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Abstract—This paper presents a review of the current liter- uses gradient descent to tune network parameters to best fit
ature on rough set and near set-based approaches to solvingthe training set with input-output pair, has been successfully
various problems in medical imaging such as medical image applied to a variety of problems. Genetic algorithms [3]
segmentation, object extraction and image classification. Rough . . L
set frameworks hybridized with other computational intelligence are St_OChaSt'C se_arch techniques based on the prlnC|pIe_§ of
technologies that include neural networks, particle swarm op- €volution. Extensive research has been performed exploiting
timization, support vector machines and fuzzy sets are also the robust properties of genetic algorithms and demonstrating
presented. In addition, a brief introduction to near sets and their capabilities across a broad range of problems. These evo-
near images with an application to MRI images is given. Near | ionary methods have gained recognition as general problem

sets offer a generalization of traditional rough set theory and a vina techni . licati including functi
promising approach to solving the medical image correspondence SO'VING €ChNIGUES I many applications, Inciuding function

problem as well as an approach to classifying perceptual objects Optimization, image processing, classification and machine
by means of features in solving medical imaging problems. Other learning, training of neural networks, and system control.

generalizations of rough sets such as neighborhood systemsQther approaches like case based reasoning and decision

shadowed sets, and tolerance spaces are also briefly considereqlrees [4], [5] are also widely used to solve data analysis
in solving a variety of medical imaging problems. Challenges to problems,

be addressed and future directions of research are identified and ) . . .
an extensive b|b||ography is also included. Recently, various publIShed algo“thms have been applled to

. . build a computer-aided analysis system in the medical field [6],
Index Terms—Computational Intelligence, Rough Sets, Near 7. Th | d aldorith | K
Sets, Medical Imaging, Image Segmentation, Image Classification, [/l The most commonly used algorithms are neural networks,
Hybrid Rough Image Processing Bayesian classifiers, genetic algorithms, decision trees, and
fuzzy theory [8]-[12]. Unfortunately, the techniques developed
have not been sufficient to introduce an effective computer-
aided analysis in clinical use. A survey of the area can be

OMPUTATIONAL intelligence techniques and ap-found in [6].

‘proaches encompass various paradigms dedicated to afRough set theory introduced by Pawlak during the early
proximately s_o_lvm_g real-world problems in deC|s_|on making1980s [13] spans a quarter century (seg,, [14]-[17]). The
pattern classification and learning [1][3]. Prominent amongugh set approach to approximation of sets leads to useful
these paradigms are fuzzy sets, neural networks, genediims of granular computing that are part of computational
algorithms, rough sets, and a generalization of rough s@igelligence [3]. The basic idea underlying the rough set
called near sets. Fuzzy sets provide a natural framework fgiproach to information granulation is to discover to what
dealing with uncertainty. It offers a problem-solving tool beextent a given set of objects (e.g., pixel windows in an
tween the precision of classical mathematics and the inhergfiage) approximates another set of objects of interest. Objects
imprecision of the real world. For example, imprecision imre compared by considering their descriptions. A recent
a segmented image can be represented and analyzed ugigeralization of rough set theory has led to the introduction
fuzzy sets. Neural networks provide a robust approach ¢ near sets [18]-[20] and a consideration of the affinities
approximating real-valued, discrete-valued and vector-valuggbarness) of objects [21]. In a near set approach to object
functions. The well-known back propagation algorithm thaflassification, an object description is modeled as a vector

o _ function that represent object features [20]. Included in the
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set approach to medical image analysis. There are a numblassses induced by the feature values: lower approximation
of practical outcomes of the near set approaely, feature BX, upper approximationBX and boundaryBN Dg(X).
selection [22]-[24], objective evaluation of image segtaen A lower approximation of a seX contains all equivalence
tions [25], image classification [26]—[30], object recagpm in classessv/NB that are proper subsets af, and upper approx-
images [19], [26], granular computing [31], and variousnier imation BX contains all equivalence classeg_ that have
of machine learning [31], [32]. objects in common with¥, while the boundaryBN D (X)
The objective of this article is twofold: present to the rbugis the setBX \ BX, i.e, the set of all objects iBX that are
set and medical imaging research communities the state-aft contained inBX. Any setX with a non-empty boundary
the art in rough set-based applications to image processjggoughly known relative,i.e, X is an example of a rough
and pattern recognition (in general) with a specific focus Gfgt.
medical imaging (in particular), and motivate researcheéwn  The indiscernibility relation~ (also written asindg) is
trend-setting directions. We review and discuss some sepre a mainstay of rough set theory. Informally,s is a set of all
tative methods to provide inspiring examples to illustfad® classes of objects that have matching descriptions. Based o
rough sets can be applied to solve medical imaging problefg selection ofB (i.e., set of functions representing object
and how medical images can be analyzed, processed, gtures),~ is an equivalence relation that partitions a set
characterized by rough sets. These examples include, amengbjects© into classes (also called elementary sets [13]).
others, rough representation of a region of interest, roughe set of all classes in a partition is denoted®y_ (also
image entropy, rough c-means clustering, and rough neusyd ©/Indg). The setO®/Indp is called the quotient set.
intelligent approach for image classification. Affinities between objects of interest in the s&tC © and
This article has the following organization. Section Il proclasses in a partition can be discovered by identifying éhos
vides an explanation of the basic framework of rough sefasses that have objects in common wih Approximation
theory, along with some of the key definitions. Section Megi of the setX begins by determining which elementary sets
an introduction to rough image processing including rough, ¢ O,..  are subsets oK.
images, rough representation of a region of interest, rough ” ?
image entropy, and rough-based medical image applications I1l. ROUGH IMAGE PROCESSING
including object extraction and medical image segmentatio . . . .
and clustering. Some useful measures are presented in Se(\:/-"’?noUS rough image brocessing methodologies have be‘?”
tion IV. Section V provides a brief review of rough setsappl.'ed to handle the dlfferent cha]lenges posed.by medi-
: : . : : cal imaging. We can define rough image processing as the
combined with other computational intelligence approache

such as rough neural networks, rough fuzzy and rough %ollectlon of all approaches and techniques that undedstan

netic algorithms as well as Bayesian methods, particle marebresent and process the images, their segments andeteatur
9 Y P as rough sets (see,g, [10], [33]-[35]). In this section, we

optlmlzat_|on and §upport vector machln.es coupled with hou(*i’irst describe the ability of rough sets to handle and reptese
sets. An introduction to near sets, near images and the aear. s

approach to image segmentation is given in Section VI whilages and color images, followed by the various rough based

e . . X
other generalization approaches of rough sets are pr(Hs.ﬂmteapproaches developed for handling the different functiona
Section VII. Finally. challenges and future trends are ussed

aspects to solve medical imaging problems.
in Section VIII.

A. The ability of rough sets to handle images

Il. ROUGH SETS FOUNDATIONS Rough sets provide reasonable structures for the overlap
Due to space limitations we provide only a brief explanatioboundary given domain knowledge. The case study for images
of the basic framework of rough set theory, along with sonwf the heart on cardiovascular magnetic resonance (MR)
of the key definitions. A more comprehensive review can limages also extends to handling multiple types of knowledge
found in sources such as [14]. including: myocardial motion, location and signal intepsi
Rough sets theory provides a novel approach to knowledgestudy concerned with distinguishing different picturg@esg
description and to approximation of sets. Rough theory wa$ the central nervous system is introduced in [36]. Researc
introduced by Pawlak during the early 1980s [13] and is basgtlolving color images appears in [37]. Historiee( encrus-
on an approximation space-based approach to classifyisg setions of a histogram) are used as the primary measure and
of objects. In rough sets theory, feature values of samps a visualization of multi-dimensional color informatidrhe
objects are collected in what are known as information tablebasic idea of a histon is to build a histogram on top of the
Rows of a such a table correspond to objects and colurtfistograms of the primary color components red, green, and
correspond to object features. blue. The authors show that the base histogram correlatas wi
Let O, F denote a set of sample objects and a set @fe lower approximation, whereas the encrustation cdesla
functions representing object features, respectivelysuA®e with the upper approximation. The problem of a machine
that B C 7,2 € O. Further, letr.., denote vision application where an object is imaged by a camera
_ _ system is considered in [38]. The object space can be modeled
Y/ = lye O] Vo€ B, o) =00}, as a finite subset of the Euclidean space when the objects
i.e, x ~p y (description ofxr matches the description @f). image is captured via an imaging system. Rough sets can
Rough sets theory defines three regions based on the equiva®und such sets and provide a mechanism for modeling the
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spatial uncertainty in the image of the object. This workefined in the prior knowledge, for example some threshold
introduced a rough sets approach for building pattern niragch values, do not meet the exact boundary of images due to inter-
systems that can be applicable with a wide range of imagesage variances of the intensity. The approach tries tohiyug

in medical sciences. represent the shape of the ROI by approximating the given
shapes of the ROI by the primitive regions derived from featu
B. Rough images of the image itself. It is reported that the simplest casaixcc

. . . : when we have only information about the intensity range of
In grayscale images boundaries between object regions gre

often ill defined because of grayness or spatial ambigw-e ROI. In this case intensity thresholding is a convertion

. . . . approach to obtain the voxels that fall into the given rahg.
tes [3?9.]’ [40] Th|s uncertamty can be effect|vely.harttilay s denote the lower and upper thresholdsThy;, and Thyy,
describing the different objects as rough sets with upper ¢'o . i

: oo espectively. Then the ROI can be represented by:
outer) and lower (or inner) approximations. Here the cotgep
of upper and lower approximation can be viewed, respegtivel ROI = {z(p) | Thy < I(z)P < Thg}, (1)
as outer and inner approximations of an image region in termﬁ q Lat | ) q q
of granules [40]. wherez(p) denotes a voxel at locatignand I (z(p)) denotes

Definition 1: (Rough image) Let the univers& be an inte_nsity _Of voxelz(p). .
image consisting of a collection of pixels. Then, if we ptioti Fig. 1 illustrates the concept of rough ROI representation.

U into a collection of non-overlapping windows of sizex 1, The left image is an original grayscale image. Assume that

each window can be considered as a grar@leGiven this e ROIs are three black circular regions: ROROL, and
granulation, object regions in the image can be approxitat Ol;. Also assume that we are given a prior knowledge about
by rough sets. the ROlIs, that is, the lower threshold valiié;, of the ROIs,

A rough imageis a collection of pixels along with the derived from some knowledge base. With this knowledge we

equivalence relation induced partition of an image int®s sef@n segment an ideal ROl gy, as follows:
of pi_xels Iying_ withi_n eac.h. .non—overlapping window over Xpor = {2(p)|Thy < 1(p)}. )
the image. With this definition, the roughness of various
transforms (or partitions) of an image can be computed usina
image granules for windows of different sizes.

NEGR(Xgor)

C. Rough representation of a region of interest

A region of interest (ROI), is a selected subset of sampl 7 ‘
within an image identified for a particular purpose. Th RO ROL| |c,
concept of ROI is commonly used in medical imaging. Fc
example, the boundaries of a tumor may be defined on an
image or in a volume, for the purpose of measuring its sizEg- 1. Rough ROI representation. Left: an original image.dde:
The endocardial border may be defined on an image, perh&§&'entary categories. Right: roughly segmented ROl [41]
during different phases of the cardiac cycle, say end-kysto
and end-diastole, for the purpose of assessing cardiatidanc

Hirano and Tsumoto [41] introduced the rough direct re

BN p(Xpop)

/
0505 G Cs G

However, X ., does not correctly match the expected
ROls. This is becaus&h; was too small to separate the
FinIS.ThL is a global threshold determined on the other sets,

of this method is its ability to represent inconsistencynsen aﬁ%refore, it should not be directly applied to this image.

the knowledge-driven shape and image-driven shape of a ROI

using rough approximations. The method consists of thr&e Rough Image Entropy

steps. First, they derive discretized feature values tbstribe Entropy-based information theoretic approaches have re-
the characteristics of a ROI. Secondly, using all featutesy ceived considerable interest in image analysis approaches
build up the basic regions (categories) in the image so #wdt e such as image registration [42]. Previous work on entropic
region contains voxels that are indiscernible on all fezgur thresholding is based on Shannon’s entropy. The idea is
Finally, according to the given knowledge about the ROlythdo calculate Shannon’s entropy based on a co-occurrence
construct an ideal shape of the ROl and approximate it Ioyatrix and use it as a criterion for selecting an appropriate
the basic categories. Then the image is split into threedfetsthreshold value. The approach using relative entropy fegien

voxels, which are: thresholding has been shown very competitive compared to
(1) certainly included in the ROI (positive region), Pal's methods, where the relative entropy is chosen to be
(2) certainly excluded from the ROI (negative region), a thresholding criterion of measuring mismatch between an
(3) possibly included in the ROI (boundary region). image and a thresholded image. Currently there are various

The ROI is consequently represented by the positive regipablished approaches using relative entropy and applying i
associated with some boundary regions. to medical images, multispectral imagery, temporal image

Hirano and Tsumoto [33], [41] described procedures faequences, multistage thresholding and segmentation.
rough representation of ROIs under single and multipledype Palet al. [40] presented a new definition of image entropy
of classification knowledge. Usually, the constant vagablin a rough set theoretic framework, and its application to
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the problem of object extraction from images by minimizingmages boundaries between object regions are often ilhelefi

both object and background roughness. Granules carry logais uncertainty can be handled by describing the different
information and reflect the inherent spatial relation of thebjects as rough sets with upper (outer) and lower (inner)
image by treating pixels of a window as indiscernible ompproximations. The set approximation capability of rough
homogeneous. Maximization of homogeneity in both objeskts is exploited in the present investigation to formulate
and background regions during their partitioning is achiev an entropy measure, called rough entropy, quantifying the
through maximization of rough entropy; thereby providingincertainty in an object-background image. l/étdenote a

optimal results for object background classification. set of thresholds (which are application dependent). Argana
Definition 2: (Rough Image Entropy) [40] Rough imageobject and the background are viewed as two sets with their
entropy (R E) is defined by: rough representation by computing the inner approximation

e the object QT), outer approximation of the objead(), inner
RiE = _§[ROT1096(ROT) + Rprloge(Rp.)l. () approximation of the background3(-) and outer approxima-

R, E lies between 0 and 1 and it has has a maximum valf|@n Of the background#r) as follows:

of unity when Rp,, = Rp, = % and minimum value of Q. = UGi|pJ' >TVj=1,...,mn, (4)
zero whenRo,., Rp, € {0,1}. Fig. 2 shows a sample plot of =T
rough entropy for various values of roughness of the object Qr = UGi’ Jj.p; >T,j=1,...,mn, (5)
and background [40].
. By =JGilp; > T,¥j =1,...,mn, (6)
0.8+ =Y . .
i , S BT:UGi,EIJ,pjST,j:l,...,mn, @)
07+ "I"E-ﬁﬁﬂf’.’zq u;e "‘“ wherep; is a pixel inG;. The rough set representation of the

image for a givenl,,,, depends on the value @f.
Palet al. define the roughness (R) of the objézt and the
backgroundBr as follows:

Entropy RE,
(=]
T

0.2 |Q |
Ro 21—%T7 (8)
014 T Q|
i
Byl
04 g2 o5 o2 04 oe Rp :17|:7T, 9)
Ry Ao ’ |Br|

where the notation.S| denotes the cardinality of the sét

This method can be used in many applications in image
Pal et al. reported that a maximization of homogeneity iProcessing and in particular in medical imaging problems

both object and background regions during their partitigris  such as automatically identifying the myocardial contours

achieved through maximization of rough entropy; therehy. prOf the heart, segmentation of knee tissues in CT image or

viding optimum results for object-background classificati Segmentation of brain tissues in MR images.

Also, maximization of the rough entropy measure minimizes

the uncertainty arising from vagueness of the boundanpregiF. Rough Sets in Medical Image Segmentation

of the object. Therefore, for a given granule size, the thols  The pasic idea behind segmentation-based rough sets is that
for object-background classification can be obtained tnouhile some cases may be clearly labeled as being in &set

its maximization with respect to different image partison (called the positive region in rough sets theory), and some
The rough entropy concepts is applicable for many medicghses may be clearly labeled as not being in_Setcalled
imaging problems such as feature extraction and medi¢ab negative region), limited information prevents us from

Fig. 2. Rough entropy for various values [40]

image segmentation problems. labeling all possible cases clearly. The remaining casesata
) ) be distinguished and lie in what is known as the boundary
E. Rough Sets for Object Extraction region.

Identification of anatomical features is a necessary step fo Among many difficulties in segmenting MRI data, the
medical image analysis. Automatic methods for feature-idepartial volume effect arises in volumetric images when more
tification using conventional pattern recognition teclugisf than one tissue type occurs in a voxel. In such cases, the
typically classify an object as a member of a predefinadxel intensity depends not only on the imaging sequence
class of objects, but do not attempt to recover the exad tissue properties, but also on the proportions of each
or approximate shape of that object. For this reason, sui$sue type present in the voxel. Widz al. [11] discussed
techniques are usually not sufficient to identify the bosdefr the partial volume effect problem in the segmentation of
organs when individual geometry varies in local detail,revenagnetic resonance imaging data that entails assignisgetis
though the general geometrical shape is similar. class labels to voxels. They employ rough sets to autonigtica

Pal et al. [40] demonstrated a new application of roughdentify the partial volume effect, which occurs most often
sets for object extraction from grayscale image. In gragscawith low resolution imaging.
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An interesting strategy for color image segmentation usir@. Adaptation of C-Means to Rough Set Theory

rough set theory has been presented by Mohatiesl. [37].  ¢_means clustering is one of the most popular statistical
A new concept of encrustation of the histogram, called histogstering techniques used in segmentation of medicalésiag
has been proposed for the visualization of multl-dlmermllon[45]_[47]. Let us assume that objects are represented by
color information in an integrated fashion and its applitgb  gimensional vectors. The objective is to assign thesijects

in boundary region analysis has been shown. The RistQyy. cjysters. Each of the clusters is also represented by-an
correlates with the upper approximation of a set such thgtensjonal vector, which is the centroid or mean vector for
all elements belonging to this set are clarified as posstﬁ;(at cluster. The process begins by randomly choosirup-
belonging to the same segment or segments showing simjl&tis 55 the centroids of theclusters. The objects are assigned
color value. The proposed encrustation provides a direansie 1, ne of thek clusters based on the minimum value of the dis-
of segregating a pool of inhomogeneous regions into its Co?é'nced(v r) between the object vector= (v1,...,vj, ..., )
ponents. Experimental results for various images have besty ihe cluster vecton — (@1, - )’ After the

= (T1y ey Tjy ooy Ty

presented in their work. They also introduced a hybrid rougﬁsignment of all the objects to various clusters, the new
set theoretic approximations and fuzzy c-means algorithim f

X X 2 'centroid vectors of the clusters are calculated as:

color image segmentation. They segmented natural images

with regions having gradual variations in color value. The T; = M7 1<j<m, (10)
technique extracts color information regarding the nundfer ' S0C

segments and the segments’ center values from the imageereSOC is the size of cluster. Lingras [48] observes that
itself through rough set theoretic approximations, ancggmés incorporating rough sets into c-means clustering requtiies
it as input to a fuzzy c-means block for the soft evaluatioaddition of the concept of lower and upper bounds. Calatati

of the segments. The performance of the algorithm has be@rthe centroids of clusters from conventional c-means seed
evaluated on various natural and simulated images. to be modified to include the effects of lower as well as upper
bounds. The modified centroid calculations for rough seds ar

, , then given by:
Many clustering algorithms [43] have been developed and

applied in medical imaging problems, although most of them Z'UEE(:E) ZvE(BNR(w))
cannot process objects in hybrid numerical/nominal featur "% = Wiow < IR(z)| T Wup X IBNg(z)]
space or with missing values. In many of them, the number ) - -

of clusters has to be manually specified while the clusterif§’€ré! < j < m. The parameters,,, andw,, correspond
results are sensitive to the input order of the objects to H& the relative importance of lower and upper bounds, and
clustered. This clearly limits their applicability and tegs the @iow T wup = 1. If the upper bound of each cluster were
quality of clustering. An improved clustering algorithmseal equal to its lower bound, the clusters WOU|d be conventlonal
on rough sets and entropy theory was presented by Ch&fisters. Therefore, the boundary regidhVg(z) will be

and Wang [44] which aims to avoid the need to pre-specif§"P%: and the second term in the equation will be ignored.
the number of clusters while also allowing clustering intbot! "US, the above equation will reduce to conventional céhtro

numerical and nominal feature space with the similaritycint calculations. The next step in the modification of the c-nsean

duced to replace the distance index. At the same time, rm@ﬂorithms for _rough sets is to design criteria to determine
set theory endows the algorithm with the function to dedynether an object belongs to the upper or lower bound of a

with vagueness and uncertainty in data analysis. Shannor/{Ster.
entropy was used to refine the clustering results by asgignin

relative weights to the set of features according to the alutiH. Rough Sets in Feature Reduction and Image Classification

entropy values. A novel measure of clustering qu_allty was al Many researchers have endeavored to develop efficient and
presented to evaluate the clusters. The experimentaltsesu

) g . .ehectlve algorithms to compute useful feature extractoil
confirm that performances of efficiency and clustering dyali . ; . . i

. . . reduction of information systems, and mutual informatiod a
of this algorithm are improved.

discernibility matrix based feature reduction methodseseh
techniques have been successfully applied to the medical
Widz et al. [11] introduced an automated multi-spectratiomain [49], [50].

MRI segmentation technique based on approximate reductdVojcik [34] approached the nature of a feature recognition
derived from the theory of rough sets. They utilized T1, TRrocess through the description of image features in terms
and PD MRI images from a simulated brain database asf rough sets. Since the basic condition for representing
gold standard to train and test their segmentation alguarithimages must be satisfied by any recognition result, elementa
The results suggest that approximate reducts, used alone dieatures are defined as equivalence classes of possible occu
combination with other classification methods, may provaderences of specific fragments existing in images. The names
novel and efficient approach to the segmentation of volumetof the equivalence classes (defined through specific numbers
MRI data sets. Segmentation accuracy reaches 96% for tdfeobjects and numbers of background parts covered by a
highest resolution images and 89% for the noisiest imagéndow) constitute the best lower approximation of window
volume. They tested the resultant classifier on real cliniceontents i(e., names of recognized features). The best upper
data, which yielded an accuracy of approximately 84%.  approximation is formed by the best lower approximatios, it

11)
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features, and parameters, all referenced to the objeanfrats the JAC performance was 77.48% in terms of classification
situated in the window. The rough approximation of shapesascuracy which is higher than 69.11% using conventional
robust to accidental changes in the width of contours ares)in associative classifier. At the same time, the number of rules
to small discontinuities, and, in general, to possible jpms$ decreased distinctively.

or changes in shape of the same feature. The rough sets are

utilized also on the level of image processing for noiseless IV. QUANTITATIVE EVALUATION

image quantization. This initiative study has many inténgs

applications in the area of medical image processing imeid 5o capable of quantifying the relative utility of enhanesin

filtering, segmentation, and classification techniques in digital imaging, generated rules, and qualit

Swiniarski and Skowron [S1] presented applications Qijassification measures [58], [59]. This relates to prefeee
rough set methods for feature selection in pattern reclognit ¢riteria and goodness-of-fit chosen for the rules and dlassi

They emphasize the role of the basic constructs of rougha ey objective of contrast enhancement is to maximize
set approach in feature selection, namely reducts and thgi gifference between the background mean and target mean
approximations, including dynamic reducts. Their aldorit g ayscale level, and to ensure that the homogeneity of the
for feature selection is based on an application of a rough $%,5s js increased, both of which aide the visualization ef th
method to the result of principal components analysis (PC}ndary and location of the mass. Using the ratio of the
used for feature projection and reduction. They presemuar giangard deviation of the grayscales within the image kefor
experiments including mammogram recognition. and after enhancement, we can quantify this improvement
Hu et al. [52] proposed an information measure for COMyging the target-to-background contrast based on the and

puting discernibility power of a crisp equivalence relatior yaviation. This measure is initially computed by determipi

a fuzzy one, which is a key concept in classical rough set agl, gifference between ratios of the mean grayscales in the

fuzzy-rough set models. Based on the information measufgyget and background images in the original and enhanced
a general definition of significance of nominal, numeric a”ﬁinages using

fuzzy features is presented. o P

Lymphoma is a broad term encompassing a variety of can- CMsp = {(mt /mi) — (mg/mg) 1, (12)
cers of the lymphatic system and is differentiated by thetyp of/of
of cell that multiplies and how the cancer presents itselis | Wherem?7mg7m?’mg are the means of the graysca|es com-
very important to get an exact diagnosis regarding lymphomgsing the target and background respectively of the nalgi
and to determine the treatments that will be most effecti@age before and after enhancement, and wheter? are
for the patient's condition. Milaret al. [53] focused on the the standard deviations of the grayscales before and after
identification of lymphoma by finding follicles in microscpp enhancement.
images. Their study comprises two stages: in the first stagewithin the mammogram image, the target has a greater
they did image pre-processing and feature extraction,enhil density within the mammogram thus having higher mean
the second stage they used different rough set approachesgf@yscale intensity compared to the surrounding backgtoun
pixel classification. These results were compared to detisiA good enhancement algorithm should aim to enhance the
tree results. The results they got are very promising and/shgontrast between target and background by increasing the
that symbolic approaches can be successful in medical imaggan grayscale of the target area and then reducing the mean
analysis applications. gray of the background area, thereby increasing the value of

Microcalcification on a x-ray mammogram is a significant'p/ .
mark for early detection of breast cancer. Texture analysisThe background contrast ratio can also be calculated using
methods can be applied to detect clustered microcalcificatithe entropyF of target and background areas within an image.
in digitized mammograms. In order to improve the predictivghis measure is computed in a similar manner@d/s
accuracy of the classifier, the original number of featuees hy determining the difference between ratios of the mean

reduced into a smaller set using feature reduction tecesiqugrayscales in the target and background areas in both atigin
Thangavelet al. [54] introduced rough set based reductio@nd enhanced images using

algorithms such as Decision Relative Discernibility based

This section presents some quantitative measures [57] that

reduction, Heuristic approach, Hu’s algorithm, Quick Retdu CMEntropy = {(mf/mi)e_ (Tﬁ/mﬁ)}’ (13)
(QR), and Variable Precision Rough Set (VPRS) to reduce the LY /E;
extracted features. where £ and Ey are the entropy of the target in the original

Cyranet al. [55] showed how rough sets can be applied tand enhancement images, respectively. An effective ehanc
improve the classification ability of a hybrid pattern recogment algorithm will lead to a large value 6tM g,tropy -
nition system. The system presented consists of a featuréndex of fuzziness and fuzzy entropy are measures for
extractor based on a computer-generated hologram (CGHlpbal greyness ambiguity (fuzziness) of an image. They can
Features extracted are shift, rotation, and scale inMagad be regarded as a degree of difficulty in deciding whether a
they can be optimized. pixel would be treated as black (dark) or white (bright). The

Jiang et al. [56] developed a joining associative classiindex of fuzziness that gives the amount of fuzziness ptesen
fier (JAC) algorithm using rough set theory to mine digitaih an image determines the amount of vagueness by measuring
mammography images. Their experimental results showed tttze distance between its fuzzy property plane and the rneares
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ordinary plane. Accordingly, entropyf, which makes use Let (Ir; ,Ory,) be the input/output of a lower rough
of Shannon'’s function, is regarded as a measure of qualityréuron and(Iry,,Ory, ) be the input/output of an upper
information in an image in the fuzzy domain. It gives the walurough neuron. The input/output of the lower/upper rough
of indefiniteness of an image. These quantities [60]-[68] aneurons is calculated by

defined as

2 ) Iry, = ZwLn].Onj, (16)
Y= m Z Z mln(,um’ru 11— ,Umn)7 (14) i—1
M N
and Irg, =Y wy,,On;, 17)
1 —
H = mlnz > 1) = (1= o) A0(1= i) (15) j=1
M N OTL,,, = Tnin(f(ITLn)a f(IrUﬂ,))v (18)
It should be noted that the decrease in the index of fuzziness Oru. = maz(f(Irp.), f(Irp.)). (19)

and fuzzy entropy does not ensure proper enhancement of the
images. We can only say that a good enhancement algoritfiime output of the rough neuroif,,) is then computed as
should reduce the greyness ambiguity. However, a low amount Ory. — Ory,
of ambiguity does not automatically lead to the desired en- Opn = n =
hancement effect.

. 20
average(Ory,,Orr,, ) (20)
Rough neural networks [65]-[67] consist of one input layer,
one output layer and one hidden layer. The number of hidden

neurons is determined by
Intelligent systems comprise various paradigms dedidated

. . . - Nts * Te * Nf
approximately solving real-world problems,g, in decision Npp < —/———° "
making, classification or learning; among these paradigms a Ny +No
fuzzy sets, neural networks, decision tree, and rough akts,whereN;,, is the number of hidden neurons,, is the number
gorithms. Combination of different computational intgéince of training samplesT is the tolerance errofy is the number
techniques in the application area of pattern recognitord of features, andV, is the number of the output [68].
in particular in medical imaging problems, has become one ofAnother successful example introduced by Jiabgl. [69]
the most important ways of research in intelligent inforiorat was used to classify digital mammograms where they inte-
processing [64]. In the following subsections we review songrated a neural network with reduction based on rough set
of the state-of-the-art in this area. theory (which they called the rough neural network (RNN)).
The experimental results showed that the RNN performs
better than conventional neural networks not only in terms
of complexity, but also that it achieves a 92.37% classificat

Neural networks are known for their ability to solve Variou%ccuracy compared to the 81.25% achieved using a normal
complex problems in image processing. However, they ah8ural network only

unable to determine redundant information from large dataSwiniarski and Hargis [51] described an application of

sets, which can easily lead to problems such as over compl§on set methods to feature selection and reduction as a
network structures, long training times, and low CONVeYgingont end to a neural-network-based texture image reciognit
speeds. Hassanien anigza_k [57] mtroduced a r°_”_9h _neuragystem. Their application included a singular-value decom
approach for rule generation and image classification. Hyqgiion (SVD) for feature extraction, principal compoten
bridization of intelligent computing techniques has lead 5,5\ i (PCA) for feature projection and reduction, andto
increase in their ability to accurately classify breastde® gois"methods for feature selection and reduction. For rextu
into malignant and benign instances. Algorithms based af)sgification a feedforward backpropagation neural netwo
fuzzy Image processing are first applied to enhance theastntrwas employed. The numerical experiments showed the ability
of the onginal image, 1o extract the ROI, and to enhance the rough sets to select a reduced set of pattern features,

edges surrounding that region. Then, features chara®riz, i hroviding better generalization of neural-netwakttire
the underlying texture of the regions of interest are exd¢iGc classifiers (see also [49]).

using the gray-level co-occurrence matrix. A rough set ap-

proach to feature reduction and rule generation is theriegppl

Finally, a rough neural network is designed to discriminafé- Rough set - Fuzzy set approaches

different ROIls in order to separate them into malignant and Rough-fuzzy sets [70] can be seen as a particular case of

benign cases. The rough neural network employed is buitt frduzzy-rough sets. A rough-fuzzy set is a generalization of a

rough neurons [65], each of which can be viewed as a pairmfugh set derived from the approximation of a fuzzy set in

sub-neurons, corresponding to the lower and upper bounds crisp approximation space. This corresponds to the case
Definition 3: (Rough neuron) A rough neuraR,, is a pair where the conditional values are crisp, and only the detisio

of usual rough neuron&, = (U,,L,), whereU, and L,, attribute values are fuzzy. The lower and upper approxonati

are the upper rough neuron and the lower rough neurandicate the extent to which objects belong to a target sab M

respectively. et al. [71] proposed a new fuzzy Hopfield-model net based

V. HYBRID INTELLIGENT APPROACHES

(21)

A. Rough set - Neural network approaches
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on rough-set reasoning for the classification of multiséct Sarkar [76] generalizes the concept of rough member-
images. The main purpose is to embed a rough-set learngigp functions in pattern classification tasks to rougtejuz
scheme into the fuzzy Hopfield network to construct a classifnembership functions and rough-fuzzy ownership functions
cation system called a rough-fuzzy Hopfield net (RFHN). Thgnlike the rough membership value of a pattern, which is
classification system is a paradigm for the implementation sensitive only toward the rough uncertainty associateH thig
fuzzy logic and rough systems in neural network architecturpattern, the rough-fuzzy membership (or ownership) valfue o
Instead of all the information in the image being fed intthe pattern signifies the rough uncertainty as well as theyfuz
the neural network, the upper- and lower-bound gray levelsncertainty associated with the pattern. Various set #t@or
captured from a training vector in a multispectal image fade properties of the rough-fuzzy functions are exploited tareh
into a rough-fuzzy neuron in the RFHN. Therefore, only 2/Mcterize the concept of rough-fuzzy sets. These propeaties
pixels are selected as the training samples if an N-dimaatioalso used to measure the rough-fuzzy uncertainty assdciate
multispectral image was used. with the given output class.

Wang et al. [72] proposed a new nearest neighbor cluster-

(FRNNC). First, they _make every training Sample fuzzy Genetic algorithms and rough set theory have been used in
roughness and use edit nearest neighbor algorithm to remave /.~ =~ ~= ) .

e . . : combination in the study of images. Lingras [77] proposed
training sample points in class boundary or overlapping re-

gions, and then use mountain clustering method to select &n unsupervised rough set classification method using igenet

ep. . . i .

resentative cluster center points. Then, Fuzzy-Roughestearanomhms’ and also illustrated how genetic algorithma ca

. . . . : e used to develop rough sets. The proposed rough set the-
neighbor algorithm (FRNN) is applied to classify the test  : . . : : .
: . i . “Oretic genetic encoding are especially useful in unsupedvi

data. The new algorithm is applied to hand gesture image

recognition, and the results show that it is more effectivd a arning. A rough set genome COﬂSIS_tS_ of upper and _Iower
. bounds for sets in a partition. The partition may be as simple
performs better than other nearest neighbor methods.

Hassanien [73] introduced a hybrid scheme that combinas the conveqt!onql expert class and its complement or a more
eneral classification scheme.

the advantages of fuzzy sets and rough sets in ConjunCt%'Mitra et al. [78] described a way of designing a hybrid

with statistical feature extraction techniques. The idtrced : . .
. . : system for detecting the different stages of cervical cance
scheme starts with fuzzy image processing as a pre—pruges%

. . gbridization includes the evolution of knowledge-basat-s
technique to enhance the contrast of the whole image, t . : ) -
ﬁtwork modules with a genetic algorithm using rough set

extract the ROI, and then to enhance the edges surroundang%eory and the ID3 algorithm. Crude subnetworks for each
ROI. Further, features from the segmented ROIs are exttacte e . .
module are initially obtained via rough set theory and the

using the gray-level co-occurrence matrix. Rough sets 4153 algorithm. These subnetworks are then combined, and

used for the generation of all reducts that contain minimﬁ.I . : . . .
) e final network is evolved using genetic algorithms. The
number of features and rules. Finally, these rules are gasse

o SR ; . evolution uses a restricted mutation operator, which a&di
to a classifier for discrimination of different ROIs to clédgs
images the knowledge of the modular structure, already generated,

. o . for faster convergence. The GA tunes the network weights
Image clustering analysis is one of the core techniques

. ) . e . - . and structure simultaneously.

for image indexing, classification, identification and iraag
segmentation. Mitrat al. [74] introduced a hybrid clustering )
architecture, in which several subsets of patterns can Be Rough sets - Swarm Intelligence approaches
processed together with the objective of finding a commonDas et al. [8] hybridized rough set theory with Particle
structure. A detailed clustering algorithm is developed b$warm Optimization (PSO). The hybrid rough-PSO technique
integrating the advantages of both fuzzy sets and rough séigs been used for grouping the pixels of an image in its
Further, they provide a measure of quantitative analystb®f intensity space. Medical images frequently become coedipt
experimental results for synthetic and real-world data. with noise. Fast and efficient segmentation of such noisy

Petrosinoet al. [75] presented a multi-scale method basednages has remained a challenging problem for years. In thei
on the hybrid notion of rough fuzzy sets. This method comegork, the authors treated image segmentation as a clugterin
from the combination of two models of uncertainty: vagusnegroblem. Each cluster is modeled with a rough set. PSO is
handled by rough sets and coarseness handled by fuzzy satsployed to tune the threshold and relative importance of
Marrying both notions leads to approximation of sets by nseanpper and lower approximations of the rough sets. Davies-
of similarity relations or fuzzy partitions. The most impamt  Bouldin clustering validity index is used as the fitness fiorg
features are extracted from the scale spaces by unsupgrvis@ich is minimized while arriving at an optimal partitiomgn
cluster analysis, to successfully tackle image procedsisks. Another approach that uses rough set with PSO has been
The approaches in [74], [75] can be applied in many medigatoposed by Wangt al. [58]. The authors applied rough sets
imaging clustering problems such as image segmentationtofpredict the degree of malignancy in brain glioma. As featu
abdomen images, and clustering filter bank response vectsesection can improve the classification accuracy effebtjv
to obtain a compact representation of the image structuresigh set feature selection algorithms are employed tatsele
obtained by an image quality verification of color retindeatures. The selected feature subsets are used to generate
images in diabetic retinopathy screening. decision rules for the classification task. A rough set laite
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reduction algorithm that employs a search method based oret <O7]F> be a perceptual systere., a real valued total
PSO is proposed and compared with other rough set reductaeterministic information system wher@ is a non-empty
algorithms. Experimental results show that reducts foupd ket of perceptual objects, arfftlis a countable set of probe
the proposed algorithm are more efficient and can gener&tactions. For every3 C F, the weak nearness relatiety is
decision rules with better classification performance. é4ordefined as follows,
over, the decision rules induced by rough set rule induction
algorithm can reveal regular and interpretable patternthef ~p={(z,y) € O x 0 |3¢; € B, ¢i(2) = ¢i(y)}-
relations between glioma MRI features and the degree Dhe relation ~5 is consideredweak since this nearness
malignancy, which are helpful for medical experts. relation between the objects., pixels in an image) in each
pair (z,y) requires at least one (not every) probe function
satisfying ¢;(x) = ¢;(y) to establish that: and y are near
each other. Furthermore, 18f,Y C O. A set X is weakly
Support Vector Machines (SVMs) are a general algorithfear to a set” within the perceptual syster(rO,IE‘> (XpapY)
based on guaranteed risk bounds of statistical learningryhe iff there arex € X andy € Y and there isB C I such that
They have found numerous applications in image processipg-y 4. Finally, define an elementary set (class) as
and pattern recognition and, in particular in medical imggi
problems such as in classification of brain PET images,
detection of microcalcification (MC) clusters in digital ma and define a partition of (quotient set) as
mograms, lung cancer nodules extraction and classifigation
etc, and are now established as one of the standard compu- O)ny = {7/~ | 2 € O}.

tational intelligence tools. To inherit the.r.nerits of bothugh A nearness measure (NM) useful in determining the degree
set theory and SVMs, a hybrid classifier called rough sgf osemblance between two images is given in (22). Let the
support vector machines (RS-SVMs) is proposed by Gexia@gs x andy be weakly near each other {{©,F), i.e, there

et al. [79] to recognize radar emitter signals. Rough sets Al ists B C F such thatz ~5 y. Then, the degree of nearness
used in a preprocessing step to improve the performancesog[ween% andY is measured using (22).

SVMs. A large number of experimental results showed that

RS-SVMs achieve lower recognition error rates than SVM

E. Rough sets - Support vector machines approaches

Ty = {2’ € X |2’ ~p x},

Z.'L'/:BEX/:B Zy/:BEY/:B n (I/Ega y/zg)

and RS-SVMs have stronger capabilities of classificatiosh a M.z (X,Y) = max (| X/~ [, |Y)~p ) ’
generalization than SVMs, especially when the number of (22)
training samples is small. wheren (z/~,,v/~,) in (22) is defined as follows:

Lingras and Butz [80] described how binary classification
with SVMs can be interpreted using rough sets and how rough’/ (T)ops Yyms) =
set theory may help in reducing_ the storage reqL_Jiremen_ts of min(|z/ oy |y [Y/msl) o If @3(2) = ¢i(y) Vs € B,
the 1-v-1 approach in the operational phase. Their teclesiqu 0 otherwise
provided better semantic interpretations of the classifina '
process. The theoretical conclusions are supported byrexpe In other words, the nearness of two sets can be measured
imental findings involving a synthetic dataset. The presgintby the cardinality of their elementary (equivalence) aksss
work is useful for soft margin classifiers in solving medicabets that are similar with respect to the probe functions in
imaging problems especially a multi-class classificatiga- s will have equivalence classes with similar numbers of disjec
tem for medical images [81]. producing a nearness degree close to or equal to 1. By contras
Yun et al. [82] have used a rough-support vector machingets that are not similar will have equivalence classesstiee
integration and developed the Improved Support Vector Méttle with each other and will produce a nearness degreseclo
chine (ISVM) algorithm to classify digital mammographyto or equal to 0.
images, where rough sets are applied to reduce the originallhe following simple example demonstrates these con-
feature sets and the support vector machine is used classiépts. Fifteen images from both the Berkeley Segmentation
the reduced information. The experimental results show tHaataset [83], and a 4DMRI dataset (see, Fig. 3 for example
the ISVM classifier can get 96.56% accuracy which is highénages) [84] were used to show that using this measure,
than 92.94% using SVM, and the error recognition rates agénilar images have a higher degree of nearness to each other
close to 100%. than images which are not similar. In this example, the MRI
images were used to represent images that are similar while
the Berkeley Segmentation Dataset contains images whéch ar
of many different scenes and objects, and as such, do not have
This section gives a brief introduction to a near set apgroamuch relation to each other in terms of perceptual content of
to classifying images. In this approach, medical images diee images.
separated into non-overlapping sets of images that ardasimi Formally, letF consist of a single probe function, namely
(descriptivelynear to) each other. The near set approach is wille information content of the domain (input image). Furthe
suited to investigating medical images. This section ohitcees let X andY represent images that are partitioned into subim-
recent work on near images by Henry and Peters [26]. ages, and leO = X UY. Thus, eactv € O is a perceptual

VI. CLASSIFYING IMAGES: NEAR SET APPROACH
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viewed as sets of fixed points. Létdenote a set of perceptual
objects €.g, gray level images) and let denote a relation
that is reflexive (for allz € O, x~x) and symmetric (for
all z,y € O, z~y and xz~y) but transitivity of ~ is not
required. Then(O,~) is a tolerance space. A tolerance is
directly related to the exact idea of closeness or reseroblan
or being within tolerancein comparing objects. The basic
idea is to find objects such as images that resemble each
other with a tolerable level of error. The main idea undedyi
tolerance theory comes from Henri Poine§4]. The physical
@) (0) continuum €.g, measurable magnitudes in the physical world
Fig. 3. Sample MRI images of Respiratory Organ of medical imaging) are contrasted with the mathematical
continuum (real numbers) wheaémost solutiongre common
. o o . . and given equations have no exact solutions. @&most
object and in this example is given by a subimage of either~ . : . : .
imageX or Y. Thus, we have defined a perceptual informf:ltioﬁol.Utlonof an equat_|on (OT a system of equatlo_ns) is an object
which, when substituted into the equat(INSA)ion, transfer
system(O, F). o o . o ;
it into a numerical ‘almost identity’j.e., a relation between
numbers which is true only approximately (within a presedb
tqlerance) [86]. Equality in_ Fhe p_hysicgl world_is mea_n'mgi,
since it can never be verified either in practice or in theory.
Hence, the basic idea in a tolerance view of medical imaging,
¥ for example, is to replace the indiscernibility relationraugh
\ sets with a tolerance relation.
l'. R For example, tolerance near sets were introduced in [28]
S and elaborated in [27], [29], [30]. Briefly, here is the basic
approach.

‘ ‘ ‘ o Definition 4: Tolerance Relation [30] Let (O,F) be a
2" * image s ° . perceptual system and letc R (set of all real numbers). For
every 5 C IF the tolerance relatioB; is defined as follows:

== {(2,9) € 0 x 0 d(x) — ¢(y) [[< €}

{¢} for some¢ € T, instead of=,, we write =.
rther, for notational convince, we will write¢s instead of
with the understanding thatis inherent to the definition
e tolerance relation.
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Fig. 4. Degree of nearness between image pairs.

In this example, we are interested in the results of usirth B
Eqg. 22 on images that are similar to each other versEs N
images that are not. To this end, we performed two differegfJ
experiments, one for the MRI dataset and one for the Berkeléf‘

: of th
dataset. For each experiment, we selected all unorderesl pai i ) o o ]
of images and compared them using Eq. 22. This givesAS in the case with the indiscernibility relation, a tolecan

() = 105 comparisons. The results of this experiment aglass can be defined as
shown in Fig. 4. As can be seen, this measure produces Tjmy = {y € X |y =5z} (23)
higher values for the MRI images which suggests that they

are “nearer” each other than the Berkeley images. Alsogthdrrom Defn. 4, a tolerance relation defines a coverin@ ¢f.e.

is less variability for the MRI values because the Berkeleg object can belong to more than one tolerance class). ior th
images are quite different from each other. These resuits &ason, (23) is called a tolerance class instead of an etanyen
promising and will lead to future work in object recognitior€t. In addition, each pair of objectsy in a tolerance class

using the near set approach. z/~, must satisfy the conditior] ¢(z) — ¢(y) [|< €. Next,
a quotient set for a given a tolerance relation is the setlof al
VIl. PROMISING GENERALIZATIONS OF ROUGH SETS IN tolerance classes and is defined as
MEDICAL IMAGING

In addition to near sets, there are a number of other
generalizations of rough sets that have promise in medids®d was the case with the equivalence relation, tolerance
image analysis. This section briefly presents the basic apasses reveal relationships in perceptual systems lgadin
proach in several of these generalizations, namely, todera the definition of a tolerance nearness relation.

spaces [27]-{29], [85]-{87], neighborhood systems [88]}]  Definition 5: Weak Tolerance Nearness Relation[28],

O)ay = {22y | z € O},

and shadowed sets [91]-[93]. [30]
_ Let (O,F) be a perceptual system and &Y C O, ¢ € R.
A. Tolerance Spaces and Neighborhood Systems The setX is perceptually near to the sét within the

The termtolerance spac&as coined by Zeeman in 1961 inperceptual systen(nO,[E"} (X > Y) iff there existsz € X,
modeling visual perception with tolerances [85]. Images ay € Y and there is a € F,e € R such thatr =5z y. If a
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perceptual system is understood, then we say shortly thett athe sample shadowed set in Fig. 5, det (0,0.5) be a fixed
X is perceptually near to a s&t in a weak tolerance sensevalue, then thex-shadowed set ofi4 (denoted bys, (t4) is

of nearness. defined to be a shadow of [102], where
A tolerance nearness measure (tNM) under a tolerance .
relation is given as 0, if pa(z) <a,
e sa(pa)(z) =9 1, if pa(z) >1-a,
=5 J/= 0.5, otherwise
INMay(X,Y) = Y 3 € (2 /250 Y/

max (|2, [y )’ _ _ _
(24) C. Choosing a Technology for Medical Image Analysis

T/otpg GX/EB Y/=p EY/etB

where Rough sets are ideally suited for feature-based image seg-
mentations, image clustering and approximations of médica
(W), Yyy) = images. Pal’'s rough image entropy model is very useful in
. ; lassifying images relative to the information content itfier
~ ~ , if - <e, ¢ 4 o X s X
{mln(w/—””" 9725 ) h” (b(f@) o) < e image regions or entire images and in extracting objects fro
0 , otherwise grayscale images. Notice that the focus in the rough set

Notice the subtle difference between the two nearness m@gproach to medical imaging is on approximation methods
sures, namely, NM in (22) and tNM in (24). Since objectgpplied to single images or in grouping parts of an image
can belong to more than one tolerance class, the denoffiiterms of equivalence classes. In applications whereether
nator of Eq. 24 has moved inside the summation. Similarlig @ need to determine the degree of resemblance (nearness)
Eq.’s 22 & 24 are equivalent when= 0. between medical images and to find clusters of medical images
The neighborhood system (NS) paradigm has been widéfiat resemble each other, then tolerance spaces in general a
used in image analysis [95]-[98]. Neighborhood systent@lerance near sets, in particular, are useful.
were introduced by Sierpenski and Krieger during the mid- The conjecture here is that neighborhood systems will be
1950s [88], adopted by Lin during the late 1980s for desagbi Useful in analyzing image sequences found in video mi-
relationships between objects in database systems [89] &h@scopy, X-ray cinematrography, 3D laser-scanning @aifoc
considered in the context of rough sets [90], [99]. Assedlat Microscopy (LSCM) and magnetic resonance imaging (MRI),
with a neighborhood system (NS) is a set of cliques. A cliquehere there is an interest in observing shape-change and
is either a single site or subset of sites such than any t®¥tracting meaningful information from image sequences.
sites are neighbors of each other [100]. Cliques are unjquétather than global information (how a specimen has traed|at
determined by the particular NS chosen. For an elemeint rotated or changed as a whole, to what extent pairs of
a finite universd’/, one associates a neighborhaB@z) C U. images resemble each other) is easily detected using tetera

A NS(x)is a nonempty family of neighborhoods of[90]. near sets, whereas neighborhood systems are more suited for
extracting local information about shape-change of irttliei

™ regions within a specimen.

An obvious advantage to shadowed sets is a simplified view
I B o S R of fuzzy sets in medical image analysis. The side-effect of
shadow introducing a shadowed set is shifting attention tanaregion

ol R . of a fuzzy set considered important for a particular appilca

i such as medical imaging.

Fig. 5. Sample shadowed set [91]. VIIl. CHALLENGES AND FUTURE DIRECTIONS

Rough set theory encompasses an extensive group of meth-

ods that have been applied in the medical domain and that are

B. Shadowed Sets used for the discovery of data dependencies, importanasaef f
Shadowed sets (ShS) were introduced in 1998 by Pedrycza®s, patterns in sample data, and feature space dimaligion

a means of simplifying processes carried out with fuzzy setsduction. Most of the current literature on rough set-tase
and in establishing a bridge between rough sets and fuamgthods for medical imaging focuses on classification and
sets [91] and in image processing [92], [93]. A shadoweadimensionality reduction issues. A number of papers alsd de
set is viewed as an approximation of a fuzzy set [91], [101With medical imaging problems such as image segmentation,
A shadowed seis a localization of membership values byimage filtering, and voxel representation. From what has bee
forming “shadows” and using only 0-1 degrees of membershipresented in the literature, it is obvious that the rough set
Let A C X (i.e, Ais a subset of the universe of discous® approach provides a promising means of solving a number of
and letus : X — [0,1] (i.e, ua is @ membership function medical imaging problems. It should be observed that rough
associated with the fuzzy set. In Fig. 5, the membership set or near set by themselves or in combination with other
values belonging t¢«, 1—a) are those values characterized bgomputational intelligence technologies work remarkatf
great uncertainty or lack of knowledge and they are consitlerin separating medical images into approximation regiomas th
the “shadow” of the induced shadowed set. In general,facilitate automated image segmentation and object réeogn
shadowed set oX is any mapping : X — {0,1,(0,1)}. For tion. The challenge now is to develop near set-based methods

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 18, 2009 at 04:33 from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. XX, NO. X, XXX. 2009

12

that offer an approach to classifying perceptual objects bjig] J. Peters, “Near sets. special theory about nearnessjetts,” Fun-
means of features. It is fairly apparent that near set msthod

can

be useful in object recognition, especially in solvin

medical imaging problems. The near set approach to object
description, feature selection, and automatic image sagmel20]
tation based on the partition of an image into equivalencrzl]
classes offer a practical as well as straightforward aptroa

to classifying images. It is in the domain of medical image
segmentation that the near set approach holds the great
promise for medical imaging.

A combination of various computational intelligence tech-[23]
nologies in pattern recognition and, in particular, meldica
imaging problems has become one of the most promisingy)
avenues in image processing research. From the perspective

of rough sets, further explorations into possible hybatians
of rough sets with other technologies are necessary to buil

2o

more complete picture of rough or near set-based applitatio

in medical imaging. What can be said at this point is thaL26
the rough set and near set approaches pave the way for n vv]
and interesting avenues of research in medical imaging and

represent an important challenge for researchers.
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