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Abstract. This paper investigates the use of Fractional Order Calculus (FOC) in conventional Model Reference
Adaptive Control (MRAC) systems. Two modifications to the conventional MRAC are presented, i.e., the use
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examples, benefits from the use of FOC are illustrated together with some remarks for further research.
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1. Introduction

Fractional calculus is a 300-years-old topic. The theory of fractional order derivative was
developed mainly in the 19th century. Recent books [4–6] provide a good source of references
on fractional calculus. However, applying fractional order calculus to dynamic systems control
is just a recent focus of interest [9, 13, 14, 16]. For pioneering work on this regard, we cite
[10, 14].

The model reference approach was developed by Whitaker and his colleagues around 1960
[11]. MRAC (Model Reference Adaptive Control) has become a standard part in textbooks
on adaptive control [1, 3]. The well known MIT rule for MRAC is to adjust or update the
unknown parameter using gradient information.

The major contribution of this paper is to introduce the fractional order calculus into the
MRAC in two ways: the use of fractional order parameter adjustment rule and the employment
of fractional order reference model. The objective of this paper is to show that FOC can be
used to extend many existing conventional results. Mainly via simulation results, benefits
from the use of FOC are illustrated together with some remarks for further research although
detailed theoretical analysis is left out in this paper.

This paper is organized as follows: in Section 2, the MRAC is briefly reviewed followed
by an introduction on fractional order operators and related dynamic systems in Section 3.
In Section 4 the use of fractional order calculus into MRAC via fractional order adjustment
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Figure 1. Basic principles of model reference adaptive system.

rule (Section 4.1) and fractional order reference model (Section 4.2) is presented together
with some illustrative simulation results. Section 5 concludes this paper with some remarks
on future research.

2. MRAC: A Brief Review

2.1. THE MRAC PROBLEM

The Model Reference Adaptive System (MRAS) is one of the main approaches to adaptive
control, in which the desired performance is expressed in terms of a reference model (a model
that describes the desired input-output properties of the closed-loop system) and the paramet-
ers of the controller are adjusted based on the error between the reference model output and
the system output. These basic principles are illustrated in Figure 1. As can be seen from
Figure 1, there are two loops: an inner loop which provides the ordinary control feedback, and
an outer loop which adjusts the parameters in the inner loop.

2.2. THE GRADIENT APPROACH

The gradient approach to model reference adaptive control is based on the assumption that
the parameters change more slowly than the other variables in the system. This assumption,
which admits a quasi-stationary treatment, is essential for the computation of the sensitivity
derivatives that are needed in the adaptation.

Let e denote the error between the system output, y, and the reference output, ym. Let θ
denote the parameters to be updated. By using the criterion

J (θ) = 1

2
e2, (1)

the adjustment rule for changing the parameters in the direction of the negative gradient of J
is that

dθ

dt
= −γ

∂J

∂θ
= −γ e

∂e

∂θ
. (2)

If it is assumed that the parameters change much more slowly than the other variables in the
system, the derivative ∂e/∂θ , that is, the sensitivity derivative of the system, can be evaluated
under the assumption that θ is constant.
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There are many variants about the MIT rules for the parameter adjustment. For example,
the sign-sign algorithm is widely used in communication systems [1]; the PI-adjustment rule
is used in [8]. In this paper, we will introduce a new variant of the MIT rules for the parameter
adjustment by using the fractional order calculus. In addition, we shall extend the reference
model to the fractional order. The fundamental of this paper is the fractional order calculus
and the related notion about the fractional order dynamic systems, which will be very briefly
introduced in the next section.

3. Fractional Order Operators and Fractional Order Control Systems

In this section, for the purpose of self-containing, a very brief introduction on fractional order
operators and related dynamic systems is presented.

3.1. FRACTIONAL ORDER OPERATORS

Fractional calculus is a generalization of integration and differentiation to non-integer (frac-
tional) order fundamental operator aDα

t , where a and t are the limits and α, (α ∈ R) the order
of the operation. The two definitions used for the general fractional integro-differential are the
Grünwald–Letnikov (GL) definition and the Riemann–Liouville (RL) definition [5, 6]. The
GL definition is that

aDα
t f (t) = lim

h→0
h−α

[t−a/h]∑
j=0

(−1)j
(
α

j

)
f (t − jh), (3)

where [·] means the integer part while the RL definition

aDα
t f (t) = 1

�(n − α)

dn

dtn

t∫
a

f (τ)

(t − τ)α−n+1
dτ, (4)

for (n − 1 < r < n) and where �(·) is the Euler’s gamma function.
For convenience, Laplace domain notion is usually used to describe the fractional integro-

differential operation [6]. The Laplace transform of the RL fractional derivative/integral (4)
under zero initial conditions for order α, (0 < α < 1) is given by [5]

L{aD±α
t f (t); s} = s±αF (s). (5)

3.2. FRACTIONAL ORDER CONTROL SYSTEMS

In theory, the control systems can include both the fractional order dynamic system to be
controlled and the fractional order controller. A fractional order plant to be controlled can be
described by a typical n-term linear FODE in time domain

an Dβn
t y(t) + · · · + a1 Dβ1

t y(t) + a0 Dβ0
t y(t) = 0, (6)

where ak (k = 0, 1, . . . , n) are constant coefficients of the FODE; βk (k = 0, 1, 2, . . . , n) are
real numbers. Without loss of generality, assume that βn > βn−1 > . . . > β1 > β0 ≥ 0.
Consider a control function which acts on the FODE system (6) as follows:

an Dβn
t y(t) + · · · + a1 Dβ1

t y(t) + a0 Dβ0
t y(t) = u(t). (7)
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Figure 2. PID-controller: from points to plane.

By Laplace transform, we can get a fractional transfer function

Gp(s) = Y (s)

U(s)
= 1

ansβn + · · · + a1sβ1 + a0sβ0
. (8)

In general, a fractional order dynamic system can be represented by a transfer function of the
form:

Gp(s) = Y (s)

U(s)
= bms

αm + · · · + b1s
α1 + b0s

α0

ansβn + · · · + a1sβ1 + a0sβ0
. (9)

However, in control practice, more common is to consider the fractional order controller.
This is due to the fact that the plant model may have already been obtained as an integer order
model in classical sense. In most cases, our objective is to apply the Fractional Order Control
(FOC) to enhance the system control performance. Taking the conventional PID controller as
an example, its fractional order version, PIλDµ controller, was studied in time domain in [13]
and in frequency domain in [12]. The time domain formula is that

u(t) = Kpe(t)+ Ti D−λ
t e(t)+ Td Dµ

t e(t) (D(∗)
t ≡0 D(∗)

t ). (10)

It can be expected that PIλDµ controller (10) may enhance the systems control performance
due to more tuning knobs introduced, which is intuitively illustrated by Figure 2.

In what follows, we shall present a motivative example on a simple fractional order control-
ler for a double integrator plant H(s) = A/s2 where A is the open-loop plant gain. Suppose
a fractional order controller of the form D(s) = sα , 0 < α < 1 is to be used. The open-loop
transfer function of the overall controlled system will be of the form:

Fo(s) = D(s)G(s) = A

s2−α ,

which is in fact the form of the Bode’s ideal transfer function [6]. It has the following charac-
teristics:

(a) Open loop:

1. The Bode amplitude plot has constant slope of −(2 − α).
2. The crossover frequency depends only on A.
3. The phase curve is a horizontal line at −(2 − α)(π/2).
4. The Nyquist curve is a straight line through the origin with argument −(2−α)(π/2).
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(b) Closed loop with unity feedback:

1. The transfer function has the form

Fc(s) = A

s2−α + A
. (11)

2. The gain margin is infinite.
3. The phase margin is constant,

/m = π

(
1 − 2 − α

2

)
.

4. The step response has the expression (see [6, 2]):

y(t) = At2−α E2−α,2−α+1
(−At2−α) ,

where E2−α,2−α+1(−At2−α) is the Mittag–Leffler function in two parameters. Assum-
ing A ∈ R

+, such a step response exhibits an overshoot independent of parameter A
and dependent only on the parameter α, the fractional order.

Clearly, from the above discussions, it is a very desirable property that the overshoot is
independent of parameter A (related to load in vehicle suspension system) and dependent
only on the fractional order α. This has been explored by Oustaloup in terms of iso-damping
[15].

4. Using Fractional Order Calculus in MRAC Scheme

In this section, the fractional order calculus is introduced into MRAC scheme in two ways.
One is the use of fractional derivatives for the MIT adjustment rules and the other one is the
use of fractional order reference models. The modified MRAC schemes are explained with
some simulation illustrations.

4.1. FRACTIONAL ORDER ADJUSTMENT RULE

4.1.1. The New Adjustment Rule
As can be observed in Equation (2), the rate of change of the parameters depends solely on the
adaptation gain, γ . Taking into account the properties of the fractional differential operator,
it is possible to make the rate of change depending on both the adaptation gain, γ , and the
derivative order, α, by using the adjustment rule

dαθ

dαt
= −γ

∂J

∂θ
= −γ e

∂e

∂θ
, (12)

where α is a real number denoting the fractional order derivative. In other words, the above
parameter updating rule can be expressed as follows:

θ = −γ Iα
[
∂J

∂θ

]
= −γ Iα

[
e
∂e

∂θ

]
; I α ≡ D−α. (13)
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For example, consider the first order SISO system to be controlled:

dy

dt
+ ay = bu, (14)

where y is the output, u is the input and the system parameters a and b are unknown constants
or unknown slowly time-varying. Assume that the corresponding reference model is given by

dym
dt

+ amym = bmuc, (15)

where uc is the reference input signal for the reference model, ym is the output of the reference
model and am and bm are known constants. Perfect model-following can be achieved with the
controller defined by

u(t) = θ1uc(t)− θ2y(t), (16)

where

θ1 = bm

b
; θ2 = am − a

b
. (17)

From Equations (14) and (16), assuming that a + bθ1 ≈ am, and taking into account that b
can be absorbed in γ , the equations for updating the controller parameters can be designed as
(see, e.g., [1]),

dαθ1

dtα
= −γ

(
1

p + am

)
uce, (18)

dαθ2

dtα
= γ

(
1

p + am

)
ye, (19)

where p = d/dt , and γ is the adaptation gain, a small positive real number. Equivalently, in
frequency domain, (18) and (19) can be written as

θ1 = − γ

sα

(
1

s + am

)
uce, (20)

θ2 = γ

sα

(
1

s + am

)
ye. (21)

Clearly, the conventional MRAC [1] is the case when α = 1.
A block diagram for the above MRAC scheme for adjusting the unknown parameters θ1

and θ2 is shown in Figure 3.
In Figure 4, simulation results for a = 1, b = 0.5, am = bm = 2, γ = 3 are presented. Two

cases are considered for α = 1 and α = 1.25. As can be observed from Figure 4, under the
same conditions, compared to the case when α = 1, the updating of the unknown parameters
is faster when α = 1.25. The benefit due to the use of a slightly higher order of the derivatives
is clearly demonstrated in Figure 4.
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Figure 3. Block diagram of a simple MRAC scheme.

Figure 4. Simulation results for fractional order MRAC.

Figure 5. A simple MRAC scheme for feedforward gain adjustment.
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4.1.2. Stability Considerations
Equation (2), usually known as MIT rule, performs well if the adaptation gain is small. The
allowable value depends on both the magnitude of the reference signal, uc, and the process
gain. So, if not properly handled, the MIT rule may give an unstable closed-loop system.

As an example, consider the MRAS scheme in Figure 5 in which the problem is to adjust
a feedforward gain, θ, to the value θ0 [1]. Consider the transfer function of the system

G(s) = 1

s2 + a1s + a2
. (22)

The MIT rule gives

dθ

dt
= −γ eym, (23)

where

e = G(s) (θ − θ0) uc. (24)

The governing differential equation for the overall adaptive system is

d3y

dt3
+ a1

d2y

dt2
+ a2

dy

dt
+ γ ucymy = θ

duc
dt

+ γ ucy
2
m. (25)

Some insight into the behavior of the system can be obtained by assuming that adaptation
mechanism is connected when the equilibrium is reached. That is, when uc = u0

c = ym = y0
m,

the time-varying differential equation (25) is transformed into a differential equation with
constant coefficients that describes an LTI system with its characteristic equation given by

s3 + a1s
2 + a2s + γ u0

cy
0
m = 0. (26)

It is easy to test the stability condition by using the Routh test which yields

a1a2 > γ (u0
c)

2. (27)

So, if the adaptation gain γ or the reference signal uc are sufficiently large, the system may
become unstable.

As an illustrative simulation example, let a1 = a2 = θ0 = 1 and γ = 0.1. For reference
signal amplitude uc = 0.1, 1 and 3.5, the results are shown in Figure 6. As can be observed
from Figure 6, when

(
u0
c

)2
> 10, the system becomes unstable.

Here we adopt an alternative adjustment rule using the FOC as follows:

dαθ

dtα
= −γ eym, 0 < α < 1. (28)

With the flexibility in selecting both the derivative order and the adaptation gain, one can
expect an enlarged range of reference signal magnitude with which the system is stable.

For example, with γ = 0.1 and α = 0.75 the simulation results shown in Figure 7
demonstrate clearly that for uc = 0.1 and uc = 1, the behavior of the adaptive system is
similar to the conventional case when α = 1 shown in Figure 6. However, with α = 0.75, the
overall adaptive system is still stable even when uc = 5.
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Figure 6. Unstable behavior in conventional MRAC with respect to the magnitude of reference input signal.

Figure 7. Improved stability behavior of MRAC with respect to the magnitude of reference input signal using
FOC.

To obtain some insight into the above beneficial fact, it is noted that for different choices
of the design parameter-pair (γ, α) in the operator γ /sα in order to achieve similar transient
performances on the adjustment rate, the induced phase response depends only on α. This
could be a desired behavior that the conventional MRAC cannot have.

4.2. FRACTIONAL REFERENCE MODEL

Now, we will introduce another modification to MRAC problem by introducing fractional
order system as the reference model. In the simplest MRAC problems, the usual reference
models are FIRs or the second order dynamic systems. Clearly, the set of candidates of the
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Figure 8. The effect of using fractional order reference model in MRAC.

reference models can be enlarged by using fractional order systems. In addition, transient
response of MRAC systems can be improved. This is illustrated by a simulation example.

Consider a system described by the transfer function

G(s) = 1

s + 1
. (29)

The adaptive scheme shown in Figure 5 is used to adjust the feedforward gain in order to track
the reference model output

ym = 1

s0.25 + 1
uc. (30)

With α = 1 in the parameter adjusting rule (28), it would be very difficult, if not im-
possible, to track the reference output even after a significant time interval. However, when a
fractional order reference model is used, it is an easy task if we choose α ∈ (0, 1).

Again, as an illustrative simulation example, in Figure 8 the results using the pairs (γ1, α1)

= (0.2, 1) and (γ2, α2) = (15, 0.25) are shown. We can observe a quite large transient for
(γ1, α1) = (0.2, 1) as shown in the top subplot of Figure 8. However, when we choose
(γ2, α2) = (15, 0.25), i.e., a fractional order reference model is used, the tracking performance
is almost perfect as shown in the bottom subplot of Figure 8. Note that in the latter case, the
adjustment gain γ can be chosen as large as 15!

5. Concluding Remarks

In this paper, we have presented two ideas to extend the conventional Model Reference Adapt-
ive Control (MRAC) by using fractional order parameter adjustment rule and the employment
of fractional order reference model. Through examples, benefits from the use of FOC are
illustrated.

Concluding this paper, we offer the following brief remarks regarding the further research:
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− The stability bound for γ and α.
− The optimal design of the fractional order α.
− The stability analysis in frequency domain.
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