe
addition of the concept of lower and upper bounds. Calculation
of the centroids of clusters from conventional c-means needs
to be modified to include the effects of lower as well as upper
bounds. The modified centroid calculations for rough sets are
then given by:

cenj = wlow ×

∑

v∈R(x)

|R(x)|
+ wup ×

∑

v∈(BNR(x))

|BNR(x)|
, (11)

where1 ≤ j ≤ m. The parameterswlow andwup correspond
to the relative importance of lower and upper bounds, and
wlow + wup = 1. If the upper bound of each cluster were
equal to its lower bound, the clusters would be conventional
clusters. Therefore, the boundary regionBNR(x) will be
empty, and the second term in the equation will be ignored.
Thus, the above equation will reduce to conventional centroid
calculations. The next step in the modification of the c-means
algorithms for rough sets is to design criteria to determine
whether an object belongs to the upper or lower bound of a
cluster.

H. Rough Sets in Feature Reduction and Image Classification

Many researchers have endeavored to develop efficient and
effective algorithms to compute useful feature extractionand
reduction of information systems, and mutual information and
discernibility matrix based feature reduction methods. These
techniques have been successfully applied to the medical
domain [49], [50].

Wojcik [34] approached the nature of a feature recognition
process through the description of image features in terms
of rough sets. Since the basic condition for representing
images must be satisfied by any recognition result, elementary
features are defined as equivalence classes of possible occur-
rences of specific fragments existing in images. The names
of the equivalence classes (defined through specific numbers
of objects and numbers of background parts covered by a
window) constitute the best lower approximation of window
contents (i.e., names of recognized features). The best upper
approximation is formed by the best lower approximation, its
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features, and parameters, all referenced to the object fragments
situated in the window. The rough approximation of shapes is
robust to accidental changes in the width of contours and lines,
to small discontinuities, and, in general, to possible positions
or changes in shape of the same feature. The rough sets are
utilized also on the level of image processing for noiseless
image quantization. This initiative study has many interesting
applications in the area of medical image processing including
filtering, segmentation, and classification

Swiniarski and Skowron [51] presented applications of
rough set methods for feature selection in pattern recognition.
They emphasize the role of the basic constructs of rough
set approach in feature selection, namely reducts and their
approximations, including dynamic reducts. Their algorithm
for feature selection is based on an application of a rough set
method to the result of principal components analysis (PCA)
used for feature projection and reduction. They present various
experiments including mammogram recognition.

Hu et al. [52] proposed an information measure for com-
puting discernibility power of a crisp equivalence relation or
a fuzzy one, which is a key concept in classical rough set and
fuzzy-rough set models. Based on the information measure,
a general definition of significance of nominal, numeric and
fuzzy features is presented.

Lymphoma is a broad term encompassing a variety of can-
cers of the lymphatic system and is differentiated by the type
of cell that multiplies and how the cancer presents itself. It is
very important to get an exact diagnosis regarding lymphoma
and to determine the treatments that will be most effective
for the patient’s condition. Milanet al. [53] focused on the
identification of lymphoma by finding follicles in microscopy
images. Their study comprises two stages: in the first stage
they did image pre-processing and feature extraction, while in
the second stage they used different rough set approaches for
pixel classification. These results were compared to decision
tree results. The results they got are very promising and show
that symbolic approaches can be successful in medical image
analysis applications.

Microcalcification on a x-ray mammogram is a significant
mark for early detection of breast cancer. Texture analysis
methods can be applied to detect clustered microcalcification
in digitized mammograms. In order to improve the predictive
accuracy of the classifier, the original number of features is
reduced into a smaller set using feature reduction techniques.
Thangavelet al. [54] introduced rough set based reduction
algorithms such as Decision Relative Discernibility based
reduction, Heuristic approach, Hu’s algorithm, Quick Reduct
(QR), and Variable Precision Rough Set (VPRS) to reduce the
extracted features.

Cyranet al. [55] showed how rough sets can be applied to
improve the classification ability of a hybrid pattern recog-
nition system. The system presented consists of a feature
extractor based on a computer-generated hologram (CGH).
Features extracted are shift, rotation, and scale invariant and
they can be optimized.

Jiang et al. [56] developed a joining associative classi-
fier (JAC) algorithm using rough set theory to mine digital
mammography images. Their experimental results showed that

the JAC performance was 77.48% in terms of classification
accuracy which is higher than 69.11% using conventional
associative classifier. At the same time, the number of rules
decreased distinctively.

IV. QUANTITATIVE EVALUATION

This section presents some quantitative measures [57] that
are capable of quantifying the relative utility of enhancement
techniques in digital imaging, generated rules, and quality of
classification measures [58], [59]. This relates to preference
criteria and goodness-of-fit chosen for the rules and classifiers.

A key objective of contrast enhancement is to maximize
the difference between the background mean and target mean
grayscale level, and to ensure that the homogeneity of the
mass is increased, both of which aide the visualization of the
boundary and location of the mass. Using the ratio of the
standard deviation of the grayscales within the image before
and after enhancement, we can quantify this improvement
using the target-to-background contrast based on the standard
deviation. This measure is initially computed by determining
the difference between ratios of the mean grayscales in the
target and background images in the original and enhanced
images using

CMSD = {
(me

t/me
b) − (mo

t /mo
b)

σe
t /σo

t

}, (12)

whereme
t ,m

e
b,m

o
t ,m

o
b are the means of the grayscales com-

prising the target and background respectively of the original
image before and after enhancement, and whereσe

t , σ
o
t are

the standard deviations of the grayscales before and after
enhancement.

Within the mammogram image, the target has a greater
density within the mammogram thus having higher mean
grayscale intensity compared to the surrounding background.
A good enhancement algorithm should aim to enhance the
contrast between target and background by increasing the
mean grayscale of the target area and then reducing the mean
gray of the background area, thereby increasing the value of
CMSD.

The background contrast ratio can also be calculated using
the entropyE of target and background areas within an image.
This measure is computed in a similar manner toCMSD

by determining the difference between ratios of the mean
grayscales in the target and background areas in both original
and enhanced images using

CMEntropy = {
(me

t/me
b) − (mo

t /mo
b)

Ee
t /Eo

t

}, (13)

whereEe
t andEo

t are the entropy of the target in the original
and enhancement images, respectively. An effective enhance-
ment algorithm will lead to a large value ofCMEntropy .

Index of fuzziness and fuzzy entropy are measures for
global greyness ambiguity (fuzziness) of an image. They can
be regarded as a degree of difficulty in deciding whether a
pixel would be treated as black (dark) or white (bright). The
index of fuzziness that gives the amount of fuzziness present
in an image determines the amount of vagueness by measuring
the distance between its fuzzy property plane and the nearest
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ordinary plane. Accordingly, entropy,H, which makes use
of Shannon’s function, is regarded as a measure of quality of
information in an image in the fuzzy domain. It gives the value
of indefiniteness of an image. These quantities [60]–[63] are
defined as

γ =
2

MN

∑

M

∑

N

min(µmn, 1 − µmn), (14)

and

H =
1

MN
ln

∑

M

∑

N

ln(µmn)−(1−µmn).ln(1−µmn). (15)

It should be noted that the decrease in the index of fuzziness
and fuzzy entropy does not ensure proper enhancement of the
images. We can only say that a good enhancement algorithm
should reduce the greyness ambiguity. However, a low amount
of ambiguity does not automatically lead to the desired en-
hancement effect.

V. HYBRID INTELLIGENT APPROACHES

Intelligent systems comprise various paradigms dedicatedto
approximately solving real-world problems,e.g., in decision
making, classification or learning; among these paradigms are
fuzzy sets, neural networks, decision tree, and rough sets,al-
gorithms. Combination of different computational intelligence
techniques in the application area of pattern recognition,and
in particular in medical imaging problems, has become one of
the most important ways of research in intelligent information
processing [64]. In the following subsections we review some
of the state-of-the-art in this area.

A. Rough set - Neural network approaches

Neural networks are known for their ability to solve various
complex problems in image processing. However, they are
unable to determine redundant information from large data
sets, which can easily lead to problems such as over complex
network structures, long training times, and low converging
speeds. Hassanien andŚlȩzak [57] introduced a rough neural
approach for rule generation and image classification. Hy-
bridization of intelligent computing techniques has lead to an
increase in their ability to accurately classify breast images
into malignant and benign instances. Algorithms based on
fuzzy image processing are first applied to enhance the contrast
of the original image, to extract the ROI, and to enhance the
edges surrounding that region. Then, features characterizing
the underlying texture of the regions of interest are extracted
using the gray-level co-occurrence matrix. A rough set ap-
proach to feature reduction and rule generation is then applied.
Finally, a rough neural network is designed to discriminate
different ROIs in order to separate them into malignant and
benign cases. The rough neural network employed is built from
rough neurons [65], each of which can be viewed as a pair of
sub-neurons, corresponding to the lower and upper bounds.

Definition 3: (Rough neuron) A rough neuronRn is a pair
of usual rough neuronsRn = (Un, Ln), whereUn and Ln

are the upper rough neuron and the lower rough neuron,
respectively.

Let (IrLn
, OrLn

) be the input/output of a lower rough
neuron and(IrUn

, OrUn
) be the input/output of an upper

rough neuron. The input/output of the lower/upper rough
neurons is calculated by

IrLn
=

n
∑

j=1

wLnj
Onj , (16)

IrUn
=

n
∑

j=1

wUnj
Onj , (17)

OrLn
= min(f(IrLn

), f(IrUn
)), (18)

OrUn
= max(f(IrLn

), f(IrUn
)). (19)

The output of the rough neuron (Orn) is then computed as

Orn =
OrUn

− OrLn

average(OrUn
, OrLn

)
. (20)

Rough neural networks [65]–[67] consist of one input layer,
one output layer and one hidden layer. The number of hidden
neurons is determined by

Nhn ≤
Nts ∗ Te ∗ Nf

Nf + No
, (21)

whereNhn is the number of hidden neurons,Nts is the number
of training samples,Te is the tolerance error,Nf is the number
of features, andNo is the number of the output [68].

Another successful example introduced by Jianget al. [69]
was used to classify digital mammograms where they inte-
grated a neural network with reduction based on rough set
theory (which they called the rough neural network (RNN)).
The experimental results showed that the RNN performs
better than conventional neural networks not only in terms
of complexity, but also that it achieves a 92.37% classification
accuracy compared to the 81.25% achieved using a normal
neural network only.

Swiniarski and Hargis [51] described an application of
rough set methods to feature selection and reduction as a
front end to a neural-network-based texture image recognition
system. Their application included a singular-value decom-
position (SVD) for feature extraction, principal components
analysis (PCA) for feature projection and reduction, and rough
sets methods for feature selection and reduction. For texture
classification a feedforward backpropagation neural network
was employed. The numerical experiments showed the ability
of rough sets to select a reduced set of pattern features,
while providing better generalization of neural-network texture
classifiers (see also [49]).

B. Rough set - Fuzzy set approaches

Rough-fuzzy sets [70] can be seen as a particular case of
fuzzy-rough sets. A rough-fuzzy set is a generalization of a
rough set derived from the approximation of a fuzzy set in
a crisp approximation space. This corresponds to the case
where the conditional values are crisp, and only the decision
attribute values are fuzzy. The lower and upper approximations
indicate the extent to which objects belong to a target set. Mao
et al. [71] proposed a new fuzzy Hopfield-model net based
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on rough-set reasoning for the classification of multispectral
images. The main purpose is to embed a rough-set learning
scheme into the fuzzy Hopfield network to construct a classifi-
cation system called a rough-fuzzy Hopfield net (RFHN). The
classification system is a paradigm for the implementation of
fuzzy logic and rough systems in neural network architecture.
Instead of all the information in the image being fed into
the neural network, the upper- and lower-bound gray levels,
captured from a training vector in a multispectal image, arefed
into a rough-fuzzy neuron in the RFHN. Therefore, only 2/N
pixels are selected as the training samples if an N-dimensional
multispectral image was used.

Wang et al. [72] proposed a new nearest neighbor cluster-
ing classification algorithm based on fuzzy-rough set theory
(FRNNC). First, they make every training sample fuzzy-
roughness and use edit nearest neighbor algorithm to remove
training sample points in class boundary or overlapping re-
gions, and then use mountain clustering method to select rep-
resentative cluster center points. Then, Fuzzy-Rough Nearest
neighbor algorithm (FRNN) is applied to classify the test
data. The new algorithm is applied to hand gesture image
recognition, and the results show that it is more effective and
performs better than other nearest neighbor methods.

Hassanien [73] introduced a hybrid scheme that combines
the advantages of fuzzy sets and rough sets in conjunction
with statistical feature extraction techniques. The introduced
scheme starts with fuzzy image processing as a pre-processing
technique to enhance the contrast of the whole image, to
extract the ROI, and then to enhance the edges surrounding the
ROI. Further, features from the segmented ROIs are extracted
using the gray-level co-occurrence matrix. Rough sets are
used for the generation of all reducts that contain minimal
number of features and rules. Finally, these rules are passed
to a classifier for discrimination of different ROIs to classify
images.

Image clustering analysis is one of the core techniques
for image indexing, classification, identification and image
segmentation. Mitraet al. [74] introduced a hybrid clustering
architecture, in which several subsets of patterns can be
processed together with the objective of finding a common
structure. A detailed clustering algorithm is developed by
integrating the advantages of both fuzzy sets and rough sets.
Further, they provide a measure of quantitative analysis ofthe
experimental results for synthetic and real-world data.

Petrosinoet al. [75] presented a multi-scale method based
on the hybrid notion of rough fuzzy sets. This method comes
from the combination of two models of uncertainty: vagueness
handled by rough sets and coarseness handled by fuzzy sets.
Marrying both notions leads to approximation of sets by means
of similarity relations or fuzzy partitions. The most important
features are extracted from the scale spaces by unsupervised
cluster analysis, to successfully tackle image processingtasks.
The approaches in [74], [75] can be applied in many medical
imaging clustering problems such as image segmentation of
abdomen images, and clustering filter bank response vectors
to obtain a compact representation of the image structures
obtained by an image quality verification of color retina
images in diabetic retinopathy screening.

Sarkar [76] generalizes the concept of rough member-
ship functions in pattern classification tasks to rough-fuzzy
membership functions and rough-fuzzy ownership functions.
Unlike the rough membership value of a pattern, which is
sensitive only toward the rough uncertainty associated with the
pattern, the rough-fuzzy membership (or ownership) value of
the pattern signifies the rough uncertainty as well as the fuzzy
uncertainty associated with the pattern. Various set theoretic
properties of the rough-fuzzy functions are exploited to char-
acterize the concept of rough-fuzzy sets. These propertiesare
also used to measure the rough-fuzzy uncertainty associated
with the given output class.

C. Rough set - Genetic algorithm approaches

Genetic algorithms and rough set theory have been used in
combination in the study of images. Lingras [77] proposed
an unsupervised rough set classification method using genetic
algorithms, and also illustrated how genetic algorithms can
be used to develop rough sets. The proposed rough set the-
oretic genetic encoding are especially useful in unsupervised
learning. A rough set genome consists of upper and lower
bounds for sets in a partition. The partition may be as simple
as the conventional expert class and its complement or a more
general classification scheme.

Mitra et al. [78] described a way of designing a hybrid
system for detecting the different stages of cervical cancer.
Hybridization includes the evolution of knowledge-based sub-
network modules with a genetic algorithm using rough set
theory and the ID3 algorithm. Crude subnetworks for each
module are initially obtained via rough set theory and the
ID3 algorithm. These subnetworks are then combined, and
the final network is evolved using genetic algorithms. The
evolution uses a restricted mutation operator, which utilizes
the knowledge of the modular structure, already generated,
for faster convergence. The GA tunes the network weights
and structure simultaneously.

D. Rough sets - Swarm Intelligence approaches

Das et al. [8] hybridized rough set theory with Particle
Swarm Optimization (PSO). The hybrid rough-PSO technique
has been used for grouping the pixels of an image in its
intensity space. Medical images frequently become corrupted
with noise. Fast and efficient segmentation of such noisy
images has remained a challenging problem for years. In their
work, the authors treated image segmentation as a clustering
problem. Each cluster is modeled with a rough set. PSO is
employed to tune the threshold and relative importance of
upper and lower approximations of the rough sets. Davies-
Bouldin clustering validity index is used as the fitness function,
which is minimized while arriving at an optimal partitioning.

Another approach that uses rough set with PSO has been
proposed by Wanget al. [58]. The authors applied rough sets
to predict the degree of malignancy in brain glioma. As feature
selection can improve the classification accuracy effectively,
rough set feature selection algorithms are employed to select
features. The selected feature subsets are used to generate
decision rules for the classification task. A rough set attribute
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reduction algorithm that employs a search method based on
PSO is proposed and compared with other rough set reduction
algorithms. Experimental results show that reducts found by
the proposed algorithm are more efficient and can generate
decision rules with better classification performance. More-
over, the decision rules induced by rough set rule induction
algorithm can reveal regular and interpretable patterns ofthe
relations between glioma MRI features and the degree of
malignancy, which are helpful for medical experts.

E. Rough sets - Support vector machines approaches

Support Vector Machines (SVMs) are a general algorithm
based on guaranteed risk bounds of statistical learning theory.
They have found numerous applications in image processing
and pattern recognition and, in particular in medical imaging
problems such as in classification of brain PET images,
detection of microcalcification (MC) clusters in digital mam-
mograms, lung cancer nodules extraction and classification,
etc., and are now established as one of the standard compu-
tational intelligence tools. To inherit the merits of both rough
set theory and SVMs, a hybrid classifier called rough set
support vector machines (RS-SVMs) is proposed by Gexiang
et al. [79] to recognize radar emitter signals. Rough sets are
used in a preprocessing step to improve the performances of
SVMs. A large number of experimental results showed that
RS-SVMs achieve lower recognition error rates than SVMs
and RS-SVMs have stronger capabilities of classification and
generalization than SVMs, especially when the number of
training samples is small.

Lingras and Butz [80] described how binary classification
with SVMs can be interpreted using rough sets and how rough
set theory may help in reducing the storage requirements of
the 1-v-1 approach in the operational phase. Their techniques
provided better semantic interpretations of the classification
process. The theoretical conclusions are supported by exper-
imental findings involving a synthetic dataset. The presented
work is useful for soft margin classifiers in solving medical
imaging problems especially a multi-class classification sys-
tem for medical images [81].

Yun et al. [82] have used a rough-support vector machine
integration and developed the Improved Support Vector Ma-
chine (ISVM) algorithm to classify digital mammography
images, where rough sets are applied to reduce the original
feature sets and the support vector machine is used classify
the reduced information. The experimental results show that
the ISVM classifier can get 96.56% accuracy which is higher
than 92.94% using SVM, and the error recognition rates are
close to 100%.

VI. CLASSIFYING IMAGES: NEAR SET APPROACH

This section gives a brief introduction to a near set approach
to classifying images. In this approach, medical images are
separated into non-overlapping sets of images that are similar
(descriptivelynear to) each other. The near set approach is well
suited to investigating medical images. This section introduces
recent work on near images by Henry and Peters [26].

Let
〈

O, F
〉

be a perceptual system,i.e., a real valued total
deterministic information system whereO is a non-empty
set of perceptual objects, andF is a countable set of probe
functions. For everyB ⊆ F, the weak nearness relation≃B is
defined as follows,

≃B= {(x, y) ∈ O × O | ∃φi ∈ B, φi(x) = φi(y)}.

The relation ≃B is consideredweak, since this nearness
relation between the objects (e.g., pixels in an image) in each
pair (x, y) requires at least one (not every) probe function
satisfying φi(x) = φi(y) to establish thatx and y are near
each other. Furthermore, letX,Y ⊆ O. A set X is weakly
near to a setY within the perceptual system

〈

O, F
〉

(X⊲⊳
F
Y )

iff there arex ∈ X andy ∈ Y and there isB ⊆ F such that
x ≃B y. Finally, define an elementary set (class) as

x/≃B
= {x′ ∈ X | x′ ≃B x},

and define a partition ofO (quotient set) as

O/≃B
= {x/≃B

| x ∈ O}.

A nearness measure (NM) useful in determining the degree
of resemblance between two images is given in (22). Let the
setsX andY be weakly near each other in

〈

O, F
〉

, i.e., there
existsB ⊆ F such thatx ≃B y. Then, the degree of nearness
betweenX andY is measured using (22).

NM∼B
(X,Y ) =

∑

x/≃B
∈X/≃B

∑

y/≃B
∈Y/≃B

η (x/≃B
, y/≃B

)

max(|X/≃B
|, |Y/≃B

|)
,

(22)
whereη (x/≃B

, y/≃B
) in (22) is defined as follows:

η (x/∼B
, y/∼B

) =
{

min(|x/∼B
|, |y/∼B

|) , if φi(x) = φi(y)∀φi ∈ B,

0 , otherwise.

In other words, the nearness of two sets can be measured
by the cardinality of their elementary (equivalence) classes.
Sets that are similar with respect to the probe functions inB
will have equivalence classes with similar numbers of objects
producing a nearness degree close to or equal to 1. By contrast,
sets that are not similar will have equivalence classes thatshare
little with each other and will produce a nearness degree close
to or equal to 0.

The following simple example demonstrates these con-
cepts. Fifteen images from both the Berkeley Segmentation
Dataset [83], and a 4DMRI dataset (see, Fig. 3 for example
images) [84] were used to show that using this measure,
similar images have a higher degree of nearness to each other
than images which are not similar. In this example, the MRI
images were used to represent images that are similar while
the Berkeley Segmentation Dataset contains images which are
of many different scenes and objects, and as such, do not have
much relation to each other in terms of perceptual content of
the images.

Formally, letF consist of a single probe function, namely
the information content of the domain (input image). Further,
let X andY represent images that are partitioned into subim-
ages, and letO = X ∪ Y . Thus, eacho ∈ O is a perceptual

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 18, 2009 at 04:33 from IEEE Xplore.  Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. XX, NO. XX, XXX. 2009 10

(a) (b)

Fig. 3. Sample MRI images of Respiratory Organ

object and in this example is given by a subimage of either
imageX or Y . Thus, we have defined a perceptual information
system

〈

O, F
〉

.
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Fig. 4. Degree of nearness between image pairs.

In this example, we are interested in the results of using
Eq. 22 on images that are similar to each other versus
images that are not. To this end, we performed two different
experiments, one for the MRI dataset and one for the Berkeley
dataset. For each experiment, we selected all unordered pairs
of images and compared them using Eq. 22. This gives
(

15
2

)

= 105 comparisons. The results of this experiment are
shown in Fig. 4. As can be seen, this measure produces
higher values for the MRI images which suggests that they
are “nearer” each other than the Berkeley images. Also, there
is less variability for the MRI values because the Berkeley
images are quite different from each other. These results are
promising and will lead to future work in object recognition
using the near set approach.

VII. PROMISING GENERALIZATIONS OF ROUGH SETS IN

MEDICAL IMAGING

In addition to near sets, there are a number of other
generalizations of rough sets that have promise in medical
image analysis. This section briefly presents the basic ap-
proach in several of these generalizations, namely, tolerance
spaces [27]–[29], [85]–[87], neighborhood systems [88]–[90],
and shadowed sets [91]–[93].

A. Tolerance Spaces and Neighborhood Systems

The termtolerance spacewas coined by Zeeman in 1961 in
modeling visual perception with tolerances [85]. Images are

viewed as sets of fixed points. LetO denote a set of perceptual
objects (e.g., gray level images) and let∼ denote a relation
that is reflexive (for allx ∈ O, x∼x) and symmetric (for
all x, y ∈ O, x∼y and x∼y) but transitivity of ∼ is not
required. Then(O,∼) is a tolerance space. A tolerance is
directly related to the exact idea of closeness or resemblance
or being within tolerancein comparing objects. The basic
idea is to find objects such as images that resemble each
other with a tolerable level of error. The main idea underlying
tolerance theory comes from Henri Poincaré [94]. The physical
continuum (e.g., measurable magnitudes in the physical world
of medical imaging) are contrasted with the mathematical
continuum (real numbers) wherealmost solutionsare common
and given equations have no exact solutions. Analmost
solutionof an equation (or a system of equations) is an object
which, when substituted into the equat(INSA)ion, transforms
it into a numerical ‘almost identity’,i.e., a relation between
numbers which is true only approximately (within a prescribed
tolerance) [86]. Equality in the physical world is meaningless,
since it can never be verified either in practice or in theory.
Hence, the basic idea in a tolerance view of medical imaging,
for example, is to replace the indiscernibility relation inrough
sets with a tolerance relation.

For example, tolerance near sets were introduced in [28]
and elaborated in [27], [29], [30]. Briefly, here is the basic
approach.

Definition 4: Tolerance Relation [30] Let
〈

O, F
〉

be a
perceptual system and letǫ ∈ R (set of all real numbers). For
everyB ⊆ F the tolerance relation∼=B is defined as follows:

∼=B,ǫ= {(x, y) ∈ O × O : ‖ φ(x) − φ(y) ‖≤ ǫ}.

If B = {φ} for someφ ∈ F, instead of∼={φ} we write ∼=φ.
Further, for notational convince, we will write∼=B instead of
∼=B,ǫ with the understanding thatǫ is inherent to the definition
of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance
class can be defined as

x/∼=B
= {y ∈ X | y ∼=B x}. (23)

From Defn. 4, a tolerance relation defines a covering ofO (i.e.
an object can belong to more than one tolerance class). For this
reason, (23) is called a tolerance class instead of an elementary
set. In addition, each pair of objectsx, y in a tolerance class
x/∼=B

must satisfy the condition‖ φ(x) − φ(y) ‖≤ ǫ. Next,
a quotient set for a given a tolerance relation is the set of all
tolerance classes and is defined as

O/∼=B
= {x/∼=B

| x ∈ O}.

As was the case with the equivalence relation, tolerance
classes reveal relationships in perceptual systems leading to
the definition of a tolerance nearness relation.

Definition 5: Weak Tolerance Nearness Relation[28],
[30]
Let

〈

O, F
〉

be a perceptual system and letX,Y ⊆ O, ǫ ∈ R.
The set X is perceptually near to the setY within the
perceptual system

〈

O, F
〉

(X ⊲⊳
F

Y ) iff there existsx ∈ X,
y ∈ Y and there is aφ ∈ F, ǫ ∈ R such thatx ∼=B y. If a
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perceptual system is understood, then we say shortly that a set
X is perceptually near to a setY in a weak tolerance sense
of nearness.

A tolerance nearness measure (tNM) under a tolerance
relation is given as

tNM∼=B
(X,Y ) =

∑

x/∼
=B

∈X/∼
=B

∑

y/∼
=B

∈Y/∼
=B

ξ (x/∼=B
, y/∼=B

)

max(|x/∼=B
|, |y/∼B

|)
,

(24)
where

ξ (x/∼=B
, y/∼=B

) =
{

min(|x/∼=B
|, |y/∼=B

|) , if ‖ φ(x) − φ(y) ‖≤ ǫ,

0 , otherwise.

Notice the subtle difference between the two nearness mea-
sures, namely, NM in (22) and tNM in (24). Since objects
can belong to more than one tolerance class, the denomi-
nator of Eq. 24 has moved inside the summation. Similarly,
Eq.’s 22 & 24 are equivalent whenǫ = 0.

The neighborhood system (NS) paradigm has been widely
used in image analysis [95]–[98]. Neighborhood systems
were introduced by Sierpenski and Krieger during the mid-
1950s [88], adopted by Lin during the late 1980s for describing
relationships between objects in database systems [89] and
considered in the context of rough sets [90], [99]. Associated
with a neighborhood system (NS) is a set of cliques. A clique
is either a single site or subset of sites such than any two
sites are neighbors of each other [100]. Cliques are uniquely
determined by the particular NS chosen. For an elementx in
a finite universeU , one associates a neighborhoodB(x) ⊆ U .
A NS(x) is a nonempty family of neighborhoods ofx [90].

Fig. 5. Sample shadowed set [91].

B. Shadowed Sets

Shadowed sets (ShS) were introduced in 1998 by Pedrycz as
a means of simplifying processes carried out with fuzzy sets
and in establishing a bridge between rough sets and fuzzy
sets [91] and in image processing [92], [93]. A shadowed
set is viewed as an approximation of a fuzzy set [91], [101].
A shadowed setis a localization of membership values by
forming “shadows” and using only 0-1 degrees of membership.
Let A ⊆ X (i.e., A is a subset of the universe of discourseX)
and letµA : X → [0, 1] (i.e., µA is a membership function
associated with the fuzzy setA. In Fig. 5, the membership
values belonging to(α, 1−α) are those values characterized by
great uncertainty or lack of knowledge and they are considered
the “shadow” of the induced shadowed set. In general, a
shadowed set onX is any mappings : X → {0, 1, (0, 1)}. For

the sample shadowed set in Fig. 5, letα ∈ (0, 0.5) be a fixed
value, then theα-shadowed set ofµA (denoted bysα(µA) is
defined to be a shadow ofA [102], where

sα(µA)(x) =







0, if µA(x) ≤ α,
1, if µA(x) ≥ 1 − α,
0.5, otherwise.

C. Choosing a Technology for Medical Image Analysis

Rough sets are ideally suited for feature-based image seg-
mentations, image clustering and approximations of medical
images. Pal’s rough image entropy model is very useful in
classifying images relative to the information content of either
image regions or entire images and in extracting objects from
grayscale images. Notice that the focus in the rough set
approach to medical imaging is on approximation methods
applied to single images or in grouping parts of an image
in terms of equivalence classes. In applications where there
is a need to determine the degree of resemblance (nearness)
between medical images and to find clusters of medical images
that resemble each other, then tolerance spaces in general and
tolerance near sets, in particular, are useful.

The conjecture here is that neighborhood systems will be
useful in analyzing image sequences found in video mi-
croscopy, X-ray cinematrography, 3D laser-scanning cofocal
microscopy (LSCM) and magnetic resonance imaging (MRI),
where there is an interest in observing shape-change and
extracting meaningful information from image sequences.
Rather than global information (how a specimen has translated,
rotated or changed as a whole, to what extent pairs of
images resemble each other) is easily detected using tolerance
near sets, whereas neighborhood systems are more suited for
extracting local information about shape-change of individual
regions within a specimen.

An obvious advantage to shadowed sets is a simplified view
of fuzzy sets in medical image analysis. The side-effect of
introducing a shadowed set is shifting attention to anα-region
of a fuzzy set considered important for a particular application
such as medical imaging.

VIII. C HALLENGES AND FUTURE DIRECTIONS

Rough set theory encompasses an extensive group of meth-
ods that have been applied in the medical domain and that are
used for the discovery of data dependencies, importance of fea-
tures, patterns in sample data, and feature space dimensionality
reduction. Most of the current literature on rough set-based
methods for medical imaging focuses on classification and
dimensionality reduction issues. A number of papers also deal
with medical imaging problems such as image segmentation,
image filtering, and voxel representation. From what has been
presented in the literature, it is obvious that the rough set
approach provides a promising means of solving a number of
medical imaging problems. It should be observed that rough
set or near set by themselves or in combination with other
computational intelligence technologies work remarkablywell
in separating medical images into approximation regions that
facilitate automated image segmentation and object recogni-
tion. The challenge now is to develop near set-based methods
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that offer an approach to classifying perceptual objects by
means of features. It is fairly apparent that near set methods
can be useful in object recognition, especially in solving
medical imaging problems. The near set approach to object
description, feature selection, and automatic image segmen-
tation based on the partition of an image into equivalence
classes offer a practical as well as straightforward approach
to classifying images. It is in the domain of medical image
segmentation that the near set approach holds the greatest
promise for medical imaging.

A combination of various computational intelligence tech-
nologies in pattern recognition and, in particular, medical
imaging problems has become one of the most promising
avenues in image processing research. From the perspective
of rough sets, further explorations into possible hybridizations
of rough sets with other technologies are necessary to builda
more complete picture of rough or near set-based applications
in medical imaging. What can be said at this point is that
the rough set and near set approaches pave the way for new
and interesting avenues of research in medical imaging and
represent an important challenge for researchers.
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