
Course Notes

Advanced Illumination
Techniques for

GPU-Based Volume Raycasting

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Patric Ljung
Siemens Corporate Research, Princeton, USA

Christof Rezk Salama
University of Siegen, Germany

Timo Ropinski
University of Münster, Germany

Advanced Illumination

Techniques for GPU Volume

Raycasting

Volume raycasting techniques are important for both visual arts andAbstract

visualization. They allow an efficient generation of visual effects and
the visualization of scientific data obtained by tomography or numeri-
cal simulation. Thanks to their flexibility, experts agree that GPU-based
raycasting is the state-of-the art technique for interactive volume render-
ing. It will most likely replace existing slice-based techniques in the near
future. Volume rendering techniques are also effective for the direct ren-
dering of implicit surfaces used for soft body animation and constructive
solid geometry.

The lecture starts off with an in-depth introduction to the concepts
behind GPU-based ray-casting to provide a common base for the fol-
lowing parts. The focus of this course is on advanced illumination tech-
niques which approximate the physically-based light transport more con-
vincingly. Such techniques include interactive implementation of soft
and hard shadows, ambient occlusion and simple Monte-Carlo based ap-
proaches to global illumination including translucency and scattering.

With the proposed techniques, users are able to interactively create
convincing images from volumetric data whose visual quality goes far
beyond traditional approaches. The optical properties in participating
media are defined using the phase function. Many approximations to the
physically based light transport applied for rendering natural phenomena
such as clouds or smoke assume a rather homogenous phase function
model. For rendering volumetric scans on the other hand different phase
function models are required to account for both surface-like structures
and fuzzy boundaries in the data. Using volume rendering techniques,
artists who create medical visualization for science magazines may now
work on tomographic scans directly, without the necessity to fall back to

ACM SIGGRAPH 2009 iii

creating polygonal models of anatomical structures.

Course participants should have a working knowledge in computer graph- Prerequisites

ics, basic programming skills. They should be familiar with graphics
hardware and shading languages. We will assume a basic knowledge re-
garding volume data as well as interactive volume rendering techniques.

Intermediate The course targets the steadily growing number of devel- Level of

Difficultyopers who create specialized implementations of volume rendering tech-
niques on state-of-the-art graphics hardware, regardless of whether they
are working in visual arts or scientific visualization.

Contact

Christof Rezk Salama Timo Ropinski
(course organizer) Visualization and Computer
Computer Graphics Group Graphics Research Group,
University of Siegen University of Münster
Hölderlinstr. 3 Einsteinstr. 62
57068 Siegen, Germany 48149 Münster, Germany
email: rezk@fb12.uni-siegen.de

Markus Hadwiger Patric Ljung
VRVis Research Center for Siemens Corporate Research
Virtual Reality and Visualization Imaging & Visualization Department
Donau-City-Straße 1 755 College Road East
A-1220 Vienna, Austria Princeton, NJ 08540
email: msh@vrvis.at email: patric.ljung@siemens.com

iv Course : Advanced Illumination Techniques for GPU Volume Raycasting

Lecturers

Markus Hadwiger
VRVis Research Center for Virtual Reality and Visualization
Donau-City-Strasse 1,
A-1220 Vienna, Austria
email: msh@vrvis.at

Markus Hadwiger is a senior researcher at the VRVis Research
Center in Vienna, Austria. He received his Ph.D. in computer science
from the Vienna University of Technology in 2004, and has been a
researcher at VRVis since 2000, working in the areas of visualization,
volume rendering, and general GPU techniques. He has been involved in
several courses and tutorials about volume rendering and visualization
at ACM SIGGRAPH, IEEE Visualization, and Eurographics. He is a co-
author of the book Real-Time Volume Graphics published by A K Peters.

Patric Ljung
Department of Imaging and Visualization
Siemens Corporate Research
755 College Road East
Princeton, NJ 08540, U.S.A.
email: patric.ljung@siemens.com

Patric Ljung joined in 2007 Siemens Corporate Research in Prince-
ton, NJ, where he works as a Research Scientist in the Imaging Ar-
chitectures group. He received 2006 his PhD in Scientific Visualization
from Linköping University, Sweden and graduated with honors in 2000
his MS in Information Technology from Linköping University. Between
1989 and 1995 he worked as a software engineer with embedded and tele-
com systems involving software architectures, graphical user interfaces,
voice-mail systems, communication protocols, network and interprocess
communication, compilers.

Dr. Ljung has published several papers in international conferences
and journals including IEEE Visualization, Eurographics conferences,
IEEE TVCG and others, on volume rendering of large medical data
sets, GPU-based raycasting of multiresolution data sets. One important
focus area has been Virtual Autopsies for forensic pathology. His current
research interest is in advanced illumination and shading techniques,
software architectures for extensible graphics, and management and

ACM SIGGRAPH 2009 v

rendering of large medical data sets.

Timo Ropinski
Visualization and Computer Graphics Research Group (VisCG)
University of Münster
Einsteinstr. 62
48149 Münster, Germany
email: ropinski@math.uni-muenster.de

Timo Ropinski is a postdoctoral researcher working in the field of
medical volume visualization. After receiving his PhD in 2004 from the
University of Münster, he became a project leader within the collabo-
rative research center SFB 656, a cooperation between researchers from
medicine, mathematics, chemistry, physics and computer science. His
research is focused on interactive aspects in medical volume visualization
with the goal to make these techniques more accessible. He is initiator
of the Voreen open source project (www.voreen.org), in which a flexible
volume rendering framework is developed. The results of his scientific
work have been published in various international conferences including
Eurographics, IEEE Visualization, IEEE VR, VMV and others.

Christof Rezk Salama
Computergraphik und Multimediasysteme,
University of Siegen,
Hölderlinstr. 3,
57068 Siegen, Germany
phone: +49 271-740-3315
fax: +49 271-740-3337
email: rezk@fb12.uni-siegen.de

Christof Rezk-Salama has received a PhD from the University of
Erlangen-Nuremberg as a scholarship holder of the graduate college 3D
Image Analysis and Synthesis. He has worked as a research engineer for
the R&D department of Siemens Medical Solutions. Since October 2003
he is working as an assistant professor at the Computer Graphics Group
of the University of Siegen, Germany.

The results of his research have been presented at international con-
ferences, including ACM SIGGRAPH, IEEE Visualization, Eurograph-
ics, MICCAI and Graphics Hardware. He is regularly holding lectures,
courses and seminars on computer graphics, scientific visualization, char-

vi Course : Advanced Illumination Techniques for GPU Volume Raycasting

acter animation and graphics programming.
He has gained practical experience in applying computer graphics

to several scientific projects in medicine, geology and archaeology.
Christof Rezk-Salama has released the award winning open-source
project OpenQVis and is a co-author of the book Real-Time Volume
Graphics.

Detailed information about this research projects are available at:
http://www.cg.informatik.uni-siegen.de/People/Rezk
http://www.real-time-volume-graphics.org
http://openqvis.sourceforge.net

Course Syllabus

The half-day course will consist of four different blocks. From a didactic
point of view, each block will loosely build upon the information pro-
vided in previous blocks with growing complexity and increasing level of
difficulty.

The schedule is only tentative, since at the time of writing these
notes, the final time slots have not yet been allocated by the organizers.

MORNING

Introduction and Basics [45 min] (M. Hadwiger) 1:45pm –

2.30pm• Introduction and Basics

• Application Areas for Volume Rendering

• Benefits and Drawbacks of Ray-Casting

• GPU-based Volume Ray-Casting

• Space Leaping and Early Ray Termination

• Memory Management

• Multiresolution LOD and Adaptive sampling

Light Interaction [45 min] (T. Ropinski) 2:30pm –

3:15pm• Light Transport and Illumination Models

• Local Volume Illumination

• Specular Reflection through Ray-Tracing

• Soft vs. Hard Shadows

• Semi-Transparent Shadows with Deep Shadow Maps

BREAK [15 min] 3:15pm –

3:30pm

viii Course : Advanced Illumination Techniques for GPU Volume Raycasting

Ambient Occlusion [45 min] (P. Ljung)3:30pm –

4:15pm • Ambient Occlusion for Isosurfaces

• Deep Shadow Maps

• Local Ambient Occlusion (DVR)

• Dynamic Ambient Occlusion (DVR)

Scattering [60 min] (C. Rezk-Salama)4:15pm-

5:15pm • Single and Multiple Scattering

• Transparency and Translucency

• Monte-Carlo integration

• GPU-Based Importance Sampling

• GPU-Based Monte-Carlo Volume Raycasting

• Scattering with Deep Shadow Maps

Discussion, Questions and Answers [15min] (all speakers)5:15pm-

5:30pm

Contents

I GPU-Based Ray Casting 1

1 Introduction 2
1.1 Volume Data . 3
1.2 Direct Volume Rendering 4

1.2.1 Optical Models 5
1.2.2 The Volume Rendering Integral 6
1.2.3 Ray Casting . 8
1.2.4 Alpha Blending 10

2 GPU-based Volume Ray Casting 12
2.1 Basic Ray Casting . 13
2.2 Object-Order Empty Space Skipping 15
2.3 Advanced Ray Casting Pipeline 17

2.3.1 Culling and Brick Boundary Rasterization 20
2.3.2 Geometry Intersection 23

2.4 Isosurface Ray Casting 24
2.4.1 Adaptive Sampling 25
2.4.2 Intersection Refinement 28

2.5 Memory Management . 28
2.6 Mixed-Resolution Volume Rendering 30

2.6.1 Volume Subdivision for Texture Packing 31
2.6.2 Mixed-Resolution Texture Packing 32
2.6.3 Address Translation 33

2.7 Multiresolution LOD and Adaptive sampling 35
2.7.1 Octree-based Multiresolution Representation . . . 35
2.7.2 Block Properties and Acceleration Structures . . 36
2.7.3 Hierarchical Multiresolution Representations . . . 37

2.8 Level-of-Detail Management 38
2.8.1 View-Dependent Approaches 39
2.8.2 Data Error Based Approaches 39

x Course : Advanced Illumination Techniques for GPU Volume Raycasting

2.8.3 Transfer Function Based Approaches 40
2.9 Encoding, Decoding and Storage 40

2.9.1 Transform and Compression Based Techniques . . 41
2.9.2 Out-of-Core Data Management Techniques 43
2.9.3 Flat blocking Multiresolution Representation . . . 44

2.10 Sampling of Multiresolution Volumes 46
2.10.1 Nearest Block Sampling 47
2.10.2 Interblock Interpolation Sampling 48
2.10.3 Interblock Interpolation Results 50

2.11 Raycasting on the GPU 51
2.11.1 Adaptive Object-Space Sampling 51
2.11.2 Flat Blocking Summary 53

II Light Interaction 55

3 Light Transport and Illumination Models 56
3.1 Phong Illumination . 56
3.2 Gradient Computation 59
3.3 Specular Reflections through Ray-Tracing 61

4 Shadows 68
4.1 Soft vs. Hard Shadows 68
4.2 Semi-Transparent Shadows with Deep Shadow Maps . . 70

III Ambient Occlusion 77

5 Ambient Occlusion for Isosurfaces 78

6 Ambient Occlusion for Direct Volume Rendering 80
6.1 Local Ambient Occlusion 80

6.1.1 Emissive Tissues and Local Ambient Occlusion . 82
6.1.2 Integrating Multiresolution Volumes 82
6.1.3 Adding Global Light Propagation 84

6.2 Dynamic Ambient Occlusion 85
6.2.1 Local Histogram Generation 87

IV Volume Scattering 99

7 Scattering Effects 100
7.1 Physical Background . 100
7.2 Scattering . 101
7.3 Single Scattering . 101

ACM SIGGRAPH 2009 xi

7.4 Indirect Illumination and Multiple Scattering 103
7.4.1 Indirect Light . 103
7.4.2 Transparency and Translucency 104
7.4.3 Phase Functions 105
7.4.4 Scattering at Transparent Surfaces 106

7.5 A Practical Phase Function Model 108
7.6 Further Reading . 109

8 Monte-Carlo Intergration 110
8.1 Numerical Integration 110

8.1.1 Blind Monte-Carlo Integration 110
8.2 When Does Monte-Carlo Integration Make Sense? 112
8.3 Importance Sampling . 114
8.4 GPU-based Importance Sampling 116

8.4.1 Focussing of Uniform Distribution 116
8.4.2 Sampling of Reflection MIP-Maps 118

8.5 Further Reading . 121

9 GPU-Based Monte-Carlo Volume Raycasting 123
9.1 Monte-Carlo Techniques for Isosurfaces 123
9.2 Isosurfaces with Shift-Variant or Anisotropic BRDFs . . 125

9.2.1 First Hit Pass . 125
9.2.2 Deferred Shading Pass 128
9.2.3 Deferred Ambient Occlusion Pass 130

9.3 Volume Scattering . 133
9.3.1 Heuristic Simplifications 137

10 Light Map Approaches 140

xii Course : Advanced Illumination Techniques for GPU Volume Raycasting

Course Notes

Advanced Illumination Techniques for GPU Volume Raycasting

GPU-Based Ray Casting

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Patric Ljung
Siemens Corporate Research, Princeton, USA

Christof Rezk Salama
University of Siegen, Germany

Timo Ropinski
University of Münster, Germany

Introduction

In traditional modeling, 3D objects are created using surface representa-
tions such as polygonal meshes, NURBS patches or subdivision surfaces.
In the traditional modeling paradigm, visual properties of surfaces, such
as color, roughness and reflectance, are modeled by means of a shading
algorithm, which might be as simple as the Phong model or as complex
as a fully-featured shift-variant anisotropic BRDF. Since light transport
is evaluated only at points on the surface, these methods usually lack
the ability to account for light interaction which is taking place in the
atmosphere or in the interior of an object.

Contrary to surface rendering, volume rendering [60, 23] describes a
wide range of techniques for generating images from three-dimensional
scalar data. These techniques are originally motivated by scientific visu-
alization, where volume data is acquired by measurement or numerical
simulation of natural phenomena. Typical examples are medical data
of the interior of the human body obtained by computed tomography
(CT) or magnetic resonance imaging (MRI). Other examples are com-
putational fluid dynamics (CFD), geological and seismic data, as well
as abstract mathematical data such as 3D probability distributions of
pseudo random numbers.

With the evolution of efficient volume rendering techniques, volumet-
ric data is becoming more and more important also for visual arts and
computer games. Volume data is ideal to describe fuzzy objects, such
as fluids, gases and natural phenomena like clouds, fog, and fire. Many
artists and researchers have generated volume data synthetically to sup-
plement surface models, i.e., procedurally [24], which is especially useful
for rendering high-quality special effects.

Although volumetric data are more difficult to visualize than sur-
faces, it is both worthwhile and rewarding to render them as truly three-
dimensional entities without falling back to 2D subsets.

ACM SIGGRAPH 2009 3

Figure 1.1: Voxels constituting a volumetric object after it has been discretized.

1.1 Volume Data

A discrete volume data set can be thought of as a simple three-
dimensional array of cubic elements (voxels1) [49], each representing a
unit of space (Figure 1.1).

Although imagining voxels as tiny cubes is easy and might help to vi-
sualize the immediate vicinity of individual voxels, it is more appropriate
to identify each voxel with a sample obtained at a single infinitesimally
small point from a continuous three-dimensional signal

f(x) ∈ IR with x ∈ IR3. (1.1)

Provided that the continuous signal is band-limited with a cut-off-
frequency νs, sampling theory allows the exact reconstruction, if the
signal is evenly sampled at more than twice the cut-off-frequency, i.e.,
the Nyquist rate. However, there are two major problems which prohibit
the ideal reconstruction of sampled volume data in practice.

• Ideal reconstruction according to sampling theory requires the con-
volution of the sample points with a sinc function (Figure 1.2a) in
the spatial domain. For the one-dimensional case, the sinc function
is:

sinc(x) =
sin(πx)

πx
. (1.2)

The three-dimensional version of this function is simply obtained
by tensor-product. Note that this function has infinite extent.
Thus, for an exact reconstruction of the original signal at an arbi-
trary position all the sampling points must be considered, not only

1volume elements

4 Course : Advanced Illumination Techniques for GPU Volume Raycasting

those in a local neighborhood. This turns out to be computation-
ally intractable in practice.

• Real-life data in general does not represent a band-limited signal.
Any sharp boundary between different materials represents a step
function which has infinite extent in the frequency domain. Sam-
pling and reconstruction of a signal which is not band-limited will
produce aliasing artifacts.

In order to reconstruct a continuous signal from an array of voxels in
practice, the ideal 3D sinc filter is usually replaced by either a box fil-
ter (Figure 1.2a) or a tent filter (Figure 1.2b). The box filter calculates
nearest-neighbor interpolation, which results in sharp discontinuities be-
tween neighboring cells and a rather blocky appearance. Trilinear in-
terpolation, which is achieved by convolution with a 3D tent filter, rep-
resents a good trade-off between computational cost and smoothness of
the output signal.

1.2 Direct Volume Rendering

In comparison to the indirect methods, which try to extract a surface
description from the volume data in a preprocessing step, direct methods
display the voxel data by evaluating an optical model which describes how
the volume emits, reflects, scatters, absorbs and occludes light [73]. The
scalar value is virtually mapped to physical quantities which describe
light interaction at the respective point in 3D space. This mapping is
often called classification and is usually performed by means of a transfer
function. The physical quantities are then used for images synthesis.

0 11 -1

CBA

00-1

1

-1

1

2 31

1

-2-3
0.5-0.5

Figure 1.2: Reconstruction filters for one-dimensional signals. In practice, box
filter(A) and tent filter(B) are used instead of the ideal sinc-filter(C).

ACM SIGGRAPH 2009 5

Different optical models for direct volume rendering are described in
section 1.2.1.

During image synthesis, the light propagation is computed by inte-
grating light interaction effects along viewing rays based on the optical
model. The corresponding integral is known as the volume rendering
integral, which is described in section 1.2.2. Naturally, under real-world
conditions this integral is solved numerically. Furthermore, the volume
can be shaded according to the illumination from external light sources.

1.2.1 Optical Models

Almost every direct volume rendering algorithm regards the volume as
a distribution of light-emitting particles of a certain density. These den-
sities are more or less directly mapped to RGBA quadruplets for com-
positing along viewing rays. This procedure, however, is motivated by a
physically-based optical model.

The most important optical models for direct volume rendering are
described in a survey paper by Nelson Max [73], and we only briefly
summarize these models here:

• Absorption only. The volume is assumed to consist of cold,
perfectly black particles that absorb all the light that impinges on
them. They do not emit, or scatter light.

• Emission only. The volume is assumed to consist of particles
that only emit light, but do not absorb any, since the absorption
is negligible.

• Absorption plus emission. This optical model is the most com-
mon one in direct volume rendering. Particles emit light, and oc-
clude, i.e., absorb, incoming light. However, there is no scattering
or indirect illumination.

• Scattering and shading/shadowing. This model includes scat-
tering of illumination that is external to a voxel. Light that is scat-
tered can either be assumed to impinge unimpeded from a distant
light source, or it can be shadowed by particles between the light
and the voxel under consideration.

• Multiple scattering. This sophisticated model includes support
for incident light that has already been scattered by multiple par-
ticles before it is scattered toward the eye.

6 Course : Advanced Illumination Techniques for GPU Volume Raycasting

The volume rendering integral described in the following section assumes
the simple emission-absorption optical model. More sophisticated models
including shadowing and self-shadowing, and single and multiple scat-
tering are covered in later parts of these notes.

Figure 1.3 illustrates GPU-based ray casting with the emission-
absorption model with and without shading, as well as a combination
with semi-transparent isosurface rendering. Figure 1.4 illustrates the
addition of shadows, i.e., the (partial) occlusion of impinging external
light via the absorption occuring within the volume.

1.2.2 The Volume Rendering Integral

Every physically-based volume rendering algorithm evaluates the volume
rendering integral in one way or the other, even if viewing rays are not
employed explicitly by the algorithm. The most basic, but also most
flexbile, volume rendering algorithm is ray casting, which is introduced
in Section 1.2.3. It might be considered as the “most direct” numerical
method for evaluating this integral. More details are covered later on,
but for this section it suffices to view ray casting as a process that, for
each pixel in the image to render, casts a single ray from the eye through
the pixel’s center into the volume, and integrates the optical properties
obtained from the encountered volume densities along the ray.

Figure 1.3: Direct volume rendering with emission-absorption (left); plus shading
(center); combined with a shaded semi-transparent isosurface (right).

ACM SIGGRAPH 2009 7

Note that this general description assumes both the volume and the
mapping to optical properties to be continuous. In practice, of course,
the volume data are discrete, and the evaluation of the integral is ap-
proximated numerically. In combination with several additional simpli-
fications, the integral is usually substituted by a Riemann sum.

We denote a ray cast into the volume by x(t), and parameterize it by
the distance t from the eye. The scalar value corresponding to a position
along the ray is denoted by s

(

x(t)
)

. If we employ the emission-absorption
model, the volume rendering equation integrates absorption coefficients
κ(s) (accounting for the absorption of light), and emissive colors c(s)
(accounting for radiant energy actively emitted) along a ray. To keep
the equations simple, we denote emission c and absorption coefficients κ
as function of the eye distance t instead of the scalar value s:

c(t) := c
(

s
(

x(t)
))

and κ(t) := κ
(

s
(

x(t)
))

(1.3)

Figure 1.5 illustrates the idea of emission and absorption. An amount
of radiant energy, which is emitted at a distance t = d along the viewing
ray is continuously absorbed along the distance d until it reaches the eye.
This means that only a portion c′ of the original radiant energy c emitted

Figure 1.4: Rendering of a CT scan of a human head (512x512x333) with direct
volume rendering and shadowing with GPU-accelerated deep shadow maps. The
shadow map resolution is 512x512. Both volume rendering and construction of the
deep shadow map are performed by ray casting on the GPU [39].

8 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 1.5: An amount of radiant energy emitted at t = d is partially absorbed
along the distance d.

at t = d will eventually reach the eye. If there is a constant absorption
κ = const along the ray, c′ amounts to

c′ = c · e−κd . (1.4)

However, if the absorption κ is not constant along the ray, but itself
dependent on the position, the amount of radiant energy c′ reaching the
eye must be computed by integrating the absorption coefficient along the
distance d:

c′ = c · e−
∫ d
0 κ(t̂) dt̂ . (1.5)

The integral over the absorption coefficients in the exponent,

τ(d1, d2) =

∫ d2

d1

κ(t̂) dt̂ (1.6)

is also called the optical depth. In this simple example, however, light was
only emitted at a single point along the ray. If we want to determine the
total amount of radiant energy C reaching the eye from this direction,
we must take into account the emitted radiant energy from all possible
positions t along the ray:

C =

∫ ∞

0

c(t) · e−τ(0, t) dt (1.7)

In practice, this integral is evaluated numerically through either front-to-
back or back-to-front compositing (i.e., alpha blending) of samples along
the ray, which is most easily illustrated in the method of ray casting.
Ray casting usually employs front-to-back compositing.

1.2.3 Ray Casting

Ray casting [60] is an image-order direct volume rendering algorithm,
which uses straight-forward numerical evaluation of the volume render-

ACM SIGGRAPH 2009 9

ing integral (Equation 1.7). For each pixel of the image, a single ray2

is cast into the scene. At equi-spaced intervals along the ray, the dis-
crete volume data are resampled, usually using tri-linear interpolation as
reconstruction filter. That is, for each resampling location, the scalar val-
ues of eight neighboring voxels are weighted according to their distance
to the actual location for which a data value is needed. After resampling,
the scalar data value is mapped to optical properties via a lookup ta-
ble, which yields an RGBA quadruplet that subsumes the corresponding
emission and absorption coefficients [60] for this location. The solution
of the volume rendering integral is then approximated via alpha blending
in either front-to-back or back-to-front order, where usually the former
is used in ray casting.

The optical depth τ (Equation 1.6), which is the cumulative absorp-
tion up to a certain position x(t) along the ray, can be approximated by
a Riemann sum

τ(0, t) ≈ τ̃ (0, t) =

bt/∆tc
∑

i=0

κ(i ·∆t) ∆t (1.8)

with ∆t denoting the distance between successive resampling locations.
The summation in the exponent can immediately be substituted by a
multiplication of exponentiation terms:

e−τ̃(0, t) =

bt/∆tc
∏

i=0

e−κ(i·∆t)∆t (1.9)

Now, we can introduce the opacity A, which is well-known from tradi-
tional alpha blending, by defining

Ai = 1− e−κ(i·∆t) ∆t (1.10)

and rewriting Equation 1.9 as:

e−τ̃(0, t) =

bt/dc
∏

i=0

(1− Aj) (1.11)

This allows the opacity Ai to be used as an approximation for the ab-
sorption of the i-th ray segment, instead of absorption at a single point.

Similarly, the emitted color of the i-th ray segment can be approxi-
mated by:

Ci = c(i ·∆t) ∆t (1.12)

2assuming super-sampling is not used for anti-aliasing

10 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Having approximated both the emissions and absorptions along a ray,
we can now state the approximate evaluation of the volume rendering
integral as: (denoting the number of samples by n = bT/δtc)

C̃ =

n
∑

i=0

Ci

i−1
∏

j=0

(1−Ai) (1.13)

Equation 1.13 can be evaluated iteratively by performing alpha blending
in either front-to-back or back-to-front order.

1.2.4 Alpha Blending

Equation 1.13 can be computed iteratively in front-to-back order by step-
ping i from 1 to n:

C ′
i = C ′

i−1 + (1−A′
i−1)Ci (1.14)

A′
i = A′

i−1 + (1− A′
i−1)Ai (1.15)

New values C ′
i and A′

i are calculated from the color Ci and opacity Ai at
the current location i, and the composited color C ′

i−1 and opacity A′
i−1

from the previous location i − 1. The starting condition is C ′
0 = 0 and

A′
0 = 0.

Note that in all blending equations, we are using opacity-weighted
colors [110], which are also known as associated colors [7]. An opacity-
weighted color is a color that has been pre-multiplied by its associated
opacity. This is a very convenient notation, and especially important
for interpolation purposes. It can be shown that interpolating color
and opacity separately leads to artifacts, whereas interpolating opacity-
weighted colors achieves correct results [110].

The following alternative iterative formulation evaluates Equa-
tion 1.13 in back-to-front order by stepping i from n− 1 to 0:

C ′
i = Ci + (1− Ai)C

′
i+1 (1.16)

A new value C ′
i is calculated from the color Ci and opacity Ai at the cur-

rent location i, and the composite color C ′
i+1 from the previous location

i+ 1. The starting condition is C ′
n = 0.

Note that front-to-back compositing requires tracking alpha values,
whereas back-to-front compositing does not. However, while this was
a problem for hardware implementations several years ago, in current
single-pass implementations of GPU ray casting this is not a problem at

ACM SIGGRAPH 2009 11

all. In multi-pass implementations, destination alpha must be supported
by the frame buffer for tracking the accumulation of opacity, i.e., an
alpha value must be stored in the frame buffer, and it must be possible
to use it as a multiplication factor in blending operations.

The major advantage of front-to-back compositing is an optimization
called early ray termination, where the progression along a ray is termi-
nated as soon as the cumulative alpha value reaches 1.0, or a sufficiently
close value. In current GPU architectures, this is very easy to implement
by simply terminating the ray casting loop as soon as the accumulated
alpha value exceeds a specified threshold.

GPU-based Volume Ray Casting

The basic idea of GPU-based ray casting is to store the entire vol-
ume in a single 3D texture, and drive a fragment program that casts
rays into the volume. Each pixel/fragment corresponds to a single ray
x(t, x, y) = c+ t d(x, y) in volume coordinates. Here, the normalized di-
rection vector d(x, y) can either be computed from the camera position
c and the screen space coordinates (x, y) of the pixel, or be obtained
via rasterization [55]. In this section, we will use the approach build-
ing on rasterization since it allows for very simple but efficient empty
space skipping, which is described in later sections. The range of depths
[tstart(x, y), texit(x, y)] from where a ray enters the volume to where a ray
exits the volume is computed per frame in a setup stage before the actual
ray casting fragment program is executed. In the simplest case, tstart,
or the corresponding 3D volume coordinates, are obtained by rasteriz-
ing the front faces of the volume bounding box with the corresponding
distance to the camera. Rendering the back faces of the bounding box
yields the depths texit, or the corresponding 3D volume coordinates, of
each ray exiting the volume.

Figure 2.1: Rasterization for ray setup. The back face coordinates (center), minus
the front face coordinates (left) yield ray direction vectors and lengths (right). 3D
volume coordinates in [0, 1]3 are illustrated as RGB colors, i.e., the entire RGB color
cube corresponds to the volume bounding box.

ACM SIGGRAPH 2009 13

Figure 2.2: In the ray casting pass, the volume is sampled at regular intervals
between the starting (f0-f4) and ending (l0-l4) positions obtained via rasterization.

Figure 2.1 illustrates this ray setup using rasterization. As illustrated
in Figure 2.2, ray entry positions are determined by the front faces of
the volume bounding box (shown in blue), and ray exit positions by its
back faces (shown in green), respectively. Ray casting is performed by
sampling the space in-between, usually by using a constant sampling
rate. On current GPUs, a single rendering pass and ray casting loop in
the fragment program can be employed for casting through the volume
in front-to-back order, building on the images illustrated in Figure 2.1
for ray setup, which yield exactly the setup positions needed by the ray
caster (f0-f4, and l0-l4 in Figure 2.2).

2.1 Basic Ray Casting

Figure 2.3 illustrates basic ray casting with ray setup using rasterization.
It consists of four principal stages:

1. Front face generation: Render the front faces of the volume bound-
ing box to a texture (Figure 2.1 (left)).

2. Direction texture generation: Render the back faces of the volume
bounding box (Figure 2.1 (center)), while subtracting the previ-
ously generated coordinates of the front faces and storing the re-
sulting ray vectors as normalized vectors in RGB, as well as their
lengths in A, of a separate RGBA direction texture (Figure 2.1
(right)).

14 Course : Advanced Illumination Techniques for GPU Volume Raycasting

3. Ray casting: Get the starting position from the front face image
and cast along the viewing vector until the ray has left the volume.
Exiting the volume is determined by using the previously stored
vector lengths.

4. Blending: Blend the ray casting result to the screen, e.g., composite
it with the background.

The only expensive stage of this algorithm is the actual ray casting loop,
which iteratively steps through the volume, sampling the 3D volume
texture using tri-linear interpolation, applies the transfer function, and
performs compositing. Ray setup via rasterization is several orders of
magnitude faster with negligible performance impact, and thus no bot-
tleneck. The final blending stage is negligible in terms of performance as
well, or can even be skipped entirely if the ray casting pass is executed
directly on the final output buffer.

Figure 2.3: The rendering pipeline of the basic GPU ray casting algorithm.

ACM SIGGRAPH 2009 15

2.2 Object-Order Empty Space Skipping

When we consider Figure 2.2, and imagine that the actually visible part
of the volume does not fill up the entire bounding box, we see that a lot
of empty space will be sampled during ray casting if rays are started on
the front faces of the volume bounding box. However, if we subdivide
the volume into smaller blocks and determine for each of these blocks
whether it is empty or not, we can rasterize the front faces of these
smaller blocks instead of the entire bounding box. This can simply be
achieved by rasterizing front and back faces of smaller blocks, resulting
in ray setup images as shown in Figure 2.4, which already more closely
resemble the visible part of the volume (in the case of this figure, a human
skull and spine). This is illustrated in Figure 2.5, where both the ray
entry positions (f0-f2) as well as the ray exit positions (l0-l4) have been
modified via this rasterization of block bounding faces to be inside the
volume bounding box and closer to the visible part of the volume.

Figure 2.6 illustrates a potential performance problem of this ap-
proach, which occurs when rays graze the volume early on, but do not hit
a visible part right away (right-hand side of the figure). In this case, a lot
of empty space may be traversed. However, this case usually occurs only
for a small number of rays, and can be handled by combining object-order
empty space skipping with regular (image-order) empty space skipping,
i.e., deciding in the ray casting fragment program to skip individual sam-
ples or advancing the sampling position along the ray by several samples

Figure 2.4: Geometry setup for ray casting with object-order empty space skipping.
The complexity of the bounding geometry is adapted to the underlying dataset.

16 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 2.5: Determining ray start positions and ray lengths using rasterization
of the faces of a tightly fitting bounding geometry for object-order empty space
skipping.

at once. These two approaches for empty space skipping complement
each other. Object-order empty space skipping is extremely fast (with
negligible overhead compared with no empty space skipping), it employs
very simple and fast rasterization, and the ray casting fragment program
does not need to be modified at all. It, however, in principle cannot
skip all empty space. Image-order empty space skipping, on the other

Figure 2.6: Ray casting with object-order empty space skipping. The bounding
geometry (black) between active and inactive blocks that determines start and exit
depths for sampling along rays (white) encloses an isosurface (yellow), in this ex-
ample. Actual ray termination points are shown in yellow and red, respectively.

ACM SIGGRAPH 2009 17

Figure 2.7: Replacing the simple volume bounding box with a tighter bounding
geometry implicitly skips all of the outer empty space (in front and behind the
visible part of the volume) at almost no cost.

hand, either requires multiple ray casting passes or must perform checks
on essentially a per-sample basis, and thus is much more expensive. It,
however, can skip additional empty space that would otherwise be sam-
pled. Figure 2.7 illustrates another example of object-order empty space
skipping via rasterization of tight-fitting bounding geometry.

Figure 2.5 illustrates another important issue of ray setup, which is
the handling of rays when the view point is inside the volume. Rays
r3 and r4 in this figure cannot be started on front faces of bounding
geometry, because they have to start inside it, i.e., on the near plane of
the view frustum (positions n3 and n4). The next section describes an
advanced ray casting pipeline that correctly handles this case, as well as
the intersection of the volume with opaque geometry, e.g., navigational
markers or tools in medical interventions.

2.3 Advanced Ray Casting Pipeline

This section describes an advanced ray casting pipeline that combines
object-order and image-order stages in order to find a balance between
the two, and leverage the parallel processing of modern GPUs [90]. For
culling of irrelevant subvolumes, a regular grid of min-max values for
bricks of size 83 is stored along with the volume. Ray casting itself is

18 Course : Advanced Illumination Techniques for GPU Volume Raycasting

performed in a single rendering pass in order to avoid the setup overhead
of casting each brick separately [44]. The first step of the algorithm culls
bricks on the CPU and generates a bit array that determines whether
a brick is active or inactive. This bit array contains the state of bricks
with respect to the active parts of the volume, where a brick is active
when it contains samples that are mapped to opacities greater than zero
by the transfer function and inactive otherwise.

Figure 2.8: The pipeline of the advanced GPU ray caster.

ACM SIGGRAPH 2009 19

In the object-order stage on the GPU, the bit array is used to raster-
ize brick boundary faces in several rendering passes. The result of these
rendering passes are two images that drive the subsequent ray casting
stage. The first image, the ray start position image, contains the volume
coordinate positions where ray casting should start for each pixel. Coor-
dinates are stored in the RGB components, and the alpha (A) component
is one when a ray should be started, and zero when no ray should be
started. The second image, the ray length image contains the direction
vectors for ray casting in the RGB components and the length of each
ray in the alpha component. Note that the direction vectors could easily
be computed in the fragment program from the camera position and the
ray start positions as well. However, the ray length must be rendered
into an image that is separate from the ray start positions due to read-
write dependencies, which can then also be used for storing the direction
vectors that are needed for ray length computation anyway. The main
steps of our ray casting approach for each pixel are:

1. Compute the initial ray start position on the near clipping plane
of the current viewport. When the start position is in an inactive
brick, calculate the nearest intersection point with the boundary
faces of active bricks, in order to skip empty space. The result is
stored in the ray start position image.

2. Compute the ray length until the last intersection point with
boundary faces of bricks that are active. The result is stored in
the ray length image.

3. Optionally render opaque polygonal geometry and overwrite the
ray length image where the distance between the ray start position
and the geometry position is less than the stored ray length.

4. Cast from the start position stored in the ray start position image
along the direction vector until the accumulated opacity reaches a
specified threshold (early ray termination) or the ray length given
by the ray length image is exceeded. The result of ray casting is
stored in a separate compositing buffer.

5. Blend the ray casting compositing buffer on top of the polygonal
geometry.

The two main acceleration schemes exploited here are object-order
empty space skipping and early ray termination. For the former, view-
independent culling of bricks and rasterization of their boundary faces
are employed, whereas the latter is handled during ray casting.

20 Course : Advanced Illumination Techniques for GPU Volume Raycasting

2.3.1 Culling and Brick Boundary Rasterization

Each brick in the subdivision of the volume is either inactive or active
with respect to the transfer function. In order to determine ray start
positions and ray lengths, we employ rasterization of the boundary faces
between active and inactive bricks, which is illustrated in Figure 2.5. To
handle brick culling efficiently, the minimum and maximum voxel values
of each brick are stored along with the volume, which are compared at
run-time with the transfer function. A brick can be safely discarded
when the opacity is always zero between those two values, which can be
determined very quickly using summed area tables [30].

Rasterizing the boundary faces between active and inactive bricks
results in object-order empty space skipping. It prunes the rays used in
the ray casting pass and implicitly excludes most inactive bricks. Note,
however, that this approach does not exclude all empty space from ray
casting, which can be seen for ray r3 in Figure 2.5 (left). This is a trade-
off that enables ray casting without any per-brick setup overhead and
works extremely well in practice.

The border between active and inactive bricks defines a surface that
can be rendered as standard OpenGL geometry with the corresponding
position in volume coordinates encoded in the RGB colors. All vertices of
brick bounding geometry are constantly kept in video memory. Only an
additional index array referencing the vertices of active boundary faces
have to be updated every time the transfer function changes.

As long as the near clipping plane does not intersect the bounding
geometry, rays can always be started at the brick boundary front faces.
However, if such an intersection occurs, it will produce holes in the front-

Figure 2.9: Holes resulting from near clipping plane intersection (left) must be filled
with valid starting positions (right).

ACM SIGGRAPH 2009 21

facing geometry, which results in some rays not being started at all, and
others started at incorrect positions. Figure 2.9 illustrates this problem.
In an endoscopic view, we constantly face this situation, so rays typically
need to be started at the near clipping plane, which is shown in Figure 2.5
in the case of points n2-n4.

To avoid casting through empty space, rays should not be started at
the near clipping plane if the starting position is in an inactive brick but
at the next intersection with active boundary faces, such as rays r0 and
r1 in Figure 2.5. These rays are started at f0 and f1, instead of being
starting at n0 and n1. We achieve this by drawing the near clipping
plane first and the front faces afterwards, which ensures that whenever
there are no front faces to start from, the position of the near clipping
plane will be taken. However, since the non-convex bounding geometry
often leads to multiple front faces for a single pixel, the next front face
is used when the first front face is clipped, which results in incorrect ray
start positions. The solution is to detect when a ray intersects a back
face before the first front face that is not clipped.

The basic steps to obtain the ray start position image are as follows:

1. Disable depth buffering. Rasterize the entire near clipping plane
into the color buffer. Set the alpha channel to zero everywhere.

2. Enable depth buffering. Disable writing to the RGB components
of the color buffer. Rasterize the nearest back faces of all active
bricks into the depth buffer, e.g., by using a depth test of GL LESS.
Set the alpha channel to one where fragments are generated.

3. Enable writing to the RGB components of the color buffer. Ras-
terize the nearest front faces of all active bricks, e.g., by once again
using a depth test of GL LESS. Set the alpha channel to one where
fragments are generated.

This ensures that all possible combinations shown in Figure 2.5 (left)
are handled correctly. Rasterizing the nearest front faces makes sure
that all near plane positions in inactive bricks will be overwritten by
start positions on active bricks that are farther away (rays r0 and r1).
Rasterizing the nearest back faces before the front faces ensures that
near plane positions inside active blocks will not be overwritten by front
faces that are farther away (rays r2 and r3).

Brick geometry that is nearer than the near clipping plane is auto-
matically clipped by the graphics subsystem. After that, the ray length

22 Course : Advanced Illumination Techniques for GPU Volume Raycasting

image can be computed, which first of all means finding the last in-
tersection points of rays with the bounding geometry. The basic steps
are:

1. Rasterize the farthest back faces, e.g., by using a depth test of
GL GREATER.

2. During this rasterization, sample the ray start position image and
subtract it from the back positions obtained via rasterization of the
back faces. This yields the ray vectors and the ray lengths from
start to end position.

3. Multiply all ray lengths with the alpha channel of the ray start
position image (which is either 1 or 0).

Figure 2.10: Moving the viewpoint inside the volume is especially important for
Virtual Endoscopy applications. This sequence shows a fly-through of a CT scan of
a human head, entering at the nose and moving further toward the pituitary gland.

ACM SIGGRAPH 2009 23

These steps can all be performed in the same fragment program. Drawing
the back faces of the bounding geometry results in the last intersection
points of rays and active brick geometry, which are denoted as li in Fig-
ure 2.5. Subtracting end positions from start positions yields the ray
vectors, which can then be normalized and stored in the RGB compo-
nents of the ray length image together with the ray lengths in the alpha
channel. Note that the alpha channel of the ray length image has con-
sistently be set to zero where a ray should not be started at all, which
is exploited in the ray casting pass.

2.3.2 Geometry Intersection

Many applications, e.g., virtual endoscopy, require both volumetric and
polygonal data to be present in the same scene. Naturally, intersections
of the volume and geometry have to achieve a correct visibility order,
and in many cases looking at the intersections of the geometry and the
isosurface is the reason for rendering geometry in the first place. Also,
parts that do not contribute to the final image because they are occluded
by geometry should not perform ray casting at all. An easy way to
achieve this is to terminate rays once they hit a polygonal object by
modifying the ray length image accordingly. This is illustrated in Figure
2.11. Of course, ray lengths should only be modified if a polygonal object
is closer to the view point than the initial ray length. This problem can

Figure 2.11: When rays intersect opaque polygonal geometry, they are terminated
immediately. This is achieved by modifying the ray length image accordingly.

24 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 2.12: Modifying ray end positions prevents rendering occluded parts of the
volume (left). Blending the result of ray casting on top of the opaque geometry
then yields the correct result (right).

again be solved by using the depth test.
After rendering the back faces of active/inactive brick boundaries

with their respective depth values (and depth test set to GL GREATER),
the intersecting geometry is rendered to the same buffer, with the cor-
responding volume coordinates encoded in the color channel. With the
depth test reversed to GL LESS, only those parts will be drawn that are
closer to the view point than the initial ray lengths. This approach mod-
ifies ray casting such that it results in an image that looks as if it was
intersected with an invisible object. Blending this image on top of the
actual geometry in the last pass of the algorithm results in a rendering
with correct intersections and visibility order.

2.4 Isosurface Ray Casting

This section describes a special case of volume ray casting for rendering
isosurfaces, which is also known as first-hit ray casting. In order to fa-
cilitate object-order empty space skipping without per-sample overhead,
we maintain min-max values of a regular subdivision of the volume into
small blocks, e.g., with 43 or 83 voxels per block. These blocks do not ac-
tually re-arrange the volume. For each block, a min-max value is simply
stored in an additional structure for culling. If the whole volume does
not fit in GPU memory, however, a second level of coarser bricks can be
maintained, which is described in later sections on memory management.
Whenever the isovalue changes, blocks are culled against it using their

ACM SIGGRAPH 2009 25

min-max information and a range query [12], which determines their ac-
tive status. The view-independent geometry of active block bounding
faces that are adjacent to inactive blocks is kept in GPU memory for
fast rendering.

In order to obtain ray start depths tstart(x, y), the front faces of the
block bounding geometry are rendered with their corresponding distance
to the camera. The front-most points of ray intersections are retained by
enabling a corresponding depth test (e.g., GL LESS). For obtaining ray
exit depths texit(x, y) we rasterize the back faces with an inverted depth
test that keeps only the farthest points (e.g., GL GREATER). Figure 2.6
shows that this approach does not exclude inactive blocks from the search
range if they are enclosed by active blocks with respect to the current
viewing direction. The corresponding samples are skipped on a per-
sample basis early in the ray casting loop. However, most rays hit the
isosurface soon after being started and are terminated quickly (yellow
points in Figure 2.6, left). Only a small number of rays on the outer
side of the isosurface silhouette are traced for a larger distance until
they hit the exit position of the block bounding geometry (red points
in Figure 2.6, left). The right side of Figure 2.6 illustrates the worst
case scenario, where rays are started close to the view point, miss the
corresponding part of the isosurface, and sample inactive blocks with
image-order empty space skipping until they enter another part of the
isosurface bounding geometry and are terminated or exit without any
intersection. In order to minimize the performance impact when the
distance from ray start to exit or termination is large, we use an adaptive
strategy for adjusting the distance between successive samples along a
ray.

2.4.1 Adaptive Sampling

In order to find the position of intersection for each ray, the scalar func-
tion is reconstructed at discrete sampling positions xi(x, y) = c+tid(x, y)
for increasing values of ti in [tstart, texit]. The intersection is detected
when the first sample lies behind the isosurface, e.g., when the sample
value is smaller than the isovalue. Note that in general the exact inter-
section occurs somewhere between two successive samples. Due to this
discrete sampling, it is possible that an intersection is missed entirely
when the segment between two successive samples crosses the isosurface
twice. This is mainly a problem for rays near the silhouette. Guaran-
teed intersections even for thin sheets are possible if the gradient length
is bounded by some value L [48]. Note that for distance fields, L is equal

26 Course : Advanced Illumination Techniques for GPU Volume Raycasting

to 1. For some sample value f , it is known that the intersection at iso-
value ρ cannot occur for any point closer than h = |f − ρ|/L. Yet, h
can become arbitrarily small near the isosurface, which would lead to an
infinite number of samples for guaranteed intersections.

We use adaptive sampling to improve intersection detection. The
actual intersection position of an intersection that has been detected is
then further refined using the approach described in Section 2.4.2. We

Figure 2.13: Michelangelo’s David extracted and shaded with tri-cubic filtering
as isosurface of a 576x352x1536 16-bit distance field [37]. The distance field is
subdivided into two levels: a fine level for empty space skipping during ray casting
(blue) and a coarse level for texture caching (green).

ACM SIGGRAPH 2009 27

have found that completely adaptive sampling rates are not well suited
for implementations on graphics hardware. These architectures use mul-
tiple pipelines where small tiles of neighboring pixels are scan-converted
in parallel using the same texture cache. With completely adaptive sam-
pling rate, the sampling positions of neighboring pixels diverge during
parallel execution, leading to under-utilization of the cache. Therefore,
we use only two different discrete sampling rates. The base sampling
rate r0 is specified directly by the user where 1.0 corresponds to a single
voxel. It is the main tradeoff between speed and minimal sheet thick-
ness with guaranteed intersections. In order to improve the quality of
silhouettes (see Figure 2.14), we use a second maximum sampling rate r1
as a constant multiple of r0: r1 = nr0. We are currently using n = 8 in
our system. However, we are not detecting silhouettes explicitly at this
stage, because it would be too costly. Instead, we automatically increase
the sampling rate from r0 to r1 when the current sample’s value is closer
to the isovalue ρ by a small threshold δ. In our current implementation,
δ is set by the user as a quality parameter, which is especially easy for
distance fields where the gradient magnitude is 1.0 everywhere. In this
case, a constant δ can be used for all data sets, whereas for CT scans it
has to be set according to the data.

Figure 2.14: The left image illustrates a small detail of the asian dragon model
with a sampling rate of 0.5. On the right, adaptive sampling increases the sampling
rate to 4.0 close to the isosurface. Note that except at the silhouettes there is no
visible difference due to iterative refinement of intersections.

28 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 2.15: Enabling isosurface intersection refinement results in a huge improve-
ment in image quality without any noticeable impact on performance.

2.4.2 Intersection Refinement

Once a ray segment containing an intersection has been detected, the
next stage determines an accurate intersection position using an iterative
bisection procedure. In one iteration, we first compute an approximate
intersection position assuming a linear field within the segment. Given
the sample values f at positions x for the near and far ends of the
segment, the new sample position is

xnew = (xfar − xnear)
ρ− fnear

ffar − fnear
+ xnear (2.1)

Then the value fnew is fetched at this point and compared to the isovalue
ρ. Depending on the result, we update the ray segment with either the
front or the back sub-segment. If the new point lies in front of the
isosurface (e.g. fnew > ρ), we set xnear to xnew, otherwise we set xfar to
xnew and repeat. Often a fixed number of iteration steps, e.g., four steps,
is enough for obtaining high-quality intersection positions.

2.5 Memory Management

Volume sizes are increasing rapidly, and can easily exceed the available
amount of GPU on-board memory. However, large parts of many types

ACM SIGGRAPH 2009 29

of volumes are often mapped to optical properties such that they are
completely transparent, e.g., the air around a medical or industrial CT
scan. In order to decouple the amount of memory that is actually needed
to render a given volume, i.e., the working set required for rendering it,
from the overall volume size, a variety of memory management schemes
such as bricking and, additionally, multi-resolution schemes, can be em-
ployed. We first consider the conceptually simple case of rendering iso-
surfaces, which, however, almost directly extends to the case of direct
volume rendering with arbitrary transfer functions.

For any possible isovalue, many of the blocks do not contain any part
of the isosurface. In addition to improving rendering performance by
skipping empty blocks, this fact can also be used for reducing the effective
memory footprint of relevant parts of the volume significantly. Whenever
the isovalue changes, the corresponding range query also determines the
active status of bricks of coarser resolution, e.g., 323 voxels. These bricks
re-arrange the volume and include neighbor samples to allow filtering
without complicated look-ups at the boundaries, i.e., a brick of resolution
n3 is stored with size (n+1)3 [54]. This overhead is inversely proportional
to the brick size, which is the reason for using two levels of subdivision.
Small blocks fit the isosurface tightly for empty space skipping and larger
bricks avoid excessive storage overhead for memory management.

In order to decouple the volume size from restrictions imposed by
GPUs on volume resolution (e.g., 5123 on NVIDIA GeForce 6) and avail-
able video memory (e.g., 512MB), we can perform ray casting directly

Figure 2.16: A low-resolution brick reference texture (left) stores references from
volume coordinates to texture cache bricks (right). The reference texture is sampled
in the fragment program to transform volume coordinates into brick cache texture
coordinates. White bricks denote null references for bricks that are not resident in
the cache.

30 Course : Advanced Illumination Techniques for GPU Volume Raycasting

flat blocking

hierarchical

blocking

Figure 2.17: Hierarchical bricking (top row) vs. flat bricking (bottom row). Culled
bricks are marked in white.

on a re-arranged brick structure. Similar to the idea of adaptive texture
maps [54], we maintain an additional low-resolution floating point refer-
ence texture (e.g., 163 for a 5123 volume with 323 bricks) storing texture
coordinate offsets of bricks in a single brick cache texture that is always
resident in GPU memory (e.g., a 512x512x256 texture). However, both
the reference and the brick cache texture are maintained dynamically
and not generated in a pre-process [54]. Figure 2.16 illustrates the use of
the reference and brick cache textures. Note that since no gradient re-
construction or shading is performed during ray casting, no complicated
neighbor look-ups are required at this stage. When the isovalue changes,
bricks that potentially contain a part of the isosurface are downloaded
into the brick cache texture. Inactive bricks are removed with a simple
LRU (least recently used) strategy when their storage space is required
for active bricks. Bricks that are currently not resident in the cache tex-
ture are specially marked at the corresponding position in the reference
texture (shown as white squares in Figure 2.16). During ray casting,
samples in such bricks are simply skipped.

2.6 Mixed-Resolution Volume Rendering

Most multi-resolution volume rendering methods are based on hierarchi-
cal bricking schemes where the brick size in voxels is kept constant from
level to level, and the spatial extent of bricks increases from high to low
resolution until a single brick covers the entire volume (Figure 2.17, top
row). Conversely, flat bricking schemes (Figure 2.17, bottom row) keep
the spatial extent of bricks constant and successively decrease the brick

ACM SIGGRAPH 2009 31

size in voxels. A major advantage of flat bricking schemes is that the
culling rate is much higher, illustrated by the number of white bricks in
Figure 2.17, because the granularity of culling stays constant irrespective
of actual brick resolutions. This not only reduces the required texture
memory, as more bricks can be culled, but also allows for a much more
fine-grained LOD or fragment program selection per brick [61]. However,
flat multi-resolution techniques have a bigger memory overhead when
samples are replicated at brick boundaries, because for decreasing brick
sizes the overhead of duplicated voxels increases. This overhead can be
removed by avoiding sample duplication [65], trading off runtime filter-
ing cost for memory savings. We employ flat multi-resolution bricking
with sample duplication, but reduce the run-time overhead significantly
by using hardware filtering and only warping the texture coordinates of
samples where necessary [5].

2.6.1 Volume Subdivision for Texture Packing

The original volume is subdivided into equally-sized bricks of size n3 in
a pre-process, where n is a power of two, e.g., n = 32. During this sub-
division, the minimum and maximum value in each brick are stored for
culling later at run time, and lower-resolution versions of each brick are
constructed. For the latter we compute the value of the new sample at
the center of eight surrounding higher-resolution samples as their aver-
age, but higher-order filters could also be used. We limit the number of
resolution levels to minimize the overhead of duplicated boundary vox-
els, and also to allow tight packing of low-resolution bricks in the storage
space reserved for high-resolution bricks (Section 2.6.2). By default we
use only two resolution levels, e.g., 323 bricks with a downsampled reso-
lution of 163. For fast texture filtering during rendering, voxels at brick
boundaries are duplicated. In principle, duplication at one side suffices
for this purpose [104], e.g., storing (32+1)3 bricks. However, in the high-
resolution level we duplicate at both sides, because the space for a single
(32 + 2)3 brick provides storage for eight (16 + 1)3 bricks. Coinciden-
tally, this often even does not impose additional memory overhead. The
brick cache texture (Section 2.6.2) always has power-of-two dimensions
for performance reasons, and a cache of size 5123, for example, can hold
the same number of 343 and 333 bricks.

Although this approach is not fully scalable, it is very simple and
a good trade-off that is not as restrictive as it might seem. Because
culling is very efficient in a flat scheme, fewer bricks need to be resident
in GPU memory. Even without culling, if the size of the brick cache

32 Course : Advanced Illumination Techniques for GPU Volume Raycasting

texture is 512x512x1024 (256 mega voxels), for example, and two resolu-
tion levels are used (brick storage size 343), 15x15x30 bricks fit into the
cache. This yields a possible data set size of about 1.7 giga voxels, e.g.,
960x960x1920, if all bricks actually need to fit into the cache. Due to
culling, the real data set size can typically be much larger. Additionally,
for very large data three levels could be used. For example, increasing
the allocated space for each brick from (32 + 2)3 to (32 + 4)3, both 163

and 83 bricks can be packed tightly, including boundary duplication for
filtering. Using three levels with storage for (32 + 4)3 bricks, 14x14x28
bricks would fit into the cache, yielding a data set size of 10.7 giga voxels,
e.g., 1792x1792x3584, and more when bricks are culled.

2.6.2 Mixed-Resolution Texture Packing

For rendering, a list of active bricks is determined via culling, using, e.g.,
the transfer function or iso value, and clipping plane positions to deter-
mine non-transparent bricks that need to be resident in GPU memory.
The goal is to pack all active bricks into a single 3D brick cache tex-
ture (Figure 2.18, right). In the beginning, all cache space is allocated
for high-resolution bricks. If the number of active bricks after culling
exceeds the allocated number, individual bricks are chosen to be repre-
sented at lower resolution. In this case, the effective number of bricks
in the cache is increased by successively mapping high-resolution bricks
in the cache to eight low-resolution bricks each, until the required over-
all number of bricks is available. This is possible because the storage
allocation for bricks has been chosen in such a way that exactly eight
low-resolution bricks fit into the storage space of a single high-resolution
brick, including duplication of boundary voxels, as described in the pre-
vious section.

After the list of active bricks along with the corresponding resolutions
has been computed, the layout of the cache texture and mapping of brick
storage space in the cache to actual volume bricks can be updated ac-
cordingly, which results in an essentially arbitrary mixture of resolution
levels in the cache. The actual brick data are then downloaded into
their corresponding locations using, e.g., glTexSubImage3D(). During
rendering, a small 3D layout texture is used for address translation be-
tween “virtual” volume space and “physical” cache texture coordinates
(Figure 2.18, top left), which is described in the next section.

ACM SIGGRAPH 2009 33

2.6.3 Address Translation

A major advantage of the texture packing scheme described here is that
address translation can be done in an identical manner irrespective of
whether different resolution levels are mixed. Each brick in virtual vol-
ume space always has constant spatial extent and maps to exactly one
brick in physical cache space. “Virtual” addresses in volume space, in
[0, 1], corresponding to the volume’s bounding box, are translated to
“physical” texture coordinates in the brick cache texture, also in [0, 1],
corresponding to the full cache texture size, via a lookup in a small 3D
layout texture with one texel per brick in the volume. This layout tex-
ture encodes (x, y, z) address translation information in the RGB color
channels, and a multi-resolution scale value in the A channel, respec-
tively. A volume space coordinate xx,y,z ∈ [0, 1]3 is translated to cache
texture coordinates x′

x,y,z ∈ [0, 1]3 in the fragment program as:

x′
x,y,z = xx,y,z · bscalex,y,z · tw + tx,y,z, (2.2)

where tx,y,z,w is the RGBA-tuple from the layout texture corresponding
to volume coordinate xx,y,z, and bscale is a constant fragment program
parameter containing a global scale factor for matching the different
coordinate spaces of the volume and the cache. When filling the layout

layout texture

cache texturevirtual volume

Figure 2.18: Mixed-resolution texture packing and address translation from virtual
volume space to physical cache texture space via the layout texture. Resolution
levels are mixed by packing low-res bricks tightly into high-res bricks.

34 Course : Advanced Illumination Techniques for GPU Volume Raycasting

texture, the former is computed as:

tx,y,z =
(

b′
x,y,z · bres′x,y,z − ox,y,z + tw

)

/csizex,y,z (2.3)

tw = 1.0, (2.4)

for a high-resolution brick, where b′ is the position of the brick in the
cache (0, 1, ...), bres′ is the storage resolution of the brick, e.g., 343, and
csize is the cache texture size in texels to produce texture coordinates
in the [0, 1] range. For a low-resolution brick, this is computed with
tw = 0.5. The offset ox,y,z is computed as:

ox,y,z = bx,y,z · bresx,y,z · tw, (2.5)

where b is the position of the brick in the volume (0, 1, ...), and bres
is the brick resolution in the volume, e.g., 323. The global scale factor
bscale is computed as:

bscalex,y,z = vsizex,y,z/csizex,y,z, (2.6)

where vsize is the size of the volume in voxels.

ACM SIGGRAPH 2009 35

2.7 Multiresolution LOD and Adaptive

sampling

2.7.1 Octree-based Multiresolution Representation

The linear storage scheme described above has a poor data locality prop-
erty. The lookup of neighboring voxels is frequent and it is only along
the x-axis that this translates to access of neighboring memory locations.
The impact of cache-misses in rendering and processing is significant and
often causes a scheme to ultimately fail if not well addressed. Blocking
of the volume is therefore generally efficient and significantly improves
the cache hit-rate.

The size of a block is typically derived from the size of the level
1 and 2 caches. Grimm et al. [32, 31] finds that a block size of 32,
B = (32, 32, 32), is the most efficient for their block-based raycaster.
Parker et al. [78] use a smaller block size, B = (4, 4, 4), for a parallel iso-
surface1 renderer. This block size matches the size of the L1 cache line
on SGI super-computers (SGI Onyx2 & SGI Origin 2000). In numerous
publications it is indicated that blocking by 16 or 32 is an optimal size
for many block related processing tasks.2

The addressing of blocks and samples within blocks is straightfor-
ward, but introducing a block map structure allows for arbitrary place-
ment of blocks and packing in memory with unused blocks being ignored
and thus saving memory space. The introduction of blocking results in
an additional level of complexity for block boundary handling, especially
for the cases when a sample is requested in a neighboring block that has
been ignored. Two strategies can be explored to deal with this. The first
requires the access of neighboring blocks. Grimm et al. [32], for example,
propose a scheme based on table lookups for neighboring samples that
avoids conditional branches in the code. The second strategy is based on
self-contained blocks and requires the replication of neighboring samples.
The overhead for sample replication is less than 20% for block sizes of
16 and up.

Additional basic data conversions may also be applied, such as remap-
ping the value range and conversion to 8- or 16-bit integers, that is data
types that directly map to native GPU types. Blocking improves mem-
ory locality for software-based rendering and processing. Skipping empty

1An iso-surface, S, is an implicit surface defined as S = { p | s(p) = C }, where
C is a constant.

2In two-dimensional blocking, or tiling, the equivalent size is 64 × 64, also being
the default tile size in JPEG-2000 [1].

36 Course : Advanced Illumination Techniques for GPU Volume Raycasting

blocks usually has a significant effect on the data size and rendering per-
formance. The concept of an empty block, however, needs to be clarified
and defined, which is an integral part of the next section.

2.7.2 Block Properties and Acceleration Structures

In order to reveal any embedded entities within a volume it is obvious
that some samples must be rendered transparent and other samples ren-
dered semi-transparent or opaque. This is achieved through the use of a
Transfer Function (TF). For a blocking scheme, as described above, the
meaning of an empty block is a block that has all its voxels classified
as completely transparent. Naturally, such a block could be discarded
in the rendering process and thus improve the performance. Since the
goal is to reduce the amount of data in the pipeline it is essential that
empty blocks can be predicted without access to all samples in a block.
Meta-data for such predictions is collected during preprocessing, and
preferably without knowledge of specific TF settings.

The TF usually defines one or more regions in the scalar range as non-
transparent and, for the rendering of iso-surfaces, either narrow peaks are
defined or special iso-surface renderers are used. It is therefore natural
that ideas from iso-surface extraction acceleration schemes have been
applied. The goal of these schemes are to minimize the processing so that
only cells intersecting the iso-surface are considered. Wilhelms & Gelder
[108] create a tree of min/max values. The tree is created bottom up
and starts with the cells, cubes of 8 voxels. Livnat et al. [62] extend this
approach and introduce the span-space. For iso-surface rendering, a leaf
in the tree is included if the iso-value is within the range spanned by the
minimum and maximum value of the cell. Parker et al. [78] use a limited
two-level tree and find that sufficient in their software implementation
of an iso-surface raycaster.

For arbitrary TF settings, the min/max scheme is generally overly
conservative and may classify empty blocks as non-empty. Summed-Area
Tables [17] of the TF opacity are used by Scharsach [91] to determine
the blocks’ content by taking the difference of the table entries for the
minimum and maximum block values. The low granularity of the min/-
max approach is addressed by Grimm et al. [31] who, instead, use a
binary vector to identify block content. The scalar range is quantized
into 32 uniform regions and the bit-vector indicates the presence of sam-
ples within the corresponding range. A similar approach is taken by Gao
et al. [27] but they use a larger vector, matching the size of their TF
table (256 entries).

ACM SIGGRAPH 2009 37

Level 0 Level 1 Level 2

Figure 2.19: Hierarchical blocking with subsampling. Downsampling is achieved
by removing every even sample [56] or by a symmetric odd-sized filter [105].

2.7.3 Hierarchical Multiresolution Representations

Simply skipping empty blocks might not reduce the volume size suffi-
ciently, the total size of the remaining non-empty blocks may still be
above the available memory size. A strategy is then to apply techniques
that vary the resolution in different parts of the volume, so different
blocks in the volume have different resolutions. This Level-of-Detail
(LOD) approach enables a more graceful adaptation to limited memory
and processing resources.

The most common scheme is to create a hierarchical representation
of the volume by recursive downsampling of the original volume. Since
each lower resolution level is 1/8 the size of the previous, the additional
amount of memory required for this pyramid is less than 14.3%. The
created hierarchies may differ depending on the selected downsampling
scheme. Figure 2.19 illustrates three levels of an hierarchy created using
subsampling, every second sample being removed. This scheme is used by
LaMar et al. [56] and Boada et al. [8], amongst others. Weiler et al. [105]
also use this placement of samples but employ a quadratic spline kernel
in the downsampling filter since they argue that subsampling is a poor
approximation.

The positions of the downsampled values, however, do require some
attention. The positioning indicated in figure 2.19 skews the represented
domain. A more appropriate placing of a downsampled value is in the
center of the higher resolution values it represents. This placement is
illustrated in figure 2.20 and is also a placement supported by average
downsampling.

38 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Level 0 Level 1 Level 2

Figure 2.20: Hierarchical blocking with average downsampling.

In order to be able to select different resolution levels in different
parts of the volume blocking is suitable for hierarchical representations
as well. The block size, in terms of number of samples, is usually kept
equal at each resolution level and the block grids are indicated by wide,
blue lines in the figures 2.19 and 2.20. Blocks at lower resolutions cover
increasingly large spatial extents of the volume. These multiresolution
hierarchies thus provide supporting data structures for LOD selection.
Methods to determine an appropriate level of detail are discussed in the
following section.

2.8 Level-of-Detail Management

It is not sufficient to only determine if a block is empty or not. The mul-
tiresolution representations described above require additional and dif-
ferent techniques that also can determine resolution levels for the blocks.
This section reviews techniques and approaches for LOD selection that
have been suggested in the literature. These approaches can be classi-
fied into: view dependent and region-of-interest, data error, and transfer
function based techniques. It is, furthermore, common to combine sev-
eral of these measures in different configurations. The following sections
will, however, review them individually.

The conceptual principle for hierarchical LOD selection is similar for
all approaches. The selection starts by evaluating one or more measures
for a root node. If the resolution of a block, a node in the hierarchy, is
found adequate then the traversal stops and the selection process is done.
If the resolution needs to be increased the block is either immediately
replaced by all its children or a subset of the children is added. The

ACM SIGGRAPH 2009 39

latter approach will remove the parent node when all its children have
been added. If the amount of data to use is limited, this constraint is
checked at every step and the LOD selection is stopped when the limit
is reached.

2.8.1 View-Dependent Approaches

View-dependent techniques seek to determine the LOD selection based
on measures like distance to viewer and projected screen-space size of
voxels. Region-of-interest methods work similarly to distance to viewer
measures. Using full resolution blocks when viewing entire volumes can
be suboptimal. When a single pixel covers multiple voxels it may result
in aliasing artefacts. Reducing the resolution of the underlying sampled
data (prefiltering) is, in fact, standard in graphics rendering instead of
supersampling. It is referred to as mipmapping3 in the graphics litera-
ture.

Distance to viewer approaches are used in [56, 105, 35, 6], for instance.
A block is refined if the projected voxel size is larger than one pixel on
the screen, for example. The distance to viewer or region-of-interest can
furthermore be used to weight some other measure, like a data error
measure, by dividing that measure by the distance.

2.8.2 Data Error Based Approaches

Representing a block in a volume with a lower resolution version may
naturally introduce errors when the volume is sampled compared with
using the full resolution. A measure of this error, for instance the Root-
Mean-Square-Error (RMSE), expresses the amount of error introduced.
When selecting a LOD for the multiresolution hierarchy, the block with
the highest data error should be replaced with a higher resolution version.
Repeating this procedure until the memory budget is reached will then
select a level-of-detail for the volume that minimizes the data error. This
measure only depends on the data and can therefore be computed in the
preprocessing step.

This approach is used in Boada et al. [8], who also take into account
the effect of linear interpolation in the lower resolution version. In ad-
dition, a user-defined minimum error threshold is used to certify that
the represented data correspond to a certain quality. Guthe et al. [35]

3Mip is an abbreviation of the Latin multum in parvo – many things in a small
place.

40 Course : Advanced Illumination Techniques for GPU Volume Raycasting

also take this approach, using the L2-norm, but combine it with view-
dependent measures, namely distance-to-viewer and projected voxel size.

2.8.3 Transfer Function Based Approaches

The shortcoming of data error approaches lies in the mapping of data
samples through the TF. The content of the TF is arbitrary and conse-
quently the data error is a poor measure if it is used for volume render-
ing. Determining the content of a block in the TF domain has a higher
relevance since this will affect the quality of the rendered image more di-
rectly. The notion of a block’s TF content is explored below and several
schemes for TF content prediction are reviewed. The challenge, however,
is to predict the required LOD for each block without accessing the data
beforehand.

The complete distribution of sample values within a block is a highly
accurate description of the block content, losing only spatial distribu-
tion. Such a description could, however, easily result in meta-data of
significant sizes, potentially larger than the block data itself. LaMar et
al. [57] therefore introduce frequency tables to express the frequency
of specific data errors (differences) and compute an intensity error for a
greyscale TF as an approximation to the current TF. Guthe et al. [34] in-
stead use a more compact representation of the maximum deviation in a
small number of bins, for which the maximum error in RGB-channels are
computed separately. A combined approach of these two, using smaller
binned frequency tables, is presented by Gyulassy et al. [36].

Gao et al. [27] use a bit-vector to represent the presence of values in
a block. The block vector is gated against RGB bit-vectors of the TF.
If the difference of two such products, compared with a lower resolution
block level, is less than a user defined threshold then the lower resolution
block can be chosen instead. A similar approach using a quantized binary
histogram is presented in [31] but is not reported to be used for LOD
selection.

2.9 Encoding, Decoding and Storage

In section 2.7.3 a conceptual view of multiresolution hierarchies was de-
scribed. As mentioned, the amount of data is not reduced by this process,
rather increased. When the amount of data in the hierarchy can not be
handled in core memory, additional techniques are required. Data com-
pression is one viable approach and, specifically, lossy compression can

ACM SIGGRAPH 2009 41

significantly reduce the amount of data, at the cost of a loss of fidelity.
Another approach is to rely on out-of-core storage of the volume hierar-
chy and selectively load requested portions of the data. A combination
of these techniques is also possible. Some of the well-known approaches
are described in the following sections.

2.9.1 Transform and Compression Based Tech-

niques

Following the success of image compression techniques, it is natural that
such techniques be transferred to volumetric data sets. Usually a trans-
form is applied to the data and it is the coefficients from the transform
that are stored. The underlying idea for the transform is to make data
compression more efficient. Applying a compression technique on the
coefficients, such as entropy coding, then yields a higher degree of com-
pression compared to compressing the original data. The following sec-
tions review two transforms that are common for image compression and
have been used for volume data. Basic concepts of compression are also
presented.

2.9.1.1 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is well established in image and
video coding standards, such as JPEG and MPEG, and there exist highly
optimized algorithms and code to perform this transform, with a typical
block size of 8. Relatively few researchers have applied this transform to
volumetric data sets although some examples exist [112, 79, 69]. Lum et
al. [70] apply the DCT for time-resolved data. Instead of computing the
inverse DCT, it is replaced by a texture lookup since the DCT coefficients
are dynamically quantized and packed into a single byte.

2.9.1.2 Multiresolution Analysis – Wavelets

The wavelet transform has gained a wide acceptance and has been em-
braced in many application domains, specifically in the JPEG-2000 stan-
dard, described by Adams [1]. A significant amount of work on volume
data compression has employed wavelet transforms. Being a multiresolu-
tion analysis framework it is well suited for the multiresolution handling
of volume data. Several wavelets exist, but the Haar and LeGall (a.k.a.
5/3) integer transforms, supporting lossless encoding [9, 100], and the

42 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Daubechies 9/7 [19] are the most common and can be efficiently imple-
mented using the lifting scheme [99].

Conceptually, the transform applied on a 1D signal produces two sub-
band signals as output, one describing low frequency content and the
other describing high frequency content. Recursive application of the
transform on the low frequency output produces multiple sub-band de-
scriptions until a lowest resolution level is reached. Once the multiband
analysis is done, the inverse transform can be applied in an arbitrary
number of steps until the original full resolution has been reconstructed.
For every step, the resolution of the volume is increased, doubled along
each dimension. It is furthermore possible to apply the inverse trans-
form selectively and retrieve higher resolution in selected subregions of
the volume. This approach is taken by Ihm & Park [45], Nguyen &
Saupe [76] and Bajaj et al. [2]. Their work is primarily concerned with
efficient random access of compressed wavelet data and caching of fully
reconstructed parts.

A wavelet transform can also be applied on blocks individually. Guthe
et al. [35] collect eight adjacent blocks and apply the transform once
on the combined block. The low frequency sub-band then represents a
downsampled version. The high frequency sub-band, the detail, is com-
pressed and stored separately. The procedure is then repeated recursively
on each level until a single block remains. A hierarchy of detail data, high
frequency coefficients, is thus constructed and can be selectively used to
reconstruct a multiresolution level-of-detail selection. A hardware sup-
ported application of this technique, using a dedicated FPGA-board, is
presented by Wetekam et al. [107].

2.9.1.3 Data Compression

Applying transforms to volume data does not reduce the amount of
data. Instead, it frequently increases the size of the data. The Haar
and LeGall integer wavelet bases, for example, require an additional bit
per dimension and level. Nevertheless, as the entropy of the transformed
signal is generally reduced, compared with the original signal, a com-
pression scheme yields a higher compression ratio for the transformed
signal. Lossless compression is, however, quite limited in its ability to
reduce the data size. In many practical situations with noisy data, ratios
above 3:1 are rare. Even this small reduction can be valuable but should
be considered against the increased computational demand of decoding
the compressed data stream and applying the inverse transform.

Significant data reduction can be achieved, however, if lossy com-

ACM SIGGRAPH 2009 43

pression is allowed. Quantization of the coefficients is commonly used
and can be combined with thresholding to remove small coefficients.
Hopefully this results in many long sequences of zero values that can be
compactly represented using run-length encoding. There exist a wide
range of quantization and compression methods presented in the liter-
ature and several of these are used in the context of volume data com-
pression [106, 45, 2, 33, 70]. Vector quantization of coefficient vectors
is also applied [92, 69]. For reasonable distortion, causing minor visual
degradation, compression ratios of 30:1 are achieved [35].

It is also reasonable to allow the encoding stage to take a significant
processing time if the results are improved, it is the performance of the
decoding stage that is critical.

2.9.2 Out-of-Core Data Management Techniques

Computer systems already employ multiple memory level systems, com-
monly two levels of cache are employed to buffer data from main memory.
Since the cache memory is faster, this helps to reduce data access latency
for portions of the data already in the cache. Extending caching tech-
niques to include an additional layer, in the form of disk storage or on
a network resource, is therefore quite natural and beneficial. A data
set can be significantly larger than core memory but those subsets of
the data to which frequent access is made can be held in core making
these accesses much faster. Indeed, several techniques exist in operating
systems that exploit this concept, for instance memory-mapped files.

The semantic difference between general purpose demand-paging is
that an application may know significantly more about data access pat-
terns than a general low level scheme could. Cox & Ellsworth [15]
present application controlled demand-paging techniques and compare
those with general operating system mechanisms, showing significant
improvements for application-controlled management. Their work is ap-
plied to Computational Fluid Dynamics (CFD) data. Another example
is the data querying techniques for iso-surface extraction presented by
Chiang et al. [13]. The OpenGL Volumizer toolkit, presented by Bhani-
ramka & Demange [6], also supports management of large volumes and
volume roaming on SGI graphics systems. Volume roaming provides
scanning through the volume, with a high-resolution region of interest,
and large blocks, B = (64, 64, 64), are loaded from high-performance
disk systems on demand.

Distributed rendering approaches also make use of out-of-core data
management ideas, the capacity of each rendering node is limited and

44 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Level 0 Level 1 Level 2

Figure 2.21: Flat multiresolution blocking. Spatial position and size is constant for
all blocks (blue squares). The resolution of each block is arbitrary and independent
of the resolution level of neighboring blocks.

data transport is costly. Predictive measures are required to ensure that
the rendering load is balanced between the nodes. This is another aspect
where application controlled data management is preferred, since the
access latency can be reduced or hidden. Examples of this approach are
presented in several papers by Gao et al. [28, 29, 27].

2.9.3 Flat blocking Multiresolution Representation

In flat blocking the samples on the uniform grid are centered on the grid
cells instead of on the cell vertices. This sample placement is shown in
figure 2.21 (grid in black and samples in red). This cell-centered sample
placement is compatible with OpenGLs sampling location for the pixels
in a framebuffer and texels in the textures. Block data is also cell centered
on the block grid, as indicated by the blue block grid.

Furthermore, a multiresolution representation is created individually
for each block, either by a wavelet transform [66] or by average down-
sampling [65, 63, 67]. This scheme is referred to as a flat multiresolution
blocking, or flat blocking, since no global hierarchy is created. The spa-
tial extent of a block is constant and the blocks’ spatial extents do not
grow with reduced resolution level. The key advantages of the flat scheme
can be summarized by:

• A uniform addressing scheme is supported.

• The granularity of the level-of-detail selection remains fine-grained.

ACM SIGGRAPH 2009 45

Level 0

Level 1

Level 2

Level 3

Final
composition

Hierarchical blocking Flat blocking

Level 0 Level 1 Level 2 Level 3

Figure 2.22: Comparing hierarchical and flat multiresolution blocking. Level 0 is
the lowest resolution level and level 3 is the highest one. Levels are selected such
that if a block intersects the boundary of an object (blue), that block is selected at
the highest resolution and the interior (homogeneous) is selected at level 1.

• Arbitrary resolution differences between neighboring blocks can be
supported since a block is independent of its neighbors.

• The resolution of a block is not restricted to be in powers-of-two.

• A heuristic analysis shows that flat blocking provides a higher
memory efficiency than a corresponding cut through a hierarchical
scheme, see table 2.1.

The disadvantage with this fine-grained flat blocking is that the number
of blocks is constant. Hierarchical schemes scale in this respect with
reduced memory budget. On the other hand, since there are no hierar-
chical dependencies it is trivial to exploit parallelism in many processing
tasks for flat multiresolution data.

Figure 2.22 shows an illustrative comparison between hierarchical
and flat multiresolution blocking. In this example the LOD is selected
so that a block that intersects the boundary of the embedded object
must have full resolution, while the blocks on the interior should be
at the second lowest resolution, level 1. Blocks on the exterior are to
be ignored, level 0. The LOD selection is indicated with level specific

46 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Table 2.1: Memory efficiency for multiresolution volumes. The LOD
selection criteria used in figure 2.22 are applied. Hierarchy 1 corresponds
to a LOD selection where all children always replace a parent. Hierarchy
2 is more flexible and allows partial usage, as shown in figure 2.22.

Hierarchy 1 Hierarchy 2 Flat

Level Blocks Bytes Blocks Bytes Blocks Bytes

Level 0 0 0 1 64 38 38

Level 1 1 64 3 192 4 16

Level 2 3 192 9 576 0 0

Level 3 36 2304 22 1408 22 1408

Total 40 2560 35 2240 64 1462

Reduction 1.60:1 1.83:1 2.80:1

coloring. Two strategies for block refinement are used in the literature,
as discussed in section 2.7.3. The first is to completely replace a block
with all its children. The second allows partial usage of a block with only
the required higher resolution blocks being added and a part of the lower
resolution block can still be used. These are referred to as Hierarchy 1
and 2 in table 2.1 which shows memory efficiency for both hierarchical
LOD selection schemes and the flat scheme. Full resolution blocks have
8× 8 = 64 samples and the original image size is 64× 64. The achieved
data reduction using flat blocking is 2.8:1, compared to 1.6:1 and 1.8:1
for the two hierarchical LOD selection approaches.

2.10 Sampling of Multiresolution Volumes

The flat multiresolution structure provides a uniform addressing scheme
for access to blocks and samples. The volume range is defined by the
number of blocks, Nx, Ny, Nz, along each dimension. The block index,
Ξ, is then easily retrieved as the integer part of a position, p, within the
volume. The remainder of the position then defines the intrablock local
coordinate, p′ = frac(p). The block index map, holding the block size,
σ, and the location, q, of the block in the packed volume, is then used
to compute the coordinate for the sample to take. The coordinate range
for flat block addressing is defined in units of blocks. Taking the integer
part of a coordinate then yields the block index and the remainder yields
the local, intrablock coordinate. This scheme is in effect virtualizing the
volume address domain. The block index is used to lookup a block’s

ACM SIGGRAPH 2009 47

Block 1
Size 1

Block 2
Size 4

Block 3
Size 2

Block 4
Size 8

δ1 δ2

δ3 δ4

1 2

3 4

p∗

(0, 0)

(−1
2
,−1

2
) (1

2
,−1

2
)

(−1
2
, 1

2
) (1

2
, 1

2
)e3,4(p

∗
x)

e1,2(p
∗
x)

e1,3(p
∗
y) e2,4(p

∗
y)

Figure 2.23: Illustration of block neighbors in 2D. The blocks are assigned different
resolutions and the samples are indicated by the red dots. The distance between
the sample boundaries (dashed lines in red) and the blocks’ spatial boundaries (blue
lines) are denoted by δi, for each block, i. The shaded area between block centers
indicates the domain for local interblock coordinate, p∗. Edge weights, ei,j , are
defined along the edges between adjacent blocks.

scale and location in the packed volume. Since blocks in the packed
volume are rarely neighbors in the spatial domain, special care has to be
taken in the sampling of a block. Furthermore, the scale of a block is
arbitrary which also has implications for block sampling. An illustration
of a neighborhood of four blocks is shown in figure 2.23.

2.10.1 Nearest Block Sampling

The first approach to block sampling is to restrict the sampling to access
only data within the current block, suitably expressed in terms of oper-
ations on the intrablock coordinate, p′. The valid coordinate domain for
intrablock samples is indicated by squares of red, dashed lines in figure
2.23. The inset from the blocks’ spatial boundaries is indicated by δi, for
each block, i. The restricted sample location, p′

C, is then defined as

p′

C = Cδ
1−δ(p

′), (2.7)

where Cβ
α(x) clamps the value, or element values for vectors, of x to the

interval [α, β]. This form of sampling has been relabeled Nearest Block
(NB) sampling in paper [67], but was introduced as no interblock inter-
polation in paper [65]. The GPU-based raycaster introduced in paper
[63] also used NB sampling only. It is evident that block artefacts will
arise, but these are not always visible and it is noted below that they are
most apparent for thin, iso-surface like TF settings.

48 Course : Advanced Illumination Techniques for GPU Volume Raycasting

2.10.2 Interblock Interpolation Sampling

To overcome these block artefacts, an interblock interpolation technique
was developed and introduced in paper [65]. Previous techniques rely on
sample replication and padding between the blocks [56, 105, 35]. Repli-
cation, however, counteracts the data reduction in the pipeline and may
also distort samples, where a block has higher resolution than its neigh-
bor, in order to reduce interpolation discontinuities. Specifically for lower
resolution blocks, and implicitly for higher data reduction, the data over-
head becomes increasingly large, as shown in figure [65]:1b.

Interblock Interpolation (II) removes the need for sample replication
and is a scheme for direct interpolation between blocks of arbitrary reso-
lution, including non-power-of-two sizes. The principle for II sampling is
to take a sample from each of the immediate closest neighboring blocks
using NB sampling and compute a sample value by a normalized weighted
sum. The domain for interblock interpolation in a neighborhood is indi-
cated by the shaded area between the block centers in figure 2.23. The
interblock local coordinate, p∗ = frac(p+0.5)− 0.5, has its origin at the
intersection of the adjacent blocks.

The block weight, ωb, for each of the blocks is computed using individ-
ual edge weights, ei,j, for the edges between two facing block neighbors
centers, blocks i and j, as illustrated in 2D in figure 2.23 by the grey
dotted box edges between block centers. In figure 2.24 four different
edge weight schemes are shown, including the NB sampling mode. The
Maximum Distance scheme provides the smoothest interpolation, but is
also the most sensitive to poor choice of level-of-detail since the filter
kernel has the widest weighted support. Consider, for instance, the case
where an iso-surface intersects a block outside its sample boundary. If
a neighboring block is chosen at a low level-of-detail, the surface would
bend out towards the low resolution block. Therefore the block value dis-
tributions used for LOD selection includes one layer of samples around
each block.

The 2D version of the II sample scheme is then succinctly defined by
the following normalized sum:

ϕ =

∑4
b=1 ωbϕb

∑4
b=1 ωb

, (2.8)

where ϕb is an NB sample from block b and the block weights, ωb, are

ACM SIGGRAPH 2009 49

ρ

e(ρ)

1: Level 0 2: Level 2

a) Nearest
Block

ρ

e(ρ)

1: Level 0 2: Level 2

b) Min. Dis-
tance

ρ

e(ρ)

1: Level 0 2: Level 2

c) Boundary
Split

ρ

e(ρ)

1: Level 0 2: Level 2

d) Max. Dis-
tance

0.0
2.0

5.0

8.0

12.0

25.5

∆E

Figure 2.24: A comparison of the interpolation methods on a slightly
rotated linear gradient. The original image was a 256×256 greyscale
image (8×8 blocks) being reconstructed using random levels between
1×1 and the full resolution, 32×32. The bottom row shows color mapped
images of the pixel-wise errors using the CIEL∗u∗v∗ ∆E color difference.
The images have been cropped.

defined as
ω1 = (1− e1,2) · (1− e1,3),
ω2 = e1,2 · (1− e2,4),
ω3 = (1− e3,4) · e1,3,
ω4 = e3,4 · e2,4.

The corresponding 3D variant and definitions of the edge weight func-
tions are presented in paper [65]. All edge weight functions described
therein result in interpolations equivalent to trilinear interpolation when-
ever the neighboring blocks are all of equal resolution. It is also shown
that the method constitutes a C0 continuous function.

2.10.2.1 Sample Placement Discussion

The placement of sample points within a block depends on the align-
ment of the superimposed block grid and on the scheme being used to
derive lower resolution blocks. The placement used in figure 2.23 can be
motivated for average value downsampling and some wavelet transforms,
such as the Haar and the LeGall 5/3 wavelets [9, 100]. Other approaches
for lower resolution representations might suggest different placements.
Sample replication techniques use a different sample placement scheme

50 Course : Advanced Illumination Techniques for GPU Volume Raycasting

a) Skin with NB sampling (1.1
fps)

b) Skin with II sampling (0.1 /
0.4 fps)

c) Bone with NB sampling (1.5
fps)

d) Bone with II sampling (0.2 /
0.5 fps)

Figure 2.25: Comparison between Nearest Block and Interblock Interpo-
lation sampling. Images are rendered with texture slicing in a 1024x1024
viewport. The opaque surface in image (a) clearly shows block artefacts
while these are difficult to perceive for the softer TF setting in image
(c). Interblock interpolation (b & d) removes these artefacts. The II
examples show single/dual pass framerates.

that suggests downsampling by skipping every second sample, arguably
a less suitable approach.

2.10.3 Interblock Interpolation Results

The quality of the interblock interpolation sampling is shown in fig-
ure 2.24. A slightly rotated gradient is used to evaluate the different
edge weight functions and the bottom row shows the pixel-wise error in
CIEL∗u∗v∗ color space.

A final comparison between interblock interpolation and nearest
block sampling is presented in figure 2.25. The top row, with a TF
defining an opaque iso-surface, clearly shows block artefacts without II
sampling. The softer TF setting for the bottom row shows less perceiv-
able artefacts.

The multiresolution interblock interpolation scheme was initially de-
ployed in a renderer based on texture slicing. The increased compu-

ACM SIGGRAPH 2009 51

tational requirements for II sampling causes a significant performance
reduction, about a factor of 8–10. It is, however, possible to render each
slice in two passes. The first pass samples the interior domain and dis-
cards the fragment for samples outside the sample bounding box. The
second pass then fills in the samples outside sample boundaries by ex-
ploiting early Z-termination4. The cost of the more expensive II sampling
shader is thus significantly reduced and the performance hit is lowered
to a factor of only 3–4, compared to NB sampling only. In this case it is
important that the blocks at the lowest resolution are sampled entirely
with NB sampling since the blocks with a single average value constitute
a degenerate case with no interior intrablock sampling domain.

2.11 Raycasting on the GPU

The sampling techniques for flat multiresolution representations pre-
sented in previous sections are described using texture slicing techniques,
but a more direct raycasting approach can be implemented on modern
GPUs. The work presented there does not present increased performance
for GPU-based raycasting over texture slicing techniques, but the ren-
dering quality is improved and more complex rendering techniques are
supported. In this section several techniques are described that signif-
icantly improve the rendering performance for GPU-based raycasting,
as introduced in paper [63]. Exploiting the flexibility of programmable
GPUs, several advanced classification techniques combining multiple TFs
into single-pass raycasting, are briefly described. Full details are to be
found in [67].

2.11.1 Adaptive Object-Space Sampling

As can be seen in images of volumetric data, there are often large areas
of empty space and, for multiresolution volumes, blocks at less than
full resolution. Obviously rendering performance could be increased if
these parts were sampled more sparsely or skipped entirely. This has
been the goal of many research efforts and several schemes have been
proposed involving frame-to-frame and spatial coherence as well as using
acceleration data structures such as octrees. These approaches have, in
general, been mostly binary decisions, either a region is skipped or it is
sampled at full density.

4Early Z-termination prevents the execution of a fragment program if the depth
test fails.

52 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Table 2.2: Rendering performance of the adaptive object-space sampling
in a 1024×1024 viewport. Data reductions are given for each data set.
TS refers to texture slicing and is comparable with full single-pass ray-
casting. Numbers specify FPS and (speed-up vs. full sampling). The
last column indicates the expected theoretical speed-up.

Dataset GPU TS Full Limited Naive Theoretical

Female 11:1 ATI 5.3 5.1 14.1 (2.8) 19.8 (3.9) 2.2

Female 11:1 NV 3.6 2.3 6.0 (2.6) 9.7 (4.2) 2.2

Female 30:1 ATI 5.5 5.2 17.4 (3.3) 27.5 (5.3) 3.1

Female 30:1 NV 3.6 2.3 6.5 (2.8) 11.1 (4.8) 3.1

Crab 9:1 ATI 3.4 2.9 6.2 (2.1) 8.7 (3.0) 2.1

Adaptive stepping along the ray was introduced in paper [63] where
the block meta-data, the resolution level for each block, is used to adjust
the density of samples. The LOD selection is, in fact, a fine-grained
acceleration data structure with a more continuous adaptation directive,
specifically when not rendering thin iso-surfaces only. The theoretical
improvement through this scheme is a performance gain in proportion
to the cube-root of the data reduction factor since the sampling is only
reduced in one dimension, along the rays.

Special care has to be taken when stepping across block boundaries.
In a naive approach, stepping is dictated by the resolution of the cur-
rent block being sampled. A sample close to the block boundary could
then potentially advance the ray deep into a neighboring block having a
significantly higher resolution, resulting in an undersampled region. The
scheme is therefore modified to limit the stepping at block boundaries.
In paper [67] the raycaster was further developed to support interblock
interpolation sampling, in this case the stepping is limited according to
the minimum number of steps among all eight neighboring blocks.

Adaptive object-space sampling significantly improves the perfor-
mance of GPU-based raycasting while maintaining a high visual quality.
From table 2.2 the speed-up is slightly surpassing the expected theoret-
ical speed-up (last column). The naive stepping approach shows even
higher gains, clearly indicating that undesired undersampling occurs.
The images in figure 2.26 show the result of full, limited and naive sam-
pling density. The naive stepping shows obvious undersampling artefacts
(fig. 2.26c).

Applying II sampling reduces the performance and attempts have

ACM SIGGRAPH 2009 53

a) Full sampling (7.6
fps)

b) Limited sampling
(19.2 fps)

c) Naive sampling (29.8
fps)

Figure 2.26: Adaptive sampling of multiresolution volumes. Single-pass,
GPU-based raycasting enables efficient adaptation of sampling density
along each ray individually. The multiresolution meta-data, the block
scales, are used to define sampling density locally. Images are rendered
in a 1024×1024 viewport.

been made to counter this effect by conditionally executing II sampling
in the shader. Due to the SIMD nature of fragment processing units,
processing many fragments in parallel, these efforts are often counter-
effective in that fragments frequently do not behave uniformly over suffi-
ciently large tiles. While this is an issue in the current GPU generation,
the execution granularity is gradually being refined.

2.11.2 Flat Blocking Summary

The images in figure 2.27 capture several significant contributions of
the flat blocking scheme, including interblock interpolation and adaptive
sampling. They show the graceful degradation of reducing the volume
data size to meet a progressively decreased memory budget. Image 2.27c
uses only 2.7 MB of a 864 MB data set. Image 2.27a renders all blocks
which contribute to the image at full resolution, referred to as virtu-
ally lossless. The fine-grained blocking scheme efficiently reduces the
data size to 144 MB, a ratio of 6:1, without any loss of image quality.

54 Course : Advanced Illumination Techniques for GPU Volume Raycasting

a) 6:1, Virtually loss-
less

b) 80:1, Medium reduc-
tion

c) 315:1, Extreme re-
duction

Figure 2.27: Transfer function based data reduction. This data set is first used in
paper [66] which introduced perceptual TF-based level-of-detail selection and flat
multiresolution blocking. They are here re-rendered using the final version of my
GPU-based raycasting renderer.

Data reductions are maintained in all stages of the rendering pipeline,
including texture memory on the GPU. Together with out-of-core data
management this pipeline supports the rendering of data sets substan-
tially larger than available core memory. This data reduction is achieved
without including compression techniques, that could reduce data size in
the first stages of the pipeline. Maintaining access to full resolution data
at original precision is essential in the medical domain and the presented
pipeline supports the use of full resolution data, given that the needed
memory resources are available.

Course Notes

Advanced Illumination Techniques for GPU Volume Raycasting

Light Interaction

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Patric Ljung
Siemens Corporate Research, Princeton, USA

Christof Rezk Salama
University of Siegen, Germany

Timo Ropinski
University of Münster, Germany

Light Transport and

Illumination Models

In this chapter we discuss how light interactions can be computed for
each voxel. Besides a brief overview of the Phong illumination with a
focus on volume rendering, we will explain how to extend a raycaster
to support shadowing as well as ray-traced reflections. The way light
qualities change, when traveling through participating media is explained
in the last chapter of this course.

3.1 Phong Illumination

The purpose of an illumination model, in both polygonal and volume
rendering, is the simulation of real-world light interactions. During this
simulation real-world phenomena as reflection and shadowing have to be
incorporated. To improve the performance, often the simplified Phong
illumination model is used, to reduce the O(n2) complexity, inherent to
computing global illumination phenomena. By using this illumination
model, only direct illumination is computed, i. e., illumination not influ-
enced by other parts of the scene. Thus not every other part of the scene
has to be considered when computing the illumination for the current
object and thus the complexity is reduced to O(n).

Also within volume rendering the Phong illumination model is often
used to simulate light reflections. In the following we briefly describe its
usage. We are not giving an entire introduction to the Phong model,
and refer to [26] for further reading. For simplicity we assume that a
volumetric data set is represented by a scalar intensity function which
assigns to each point x a scalar value f(x). In this context, the Phong
computation is dependent of the following entities:

• Position of the current voxel x,

• Gradient 5τ(f(x)) at the current voxel position,

ACM SIGGRAPH 2009 57

/**

* Returns the diffuse term, considering the

* currently set OpenGL lighting parameters.

*

* @param kd The diffuse color to be used.

* Usually this is fetched from the transfer

* function.

* @param G The computed gradient.

* @param L The normalized light vector.

*/

vec3 getDiffuseColor(in vec3 kd, in vec3 G, in vec3 L) {
float GdotL = max(dot(G, L), 0.0);

return kd * lightParams.diffuse.rgb * GdotL;

}

Listing 3.1: A simple GLSL shader, which computes the contribution of
diffuse lighting.

• Voxel color as assigned through the transfer function, and

• Position of the light source.

To further simplify things, we assume for the following, that we have
only one idealized point light source. We can compute the reflection
occurring at the current voxel as a sum of three different illumination
types: diffuse reflection, specular reflection and ambient lighting.

Diffuse reflections can be simulated by incorporating the Lambertian
law, which states that the reflected light intensity is relative to the an-
gle of incidence. Thus we can compute the diffuse reflection Id for the
current voxel by considering its normalized gradient |5 τ(f(x))| and the
normalized light vector L as follows:

Id(x) = Ld,in · kd ·max(| 5 τ(f(x))| · L, 0). (3.1)

Thus, we can modulate the incoming diffuse lighting Ld,in based on
its incident angle and the current voxel color kd. To achieve this effect
within a volume raycaster the GLSL fragment shader shown in Listing 3.1
can be used.

In order to incorporate specular reflections, e.g., when dealing with
specular materials as for instance metal acquired with a micro CT scan-
ner, also the specular color for a voxel has to be computed. In contrast to
diffuse reflections, specular reflections also depend on the viewing angle.
Therefore the normalized view vector V is implicitly used to modulate
the incoming specular lighting Ls,in and the voxel’s specular color ks:

Is(x) = Ls,in · ks ·max(| 5 τ(f(x))| ·H, 0)α. (3.2)

58 Course : Advanced Illumination Techniques for GPU Volume Raycasting

/**

* Returns the specular term, considering the

* currently set OpenGL lighting parameters.

*

* @param ks The specular color to be used.

* @param G The computed gradient.

* @param L The normalized light vector.

* @param V The normalized view vector.

*/

vec3 getSpecularColor(in vec3 ks, in vec3 N, in vec3 L, in vec3 V) {
vec3 H = normalize(V + L);

float GdotH = pow(max(dot(G, H), 0.0), matParams.shininess);

return ks * lightParams.specular.rgb * GdotH;

}

Listing 3.2: A simple GLSL shader, which computes the contribution of
specular lighting.

α is used to influence the shape of the highlight seen on surface-like
structures. A rather large α results in a small sharp highlight, while a
smaller α results in a bigger smoother highlight. As it can be seen, V is
not used directly, but the degree of reflection depends on the normalized
half-way vector H , which can be computed as follows:

H =
V + L

2
. (3.3)

For a detailed derivation of this equation, please also refer to [26]. To
integrate specular reflections into a volume renderer, the GLSL shader
shown in Listing 3.2 can be used. Please note, that since the half-way
vector H is normalized, we can neglect the division by 2.

As stated above the Phong illumination model is a local illumination
model, which considers only direct illumination, i.e., illumination coming
from the light source directly, without being influenced by other objects.
However, to approximate also indirect illumination effects, usually an
ambient term is used. This proceeding ensures, that voxels with gradients
pointing away from the light source do not appear pitch black. Since
this ambient term does not incorporate any spatial information, it is the
easiest to compute:

Ia(x) = La,in · ka, (3.4)

by only considering the ambient light La,in and the voxels ambient
color ka. The GLSL shader shown in Listing 3.3 can be used to incorpo-
rate the effect within a GPU-based raycaster.

Now, we know how to compute the three contributing illumination

ACM SIGGRAPH 2009 59

/**

* Returns the ambient term, considering the

* currently set OpenGL lighting parameters.

*

* @param ka The ambient color to be used.

* Usually this is fetched from the transfer

* function.

*/

vec3 getAmbientColor(in vec3 ka) {
return ka * lightParams.ambient.rgb;

}

Listing 3.3: A simple GLSL shader, which computes the contribution of
ambient lighting.

types: diffuse, specular and ambient. Listing 3.4 shows how to combine
them and thus realize the Phong illumination model.

To also incorporate attenuation based on the distance d of the current
voxel to the light source, the computed light intensity can be modulated
before returning it as shown in Listing 3.5. It requires a function for
computing the attenuation, which is shown in Listing 3.6.

However, this distance based weighting does not incorporate any vox-
els possibly occluding the way to the light source, which would result in
shadowing. To solve this issue, shadowing techniques need to be incor-
porated as described in Section 4 of this chapter.

So far, we have only considered a single light source. To extend
the Phong illumination model to multiple light sources we can simply
compute the contribution of each light source and add them up. This
summation becomes possible, due to the additive nature of light energy.

3.2 Gradient Computation

As we have seen the gradient 5τ(f(x)) is important for both, diffuse
and specular reflections.

The quality of the computed gradients is crucial for the visual quality
of the rendering. Especially when dealing with a high degree of specular-
ity, it is important that the gradients change smoothly along a surface.
In Figure 3.1 three gradient calculation methods are shown side-by-side:
forward differences, central differences and Sobel gradients [95]. As ex-
pected, among these Sobel gradients result in the smoothest surfaces.
This becomes directly visible when using the gradients for specular re-
flections (see Figure 3.6). While the visual difference is quite big when
rendering artificial data sets, it is not as prominent when visualizing

60 Course : Advanced Illumination Techniques for GPU Volume Raycasting

/**

* Calculates Phong shading.

*

* @param G The gradient given in volume object space (does not need to be

normalized).

* @param vpos The voxel position given in volume texture space.

* @param kd The diffuse material color to be used.

* @param ks The specular material color to be used.

* @param ka The ambient material color to be used.

*/

vec3 phongShading(in vec3 G, in vec3 vpos, in vec3 kd, in vec3 ks, in vec3 ka) {

vec3 L = normalize(lightPosition - vpos);

vec3 V = normalize(cameraPosition - vpos);

vec3 shadedColor = vec3(0.0);

shadedColor += getDiffuseColor(kd, normalize(G), L);

shadedColor += getSpecularColor(ks, normalize(G), L, V);

shadedColor += getAmbientColor(ka);

return shadedColor;

}

Listing 3.4: This GLSL shader realizes Phong shading by exploiting the
previously introduced shaders.

shadedColor *= getAttenuation(d);

Listing 3.5: After computing the attenuation factor, it can be used to
modulate the shaded color.

/**

* Returns attenuation based on the currently

* set OpenGL values. Incorporates constant,

* linear and quadratic attenuation.

*

* @param d Distance to the light source.

*/

float getAttenuation(in float d) {
return 1.0 / (lightParams.constantAttenuation +

lightParams.linearAttenuation * d +

lightParams.quadraticAttenuation * d * d);

}

Listing 3.6: Distance-based attenuation can be computed with a con-
stant, a linear or a quadratic attenuation factor.

ACM SIGGRAPH 2009 61

Figure 3.1: Visual comparison of different gradient computation methods when
rendering a synthetic volume data set. From left to right: forward difference, central
difference and Sobel gradients.

real-world data sets with smooth intensity changes. However, gradient
filtering can be applied (see Figure 3.2) to further improve the rendering
quality.

Due to its relatively high computing costs – 26 additional voxel
lookups are needed – the Sobel operator is often applied in a prepro-
cessing phase. This has the drawback, that the currently set transfer
function does not have any effect on the computed gradients. Therefore,
often forward and central differences are used, when rendering perfor-
mance is important. As shown in Listing 3.7 computing forward differ-
ence gradients requires only three extra voxel lookups.

3.3 Specular Reflections through Ray-

Tracing

Now, that we know how to compute the gradients, we can use them as
normals in various ways to improve the illumination. For instance, the
gradients can be used to realize a volumetric ray tracer. One approach for
GPU-based raycasting considering only first order rays to be traversed
has been proposed by Stegmaier et al. [97]. With their approach they are
able to simulate mirror-like reflections and refraction. By casting a ray
and computing its deflection, when a reflection or refraction occurs. To
simulate the mirror-like reflection, they perform an environment texture
lookup.

An alternative approach to trace rays of higher order, would be to
use additional entry and exit points. This can be achieved by exploiting

62 Course : Advanced Illumination Techniques for GPU Volume Raycasting

/**

* Calculate the gradient based on the A channel

* using forward differences.

*/

vec3 calcGradient(sampler3D volume, vec3 voxPos, float t, vec3 dir) {
vec3 gradient;

float v = texture1D(transferFunc , textureLookup3D(volume, volumeParameters,

voxPos).a);

float v0 = texture1D(transferFunc , textureLookup3D(volume, volumeParameters,

voxPos + vec3(offset.x, 0.0, 0.0)).a);

float v1 = texture1D(transferFunc , textureLookup3D(volume, volumeParameters,

voxPos + vec3(0, offset.y, 0)).a);

float v2 = texture1D(transferFunc , textureLookup3D(volume, volumeParameters,

voxPos + vec3(0, 0, offset.z)).a);

gradient = vec3(v - v0, v - v1, v - v2);

return gradient;

}

Listing 3.7: For computing forward difference gradients only 3 additional
voxel lookups are required. By also fetching the transfer function, dy-
namic gradient changes are considered.

the workflow shown in Figure 3.3.

In the first stage the initial unmodified entry and exit points are com-
puted as described in the first chapter of these course notes. By using
these points the first order rays can be cast to generate one intermediate
image as well as to construct a first hit point texture, i. e., the positions
in volume space where a ray first encounters a visible medium (see Fig-
ure 3.4 (right)). While the intermediate image is cached in order to be
able to blend it in the last stage, the first hit points are used as the entry
points in the next recursion step.

To increase the foot print of the voxels encountered at the first hit
point, the first hit point computation can be altered by sampling one step
further into the volume. This ensures that the encountered medium is
sufficiently penetrated and thus more clearly visible in the intermediate
image. The exit points for the next recursion step can be computed in
the second stage, as shown in Figure 3.3. Based on the entry position p
and the direction d of a higher order ray r, the intersection between r
and the bounding box of the volume can be computed. This is done by
first performing an intersection point test for r and the six side planes of
the bounding box. When knowing the normal N and the distance to the
origin D of such a side plane, we can express each point x on the plane
by the equation: (N · x) − D = 0. By substituting the parameter form
of the ray x = p+ t · d into this equation, the following parameter value

ACM SIGGRAPH 2009 63

Figure 3.2: Gradient filtering improves the visual quality especially for synthetic
data sets: central difference gradients (left), Sobel gradients (right).

for the intersection point can be obtained:

t′ =
D − (p ·N)

d ·N . (3.5)

This parameter value needs to be computed for each of the six side
planes, before choosing the smallest positive value tmin among these.
After this computation, the entry and exit points can be forwarded to
the subsequent raycaster. When all raycasters have finished rendering,
the final image can be computed by blending all available intermediate
images in stage 4 as shown in Figure 3.3.

As mentioned above, to compute the ray direction for rays reflected
on a specular surface, the gradient 5τ(f(x)) of this surface is consid-
ered. Similar to the computation of the specular reflection in the Phong
illumination model as described in Section 3.1, the outgoing ray can be
computed by considering the incoming ray and 5τ(f(x)).

In cases where a refraction occurs, the incoming ray is bent at the
surface based on Snell’s law. Snell’s law is used in physics to describe
the behavior of a ray hitting an refractive interface, e. g., the surface of
a glass-like object. It expresses the relationship between the angle of
incidence φ and the angle of refraction θ and says that the ratio of the
sines of φ and θ is a constant depending on the present media:

sinφ

sinθ
=
n2

n1
(3.6)

Thus, to compute the bending angle the refraction indices of the
adjacent media, for which the refraction should be computed, has to be

64 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 3.3: Ray tracing can be achieved by using four subsequent stages. Initially
the unmodified entry and exit points are computed for the first order rays (stage 1).
Afterwards, for each recursive step, the exit points are calculated based on the first
hit points of the previous step (stage 2). A raycaster computes intermediate images
based on the generated entry and exit points (stage 3). Finally all intermediate
images are blended into the final image (stage 4).

known. When assuming that these indices are n1 for the medium which
is left by the ray, and n2 for the medium which is entered by the ray,
we can compute the bending angle θ based on the incoming angle φ as
follows:

cos(θ) =

√

1−
(

n1

n2

)2

· (1− (cos(φ))2). (3.7)

Thus, we can compute the direction of the leaving ray Avec as follows:

Avec =

(

n1

n2

)

Evec +

(

n1

n2
| cos(φ)| − cos(θ)

)

| 5 τ(f(x))|, (3.8)

where Evec is a vector representing the incoming ray.
In general total reflection has to be considered in cases the incoming

ray hits the object under a very flat angle, i. e., no refraction but specular
reflection occurs. The critical angle for which total reflection occurs can
be computed as follows:

φcrit = sin−1(
n2

n1
). (3.9)

ACM SIGGRAPH 2009 65

Figure 3.4: A synthetic Cornell box data set rendered with refraction and specular
reflection (left) and its first hit points (right).

Thus, when the incident angle φ exceeds φcrit, a specular reflection
ray has to be computed instead of a refractive one.

The result of a ray tracer implemented using the concepts described
above is shown in Figure 3.4 (left). As it can be seen in Figure 3.5 some
scenes require only a rather low recursion depth to render them more
realistically.

Again, by using different gradient calculation methods, different im-
age qualities can be achieved as shown in Figure 3.6.

During the blending of the intermediate images in stage 4, a mapping
function can be used, which expresses the specularity of certain intensity
ranges, and thus influence the contribution of higher order rays to a pixels
color. Alternatively, by using an automatic approach, the specularity can
be set proportional to the length of 5τ(f(x)). It should be mentioned
that this is not an exact measure, since the gradient length determines
only the intensity changes of neighboring voxels. However, when a higher
intensity range occurs, one of the materials must have a higher intensity
and may thus be assumed as being more specular.

66 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 3.5: The teapot volume data set rendered with specular reflections. The
images show renderings generated by traversing higher order rays: zero (top left)
to up to three (bottom right).

ACM SIGGRAPH 2009 67

Figure 3.6: Specular reflections can be computed by incorporating forward differ-
ence gradients (left) and Sobel gradients (right).

Shadows

It has been shown that the used lighting model has a major impact on the
spatial comprehension [58]. For instance, shadows serve as an important
depth cue [89]. In this section we would like to discuss some techniques
for integrating shadows into a GPU-based volume raycaster. While we
will focus on volume rendering, it should also be mentioned that some
researchers address the combination of polygonal and volumetric data
when considering light interactions [113].

4.1 Soft vs. Hard Shadows

Various shadow algorithms have been developed in the field of computer
graphics. Crow has proposed a shadow volume technique for generating
shadows for scenes containing polygonal data [16]. To compute shadows
of an object, its silhouette is extracted and extruded in direction of the
light rays in order to generate shadow polygons which form the shadow
volume of an object. During rendering each object is tested whether it
lies inside or outside a shadow volume, and thus it can be determined
whether the object is shadowed. Due to the polygonal nature of this
algorithm, it is not suited for volume rendering. Another common ap-
proach for generating shadows when rendering polygonal data is shadow
mapping which has been presented in 1978 by Williams [109]. Shadow
mapping is an image-based approach which exploits an additional ren-
dering pass in which the scene is rendered from the light source’s point
of view in order to determine the structures closest to the light source
(see Figure4.1). With this knowledge, a fragment-based shadow test can
be introduced in the main rendering pass, i. e., each fragment is tested
whether it is further away from the light source than the corresponding
texel in the shadow map.

In contrast to the shadowing approaches for slice-based volume ren-
dering [4, 52], only little has been done in order to integrate shadows
into GPU-based raycasting. However, due to the similar ray paradigm,
it should be noted that shadows have been integrated in volume ray-

ACM SIGGRAPH 2009 69

Figure 4.1: Shadow mapping exploits a single texture, which stores visibility infor-
mation from the light source.

tracing systems [103, 102]. An overview of these techniques can be found
in [72].

In analogy to the polygonal shadow mapping approach, for volume
rendering also a depth map is needed in order to store light source visi-
bility. Therefore first hit positions as seen from the light source can be
computed and used to compute the light source distance (see Figure 4.2).
When rendering polygonal models a depth value is properly defined. In
contrast, volume rendering does not provide depth values in general.
Therefore a shadow threshold value has to be used. With this threshold
the intensity values representing opaque geometry can be changed, and
with it the content of the generated shadow map. The example shadow
map shown in Figure 4.2 has the same resolution as the viewport, i.e.,
512 × 512 pixel, which allows to generate shadows without introducing
aliasing artifacts (see Figure 4.7).

One benefit of shadow mapping is that soft shadows can be approxi-
mated by exploiting percentage closer filtering [82]. This is demonstrated
in Figure 4.3, where the Visible Human torso data set is rendered with
both, hard shadows (left) and fake soft shadows (right). Furthermore,
when using shadow mapping the combination with polygonal models can
be supported quite easily, since the geometry can also be represented
within the shadow map.

70 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 4.2: The first hit points in color-coded volume coordinates as seen from the
light source (left) and the resulting depth map (right). Both maps have a resolution
of 512× 512 texel and are generated during rendering the visible human head data
set (see Figure 4.7).

4.2 Semi-Transparent Shadows with Deep

Shadow Maps

While shadow mapping allows very efficient shadows on a fragment basis,
it does not support semi-transparent occluders often occur in volume ren-
dering. In order to address semi-transparent structures, opacity shadow
maps serve as a stack of shadow maps, which store alpha values instead
of depth values in each shadow map [50]. Another more compact repre-
sentation for semi-transparent occluders are deep shadow maps [68]. The
used data structure consists also of a stack of textures, but in contrast
to the opacity shadow maps, an approximation to the shadow function is
stored in these textures (see Figure 4.4). Thus it is possible to approxi-
mate shadows by using fewer hardware resources. Deep shadow mapping
has first been applied to volume rendering by Hadwiger et al. [39].

While the original deep shadow map approach [68] stores the overall
light intensity in each layer, in volume rendering it is advantageous to
store the absorption given by the accumulated alpha value in analogy
to the volume rendering integral. Thus, for each shadow ray, the alpha
function is analyzed, i. e., the function describing the absorption, and
approximate it by using linear functions.

To have a termination criterion for the fragment shader which per-
forms the processing, the depth interval covered by each layer can be
restricted. However, when it is determined that the currently analyzed

ACM SIGGRAPH 2009 71

voxels cannot be approximated sufficiently by a linear function, smaller
depth intervals are considered. Thus, the approximation works as fol-
lows. Initially, the first hit point for each shadow ray is computed, similar
as done for the shadow mapping described above. Next, the distance to
the light source of the first hit point and the alpha value for this position
are stored within the first layer of the deep shadow map. Since we are
at the first hit position, the alpha value usually equals zero when the
shadow threshold is set accordingly. Starting from this first hit point,
we traverse each shadow ray and check iteratively wether the samples
encountered so far can be approximated by a linear function. When
processing a sample, where this approximation would not be sufficient,
the distance of the previous sample to the light source as well as the
accumulated alpha value at the previous sample are stored in the next
layer of the deep shadow map. This is repeated until all eight layers of
the deep shadow map have been created.

To demonstrate the possibilities of deep shadow maps, we again use
the simple volumetric Cornell box scene consisting of 128 × 128 × 128
voxel (see Figure 4.5). The blue ball, which is set to be semi-transparent
by modifying the transfer function, casts a transparent shadow on the
back wall. The difference to the shadow of the opaque purple box can
be noticed, especially when looking at the shadow borders. For gener-
ating the shown images, a deep shadow map consisting of eight layers

Figure 4.3: The Visible Human torso data set (256×256×512 voxel) rendered with
hard shadows (left) and with fake soft shadows by using shadow mapping exploiting
percentage closer filtering (right).

72 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 4.4: Deep shadow mapping exploits a stack of textures, which stores an
approximation to the shadow function.

has been used. A color coded version of the layers is also shown in
Figure 4.5 (bottom). To generate the layers rapidly, current graphics
hardware can be exploited. By using multiple render targets eight layers
could be computed in a single rendering pass. However, using only four
rendering targets and creating eight deep shadow layers by performing
simple channel splitting allows a more efficient storage. Therefore, the
light source distance and the alpha value are stored in two successive
channels, i.e., R and G as well as B and A. Thus, two shadow layers can
be represented by using only one RGBA texture. However, for illustra-
tion purposes, we wrote these values into the R and G channels when
generating the pictures shown in Figure 4.5 (bottom).

When generating the deep shadow maps, an error value is introduced
to determine wether the currently analyzed samples can be approximated
by a linear function. In analogy to the original deep shadow mapping
technique [68], this error value constrains the variance of the approxi-
mation. This can be done by adding (resp. subtracting) the error value
at each sample’s position. When the alpha function does not lie within
the range given by the error value anymore, a new segment to be ap-
proximated by a linear function is started. The effect of choosing a too
small error value is shown in Figure 4.6. As it can be seen, a too small
error value results in a too close approximation, and the eight layers are
not sufficient anymore to represent shadow rays having a higher depth

ACM SIGGRAPH 2009 73

Figure 4.5: A synthetic scene (128× 128× 128 voxel) rendered using deep shadow
mapping. The shadow of the semi-transparent blue ball is correctly captured. The
images on the bottom show the successive layers of the deep shadow map.

complexity. Thus especially in regions, were the two occluders both in-
tersect a shadow ray, shadow artifacts appear. Obviously this drawback
can be avoided by introducing additional shadow layers. This would
allow a more precise approximation of the shadow function, but would
also result in decreased rendering performance since additional rendering
passes are required.

A comparison of different shadow computation methods is shown in
Figure 4.7 and Figure 4.8. As it can be seen deep shadow maps introduce
artifacts when thin occluder structures are present. The shadows of these
structures show transparency effects although the objects are opaque.
This results from the fact that an approximation of the alpha function is
exploited. Especially thin structures may diminish when approximating
over too long depth intervals.

74 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 4.6: Different error values for deep shadow mapping: 0.00005 (left), 0.01
(right). Artifacts appear when using too small error values.

ACM SIGGRAPH 2009 75

Figure 4.7: The Visible Human head data set (512 × 512 × 294 voxel) rendered
without shadows, with shadow rays computed by a ray tracer, with shadow mapping
and with deep shadow maps (from top left to bottom right). The generated shadow
map is shown in Figure 4.2.

76 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 4.8: The hand data set (244× 124× 257 voxel) rendered without shadows,
with shadow rays, with shadow mapping and with deep shadow maps (from top
left to bottom right). Semi-transparent shadows become visible when using shadow
rays or deep shadow maps.

Course Notes

Advanced Illumination Techniques for GPU Volume Raycasting

Ambient Occlusion

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Patric Ljung
Siemens Corporate Research, Princeton, USA

Christof Rezk Salama
University of Siegen, Germany

Timo Ropinski
University of Münster, Germany

Ambient Occlusion for

Isosurfaces

Ambient Occlusion refers to techniques to simulate global lighting by
estimating the visibility of a global ambient omnidirectional illuminant
from a primitive, be it a polygon vertex, surface location or voxel in a
volume. In this section we will outline various methods based on vol-
umetric models or data sets. We have divided the algorithms into two
classes; isosurface based volume rendering and full volume rendering, in-
corporating semi-transparent samples and translucency. In both cases
direct volume rendering is considered, that is, no intermediate geome-
try is created for isosurfaces. The remainder of this chapter describes
techniques for direct isosurface volume rendering.

In the past many methods based on the theory of light transfer have
been developed to enable interactive diffuse interreflections for polygonal
models [93, 11]. Most of these physically motivated approaches are based
on pre-computing illumination for all vertices and storing it in an appro-
priate data structure which is accessed during rendering. Thus these
algorithms support interactive modification of light and camera param-
eters as well as some material parameters. However, the application to
deformable geometry is constrained and requires a new pre-computation
in most cases [94]. To address these limitations, approximations have
been proposed, which are not physically motivated, but lead to visually
convincing results. In contrast to polygonal models the structure repre-
sented by a volumetric data set depends on the rendering parameters,
which include the transfer function as well as thresholding parameters,
since these rendering parameters can be used to omit certain voxels from
being displayed. For instance, by only changing the transfer function
or the thresholding, a medical volume data set can be visually mapped
to many distinct structures, e. g., the skeleton only, the muscles only or
the skeleton with surrounding tissue. Obviously this structural variance
has a strong impact on the light interaction between the structures of
such a data set, rendering the currently known surface-based illumination
techniques insufficient for interactive volume illumination. Since trans-

ACM SIGGRAPH 2009 79

fer function as well as thresholding are altered frequently it should be
possible to perform these changes interactively [51]. Another challenge is
the fact that volume rendering requires to compute light interactions for
several samples along a viewing ray and thus introduces a higher level of
complexity compared to computing light interactions only once for each
fragment as is necessary when rendering opaque polygonal data.

Vicinity Shading [98] simulates illumination of isosurfaces by tak-
ing into account neighboring voxels. In a pre-computation the vicinity
of each voxel is analyzed and the resulting value, which represents the
occlusion of the voxel, is stored in a shading texture which can be ac-
cessed during rendering. Vicinity Shading requires a new preprocessing
when changing the rendering parameters, and it does not support color
bleeding.

Desgranges and Engel describe a less expensive approximation of am-
bient light than Vicinity Shading [20]. They combine ambient occlusion
volumes from different filtered volumes into a composite occlusion vol-
ume. While pre-processing time is greatly reduced the ambient occlu-
sion volume still must be recomputed whenever the transfer function is
changed.

Wyman et al. have presented a technique to pre-compute or lazily
compute global illumination for interactive rendering of isosurfaces ex-
tracted from volumetric data sets [111]. They support the simulation
of direct lighting, shadows and interreflections by storing pre-computed
global illumination in an additional volume to allow viewpoint, lighting
and isovalue changes. Beason et al. present a method which addition-
ally can represent translucency and caustics but supports static lighting
only [3]. For that purpose they extract different isosurfaces from a vol-
umetric data set, illuminate them with a path tracer and store the re-
sults in a new volume data set. During rendering they can interactively
change the isovalue and access the pre-computed illumination. Penner
and Mitchell recently proposed a method based on histograms to classify
the visibility around a voxel [80]. It bears some similarities with the
technique by Ropinski et al. [85], described later.

All these surface illumination models are only applicable to isosur-
faces representing a single intensity within the data set, but do not allow
to consider multiple surfaces corresponding to different intensities. Hence
it is not possible to represent the entire volume data set, whereas varying
intensities are one of the major advantages over polygonal models, e. g.,
when representing different types of tissue.

Ambient Occlusion for Direct

Volume Rendering

Desgranges and Engel describe a less expensive approximation of ambi-
ent light than Vicinity Shading [20]. They combine ambient occlusion
volumes from different filtered volumes into a composite occlusion vol-
ume. While pre-processing time is greatly reduced the ambient occlu-
sion volume still must be recomputed whenever the transfer function is
changed.

6.1 Local Ambient Occlusion

Recently Hernell et al. have proposed a method for computing ambient
and emissive tissue illumination efficiently [42]. This technique is based
on shooting rays in several directions from each non-transparent voxel
in the data set. The rays are terminated at predifined radial boundary
making this technique a local approach. Since these rays are generated
for each non-transparent voxel in the data set it benefits from multires-
olution level-of-detail data reduction. Empty space is ignored and low
resolution regions require less processing. This technique has been imple-
mented using the multiresolution techniques by Ljung et al. [63, 65, 67]

In many applications of volume rendering it is not desired to create a
realistic global illumination where objects can be fully shadowed. A local
model is therefore proposed, where a limited spherical neighborhood, Ω,
around each processed voxel is evaluated. To consider semi-transparent
materials the local ambient occlusion model needs to go beyond the all-
or-nothing approach used in previous work. The proposed technique
includes semi-transparent objects and supports a smooth fading of shad-
ows as occluding objects occupy more or less of the local neighborhood.
The scheme is based on sampling the locally occluding material along
multiple rays originating from the voxel at the center of Ω.

The incident light intensity, Ik(x), arriving at a voxel location, x,

ACM SIGGRAPH 2009 81

from one ray direction, k, is given by the equation:

Ik(x) =

∫ RΩ

a

wk

RΩ − a
exp(−

∫ s

a

τ(u)du)ds (6.1)

where a is an initial offset from the voxel along the ray and RΩ is the
radius of the spherical support. A ray is also associated with a weight,
wk, and thus enables directional weighting of the ambient light. The
attenuation of light contribution along the ray is estimated using the the
optical depth, the integral of transfer function densities, τ(s). Numerical
evaluation of the integral in equation 6.1 is obtained as:

Ik(x) =

M
∑

m=0

wk

M

m−1
∏

i=0

(1− αi) (6.2)

in a front-to-back compositing scheme, whereM is the number of samples
along the ray and αi is the sample’s opacity according the the current
transfer function.

Light is contributed at each sample point, normalized to sum to one.
This ensures that shadows from an occluding object increase smoothly
as a larger fraction of the ray penetrates the occluding object. This effect
can be seen in figure 6.3 (top-right). The local ambient occlusion for a
voxel, I(x), is then given by the sum of all incident light rays Ik

I(x) =
1

K

K
∑

k

Ik(x). (6.3)

Figure 6.3 (bottom-right image), shows 64 rays. The directions for the
rays are created by subdividing a tetrahedron, icosahedron or octahedron
to different levels, depending on how many rays are desired.

Estimation of the volumetric Local Ambient Occlusion (LAO) is per-
formed as an initial step of the rendering pipeline. The resulting light
intensity of each voxel is stored in an intensity map which is used in the
final volume rendering to illuminate each sample.

To further control the effect of the ambient occlusion the final value
can be adjusted according to a gamma function. In addition, an ambient
bias can be specified to adjust the amount of minimum lighting. The final
luminance, I ′(x), is computed by the following equation.

I ′(x) = (Ibias + I(x))γ (6.4)

82 Course : Advanced Illumination Techniques for GPU Volume Raycasting

6.1.1 Emissive Tissues and Local Ambient Occlu-
sion

Having established a framework for volumetric local ambient occlusion
we can proceed to incorporate emissive components from the transfer
function. This simulates single light scattering of luminous objects within
the volume. Equation 6.1 is simply modified to also incorporate colored
light emission, cE.

Ik(x) =

∫ RΩ

a

wk
1 + cE(s)

RΩ − a
exp(−

∫ s

a

τ(u)du)ds (6.5)

The emittance of a sample point along a ray within Ω can therefore
affect the intensity and color of point x. The emissive parameter is
included during the final ray-casting as well, further enhancing the effect
of luminosity.

6.1.2 Integrating Multiresolution Volumes

Mapping from volume coordinates to packed coordinates is straightfor-
ward using the forward index texture mentioned above, described in more
detail in [65]. The reverse mapping presents a minor challenge, since the
location of a voxel in the volume must be determined. Potentially a block
could be represented by a single voxel in the packed texture which would
require a reverse index map of the same size as the packed texture itself.
This is avoided by ignoring reverse mapping of blocks below a certain
minimum resolution level.

By ignoring blocks with the two lowest resolution levels, 13 and 23,
the size of the reverse index map can be reduced by a factor of 64. All
empty blocks are assigned the lowest resolution or ignored entirely and
the remaining blocks are assigned higher resolutions, with a minimum of
43 voxels. The reverse map can then hold a block’s location in volume
coordinates (V) for all non-empty blocks. Figure 6.1 illustrates both the
forward and reverse mapping schemes.

Neighboring blocks in the packed texture are not always located
closely in the original volume. Since linear interpolation is used be-
tween texels this implies that interpolation also occurs between block
boundaries which then leads to artifacts. A distance δ is therefore used
to clamp the coordinates so that interpolation only occurs within each
block [65]. In the local occlusion calculation interpolation of samples
between blocks is not considered.

ACM SIGGRAPH 2009 83

Figure 6.1: Coordinate mapping between the volume and packed texture. Volume
coordinates are mapped via the index texture to packed coordinates. Packed texture
coordinates are similarly transformed, but via the reverse index texture.

6.1.2.1 Multiresolution Ambient Occlusion Pipeline

The LAO computation is driven by the processing of each voxel in the vol-
ume. Since a multiresolution volume management is applied the gained
data reduction from the LOD selection also implies a speed-up of the
LAO processing. With increased data reduction the LAO processing
is also reduced, the LAO illumination is computed with the same data
reduction as the LOD selection of the volume. The processing of each
voxel can, in turn, be further accelerated by adapting the sampling rate
depending on the voxel’s block resolution level. This per-fragment pro-
cessing pipeline is presented next.

The pipeline is executed for all voxels in a slice of the packed volume
texture in parallel. A 3D texture is created to hold both the scalar
values of the volume and the colored illumination of each voxel. The
entire volume is then processed by mapping all the slices, one-by-one,

84 Course : Advanced Illumination Techniques for GPU Volume Raycasting

as a rendering target of a framebuffer object. The fragment pipeline is
initiated by rendering a large quad over the entire framebuffer, where
each pixel maps to one voxel in the mapped 3D texture. This approach
is efficient but requires that the hardware support the attaching of a slice
of a 3D texture to a framebuffer, as available in the latest GPU hardware
generation, e.g. NVIDIA GF8800.

For each voxel a fragment program is initiated. An outline of the
per-fragment processing is shown in 6.2. The fragment location is used
to lookup the corresponding voxel location in the volume through the
reverse index texture, P→V. In addition a per-slice constant z-position
is provided to find the correct 3D location. The pipeline then iterates
over all the incident light directions in Ω. The number of rays, K, to
sample can be dynamically configured and the ray directions are stored
in a texture together with the directional weight, wk.

The sampling along a ray starts at a user-defined offset, a. In addition
the sampling density, d, and radius, RΩ, of Ω can be specified. The initial
offset avoids unnecessary self-occlusion for voxels on the boundary of
highly opaque regions. The sampling density is adjusted for voxels in
lower resolution blocks. A voxel belonging to a block of resolution level,
λ, relative to the highest resolution level, increases the sample distance,
the step length, by a factor of 2λ. Thus, the sampling rate stays fixed
relative to the sampling density of the underlying volume data. The
immediate lower resolution will have twice the sampling distance. When
the sampling rate changes the opacities and colors have to be corrected
as well, this is done on the fly using the opacity correction formula:

αmod = 1.0− (1.0− αorig)
2λd. (6.6)

6.1.3 Adding Global Light Propagation

Hernell et al. [43] recently extended the Local Ambient Occlusion ap-
proach described above to include a Global Light propagation and first
order scattering effects. Below we describe this approach. Figure 6.7
shows a schematic overview of the technique.

The method progresses in several steps to simulate the light transport
in the volume and, at each step, captures the main physical contributions.
In the first step opacities are composited into a global shadow volume
for a given light source and transfer function (TF) settings. The calcula-
tion is based on piecewise integration techniques on the GPU and sparse
representations of intermediate results. The method then proceeds to in-
clude first order scattering of the global light arriving at each voxel by in-

ACM SIGGRAPH 2009 85

Figure 6.2: Per-fragment computations to evaluate LAO for a voxel. The packed
coordinates (P) are transformed to volume coordinates (V). Rays are generated to
sample the volume around the voxel. For each sample the reverse index texture
gives locations in the packed volume. Final fragment intensity is the average of the
ray intensities.

tegration of scattered light in a local spherical neighborhood around each
voxel. This step is similar to the local ambient occlusion (LAO) method
described in [42], which enhances perception of local shapes and tissue
properties. In the last step a single pass ray-casting approach is used
to render the final image. The resulting application enables updates of
light position and transfer functions while maintaining interactive frame
rates yet simulating a realistic light model.

6.2 Dynamic Ambient Occlusion

In this section we cover recent techniques based on Ropinski et al. [85]
which realizes dynamic ambient occlusion as well as an approximation
to color bleeding when rendering volumetric data sets. The method is
independent of the currently applied transfer function as well as the
thresholding and therefore represents ambient occlusion as well as color
bleeding like effects for all combinations of structures contained in a

86 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 6.3: The image in the top left shows diffuse illumination while the other
three show local ambient occlusion using a single ray directed at the single light
source (top right), 8 rays (bottom left) and 64 rays (bottom right). The LAO
approach generates convincing shadowing effects giving a superior 3D appearance

Figure 6.4: Emissive illumination effects. Left to right: Emissive light captured
in the ray-tracing stage, emitted light illuminating the surrounding material, and
both effects combined.

ACM SIGGRAPH 2009 87

Data reduction A B C

323 2563

8.9:1 284 552 233 68
14.8:1 178 515 145 68
22.1:1 121 403 96 48
35.2:1 81 365 62 46

Piecewise segment A

length (voxels) 323 643 1283 2563

4 261 267 439 1428
8 284 297 373 552
16 331 339 380 641
32 436 439 463 862

Table 6.1: Performance, in milliseconds (ms), for different levels of il-
lumination updates ((A), (B) and (C)) versus varying data reductions
(left table). The piecewise segments are 8 voxels long. In the right table
the performance is shown for different sizes of the SVR versus varying
lengths of the local piecewise segments for light update (A). The data
reduction is 8.9:1. Measurements in both tables are performed for a vol-
ume of 5123 voxels, rendered in a 1024x1024 window. The same volume,
TF and rendering settings are used in fig. 6.10, using a step length of 16
voxels.

volume data set, which can be extracted interactively by changing these
rendering parameters. However, the presented rendering algorithm is not
based on the physics of light propagation, but provides a visually convinc-
ing approximation. It can be applied to direct volume rendering (DVR)
as well as isosurface shading techniques, and for the latter the isovalue
can be changed interactively. Rendering time is kept low, since the pro-
posed technique requires only little overhead compared to the solution
of the standard volume rendering integral combined with the applica-
tion of strictly local illumination. Besides the transfer function and the
thresholding, lighting as well as the camera parameters can be changed
interactively. Furthermore, in contrast to frequently used surface-based
illumination models our technique does not necessarily require a gradient
calculation and is therefore also applicable to homogeneous regions.

In the pre-computation we ensure that we analyze and store the en-
vironment of each voxel x in such a way that we are able to compute an
environmental color Eenv — approximating the influence of the voxels
neighborhood — during rendering interactively. In order to support in-
teractive modification of the transfer function and the thresholding, the
computation is performed independently of these rendering parameters.
The consecutive steps needed are shown in Figure 6.12 and are further
explained in the following subsections.

6.2.1 Local Histogram Generation

To approximate the environmental color Eenv for a given voxel x, we
exploit its local histogram LH(x). Local histograms have also been used
in other areas of volume rendering [86, 71]. For our approach local his-

88 Course : Advanced Illumination Techniques for GPU Volume Raycasting

tograms are adequate, because indirect illumination can be calculated
properly for a given point by considering close objects only [18]. All
voxels x̃ lying in a sphere Sr(x) with radius r centered around x con-
tribute to the local histogram LH(x), weighted based on their distance
to x (see step 1 in Figure 6.12). Thus assuming that f(x) ∈ [0, 2b], with
b ∈ {8, 12, 16} being the bit depth of the data set, LH assigns to each x
an n-tuple, with n = 2b:

LH(x) = (LH0(x), . . . , LHn−1(x)), with (6.7)

LHk(x) =
∑

x̃∈Sr(x)
x̃ 6=x

fdist

(|x− x̃|
dmin

)

· g(f(x̃), k). (6.8)

dmin denotes the minimal distance between any two different voxels in
the data set. fdist = 1

d2 is used to achieve a distance based weighting
and takes into account that energy falls off as the inverse square of the
distance. g(i, k) is used to group the intensity values appropriately:

g(i, k) =

{

1 , if i = k
0 , otherwise.

(6.9)

LHk(x) represents the influence voxels of intensity k in the neighbor-
hood of x have on x. In contrast to other techniques we can not consider
the attenuation of light which results from voxels lying between the cur-
rent voxels and its neighbors, because we discard the spatial locations.
Since we are only interested in the relative distribution of LH(x), we
normalize the values in each LH(x) with respect to the number of voxels
lying in the sphere Sr(x) with radius r centered around x.

To capture the neighborhood of an object in scenes consisting of
polygons, often ray casting is exploited which involves sampling that
may influence the image quality. Since volume data sets are already a
discretized representation, ray casting and thus possible sampling arti-
facts should be avoided. We use a simple method which captures the
vicinity of voxel x by iterating over all voxels x̃ in its neighborhood and
adding their contribution to LH(x) as defined by equation (6.8). By
definition LH(x) does not contain any spatial information except the
distance based weighting fdist inherently capturing the degree of influ-
ence of the voxels in the neighborhood. In order to capture also direc-
tional information, we subdivide Sr(x) based on the gradient at x into
two hemispheres. Instead of one local histogram for Sr(x), we compute
two local histograms, one for the forward facing hemispherical region
Hf(x) and one for the backward facing hemispherical region Hb(x) (see
Figure 6.12).

ACM SIGGRAPH 2009 89

As already mentioned, instead of capturing the light interactions be-
tween all voxels of a data set, we consider only the vicinity defined by the
radius r. Obviously r is data set dependent, but can generally be chosen
rather small in comparison to the number of voxels n. This reduces the
complexity from O(n2) operations to O(r3 · n).

90 Course : Advanced Illumination Techniques for GPU Volume Raycasting

a) Diffuse Illumination b) Local Ambient Occlusion, 32
rays

c) Close-up of vessels in (a) d) Close-up of vessels in (b)

Figure 6.5: Example images showing the enhanced 3D structure made clear through
the LAO method.

ACM SIGGRAPH 2009 91

(a) Diffuse Illumination (b) LAO with illuminat-
ing material

(c) LAO with emissive
ray-tracing

Figure 6.6: Example images showing the enhanced information from the emissive
materials. The bullet and fragments are clearly visible in the abdomen. The effect
of the LAO in revealing the bone structure is also very clear.

(a) (b) (c) (d) (e)

Figure 6.7: Opacity for a local segment is integrated in (a) and global opacity is in-
tegrated in (b). A simple method to compute Id is to perform a direct interpolation
from αg, as in (c), however, a better approximation is obtained, in (d), by utilizing
the piecewise integration as an initial step. The quality of nearby shadow contribu-
tions is thereby increased. In-scattering of the initial intensity approximation, Is,
is illustrated in (e).

92 Course : Advanced Illumination Techniques for GPU Volume Raycasting

(a) Opacity integration
for each point to the

light source (5110 ms).

(b) Opacity computed
with piecewise

integrations (545 ms).

(c) Pixel-wise error,
∆E

Figure 6.8: A comparison of illumination integrated for each point to the light
source, in (a), with intensities computed with our approximation using piecewise
integration, in (b). The volume and the SVR are 5123 voxels, the view-port is
1024x1024 pixels and no in-scattering is considered. A color-coded error image that
shows the pixel-wise error, ∆E, is provided in (c). The errors that appear are
small (∆ERMS = 0.19 and ∆E6=6%), and mainly appear at sharp edges and thin
structures.

(a)Ibias = 0, RΩ = 16 (b)Ibias = 0, RΩ = 48 (c)Ibias = 0.2, RΩ = 16 (d)Ibias = 0.2, RΩ = 48

Figure 6.9: Light is integrated, for a CT scan of a carp, with varying settings for
Ibias and RΩ. The shadows becomes less distinct with a large radius (denoted in
units of voxels) of the scattering sphere, Ω. Ibias adjusts the minimum intensity of
each voxel.

ACM SIGGRAPH 2009 93

a) 163→1 b) 83→1 c) 43→1 d) 23→1

Figure 6.10: Block artifacts appear due to reduced size of the shadow volume
representation. The original volume size is 5123 with a data reduction of 8.9:1 and
the SVR is computed for (a) 323 (b) 643 (c) 1283 and (d) 2563 voxels. Jagged edges
appear in (a) and (b), as can be seen in the close ups. Also, band artifacts arise at
the side of the head. Computation times for these images are as shown in table 6.1.
The length used for the piecewise segments is 16 voxels.

94 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 6.11: Two examples, with different positions of the light source, using the
presented illumination technique for a medical volume (5123 voxels) of a heart. A
stent has been inserted into the aorta. (Ibias = 0.1, RΩ = 16 and J = 32)

ACM SIGGRAPH 2009 95

Figure 6.12: Workflow: In the first preprocessing stage a local histogram is gener-
ated for each of the n voxels in order to capture the distribution of intensities in its
environment (1). Then the n local histograms are sorted into m clusters (m < n)
through a vector quantization (vq). To accelerate the vector quantization, it oper-
ates on packed histograms. The packing is based on the histogram of the volumetric
data set. After the clustering is finished the packed local histograms are replaced
by their unpacked counterparts during the matching, before computing new cluster
representatives (2). During rendering the local histograms representing the clusters
are modulated with the transfer function to determine an environmental color for
each voxel (3).

96 Course : Advanced Illumination Techniques for GPU Volume Raycasting

(a) Blinn-Phong

(b) our technique

Figure 6.13: A hand data set (244 × 124 × 257 voxel) rendered using our surface
shading technique (r=24, nc=2048) in comparison to Blinn-Phong shading. Notice
the shading differences in the obscured areas.

ACM SIGGRAPH 2009 97

Figure 6.14: All four images show the same Cornell box data set (r=32, nc=1024).
For the right column the transfer function has been changed in such a way that the
blue sphere disappears. The lower row shows the images with diffuse interreflections
only (left) and material parameters set to simulate highly diffuse surfaces and an
additional glow effect (right). The images have been rendered interactively by
changing the transfer function resp. the glow mapping. Notice the color bleeding
on the objects, which disappears for the blue sphere when removing it by modifying
the transfer function.

98 Course : Advanced Illumination Techniques for GPU Volume Raycasting

(a) Blinn-Phong (b) our technique

Figure 6.15: Our interactive volume rendering method (r=20, nc=2048) applied to
the Visible Human head data set (192 × 192 × 110 voxel). Both hemispheres, in
direction of the gradient and the opposite direction, are considered during rendering,
and thus in contrast to Blinn-Phong subsurface scattering effects as well as ambient
occlusion in the inner parts of the auricle.

Course Notes

Advanced Illumination Techniques for GPU Volume Raycasting

Volume Scattering

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Patric Ljung
Siemens Corporate Research, Princeton, USA

Christof Rezk Salama
University of Siegen, Germany

Timo Ropinski
University of Münster, Germany

Scattering Effects

7.1 Physical Background

Before we examine how to model realistic light propagation in transpar-
ent and translucent media, let us start by looking at the physical theory
of light transport. In physics, light has been described by three different
models:

Geometric Optics: Geometric optics consider rays of light. Rays are
perpendicular to the wavefronts of the actual optical waves. They
can be thought of as the paths of light particles (photons). Photons
will get reflected or refracted at the interface between two media
with different refractive index. Geometric optics is the usual way to
describe light transport in computer graphics. It fails, however, to
account for some optical effects such as diffraction and polarization.

Wave Optics: Wave optics consider light as electromagnetic radia-
tion, as described by Maxwell’s Equations. This model calculates
the amplitude and phase of an electromagnetic wave as is passes
through optical systems. It can account for diffraction, interfer-
ence, and polarization effects, as well as aberrations and other com-
plex effects. In computer graphics this model is rarely used mainly
because the benefits hardly outweigh its computational complexity.

Quantum Optics: Quantum optics is the fundamental theory of light
transport, which accounts for both particle and wave characteris-
tics of light. It is the only explanation for the photoelectic effect as
noted by Albert Einstein.

Although computer graphics mainly deals with geometric optics,
there are many influences from the other models. The Monte-Carlo inte-
gration schemes described in this chapter for example may be considered
a technique which accounts for the probabilistic characteristics of the
motions of photons as derived by quantum mechanics.

ACM SIGGRAPH 2009 101

7.2 Scattering

For surface rendering, light transport is usually assumed to take place in
the vacuum. The interaction between light and matter is restricted to
the surfaces of objects. In the vacuum, light travels unimpededly along
straight lines (rays). Photons are reflected at surfaces, or refracted at
the interface between dissimilar optical media. Scattering is the physical
process which forces light to deviate from its straight trajectory. The re-
flection of light at a surface point is thus a scattering event. Depending
on the material properties of the surface, incident photons are scattered
in different directions and thereby change their energy and frequency,
which possibly causes a change in color. For rough surfaces the direc-
tion in which individual photons are scattered vary within a considerably
higher range (diffuse of Lambertian reflection) compared with shiny sur-
faces (specular reflection). This is the reason why we observe material
types with a different appearance.

7.3 Single Scattering

To explain how scattering events are modelled in computer graphics,
let’s start with something familiar. Simple surface illumination may
be achieved in computer graphics using single scattering events. Here,

Figure 7.1: Simple single scattering as modelled by the Phong local illumination
model with a single point light source. From left to right: In a perfect mirror,
incident light (green arrow) is reflected about the surface normal (blue arrow) into
the direction of perfect reflection (red arrow). With Lambertian reflection, incident
light is scattered equally in all directions. With specular reflection light is scattered
inside a specular lobe around the direction of perfect reflection.

102 Course : Advanced Illumination Techniques for GPU Volume Raycasting

a photon coming from a light source is scattered only once before it
reaches the eye. In terms of ray-casting we may say that the ray changes
its direction only once. Single scattering is closely related to local illu-
mination. The only difference is that local illumination does not include
shadows, while single scattering may account for occluded light sources
as well.

In Figure 7.1, single scattering events are modelled using the well-
known Phong illumination model. For the diffuse illumination term in-
cident light is scattered equally across the entire hemisphere centered
about the surface normal. For the specular term, scattering is restricted
to a specular lobe centered about the direction of perfect reflection. More
complex material properties may be modelled using the bidirectional re-
flectance distribution function (BRDF).

The BRDF fr(x, λ, ωi, ωo) at a single surface point x is a function
that defines how light is reflected at an opaque surface. The function
takes an incoming light direction, ωi, an outgoing direction, ωo and a
wavelength λ and returns the ratio of reflected radiance exiting along
ωo to the differential irradiance incident from direction ωi. The wave-
length parameter λ is usually omitted. In this case, the BRDF returns
a chromatic RGB value f̂r(x, ωi, ωo).

In many applications, and especially real-time applications, the local
illumination model is used in combination with point light sources, i.e.
light is coming from exactly one or a few discrete directions. Local illu-
mination with a BRDF and a single point light source can be formulated
as a rendering equation:

L(x, ωo) = f̂r(x, ωi, ωo) cos θi
Li

πr2
, (7.1)

where L(ωo) is the radiance travelling from the surface point into direc-
tion ωo. Li is the emitted radiance of the light source, r is its distance
from the surface point, and θi is the angle between the surface normal
and the incoming direction ωi.

In a more realistic scenario, however, incident light may come from
all directions on the positive hemisphere Ω+ centered about the surface
normal. The observed radiance L(ωo) must thus be calculated by inte-
grating the incoming radiance from all directions ωi over the hemisphere:

L(x, ωo) =

∫

Ω+

f̂r(x, ωi, ωo) cos θi L(x, ωi)dωi. (7.2)

In mathematical terms, the rendering equation is a Fredholm equation
of the second kind, which in general cannot be solved analytically. Nu-

ACM SIGGRAPH 2009 103

merical solutions exist only if the BRDF is conservative, i.e.

∀ωo,x, :

∫

ω+

| f̂r(x, ωi, ωo)| dωi ≤ 1. (7.3)

To be physically plausible, BRDFs must also be positive definite and
reciprocal. In chapter 8 we will see how the integral can be solved nu-
merically using Monte-Carlo integration techniques. The BRDF notation
can also be modified to account for transparent materials.

7.4 Indirect Illumination and Multiple

Scattering

In computer graphics, single scattering accounts for light emitted from
a light source directly onto a surface and reflected unimpededly into the
observer’s eye. Incident light L(ωi) in Equation 7.3 thus comes directly
from a light source. To generate more realistic images, we must account
for both indirect light and multiple scattering events. Both concepts
are closely related, they only differ in their scale. Indirect illumination
means that light is reflected multiple times by different objects in the
scene. Multiple scattering refers to the probabilistic characteristics of a
scattering event caused by a photon being reflected multiple times within
an object.

7.4.1 Indirect Light

The traditional (deterministic) ray tracing technique as shown in Fig-
ure 7.2,left only accounts for a very special type of indirect illumination:
Perfect mirror reflections and perfect refractions in transparent objects.
Ray tracing assumes that the path of a photon after emission from a
light source is deterministic. The ray is traced by accounting for mirror
reflections and refraction until it hits a point on a surface with diffuse or
glossy characteristics. At this point a local BRDF model (such as Blinn,
Phong, etc) is evaluated.

In comparison, Figure 7.2, right shows a more realistic illumination
scenario, which accounts for indirect illumination. In the left image the
ceiling is completely black. If you look at the ceiling you will notice
that the left part is rendered slightly red and the right part slightly
blue. This is because photons that reach the left part of the ceiling were
most likely reflected from the red wall. This typical indirect illumination

104 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 7.2: Ray tracing (left) and path tracing (right). Images courtesy of Henrik
Wann Jensen, University of California, San Diego, USA

effect is called color bleeding. Another effect of indirect illumination is
the caustic, the focussed light pattern caused by the transparent sphere.

7.4.2 Transparency and Translucency

Transparent materials are clear, so you can see through them. In con-
trast, translucent materials (such as frosted glass, clouds, milk etc.) al-
low light to pass through them only diffusely. Since ray-tracing relies on
deterministic scattering events, it cannot account for translucent media,
which requires the consideration of the probabilistic path of photons.
The ray tracing technique thus neglects many possible paths that light
can take form the light source to the eye. In general, the same is true for
GPU-raycasting of volume data. We assume that the light travels along
straight lines.

Figure 7.3 illustrates the difference between transparent and translu-
cent material. The figure shows a CT scan of the UTCT Giant Salaman-
der head rendered with different tissue properties. The internal struc-
tured of a transparent object are clearly visible, possibly distorted due to
refraction (left). Depending on the optical properties (phase function),
light is scattered in translucent materials (middle and right). In general,
the exit point of a single photon is non-deterministic in translucent ob-
jects. In Chapter 9, we will see how such images can generated using
Monte-Carlo integration techniques which account for the probabilistic
nature of light.

ACM SIGGRAPH 2009 105

Figure 7.3: Volume Rendering example. Viewing rays penetrate transparent mate-
rials (left) almost unimpededly (disregarding refraction). Depending on the material
properties, translucent objects let light pass through them more diffusely (middle,
right). Transparency/translucency of the first iso-surface is controlled by a Fresnel
term.

7.4.3 Phase Functions

Up until now, we have only talked about scattering events at surfaces,
which can be described by a BRDF (Equation 7.3). Inside of translu-
cent objects and participating media, scattering events are considered to
potentially happen at every point inside this object. In this case, the
BRDF fr is replaced by the phase function h, and incoming radiance is
integrated over the entire sphere Ω:

Lo(x, ωo) =

∫

Ω

h(x, ωi, ωo)Li(x, ωi) dωi. (7.4)

The phase function describes the scattering characteristics of the partic-
ipating medium. Note that the cosine term from Equation 7.3 is omitted
in Equation 7.4, since the phase function directly operates on radiance
values rather than differential irradiance like the BRDF.

The most popular phase function models are Henyey-Greenstein,
Schlick, Mie and Rayleigh (see [41, 25, 81]).

The Henyey-Greenstein phase function is a simplified model for ra-
diation in the galaxy. It describes the probability of a scattering events
which changes the direction of a photon by a given angle. Compared
with other models, the Henyey-Greenstein model does not incorporate
any wavelength dependency. Nevertheless, it may be used to realisti-
cally model the optical properties of many natural phenomena, such as
fog and clouds.

106 Course : Advanced Illumination Techniques for GPU Volume Raycasting

g=-0.6

g=0
g=0.3

g=-0.3

g=0.6

Figure 7.4: The Henyey-Greenstein phase function plotted for different anisotropy
parameters g.

The probability of a photon changing its direction of motion by an
angle of ϕ is approximated by the Henyey-Greenstein model as

G(ϕ, g) =
1− g2

(1 + g2 − 2g cosϕ)
3
2

. (7.5)

The parameter g ∈ [−1, 1] describes the anisotropy of the scattering
event. A value g = 0 denotes that light is scattered equally in all direc-
tions. A positive value of g increases the probability of forward scatter-
ing. Accordingly, with a negative value backward scattering will become
more likely. If g = 1, a photon will always pass through the point unaf-
fectedly. If g = −1 it will deterministically be reflected into the direction
it came from. Figure 7.4 shows the Henyey Greenstein phase function
for different anisotropy parameters g.

We can use the probability distribution from the Henyey-Greenstein
model to construct a phase function according to Equation 7.4

hHG(x, ωi, ωo) =
1− g2

4π (1 + g2 − 2g (ωi · ωo))
3
2

(7.6)

with cosϕ = (ωi · ωo).

7.4.4 Scattering at Transparent Surfaces

The phase function model is ideal for describing scattering events in par-
ticipating media, where the probability of a scattering events depends
only on the angle between the incoming and outgoing direction, regard-
less of their explicit orientation (rotation invariance). In contrast, the

ACM SIGGRAPH 2009 107

BRDF at a given point depends on the orientation of the normal vector
of the surface element. If we want to render images from volume data
obtained by tomographic scans, however, we are not only interested in
the scattering events in the homogenous regions, but also in the surfaces
contained in the volume data. In this case we need a phased function
which has an orientation, just like the normal vector in the BRDF.

An alternative to using the phase function here is to supplement
the BRDF by a transmissive term. For semi-transparent surfaces, scat-
tering events are still considered to happen only at surface boundaries,
but light can be transmitted through transparent or translucent mate-
rials. The BRDF in Equation 7.3 is supplemented by a bidirectional
transmittance distribution function (BTDF) f̂t defined on the opposite
hemisphere. Both the BRDF and the BTDF are often considered to-
gether as a single bidirectional scattering distribution function (BSDF).
The BSDF f̂(x, ωi, ωo) leads to a rendering equation according to

Lo(x, ωo) =

∫

Ω

f̂(x, ωi, ωo)Li(x, ωi)|(n · ωi)| dωi, (7.7)

and can easily be converted to the phase function notation (Eq. 7.4) by
incorporating the cosine term:

hBSDF(x, ωi, ωo) = f̂(x, ωi, ωo) |(n · ωi)|. (7.8)

For volume rendering in practice, this means that we may account
for surfaces inside the data, e.g. by looking at the gradient magnitude.
If the gradient magnitude exceeds a given threshold ψ, we can use a
BSDF to model the scattering events using the normal vector of the
isosurface at that point (which coincides with the normalized gradient
vector). In rather homogeneous regions, where the gradient magnitude
is small, we model rotation-invariant scattering events according to the
Henyey-Greenstein phase function. For a given scalar field s(x), such as
a tomographic scan of an object, a suitable phase function would thus
be

h(x, ωi, ωo) =

{

hBSDF(x, ωi, ωo) with n = ∇s(x)
|∇s(x)|

, if |∇s(x)| > ψ

hHG(x, ωi, ωo), otherwise

The free parameters of the model (e.g the anisotropy g in hHG) may be
obtained as a function of the scalar value s(x) as well using a transfer
function.

Now we have seen the equations we need to solve to build scattering
into our GPU-based volume ray-caster. In the following chapter, we will
see how we can solve these integrals using Monte-Carlo techniques.

108 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 7.5: Illustration of the diffuse, specular and transmissive scattering compo-
nent of our phenomenological phase function model without refraction left and with
refraction right.

7.5 A Practical Phase Function Model

In an example in Chapter 9.3 we will use a simple phenomenological
phase function model, which is equal to the BSDF at specified isosurfaces
and otherwise contains a simple forward peak or a Henyey-Greenstein
term as described above. The parameters of this phase function model
are derived from the underlying scalar field s(x). To keep the model
controllable by the user, we restrict scattering events to happen at a
fixed set of isosurfaces. Between these isosurfaces the ray direction does
not change, but attenuation may still happen.

At the specified isosurfaces, the gradient magnitude ∇s(x) is guaran-
teed to be non-zero. The gradient vector is normalized and its orientation
is adjusted to match the viewing direction. As in most illumination mod-
els we assume the viewing vector v to point towards the eye position.

g(x) =

{ ∇s(x)
‖∇s(x)‖

if ∇s(x) · v ≥ 0

− ∇s(x)
‖∇s(x)‖

if ∇s(x) · v < 0
(7.9)

Our phenomonological BSDF is illustrated in Figure 7.5. The reflec-
tive part fr is equal to the specular and diffuse term of the Phong local

ACM SIGGRAPH 2009 109

illumination model,

fr = fdiff + fspec (7.10)

fdiff(v← ωi) = kd (n · ωi) (7.11)

fspec(v← ωi) = ks (r · ωi)
s (7.12)

with r = 2n (n · v)− v. (7.13)

The transmissive part scatters the transmitted light in an additional
Phong lobe centered around the negative viewing vector -v in case of
non-refractive transmission,

ft(v← ωi) = kt (−v · ωi)
q. (7.14)

For refractive transmission, the Phong lobe is centered around the re-
fracted ray direction t (Figure 7.5, right). In this case the refracted vector
t is calculated according to Snell’s law and replaces −v in Equation 7.14.

Figure 7.3 shows the influence of the exponent q for the transmission
lobe.

The resulting BSDF model has 5 parameters to adjust for each spec-
ified isosurface: the diffuse, specular and transmissive material coeffi-
cients kd, ks and kt and the exponents s and q for the specular and
transmissive lobe.

7.6 Further Reading

Material properties of translucent surfaces, such as skin or paper, are
often modeled using the bidirectional surface scattering reflectance dis-
tribution function (BSSRDF), which require two surface locations to
be specified. A practical model has been proposed by Jensen et al. [46].
Donner et al.[22] have supplemented this model for multi-layered translu-
cent materials. Interactive rendering technique for translucent surfaces
have been presented by Lensch et al. [59] and Carr et al. [10].

Monte-Carlo Intergration

In the previous section we have seen that in order to generate physically
plausible images, we need to solve Equation 7.4. In order to obtain the
radiance at a given point x in a given direction ωo, we need to inte-
grates the incident radiance over the sphere around the point, weighted
by the phase function. I have also noted, that this integral cannot be
solved analytically in general. We thus need to use numerical integration
schemes.

8.1 Numerical Integration

The most popular numerical integration scheme is the Riemann sum.
Let’s have a look at a simple one-dimensional integral of a function f(x),

I =

∫ b

a

f(x)dx. (8.1)

To solve this integral numerically using a Riemann sum, we approximate
the function f(x) by a piecewise constant function and calculate the
area of the rectangular blocks as shown in Figure 8.1. The heights of the
blocks are obtained by sampling the function in n equidistant intervals
∆x = b−a

n
. An approximation to the integral is thus obtained by

I =

∫ b

a

f(x)dx ≈
n−1
∑

i=0

f(xi)
b− a
n

with xi = i · b− a
n

(8.2)

The approximation error of this sum depends on the number of samples
n. If n approaches infinity, the approximation error will become zero.

8.1.1 Blind Monte-Carlo Integration

What happens if we modify the Riemann sum, such that the function
is sampled at randomized locations, as shown in Figure 8.1 right?. Let

ACM SIGGRAPH 2009 111

f(x)

x

y f(x)i

x

y
f(x)

x

y

Figure 8.1: A function f(x) (left) may be integrated by a Riemann sum, which
approximates the function using piecewise constant blocks (middle). Alternatively,
blind Monte-Carlo integration will sampling (right) samples the volume at random
positions.

us assume that the samples are taken with a uniform probability distri-
bution, which means that the probability of each sample position xi is
constant. We will use the same formula (Eq. 8.2) to estimate the inte-
gral, however, the sample position x ∈ [a, b] now is a random variable
with a uniform probability dendisty p(x):

〈I〉 =
n−1
∑

i=0

f(x)
b− a
n

with p(x) =
1

b− a (8.3)

To prove that such the estimator 〈I〉 is useful, we must show that it
is unbiased, i.e that the expectation value of 〈I〉 is equal to the exact
solution of the integral:

E[〈I〉] = E[

n−1
∑

i=0

f(x)
b− a
n

] =

=
b− a
n

n−1
∑

i=0

E[f(x)] =

=
b− a
n

n−1
∑

i=0

(
∫ b

a

f(x)p(x) dx

)

=

=
b− a
n

n−1
∑

i=0

(
∫ b

a

f(x)
1

b− a dx
)

=

=
1

n

n−1
∑

i=0

(
∫ b

a

f(x) dx

)

=

=

∫ b

a

f(x) dx = I (8.4)

112 Course : Advanced Illumination Techniques for GPU Volume Raycasting

We have now shown that the estimator 〈I〉 is unbiased and converges
against the integral sought-after. This means that if the number of sam-
ples n approaches infinity, the estimation 〈I〉 will converge against the
exact value of the integral, just like the Riemann sum. The practical
meaning of this statement, however, is limited, because we have not yet
investigated what happens if we use a finite number of samples n.

If you compare Figure 8.1 middle and left, your intuition is right, that
the stochastic estimator is not as good as the Riemann sum. Indeed, one
can show that for a growing number of samples n, the approximation er-
ror of the Riemann sum decreases much faster than the error of stochasic
estimator 〈I〉. The Riemann sum converges faster to the exact solution.

The estimator 〈I〉 we have just seen is called a blind Monte-Carlo
estimator. In the following section we will see that there are advantages
of the blind Monte-Carlo estimator compared to the Riemann sum. The
estimator is called blind because it does not make any assumptions about
the function f(x) to be integrated. In Section 8.3 we will also see how
the convergence of the blind Monte-Carlo estimator can be improved by
using a-priori information about the function f(x)

8.2 When Does Monte-Carlo Integration

Make Sense?

In the previous section we have seen, that the blind Monte-Carlo es-
timator requires much more samples to achieve the same accuracy as
the Riemann sum. Nevertheless, there are cases, especially in computer
graphics, where the Monte-Carlo estimator is more efficient than the
Riemann sum. The blind Monte-Carlo estimator has two important ad-
vantages:

• Noise instead of aliasing: If the function f(x) contains high
frequencies, such as the pattern in Figure 8.2 top row, equidistant
sampling will inevitably lead to aliasing artifacts as can be seen
in the right column of the figure. Even if the number of samples
is increased by a factor of 16, aliasing will still be strongly visible
(bottom left). Stochastic sampling may have a higher approxima-
tion error, nevertheless the images are visually more pleasing, since
the human eye is less sensitive to noise than to aliasing artifacts.

• Independence of any grid structure: The second benefit of
stochastic sampling in general is its independence of a grid struc-
ture. This is best explained using an example: Let us assume we

ACM SIGGRAPH 2009 113

Figure 8.2: If a high-frequency pattern (top row) is sampled equidistantly below
the Nyquist frequency, aliasing effects occur. The left column shows equidistant
sampling, the right column stochastic sampling. The images in the middle row
were generated with a single sample per pixel. The images in the bottom row were
generated using 16 samples per pixel.

are going to integrate a three-dimensional function instead of the
one-dimensional one in our example. We may try to integrate the
function using a Riemann sum with 10× 10× 10 = 1000 samples.
Now if we find out that the appoximation error is still too large,
we need to increase the number of samples. The next possibility
we have is to use 11× 10× 10 samples, so we will have to evaluate
100 more samples in order to increase the accuracy. Since stochas-
tic sampling does not require any sampling grid, we can increase
the samples in steps of 1. Stochastic sampling is thus advanta-
geous if the function to be integrated is high-dimensional and the
evaluation of a sample is rather expensive.

In Figure 8.2 we have already seen the visual benefit of blind Monte-
Carlo sampling. Stochasic sampling, however, may be further improved
by integrating partial knowledge about the function to be integrated
into the estimation process. We will discuss this in the following section
which deals with importance sampling.

114 Course : Advanced Illumination Techniques for GPU Volume Raycasting

8.3 Importance Sampling

In our simple example in Section 8.1.1 we used a uniform probability den-
sity function (PDF) for determining the sample positions x (see Equa-
tion 8.3). Monte-Carlo integration, however, may be performed with an
arbitrary PDF p(x). The general Monte-Carlo integration formula is:

〈I〉 =
1

n

n−1
∑

i=0

f(x)

p(x)
(8.5)

We can easily show that this is a useful estimator again by calculating
its expectation value:

E[〈I〉] = E[
1

n

n−1
∑

i=0

f(x)

p(x)
] =

=
1

n

n−1
∑

i=0

(
∫ b

a

f(x)

p(x)
p(x) dx

)

=

=
1

n

n−1
∑

i=0

(
∫ b

a

f(x) dx

)

=

=

∫ b

a

f(x) dx = I (8.6)

Now, the question is: Can we find a PDF p(x) which increases the
convergence of the estimator 〈I〉? It turns out that the convergence of
the Monte-Carlo estimator is optimal, if the probability density function
p(x) is a multiple of the function f(x) itself. In practice this makes sense:
We need to place more samples at positions x where the function f(x)
is large, and less samples where the function is small. This way we will
focus the computational load to where the largest contribution to the
integral is expected. However, we cannot use the function f(x) directly
as a PDF because it needs to be normalized:

p(x) = c · f(x) and

∫ b

a

p(x)dx = 1 (8.7)

This leads us to:

c =
1

∫ b

a
f(x)dx

=
1

I
(8.8)

You might notice the flaw: Calculating the constant c to normalize the
ideal PDF would require us to know the sought-after integral I in ad-

ACM SIGGRAPH 2009 115

f(x)

x xx

y
f(x)

y
f(x)

y

Figure 8.3: A function f(x) with a sharp and narrow peak (left). Equidistant
sampling of the Riemann sum might easily miss the peak. Based on a-priori infor-
mation about the function f(x), Monte-Carlo integration will place many samples
at locations close to the peak.

vance. Nevertheless, even if we have only partial knowledge of the func-
tion to be integrated, we can significantly improve the convergence of
the estimator.

Now, let us finally go back to our rendering equation:

Lo(x, ωo) =

∫

Ω

h(x, ωi, ωo)Li(x, ωi) dωi.

Although we do not know the integral completely, we have knowledge
about the phase function h(x, ωi, ωo). We should thus shoot many rays
into directions ωi where the phase function h is high, and less samples
where the phase function is low. Also, if we know anything about the
lighting environment, we should shoot many rays into directions ωi where
L(ωi) is expected to be large. This concept is known as importance
sampling and significantly increases the convergence of the Monte-Carlo
estimator.

Now you may see another important benefit of Monte-Carlo integra-
tion over the Riemann sum: Try to integrate a function f(x) which has a
known very sharp and narrow peak (Figure 8.3). Since Riemann integra-
tion does not take into account a-priori information about the function
f(x), its equidistant sampling might easily miss the narrow peak com-
pletely. If the location of the peak is known in advance, Monte-Carlo
integration may place many samples at location near the peak and ap-
proximate the flat regions with fewer samples. With Riemann integra-
tion, the boxes in Figure 8.3 all have equal width. With Monte-Carlo
estimation (see Eq. 8.5), the width wi of a box in Figure 8.3, right, is
depending on the probability of the sample:

wi =
1

n · p(xi)
(8.9)

116 Course : Advanced Illumination Techniques for GPU Volume Raycasting

This means, that the more likely a samples position xi is, the more
narrow is the box representing the sample.

8.4 GPU-based Importance Sampling

In this section we are having a look at different implementation of impor-
tance sampling on the GPU. In Chapter 9 we will see practical examples
which apply these strategies for GPU-based volume ray-casting.

8.4.1 Focussing of Uniform Distribution

A fast and simple GPU-based technique for importance sampling, which
is straight-forward to implement, has been used in [88]. Here, pre-
computed random directions uniformly distributed on the unit sphere
are used as basis. Simple but effective strategies to omit regions with
only little contribution according to the phase function or BSDF are
employed.

To avoid the necessity to account for different probability distribu-
tions within a shader program, this approach restricts itself to uniform
distributions. In Section 8.4.2 we will see that the solid angle ωi of a
sample depends on its probability, just like the boxes in Figure 8.3 right.

Uniform samples are admittedly not the optimal sampling schemes,
but they allow us to remove p(x) from the sum in Equation 8.5 and re-
place the weighted sum by a simple average for efficiency. In Section 8.4.2
we will see a GPU-based implementation of importance sampling which
deals with different pdfs in the shader.

8.4.1.1 Rejection Sampling

For a fast access to randomized direction vectors from within a fragment
shader, a set of random value triplets representing points uniformly dis-
tributed on the unit sphere is pre-computed. We generate such vectors
by the use of rejection sampling: We obtain triplets rS of uniformly dis-
tributed random values in the range of [−1, 1]. We discard all vectors
with a magnitude larger than 1 and normalize the remaining vectors
to unit length. The pre-computed random vectors are stored in a 2D
and 3D texture. By sampling the texture at runtime, we can generate
samples uniformly distributed on the unit sphere.

ACM SIGGRAPH 2009 117

Figure 8.4: Geometric relationship between the interpolation weight α and the
scattering cone angle γ.

8.4.1.2 Focussing

The random directions obtained from the texture can directly be used to
sample the phase function. For diffuse, surface-like reflection, however,
it is necessary to restrict the random directions to a hemisphere centered
around a given unit vector n. We can easily generate such samples by
negating all random vectors outside the given hemisphere,

rH(n) = sgn(n · rS)rS, (8.10)

with sgn being the signum function.
For efficiently sampling a specular Phong lobe, we need to focus the

sampling directions to a narrow cone centered around a given direction
of reflection. A simple way of focussing ray directions is to compute a
weighted sum of the hemispherical random samples rH and the direction
of perfect reflection h:

r̃P (h) = α · rH(h) + (1− α)h.

rP (h) =
r̃P (h)

‖r̃P (h)‖ (8.11)

The scalar weight α determines the maximum cone angle of scattering
around the direction h. A value α = 1 means scattering in all directions
on the hemisphere, while a value of α = 0 results in the (non-randomized)
ray direction perfectly focused into direction h.

To determine an appropriate value of α for a given specular exponent
s, we calculate the maximum reflection angle γmax, at which the specular

118 Course : Advanced Illumination Techniques for GPU Volume Raycasting

term falls below a user-specified threshold T (say 0.1),

γmax(s) = max{γ | cos(γ)s > T}. (8.12)

Solving this equation yields

γmax = arccos(s
√
T). (8.13)

Figure 8.4 illustrates the relationship between the focus weight α and
the angle γ. The maximum angle between a hemispherical sample rH

and the reflection direction h is π
2
. The interpolation according to Equa-

tion 8.11 moves the point along the dotted line and the normalization
raises to interpolated point back to the hemisphere. From Figure 8.4, it
is easy to derive a relationship between α and the maximum angle γmax

by

α =
1 + tan(γmax − π

4
)

2
(8.14)

The three sampling techniques outlined in this section should be suf-
ficient to effectively increase the convergence of the Monte-Carlo esti-
mator. Importance sampling requires knowledge about the scattering
distribution at the surfaces. Which sampling strategy to use depends, of
course, on the phase function model.

The drawback of this technique is that the threshold introduced in
Equation 8.12 results in a Monte-Carlo estimator which is no longer un-
biased. This means that the estimator will not converge against the
correct solution of the integral. Instead a small error is introduced by
truncating the specular lobes. Nevertheless, the described technique al-
lows us to efficiently generate images at high visual quality, as will be
shown in Chapter 9. A mathematically more accurate solution will be
discussed in the following section.

8.4.2 Sampling of Reflection MIP-Maps

An efficient implementation of importance sampling has been published
in volume 3 of the GPU Gems [14]. This implementation utilized area-
preserving parameterizations of different BRDF models [81].

8.4.2.1 Area-Preserving Parameterizations

The Phong specular lobe centered around the reflection vector r, for ex-
ample, may be written in polar coordinates (φ = azimuth, θ = elevation):

fspec(θi, φi) = cosn θi sin θi. (8.15)

ACM SIGGRAPH 2009 119

du = r dθ

dv = r sin θ dφ

dA = du dv

= r2 sin θ dθ dφ

dω =
dA

r2
= sin θ dθ dφ

Figure 8.5: The differential solid angle dω of a surface element is the differential
area dA projected onto the unit sphere. The area is calculated as width du times
length dv, both of which are functions of the differential azimuth angle dφ and the
differential elevation angle dθ.

The additional sine term is introduced by changing from solid angle
parameterization of the hemisphere to polar angle parameterization as
outlined in Figure 8.5:

dω = sin θ dθ dφ (8.16)

To calculate the probability density function for sampling the specular
lobe, we need to normalize the lobe to integrate to one:

p(θi, φi) =
cosn θi sin θi

∫ 2π

0

∫ π/2

0
cosn θi sin θi dθ dφ

=
(n + 1)

2π
cosn θi sin θi (8.17)

Note that this function is independent of the azimuth angle φ because of
rotational symmetry. We can thus split the PDF into two independent
equations for φ and θ:

p(θi) = (n+ 1) cosn θx sin θi (8.18)

p(φi) =
1

2π
(8.19)

In practice, we can easily generate random variables ψ ∈ [0, 1] with a
uniform distribution (e.g. using the rand() function in C/C++). Note
that Equation 8.19 is already a uniform distribution within the range

120 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[0, 2π]. Now we need a mapping from a uniform distribution to the PDF
in Equation 8.18. We calculate the inverse of the cumulative PDF:

P (θi) =

∫ θi

0

p(θ)dθ

= cos(n+1) θi (8.20)

P−1(ψ) = arccos
(

ψ(1
n+1)

)

(8.21)

Now, if we have a pair of uniformly distributed random variables
(ψ1, ψ2) ∈ [0, 1]× [0, 1], we can generate a random direction:

θi = arccos

(

ψ
(1

n+1)
1

)

(8.22)

φi = 2π ψ2 (8.23)

We can then convert the polar coordinates back to direction vectors in
cartesian coordinates.

Since these samples are not uniformly distributed like in the focussing
approach, we need to take into account the solid angle ωi for each sample:

ωi =
1

n · p(θi, φi)
. (8.24)

Compared to the focussing approach, we will have to weight each sample
by its corresponding solid angle: We divide each sample (θi, φi) by its
probability p(θi, φi) before averaging the samples.

8.4.2.2 Reflection MIP-Map

In the approach described in [14], a mip-mapped parabolic environment
map is used to store the incident light averaged within different solid
angles. The MIP-levels of the reflection map contain pre-filtered envi-
ronment maps [40] for a pre-defined range of solid angles. The MIP-level
for a texture sample is then calculated as a function of its solid angle
(Eq. 8.24). This restricts the technique to local illumination of surfaces
or isosurfaces. Furthermore, filtering of environment maps is restricted
to BRDFs with a rotational symmetric specular lobe.

8.4.2.3 Filtering Environment Maps

The filtering of an environment map, however, can also be performed
using Monte-Carlo integration. We can easily generate a filtered version

ACM SIGGRAPH 2009 121

Figure 8.6: Examples of filtered environment maps: Original environment map
(left). Filtered version with a specular exponent s = 100 ((middle)). Irradiance map
created by filtering over the entire hemisphere (right). (Shader code in Listing 8.1)

of an environment map by rendering a screen-spaced quad (with the
correct normal vectors specified at the vertices) into the six faces of a
cube map (render-to-texture). The filtering is performed by the fragment
shader shown in Listing 8.1. This shader uses the focussing technique
from Section 8.4.1. For a given specular exponent s, the parameter
focus must be calculated according to Equation 8.13. The shader reads
from an arbitrary environment cube map and a pre-defined 3D texture
containing unit random directions calculated using rejection sampling.
Examples of filtered environment maps are shown in Figure 8.6.

8.5 Further Reading

In this chapter we have covered the theory of Monte-Carlo integration
to an extent which is sufficient to understand the rest of the course.
More information on Monte-Carlo integration can be found in the book
by Pharr and Humphries[81], or in the SIGGRAPH 2002 course notes
on ”Advanced Global Illumination” by Philip Dutré, Kavita Bala and
Philippe Bekaert.

122 Course : Advanced Illumination Techniques for GPU Volume Raycasting

1 #define NUMSAMPLES (200.0)

2

3 float4 main(

4 float2 uv : TEXCOORD0,

5 float3 normalIn : NORMAL,

6 uniform float4 randSeed,

7 uniform float focus,

8 uniform sampler3D noiseTex,

9 uniform samplerCUBE envMap

10) : COLOR

11 {
12 float3 N = normalize(normalIn);

13 float4 sample = 0.0;

14

15 for(float i = 0; i < NUMSAMPLES; ++i) {
16

17 // calculate a randomized 3D texture coordinate

18 float offset = randSeed.a * i/NUMSAMPLES;

19 float3 randUV = (NormalIn + offset*randSeed.xyz);

20

21 // sample a precalculated 3D noise texture

22 // to obtain a randomized sampling direction

23 float3 randDir = expand(tex3D(noiseTex,randUV));

24 randDir = normalize(randDir);

25

26 // invert direction of back-facing

27 float cosTheta = dot(randDir,N);

28 if cosTheta < 0.0) {
29 randDir = -randDir;

30 cosTheta = -cosTheta ;

31 }
32

33 // focus the direction to specular lobe

34 randDir = normalize(lerp(randDir,N,focus));

35

36 // sample the environment cube

37 sample += cosTheta * texCUBE(envMap,randDir);

38 }
39 // average all samples

40 sample /= NUMSAMPLES;

41

42 return sample;

43

44 }

Listing 8.1: Cg fragment shader for filtering of environment maps. The
shader is intended to read from an environment cube map and render
into the faces of a reflection cube map.

GPU-Based Monte-Carlo

Volume Raycasting

9.1 Monte-Carlo Techniques for Isosur-

faces

In the first part of these course notes we have seen the basic implemen-
tation of GPU-based ray-casting. For each pixel it casts a ray into the
volume and samples the volume on a straight line. If the volume is stored
in a single 3D texture, however, we have the freedom to modify the ray
direction to account for multiple scattering events with respect to a given
phase function. We then of course need to cast multiple rays per pixel.

As an initial implementation, we may modify the fragment program
for GPU-raycasting to calculate the first directional derivative of the
scalar field along the viewing ray using central differences. Let s(x) be
the scalar field, and xi, i ∈ {0, 1, . . .m} be the sample positions along
the viewing ray (i = 0 is closest to the eye):

ds(x)

dv
= ∇s(x) · v ≈ s(xi+1)− s(xi−1)

xi+1 − xi−1
(9.1)

If the magnitude of the first derivative is larger than a specified
threshold, we assume a surface scattering event according to the phase
function model described in Section 7.5. We process the scattering event
by calculating a randomized direction using importance sampling and
scatter the ray into this direction. The user-specified threshold restricts
strong directional changes to isosurfaces with a high gradient magnitude,
while rays may pass forward through rather homogenous regions of the
volume. We restart the fragment program for GPU-based raycasting
multiple times with different random values. The program samples the
volume at equidistant positions along the ray and integrate the phase
function while the ray travels through the volume. When the viewing
ray leaves the volume’s bounding box, the incident radiance is sampled

124 Course : Advanced Illumination Techniques for GPU Volume Raycasting

from an environment cube map. The accumulated radiance RGB triplet
is finally written into the frame buffer and averaged with the previous
passes.

This straight forward implementation has the problem that many
calculations, such as determination of the first scattering event, are per-
formed again and again in successive passes. To improve this, we use a
multi-pass rendering technique to reuse as much information as possible.
The different rendering passes are described in the following sections.

• First Hit Pass: The first pass calculates the intersection of the
viewing rays with the first isosurface. It is reused in subsequent
passes to start viewing rays directly at the relevant position.

• Local Illumination Pass: The local illumination pass utilizes
Monte-Carlo integration techniques to calculate surface shading
with shift-variant BRDFs.

• Ambient Occlusion Pass: The ambient occlusion pass calculates
self-shadowing of the isosurface.

• Scattering Pass: The scattering pass accounts for translucency
and transparency.

Figure 9.1: UTCT Cheetah skull (5123, 16bit). Isosurface with Phong illumination
and Ambient occlusion.

ACM SIGGRAPH 2009 125

The first three passes together may be used to generate high-quality
renditions of isosurfaces, such as the one displayed in Figure 9.1 at inter-
active frame rates. These passes will be explained in detail in the follow-
ing Section. The scattering pass is more computationally expensive and
will be described in Section 9.3. It may be previewed at interactive rates
with a reduced quality (more noise due to fewer samples). Rendering
the scattering pass in final quality will take up to a few seconds.

9.2 Isosurfaces with Shift-Variant or

Anisotropic BRDFs

The process of rendering high-quality shaded isosurfaces can be divided
into three different tasks:

1. Extraction of the isosurface. This includes the determination of
position, normal direction and other surface properties obtained
from the scalar field.

2. Local illumination of the surface. This includes evaluation of shift-
variant BRDFs at the surface.

3. Shadow calculation. We will use Monte-Carlo integration to calcu-
late ambient occlusion.

Each task is performed in a separate rendering pass as outlined in the
following sections:

9.2.1 First Hit Pass

In a first rendering pass the front faces of the bounding box are raster-
ized. This first pass simultaneously renders into two floating-point off-
screen buffers using multiple-render-targets. The basic fragment shader
is shown in Listing 9.1. The shader contains a loop that successively
samples the volume along the viewing ray. The user has specified the
scalar values of an isosurface. While sampling the volume along the ray,
we continuously check if the specified isosurfaces was intersected. (In
the sample code, we assume that the scalar value of the first sample is
below the isovalue) If the first isosurface is hit, the shader breaks out of
the loop. The 3D texture coordinate of the intersection point is written
to the first render target. The gradient magnitude is calculated, and the
vector is then normalized. Gradient direction and magnitude are stored

126 Course : Advanced Illumination Techniques for GPU Volume Raycasting

1 uniform sampler3D VolumeTexture : TEXTURE0;

2 uniform float isoValue;

3 uniform float4x4 World2Tex;

4

5 struct COLOROUT {
6 float4 value0 : COLOR0;

7 float4 value1 : COLOR1;

8 };
9

10 COLOROUT main(float3 uvw : TEXCOORD0,

11 float3 vecCameraPos : TEXCOORD1,

12 float3 vecRayPos : TEXCOORD2)

13 {
14 COLOROUT retval;

15

16 float4 firstHit = 0..xxxx;

17 float4 gradient = 0..xxxx;

18 // ray direction

19 float3 dirRay = normalize(vecRayPos-vecCameraPos);

20

21 for(int j = 0; j < MAX NUM SAMPLES; j++) {
22 // sample volume at ray position

23 float3 uvw = mul(World2Tex,float4(vecRayPos,1.0));

24 float sample = tex3D(VolumeTexture, uvw).r;

25 // check for hit with isosurface

26 if (sample > isoValue) {
27 // calculate gradient

28 float3 grad = getGradient(uvw);

29 gradient.a = length(grad);

30 gradient.rgb = normalize(grad);

31

32 firstHit.rgb = uvw;

33 break;

34 }
35 // check if ray exits the volume without intersection

36 if ((uvw.x < 0.0) || (uvw.y < 0.0) || (uvw.z < 0.0) ||
37 (uvw.x > 1.0) || (uvw.y > 1.0) || (uvw.z > 1.0)) {
38 break;

39 }
40 // proceed one step along the ray

41 vecRayPos += STEPSIZE*dirRay;

42 }
43

44 retval.value0 = firstHit;

45 retval.value1 = gradient;

46

47 }

Listing 9.1: A basic Cg fragment shader for determining the first hit
with a specified isosurface. A possible implementation of the function
getGradient in line 28 can be found in Listing 9.2.

ACM SIGGRAPH 2009 127

1 float3 getGradient(float3 rayPos) {
2

3 float3 grad;

4 grad.x = tex3D(VolumeTexture,rayPos + float3(EPSILON,0.0,0.0)).r -

5 tex3D(VolumeTexture,rayPos - float3(EPSILON,0.0,0.0)).r;

6 grad.y = tex3D(VolumeTexture,rayPos + float3(0.0,EPSILON,0.0)).r -

7 tex3D(VolumeTexture,rayPos - float3(0.0,EPSILON,0.0)).r;

8 grad.z = tex3D(VolumeTexture,rayPos + float3(0.0,0.0,EPSILON)).r -

9 tex3D(VolumeTexture,rayPos - float3(0.0,0.0,EPSILON)).r;

10 frad /= (2.0*EPSILON);

11 return grad;

12 }

Listing 9.2: Cg shader function for estimating the gradient vector of the
volume using central differences.

1 // interval bisection

2 float3 start = vecRayPos-STEPSIZE*vecStep;

3 float3 end = vecRayPos;

4

5 for(int b = 0; b < 10; ++b) {
6 float3 testPos = (start+end)/2.0;

7 float3 uvw = mul(World2Tex,float4(testPos,1.0));

8 if (tex3D(VolumeTexture, uvw).a < isoValue) {
9 start = testPos;

10 } else {
11 end = testPos;

12 }
13 }
14

15 vecRayPos = (start+end)/2.0;

16 uvw = mul(World2Tex,float4(vecRayPos,1.0));

17

Listing 9.3: Cg shader function for improving the accuracy of the isosur-
face detection using interval bisection.

as a floating-point RGBA quadruplet in the second render target and
the fragment program terminates.

The gradient vector of the scalar field is always perpendicular to
the isosurface. It may be estimated numerically using finite differences
scheme. Listing 9.2 shows a working implementation. The function
getGradient obtains six additional texture samples around the inter-
section point to estimate the gradient vector using central differences.
For a detailed derivation of the gradient estimation scheme, see Chapter
5.3.1 in [25].

To improve accuracy of the isosurface detection, a few iterations of
interval bisection may be performed to come closer to the exact inter-
section point, as suggested in [38]. If the first sample larger than the

128 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 9.2: Results of the first hit rendering pass for the UTCT Veiled
Chameleon data set. Left: texture coordinate of the first isosurface hit.
Right: Gradient vector of the first isosurface.

isovalue is found, we go half a stepsize back and see if this sample is
already larger than the isovalue. We proceed this way several times,
halving the stepsize with each iteration. A code sample for interval bi-
section is shown in Listing 9.3. It may be inserted in Listing 9.1 right
after line 21.

The contents of the two render targets for the first-hit pass are shown
in Figure 9.2. Successive rendering passes start the ray integration di-
rectly at the intersection point with the first isosurface by reading the
3D texture coordinate determined in the first pass.

9.2.2 Deferred Shading Pass

Given the contents of the two rendering targets from the first hit pass,
the surface shading for the isosurface may be calculated by reading the
surface normal (the normalized gradient vector) from the second render
target and evaluating a local illumination model, such as Phong with
point light sources. If we want to account for environment light (e.g.
stored in a cube map) we need to differentiate between shift-invariant
BRDF whose reflectance behaviour can easily be precomputed, and shift-
invariant BRDF which require Monte-Carlo integration to calculate the
scattering events at run-time.

A shift invariant BRDF is a function f̂(x, ωi, ωo) (see Equation 7.2)
which does not depend on the position x, i.e. the reflectance properties

ACM SIGGRAPH 2009 129

1 #define NUMSAMPLES (50.0)

2

3 float4 main(

4 float2 screenPos : TEXCOORD0,

5 uniform float3 cameraPos,

6 uniform float4 randSeed,

7 uniform sampler2D firstHitPos,

8 uniform sampler2D firstHitGrad,

9 uniform samplerCUBE irradianceMap,

10 uniform samplerCUBE environmentMap,

11 uniform sampler3D noiseTex

12) : COLOR

13 {
14 // read the information from previous pass

15 float4 rayPos = tex2D(firstHitPos, screenPos);

16 float4 gradient = tex2D(firstHitGrad, screenPos);

17 // focus parameter is the gradient magnitude in this example

18 float focus = gradient.w;

19

20 float3 V = normalize(rayPos.xyz-cameraPos);

21 float3 N = normalize(gradient);

22 float3 R = reflect(V,N);

23

24 float3 diffuse = texCUBE(irradianceMap, N);

25 float3 specular = 0.0;

26

27 for(float i = 0; i < NUMSAMPLES; ++i) {
28

29 // calculate a randomized 3D texture coordinate

30 float offset = randSeed.a * i/NUMSAMPLES;

31 float3 randUV = (rayPos + offset*randSeed.xyz);

32 // sample a precalculated 3D noise texture

33 // to obtain a randomized sampling direction

34 float3 randDir = expand(tex3D(noiseTex,randUV));

35 randDir = normalize(randDir);

36 // invert direction of back-facing

37 float cosTheta = dot(randDir,N);

38 if cosTheta < 0.0) {
39 randDir = -randDir;

40 cosTheta = -cosTheta ;

41 }
42 // focus the direction to specular lobe

43 randDir = normalize(lerp(randDir,R,focus));

44 // sample the environment cube

45 specular += cosTheta * texCUBE(environmentMap,randDir);

46 }
47 // average all samples

48 specular /= NUMSAMPLES;

49

50 return diffuse + specular;

51

52 }

Listing 9.4: Cg shader function for deferred shading using a shift-variant
Phong BRDF. The diffuse term is sampled from a pre-filtered irradiance
map. The specular term is calculated using stochastic sampling of an
environment map

130 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 9.3: Left: Results of the deferred shading pass for the UTCT
Veiled Chameleon data set. Right: Results of the deferred ambient oc-
clusion pass.

are contant for the entire surface. To implement a shift-invariant BRDF,
we can use an irradiance map for the diffuse term and a pre-filtered
reflection map for the specular term (see Section 8.4.2.3), assuming that
the specular lobe has rotational symmetry. For a shift-variant BRDF, the
size of the specular lobe varies for different surface points x. For a shift-
invariant, but anisotropic BRDF, the shape of the specular lobe depends
on the local orientation. In these cases, only the diffuse term may be
pre-filtered, the specular term cannot be obtained by a single pre-filtered
reflection map. We therefore modify Listing 8.1 to perform the Monte-
Carlo integration directly on the surface. An example implementation
is shown in Listing 9.4. The diffuse term is simply looked up in an
irradiance cube map using the normal direction as texture coordinate.
The specular exponent represented by the focus parameter (see Eq. 8.11)
in this example is set to the gradient magnitude, which results in a shift
variant specular term. The Monte-Carlo integration is basically the same
as in Listing 8.4.2.3. The only difference is that the specular lobe is
focussed onto the reflection vector R instead of the normal N. The result
of the deferred shading pass is shown in Figure 9.3, left.

9.2.3 Deferred Ambient Occlusion Pass

Using the results from the first hit pass, we can as well calculate a de-
ferred ambient occlusion pass for the isosurface. The fragment shader is

ACM SIGGRAPH 2009 131

1 #define NUM SAMPLES (32.0)

2 #define FACTOR RAYSTEP (3.0)

3 #define MAX NUM RAY STEPS (10.0)

4

5 float4 main(

6 float2 screenPos : TEXCOORD0,

7 uniform float isoValue,

8 uniform float4 randSeed,

9 uniform sampler2D firstHitPos,

10 uniform sampler2D firstHitGrad,

11 uniform sampler3D volumeTex,

12 uniform sampler3D noiseTex

13) : COLOR

14 {
15 // read the information from previous pass

16 float4 rayPos = tex2D(firstHitPos, screenPos);

17 float4 gradient = tex2D(firstHitGrad, screenPos);

18

19 if (gradient.w < EPSILON) return 0..xxxx;

20

21 float ambOcc = NUM SAMPLES;

22

23 float3 pos;

24 float3 dir;

25 float3 dirStep;

26

27 for(float i = 0; i < NUM SAMPLES; i+=1.0) {
28

29 // calculate a randomized sampling direction

30 float offset = randSeed.a * i/NUMSAMPLES;

31 float3 randUVW = (rayPos + offset*randSeed.xyz);

32 float3 randDir = expand(tex3D(noiseTex,randUVW));

33 if (dot(randDir,N) < 0.0) randDir = -randDir;

34

35 // we do not really need to sample the full 180 degrees

36 randDir = normalize(randDir + 0.1*N);

37 // we sample with a larger stepsize for efficiency

38 dirStep = randDir * FACTOR RAYSTEP * STEPSIZE;

39

40 // ensure the first sample point is outside

41 pos = rayPos + dirStep;

42

43 for(float s = 0; s < MAX NUM RAY STEPS; s+=1.0) {
44 float value = tex3D(volumeTexture, pos).r;

45 if (value > isoValue) {
46 ambOcc -= 1.0;

47 break;

48 }
49 pos += dirStep;

50 }
51 }
52

53 return ambOcc.xxx;

54 }
55

Listing 9.5: Cg shader function for deferred isosurface ambient occlusion
with Monte-Carlo sampling

132 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 9.4: UTCT Veiled Chameleon: Opaque isosurface of the skin rendered with
a shift-variant BRDF. The specular exponent s proportional to the magnitude of
the local gradient vector.

shown in Listing 9.5. In this example ambient occlusion is calculated in
the local environment of the isosurface point. Starting from the surface
point, random rays are shot across the hemisphere. For each ray, we
check if the isosurface is hit again. The intensity value is the fraction
of rays which do not hit the isosurface again. The result of the deferred
ambient occlusion pass is shown in Figure 9.3, right.

The deferred shading pass and the ambient occlusion pass may be
multiplied together for each pixel, resulting in a high-quality rendition
of the isosurface. In the example image in Figure 9.4 showing the skin of
the UTCT Veiled Chameleon CT scan, the shininess of the surface is pro-
portional to the gradient magnitude at each surface point. In this data

ACM SIGGRAPH 2009 133

set, high gradients of the isosurface are mainly caused by bone struc-
tures being close to the skin surface. If highest rendering performance is
required, the number of samples for both the deferred shading pass and
the ambient occlusion pass might be reduced, which still results in good
quality images as shown in Figure 9.5.

9.3 Volume Scattering

In chapter 7.4 we have seen different phase function models which can be
build into our GPU-based volume ray-caster. For volumetric scans, we
want to differentiate between scattering at surfaces and scattering within
rather homogeneous regions of the volume. This means that we approx-
imate the directional derivative along the ray using finite differences and
change the behaviour of the phase function accordingly.

While such an implementation is not very difficult, in practice, the
visual appearance of this technique is hard to control by the user. We
therefore suggest to directly specify a set of isovalues representing the
isosurfaces at which the BSDF should be evaluated. Inbetween these
isosurfaces a Henyey-Greenstein phase function or a simple forward peek
with attenuation will be used.

Again, using the results of the first hit pass from the previous section,
we now cast rays from the first isosurface into the interior of the object.
The fragment shader for such a scattering pass will be basically the same
as Listing 9.1. The only difference is that we start the rays directly at
the first isosurface (reading the starting points from the first pass) and
check for intersection of multiple iso surfaces simultaneously.

The code sample in Listing 9.6 shows a function which checks for
multiple isosurface intersections. In this example we have specified four
different isovalues ŝi, i ∈ {1, 2, 3, 4}. These values are written in ascend-
ing order (ŝi < ŝi+1) into the vector components of a float4 value. The
function computeIsoIndex takes a sample s and returns a float4 value
which contains a 1 in the respective vector component i, if the sample is
inbetween ŝi and ŝi+1, and 0 otherwise. If the isovalues si for example are
isoValues = (0.1, 0.3, 0.5, 0.7) and the sample value s = 0.4, this func-
tion will return a vector isoIndex = (0.0, 1.0, 0.0, 0.0). To determine an
isosurface intersection for successive samples si along the ray, we need
to compare the isoIndex of the current sample to the previous sample.
If the dot product between both isoIndices is zero, we have found an
intersection with an isosurface. If there is no isosurface intersection we
may proceed the sampling in one of the following ways:

134 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 9.5: CT angiography of a human head. Different isovalues (top row, bottom
right). The bottom left image was generated with a reduced number of samples for
both shading and ambient occlusion. Although there is some noise visible in the
image, the quality is still good.

ACM SIGGRAPH 2009 135

1 float4 computeIsoIndex(float sample) {
2

3 float4 a;

4

5 a.x = (sample >= isoValues.x)? 1.0 : 0.0;

6 a.y = (sample >= isoValues.y)? 1.0 : 0.0;

7 a.z = (sample >= isoValues.z)? 1.0 : 0.0;

8 a.w = (sample >= isoValues.w)? 1.0 : 0.0;

9

10 return a - float4(a.yzw,0.0);

11

12 }

Listing 9.6: Cg shader function for calculating the isoIndex, which is
used to check for intersection with four isosurfaces simultaneously.

Figure 9.6: Different scattering effects inside the volume. Left column: Reflection
at isosurfaces only. Right column: Reflection at isosurfaces and scattering in homo-
geneous regions. Top row: No attenuation. Bottom row: Attenuation of light due
to absorption.

136 Course : Advanced Illumination Techniques for GPU Volume Raycasting

• process the next sample along the ray without changing the direc-
tion of the ray (no scattering). This refers to a Henyey-Greenstein
phase function with an anisotropy parameter g = 1. (Figure 9.6,
top left)

• process the next sample along the ray without changing the ray
direction, but attenuate the radiance value. This refers to an ab-
sorption of light energy by the volume (Figure 9.6, bottom left)
The radiance along the ray is multiplied by an attenuation factor
τ ∈ [0, 1], similar to alpha blending. The attenuation factor may
be a either a constant (e.g. τ = 0.99) or a function of the scalar
field (implemented using a 1D texture lookup).

• scatter the next sample by changing the ray direction randomly.
(Figure 9.6, top right) This refers to a Henyey-Greenstein phase
function with an anisotropy value g ∈ [0, 1[. The lower the
anisotropy value g, the slower the convergence will be. We will
need a high number of samples to calculate isotropic scattering at
every sample point. In practice it is thus useful to restrict the
anisotropy to values close to 1.

no scattering
scattering
everywhere

scattering
at isosurfaces only

scattering inbetween
isosurfaces only

w
it
h

 a
tt

e
n

u
a

ti
o

n
w

it
h

o
u

t
a

tt
e

n
u

a
ti
o

n

Figure 9.7: An visual comparison of the different scattering implementations.

ACM SIGGRAPH 2009 137

• combine both scattering and attenuation (Figure 9.6, bottom right).

We start a transmissive ray at the hit point with the first isosurface.
The direction is scattered within a Phong lobe around the negative view-
ing direction or the refracted vector (see Figure 7.5). We trace this ray
(with HG scattering and attenuation) until it hits the second isosurface.
At this second hit point, the gradient vector is estimated and the ray
is reflected randomly into the hemisphere centered around the gradient
direction, and so on.

A visual comparison of the different scattering effects is shown in
Equation 9.7. In this example, the optical properties were specified such
that the internal surface structures of the volume still remain noticeable.
Isosurface scattering alone will render in this example at about 0.3–0.5
seconds per frame in good quality. When reducing the number of samples
such that the image becomes noise but quality is still acceptable, a frame
rate of about 3 frames per second may be achieved.

If scattering is performed with every ray step, a random value must be
fetched from the noise texture at every step which significantly increases
the bandwidth load. The example images with scattering everywhere in
the volume will render at about 1 seconds per frame in good quality.
The difference between the different scattering effect in many cases is
only marginal, so the benefit of implementing scattering events in homo-
geneous regions should be evaluated in any individual case.

9.3.1 Heuristic Simplifications

To improve the performance of the Monte-Carlo path tracing approach,
we may apply some heuristics for simplification. I point out , however,
that the techniques described in the following are not mathematically
correct since they will lead to a bias in the Monte-Carlo estimator.

If we cast rays starting from the eye, the first few scattering events
are the most important ones with respect to the final color. Scattering
events which occur later along the path of the ray, are less important.
With this heuristic in mind, we may simplify our implementation: We
may decide to scatter the viewing ray 2 or 3 times at isosurfaces, and
then sample the ray with attenuation only but without further scattering
until it leaves the volume. This strategy avoids rays being reflected again
and again until their contribution becomes zero due to attenuation.

Another simplification is based on the assumption that the attenu-
ation which is accumulated from the eye point to the a hit point with
an isosurface is an appropriate estimate for the attenuation from the

138 Course : Advanced Illumination Techniques for GPU Volume Raycasting

Figure 9.8: UTCT Chameleon data set. Top left: Isosurface with shading and
ambient occlusion. Top right: Scattering pass. Bottom: Final composition.

hit point back to the outside. Hence, we can square the accumulated
attenuation and directly sample the environment map in the reflected

ACM SIGGRAPH 2009 139

direction without tracing the ray any further. Although less accurate,
this technique is much faster because we can sample the environment
map many times at the second hit point to directly estimate diffuse and
specular reflection. An example image using this technique is displayed
in Figure 9.9.

Our experiments have shown that there is little visible difference if we
compare images generated by the more accurate and the faster method.
We expect however, that this is due to the onion-like structure of iso-
surfaces and should not be generalized to arbitrary surfaces inside the
volume.

Figure 9.9: UTCT Big Brown Bat data set rendered with translucent skin.

Light Map Approaches

In combination with Shadow Volumes or Deep Shadow Maps (See chap-
ter ”shadows” in part 2 of these course notes), alternative implementa-
tions of scattering are possible. These approaches, however, are restricted
to point light sources or directional lights.

A shadow volume is an additional voxel data set which contains in-
formation about the incident light at each voxel. It can be calculated
slice-by-slice from a given point light source using a modified shadow
map approach. The shadow volume covers the same space as the scalar
field, and its slice planes are oriented perpendicular to the light direc-
tion. The resolution of the shadow volume may be lower than the original
scalar volume. To generate a shadow volume, its slices are processed in
front-to-back order from the viewpoint of the light source.

Each voxel of a slice to be processed is projected onto the previous
slice (except for the first slice which uses the incident illumination of the
light source directly). For point lights the position of the light source is
the center of projection (perspective). For directional light sources the
projection direction is the inverted light direction (parallel projection).
Each slice voxel reads the incident light from the previous slice. The

shadow volume scattering light map

Figure 10.1: Shadow volume and 3D scattering light map. The shadow volume
approach may be extended to sample the previous slice multiple times at locations
scattered around the original sample position.

ACM SIGGRAPH 2009 141

Figure 10.2: Tail fin of the carp data set. Shadow volume with direct light only
(left) and 3D scattering light map with indirect light (right).

incident light is attenuated by the absorption of the scalar field generated
by an opacity transfer function.

We can integrate scattering effects into the shadow volume during
generation by sampling the previous slice multiple times per voxel, at
locations randomly scattered around the original projected sample posi-
tion. The distance of the random points form the original sampling loca-
tion is controlled by a phase function model, such as Henyey-Greenstein.
During raycasting the incident light from the shadow volume is added to
the emission term during ray traversal. An example image of the shadow
volume is shown in Figure 10.2.

A similar approach may be used with a deep shadow map instead
of a shadow volume. In this case, the deep shadow map (which usually
has a high resolution to account for fine details) is resampled on a lower
uniform voxel grid. The low resolution for the light map is sufficient
since illumination caused by multiple scattering effects is relatively low
frequent. The resampled volume is then processed exactly the same way
as the shadow volume. An example image of the combination of deep
shadow map and low resolution light map is shown in Figure 10.3.

While being very efficient, there are some points which should be
noted about the light map approaches:

• Like shadow volumes, scattering light maps are restricted to single

142 Course : Advanced Illumination Techniques for GPU Volume Raycasting

point light sources

• The light map needs to be recomputed whenever the position or
direction of the light source changes

• The light map needs to be recomputed whenever the transfer func-
tion changes

• The approach for creating the light map as described above is more
a soft shadow volume than a true scattering light map. In the al-
gorithm described above and outlined in Figure 10.1, light is scat-
tered only in slicing direction, so the scattering is most prominent
for volumes lit from behind (forward scattering). For true subsur-
face scattering, more than one pass must be used to generate the
3D light map, to account for scattering events in all directions in-
cluding backward scattering. Though this may be done easily, it
will slow down the light map creation significantly.

Figure 10.3: CT angiography data set. GPU-raycasting with a deep shadow map
(left). High-resolution deep shadow map combined with a low-resolution scattering
light map for indirect light (right).

Bibliography

[1] Michael D. Adams. The JPEG-2000 Still Image Compression Stan-
dard. ISO/IEC (ITU-T SG8), September 2001. JTC 1/SC 29/WG
1: N 2412.

[2] Chandrit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image
compression for interactive applications. ACM Transactions on
Graphics, 20(1):10–38, January 2001.

[3] Kevin M. Beason, Josh Grant, David C. Banks, Brad Futch, and
M. Yousuff Hussaini. Pre-computed illumination for isosurfaces. In
VDA ’94: Proceedings of the conference on Visualization and Data
Analysis ’06 (SPIE Vol. 6060), pages 1–11, 2006.

[4] Uwe Behrens and Ralf Ratering. Adding shadows to a texture-
based volume renderer. In VVS ’98: Proceedings of the 1998 IEEE
symposium on Volume visualization, pages 39–46. ACM Press,
1998.

[5] Johanna Beyer, Markus Hadwiger, Torsten Möller, and Laura
Fritz. Smooth Mixed-Resolution GPU Volume Rendering. In
IEEE/EG International Symposium on Volume and Point-Based
Graphics, pages 163–170, 2008.

[6] Praveen Bhaniramka and Yves Demange. OpenGL Volumizer: A
Toolkit for High Quality Volume Rendering of Large Data Sets.
In Proceedings IEEE Visualization 2002, pages 45–53, 2002.

[7] J. F. Blinn. Jim blinn’s corner: Image compositing–theory. IEEE
Computer Graphics and Applications, 14(5), 1994.

[8] Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolu-
tion volume visualization with a texture-based octree. The Visual
Computer, 17:185–197, 2001.

144 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[9] A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-
Lock Yeo. Wavelet transforms that map integers to integers. Tech-
nical report, Department of Mathematics, Princeton University,
August 1996.

[10] N. Carr, J. Hall, and J. Hart. GPU Algorithms for Radiosity and
Subsurface Scattering. In Proc. Graphics Hardware, 2003.

[11] Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms
for radiosity and subsurface scattering. In HWWS ’03: Proceed-
ings of the conference on Graphics Hardware ’03, pages 51–59.
Eurographics Association, 2003.

[12] Yi-Jen Chiang, Cláudio T. Silva, and William J. Schroeder. In-
teractive out-of-core isosurface extraction. In Proceedings of IEEE
Visualization ’98, pages 167–174, 1998.

[13] Yi-Jen Chiang, Cludio T. Silva, and Willam J. Schroeder. In-
teractive out-of-core isosurface extraction. In Proceedings IEEE
Visualization 1998, pages 167–174,530, 1998.

[14] M. Colbert and J. Křivánek. GPU Gems 3, chapter GPU-Based
Importance Sampling, pages 459–475. Addison-Wesley, 2007.

[15] Michael Cox and David Ellsworth. Application-controlled demand
paging for out-of-core visualization. In Proceedings IEEE Visual-
ization 1997, pages 235–244, 1997.

[16] Franklin C. Crow. Shadow algorithms for computer graphics.
In SIGGRAPH ’77: Proceedings of the 4th annual conference
on Computer graphics and interactive techniques, pages 242–248.
ACM Press, 1977.

[17] Franklin C. Crow. Summed-area tables for texture mapping. In
Proceedings SIGGRAPH ’84, volume 18, pages 207–212, 1984.

[18] Carsten Dachsbacher and Marc Stamminger. Splatting indirect
illumination. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games, pages 93–100, New York, NY,
USA, 2006. ACM.

[19] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Indus-
trial and Applied Mathematics, 1992.

ACM SIGGRAPH 2009 145

[20] Philippe Desgranges and Klaus Engel. US patent application
2007/0013696 A1: Fast ambient occlusion for direct volume ren-
dering, 2007.

[21] Philippe Desgranges, Klaus Engel, and Gianluca Paladini.
Gradient-free shading: A new method for realistic interactive vol-
ume rendering. In VMV ’05: Proceedings of the international fall
workshop on Vision, Modeling, and Visualization, pages 209–216,
2005.

[22] C. Donner and H. W. Jensen. Light Diffusion in Multi-Layered
Translucent Materials. In Proc. ACM SIGGRAPH, 2005.

[23] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.
In Proceedings of SIGGRAPH ’88, pages 65–74, 1988.

[24] D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley.
Texturing and Modeling: A Procedural Approach. Academic Press,
July 1998.

[25] Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama,
and Daniel Weiskopf. Real-Time Volume Graphics. AK Peters,
2006.

[26] James D. Foley, Richard L. Phillips, John F. Hughes, Andries van
Dam, and Steven K. Feiner. Introduction to Computer Graphics.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1994.

[27] Jinzhu Gao, Jian Huang, C. Ryan Johnson, and Scott Atchley.
Distributed data management for large volume visualization. In
Proceedings IEEE Visualization 2005, pages 183–189. IEEE, 2005.

[28] Jinzhu Gao, Jian Huang, Han-Wei Shen, and James Arthur Kohl.
Visibility culling using plenoptic opacity functions for large volume
visualization. In Proceedings IEEE Visualization 2003, pages 341–
348. IEEE, 2003.

[29] Jinzhu Gao, Han-Wei Shen, Jian Huang, and James Arthur Kohl.
Visibility culling for time-varying volume rendering using tempo-
ral occlusion coherence. In Proceedings IEEE Visualization 2004,
pages 147–154. IEEE, 2004.

146 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[30] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Memory effi-
cient acceleration structures and techniques for cpu-based volume
raycasting of large data. In Proceedings IEEE/SIGGRAPH Sym-
posium on Volume Visualization and Graphics, pages 1–8, 2004.

[31] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard
Gröller. Memory efficient acceleration structures and techniques
for CPU-based volume raycasting of large data. In Proceedings
IEEE Volume Visualization and Graphics Symposium, pages 1–8,
2004.

[32] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Eduard
Gröller. A refined data addressing and processing scheme to ac-
celerate volume raycasting. Computers and Graphics, 28:719–729,
2004.

[33] Stefan Guthe and Wolfgang Straßer. Real-time decompression and
visualization of animated volume data. In Proceedings IEEE Visu-
alization 2001, pages 349–356, 2001.

[34] Stefan Guthe and Wolfgang Strasser. Advanced techniques for
high quality multiresolution volume rendering. In Computers &
Graphics, volume 28, pages 51–58. Elsevier Science, February 2004.

[35] Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang
Straßer. Interactive rendering of large volume data sets. In Pro-
ceedings IEEE Visualization 2002, pages 53–60, 2002.

[36] Attila Gyulassy, Lars Linsen, and Bernd Hamann. Time- and
space-efficient error calculation for multiresolution direct volume
rendering. In Mathematical Foundations of Scientific Visualiza-
tion, Computer Graphics, and Massive Data Exploration. Springer-
Verlag, Heidelberg, Germany, 2006.

[37] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross.
Real-time ray-casting and advanced shading of discrete isosurfaces.
In Proceedings of Eurographics 2005, pages 303–312, 2005.

[38] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross.
Real-Time Ray-Casting and Advanced Shading of Discrete Isosur-
faces. In Proceedings of Eurographics, pages 303–312, 2005.

ACM SIGGRAPH 2009 147

[39] Markus Hadwiger, Andrea Kratz, Christian Sigg, and Katja
Bühler. Gpu-accelerated deep shadow maps for direct volume ren-
dering. In GH ’06: Proceedings of the 21st ACM SIGGRAPH/Eu-
rographics symposium on Graphics hardware, pages 49–52, New
York, NY, USA, 2006. ACM Press.

[40] W. Heidrich and H.-P. Seidel. Realistic, Hardware-accellerated
Shading and Lighting. In Proc. ACM SIGGRAPH, 1999.

[41] L. Henyey and J. Greenstein. Diffuse radiation in the galaxy. As-
trophysical Journal, pages p. 70–83, 93.

[42] Frida Hernell, Patric Ljung, and Anders Ynnerman. Efficient am-
bient and emissive tissue illumination using local occlusion in mul-
tiresolution volume rendering. In Proceedings Eurographics/IEEE-
VGTC Symposium on Volume Graphics. Eurographics/IEEE,
2007.

[43] Frida Hernell, Patric Ljung, and Anders Ynnerman. Interactive
Global Light Propagation in Direct Volume Rendering using Local
Piecewise Integration. In IEEE/EG International Symposium on
Volume and Point-Based Graphics, pages 105–112, 2008.

[44] W. Hong, F. Qiu, and A. Kaufman. Gpu-based object-order ray-
casting for large datasets. In Proceedings of Volume Graphics 2005,
2005.

[45] Insung Ihm and Sanghun Park. Wavelet-based 3d compression
scheme for interactive visualization of very large volume data.
Computer Graphics Forum, 18(1):3–15, 1999.

[46] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat
Hanrahan. A Practical Model for Subsurface Light Transport. In
Proceedings of ACM SIGGRAPH, pages 511–518, 2001.

[47] Ralf Kähler, John Wise, Tom Abel, and Hans-Christian Hege.
Gpu-assisted raycasting for cosmological adaptive mesg refinement
simulations. In Proceedings Eurographics/IEEE Workshop on Vol-
ume Graphics 2006, pages 103–110,144, 2006.

[48] D. Kalra and A. H. Barr. Guaranteed ray intersections with im-
plicit surfaces. In Proceedings of SIGGRAPH ’89, pages 297 – 306,
1989.

148 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[49] A. Kaufman. Voxels as a Computational Representation of Ge-
ometry. In The Computational Representation of Geometry. SIG-
GRAPH ’94 Course Notes, 1994.

[50] Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. In
Proceedings of the 12th Eurographics Workshop on Rendering Tech-
niques, pages 177–182, London, UK, 2001. Springer-Verlag.

[51] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimen-
sional transfer functions for interactive volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 8(3):270–
285, 2002.

[52] Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. In-
teractive translucent volume rendering and procedural modeling.
In VIS ’02: Proceedings of the conference on Visualization ’02,
pages 109–116. IEEE Computer Society, 2002.

[53] Joe Kniss, Simon Premoze, Charles Hansen, Peter Shirley, and
Allen McPherson. A model for volume lighting and model-
ing. IEEE Transactions on Visualization and Computer Graphics,
9(2):150–162, 2003.

[54] M. Kraus and T. Ertl. Adaptive texture maps. In Proceedings of
Graphics Hardware 2002, pages 7–15, 2002.

[55] J. Krüger and R. Westermann. Acceleration techniques for GPU-
based volume rendering. In Proceedings IEEE Visualization 2003,
2003.

[56] Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolu-
tion techniques for interactive texture-based volume visualization.
In Proceedings IEEE Visualization 1999, pages 355–362, 1999.

[57] Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Efficient error
calculation for multiresolution texture-based volume visualization.
In Gerald Farin, Bernd Hamann, and Hans Hagen, editors, Hier-
achical and Geometrical Methods in Scientific Visualization, pages
51–62. Springer-Verlag, Heidelberg, Germany, 2003.

[58] Michael S. Langer and Heinrich H. Bülthoff. Depth discrimination
from shading under diffuse lighting. Perception, 29(6):649–660,
2000.

ACM SIGGRAPH 2009 149

[59] H. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. Magnor, J. Lang,
and H.-P. Seidel. Interactive rendering of translucent objects. Com-
puter Graphics Forum, 22(2), 2003.

[60] M. Levoy. Display of surfaces from volume data. IEEE Computer
Graphics and Applications, 8(3):29–37, May 1988.

[61] F. Link, M. Koenig, and H.-O. Peitgen. Multi-Resolution Volume
Rendering with per Object Shading. In Proceedings of Vision,
Modeling and Visualization, pages 185–191, 2006.

[62] Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson.
A near optimal isosurface extraction algorithm using the span
space. IEEE Transactions on Visualization and Computer Graph-
ics, 2:73–84, 1996.

[63] Patric Ljung. Adaptive sampling in single pass, GPU-based ray-
casting of multiresolution volumes. In Proceedings Eurographic-
s/IEEE Workshop on Volume Graphics 2006, pages 39–46,134,
2006.

[64] Patric Ljung. Efficient Methods for Direct Volume Rendering of
Large Data Sets. PhD thesis, Linköping University, Sweden, 2006.
Linköping studies in science and technology. Dissertations no. 1043.

[65] Patric Ljung, Claes Lundström, and Anders Ynnerman. Multires-
olution interblock interpolation in direct volume rendering. In
Proceedings Eurographics/IEEE Symposium on Visualization 2006,
pages 259–266, 2006.

[66] Patric Ljung, Claes Lundström, Anders Ynnerman, and Ken
Museth. Transfer function based adaptive decompression for vol-
ume rendering of large medical data sets. In Proceedings IEEE
Volume Visualization and Graphics Symposium 2004, pages 25–
32, 2004.

[67] Patric Ljung, Calle Winskog, Anders Perssson, Claes Lundström,
and Anders Ynnerman. Full body virtual autopsies using a state-
of-the-art volume rendering pipeline. IEEE Transactions on Vi-
sualization and Computer Graphics (Proceedings Visualization/In-
formation Visualization 2006), 12:869–876, 2006.

150 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[68] Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 385–392, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[69] Eric B. Lum, Kwan-Liu Ma, and John Clyne. Texture hardware
assisted rendering of time-varying volume data. In Proceedings
IEEE Visualization 2001, pages 263–270, 2001.

[70] Eric B. Lum, Kwan-Liu Ma, and John Clyne. A hardware-assisted
scalable solution for interactive volume rendering of time-varying
data. IEEE Transactions on Visualization and Computer Graphics,
8:286–298, 2002.

[71] Claes Lundström, Patric Ljung, and Anders Ynnerman. Local
histograms for design of transfer functions in direct volume ren-
dering. Transactions on Visualization and Computer Graphics,
12(6):1570–1579, Nov.-Dec. 2006.

[72] Gerd Marmitt, Heiko Friedrich, and Philipp Slusallek. Interactive
Volume Rendering with Ray Tracing. In Eurographics State of the
Art Reports, 2006.

[73] Nelson Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–
108, June 1995.

[74] Nelson Max. Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–
108, 1995.

[75] Jörg Mensmann, Timo Ropinski, and Klaus Hinrichs. Accelerating
Volume Raycasting using Occlusion Frustum. In IEEE/EG Inter-
national Symposium on Volume and Point-Based Graphics, pages
147–154, 2008.

[76] Ky Giang Nguyen and Dietmar Saupe. Rapid high quality com-
pression of volume data for visualization. Computer Graphics Fo-
rum, 20(3), 2001.

[77] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan,
Charles Hansen, and Peter Shirley. Interactive ray tracing for vol-
ume visualization. IEEE Transactions on Visualization and Com-
puter Graphics, 5(3):238–250, 1999.

ACM SIGGRAPH 2009 151

[78] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and
Peter-Pike Sloan. Interactive ray tracing for isosurface rendering.
In Proceedings of IEEE Visualization ’98. IEEE-CS, ACM, October
1998.

[79] A. Patra and M.D. Wang. Volumetric medical image compression
and reconstruction for interactive visualization in surgical plan-
ning. In Proceedings Data Compression Conference 2003, page
442, March 2003.

[80] Eric Penner and Ross Mitchell. Isosurface Ambient Occlusion and
Soft Shadows with Filterable Occlusion Maps. In IEEE/EG Inter-
national Symposium on Volume and Point-Based Graphics, pages
57–64, 2008.

[81] Matt Pharr and Greg Humphries. Physically Based Rendering.
Morgan Kauffman, 2004.

[82] William T. Reeves, David H. Salesin, and Robert L. Cook. Ren-
dering antialiased shadows with depth maps. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, pages 283–291. ACM Press, 1987.

[83] S. Roettger, S. Guthe, D. Weiskopf, and T. Ertl. Smart hardware-
accelerated volume rendering. In Procceedings of EG/IEEE TCVG
Symposium on Visualization VisSym ’03, pages 231–238, 2003.

[84] Timo Ropinski, Jens Kasten, and Klaus H. Hinrichs. Efficient
Shadows for GPU-based Volume Raycasting. In Proceedings of
the 16th International Conference in Central Europe on Computer
Graphics, Visualization (WSCG08), pages 17–24, 2008.

[85] Timo Ropinski, Jennis Meyer-Spradow, Stefan Diepenbrock, Jörg
Mensmann, and Klaus H. Hinrichs. Interactive Volume Rendering
with Dynamic Ambient Occlusion and Color Bleeding. Computer
Graphics Forum (Eurographics 2008), 27(2):567–576, 2008.

[86] Stefan Röttger, Michael Bauer, and Marc Stamminger. Spatialized
transfer functions. In EuroVis, pages 271–278, 2005.

[87] Marc Ruiz, Imma Boada, Ivan Viola, Stefan Bruckner, Miquel
Feixas, and Mateu Sbert. Obscurance-based Volume Rendering
Framework. In IEEE/EG International Symposium on Volume
and Point-Based Graphics, pages 113–120, 2008.

152 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[88] C. Rezk Salama. GPU-Based Monte-Carlo Volume Raycasting. In
Proc. Pacific Graphics, 2007.

[89] Mirko Sattler, Ralf Sarlette, Thomas Mücken, and Reinhard Klein.
Exploitation of human shadow perception for fast shadow render-
ing. In APGV ’05: Proceedings of the 2nd symposium on Ap-
plied perception in graphics and visualization, pages 131–134. ACM
Press, 2005.

[90] H. Scharsach, M. Hadwiger, A. Neubauer, S. Wolfsberger, and
K. Bühler. Perspective Isosurface and Direct Volume Rendering
for Virtual Endoscopy Applications. In Proceedings of Eurovis ’06,
pages 315–323, 2006.

[91] Henning Scharsach. Advanced GPU raycasting. In Proceedings
of the 9th Central European Seminar on Computer Graphics, May
2005.

[92] Jens Schneider and Rüdiger Westermann. Compression domain
volume rendering. In Proceedings IEEE Visualization 2003, 2003.

[93] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clus-
tered principal components for precomputed radiance transfer. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 382–391.
ACM Press, 2003.

[94] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable
precomputed radiance transfer. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers, pages 1216–1224. ACM Press, 2005.

[95] Irwin Edward Sobel. Camera models and machine perception. PhD
thesis, Stanford University, Stanford, CA, USA, 1970.

[96] Lisa M. Sobierajski and Arie E. Kaufman. Volumetric ray trac-
ing. In VVS ’94: Proceedings of the 1994 symposium on Volume
Visualization ’94, pages 11–18. ACM Press, 1994.

[97] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and
flexible volume rendering framework for graphics-hardware–based
raycasting. In Proceedings of the International Workshop on Vol-
ume Graphics ’05, pages 187–195, 2005.

[98] A. James Stewart. Vicinity shading for enhanced perception of
volumetric data. In VIS ’03: Proceedings of the 14th IEEE Visu-
alization 2003 (VIS’03), page 47. IEEE Computer Society, 2003.

ACM SIGGRAPH 2009 153

[99] Wim Sweldens. The lifting scheme: A custom-design construction
of biorthogonal wavelets. Journal of Applied and Computational
Harmonic Analysis, (3):186–200, 1996.

[100] Martin Vetterli and Didier LeGall. Perfect reconstruction FIR filter
banks: some properties and factorizations. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(7):1057–1071, July
1989.

[101] Joachim E. Vollrath, Tobias Schafhitzel, and Thomas Ertl. Em-
ploying complex GPU data structures for the interactive visualiza-
tion of adaptive mesh refinement data. In Proceedings Eurograph-
ics/IEEE Workshop on Volume Graphics 2006, pages 55–58,136,
2006.

[102] Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Seidel.
Faster isosurface ray tracing using implicit kd-trees. IEEE Trans-
actions on Visualization and Computer Graphics, 11(5):562–572,
2005. Member-Philipp Slusallek.

[103] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller,
and Philipp Slusallek. Interactive global illumination using fast
ray tracing. In EGRW ’02: Proceedings of the 13th Eurographics
workshop on Rendering, pages 15–24, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[104] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and
T. Ertl. Level-Of-Detail Volume Rendering via 3D Textures. In
Proceedings of IEEE Symposium on Volume Visualization, pages
7–13, 2000.

[105] Manfred Weiler, Rüdiger Westermann, Chuck Hansen, Kurt Zim-
merman, and Thomas Ertl. Level–of–detail volume rendering via
3d textures. In Proceedings IEEE Volume Visualization and Graph-
ics Symposium 2000, pages 7–13. ACM Press, 2000.

[106] Rüdiger Westermann. A multiresolution framework for volume
rendering. In 1994 Symposium on Volume Visualization, October
1994.

[107] G. Wetekam, D. Staneker, U. Kanus, and M. Wand. A hard-
ware architecture for multi-resolution volume rendering. In Pro-
ceedings ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware, pages 45–51, New York, NY, USA, 2005. ACM Press.

154 Course : Advanced Illumination Techniques for GPU Volume Raycasting

[108] Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface
generation. ACM Transactions on Graphics, 11:201–227, 1992.

[109] Lance Williams. Casting curved shadows on curved surfaces.
In SIGGRAPH ’78: Proceedings of the 5th annual conference
on Computer graphics and interactive techniques, pages 270–274.
ACM Press, 1978.

[110] C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-
weighted color interpolation for volume sampling. In Proceedings of
IEEE Symposium on Volume Visualization, pages 135–142, 1998.

[111] Chris Wyman, Steven Parker, Charles Hansen, and Peter Shirley.
Interactive display of isosurfaces with global illumination. IEEE
Transactions on Visualization and Computer Graphics, 12(2):186–
196, 2006.

[112] Boon-Lock Yeo and Bede Liu. Volume rendering of DCT-based
compressed 3d scalar data. IEEE Transactions on Visualization
and Computer Graphics, 1:29–43, March 1995.

[113] C. Zhang, D. Xue, and R. Crawfis. Light propagation for mixed
polygonal and volumetric data. In CGI ’05: Proceedings of the
Computer Graphics International 2005, pages 249–256, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[114] Caixia Zhang and Roger Crawfis. Shadows and soft shadows with
participating media using splatting. IEEE Transactions on Visu-
alization and Computer Graphics, 9(2):139–149, 2003.

