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Abstract—The literature on queueing systems with finite
buffers addresses mostly asymptotic performance metrics on
an aggregate flow, and/or generally relies on a convenient, but
provably inaccurate, approximation of the loss probability by
the overflow probability in an infinite size buffer. This paper
addresses non-asymptotic per-flow metrics in a multi-flow queue-
ing system with finite buffer and FIFO scheduling. The analysis
dispenses with the above approximation, and lends itself to
several interesting insights on the impact of finite buffers on per-
flow metrics. Counterintuitively, the per-flow delay distribution
is not monotonous in the buffer size, and such an effect is
especially visible in high burstiness regimes. Another observation
is that buffer dimensioning becomes insensitive to the type of SLA
constraint, e.g., fixed violation probability on either loss or delay,
in high multiplexing regimes. In the particular case of aggregate
scheduling, the results on the aggregate input flow significantly
improve upon existing results by capturing the manifestation of

bufferless multiplexing in regimes with many flows.

I. INTRODUCTION

Buffer memory is an important component in core routers.

Its main role is to absorb traffic fluctuations, especially during

periods of high bursts, thus preventing packet loss and domino

effects like packet retransmissions, high delays, etc. Buffer

overprovisioning, however, has recently become a topic of

technical debate [20] and of concern regarding its detrimental

impact on congestion control mechanisms [1]. In effect, there

is a need for a deep understanding of sizing buffer memories,

e.g., to reduce unnecessarily high costs from over-provisioning

buffer memories.

The problem of sizing buffer memory can be represented

with a queueing model with finite buffer. Unlike queues with

infinite buffers which have been extensively analyzed using

large deviation techniques (see Chapter 4 in [16]), queues with

finite buffers are much less understood. In fact, one of the key

metrics of interest in queues with buffers of size K , i.e., the

loss probability (denoted by P loss
K , a.k.a. the cell loss ratio) is

often mapped to the virtual overflow probability (denoted by

P∞
K ) of exceeding a threshold K in an infinite buffer queue.

The direct, and very convenient approximation

P loss
K ≈ P∞

K

is generally very inaccurate. Several correction terms, e.g.,
1
u
P∞
K [22], 1−u

u
P∞
K [4],

(1−u)P∞

K

1−uP∞

K

[10], or
P loss

0

P∞

0
P∞
K [12],

where u is the utilization factor, were shown to be ac-

curate in some cases. Other improved approximation for

P loss
K have been proposed for multiplexed On-Off [2],

Markov-modulated [19], and generally stationary and ergodic

sources [13], [14] in many sources asymptotic regimes by

simultaneously scaling the number of sources, the service

capacity, and the buffer sizes.

The loss calculation problem in data networks is closely

related to the problem of dimensioning telephone networks in

which “buffers”, with the physical interpretation of circuits,

are to be dimensioned according to some target blocking

probability for incoming calls. The classical Erlang blocking

probability exact formula for Poisson arrivals and general call

holding times, at a single link, has been extensively general-

ized to account for multi-rate(class) systems, loss networks,

dynamic routing, etc. (see [24] for a recent review). The

blocking probability and the loss probability P loss
K have been

related through the notion of effective bandwidth in [15].

While P loss
K is well characterized for Poisson traffic arrivals,

the case of more general arrivals is mostly restricted to

aggregate results in asymptotic regimes; per-flow results are

available for static priority (SP) [9] and GPS in [3]. Aggregate

delay can be obtained from buffer overflow probabilities in the

FIFO case [15]. The per-flow delay distributions in finite buffer

queues are obtained asymptotically for GPS [17] and SP [18].

To fill the apparent lack of non-asymptotic per-flow delay

results in queues with finite buffers, and for broad classes of

arrivals, this paper makes the following contributions:

• analyzes a multi-flow queue with finite buffer, FIFO

scheduling, and Markov modulated arrivals.

• provides bounds on the per-flow, and in particular also

on the aggregate, distributions of loss probability and

delay. This aspect is particularly important for service

differentiation or, conversely, for buffer dimensioning

subject to per-flow delay/loss constraints.

• derives results in non-asymptotic regimes, i.e., both the

buffer size and the number of sources can be arbitrarily

set. Moreover, the obtained results are expressed in terms

of upper bounds, and do not rely on convenient technical

assumptions or approximations.

The obtained results are in closed-form and explicit up to

the computation of an infimum operator. In this way, the results

are applicable to the practical problem of buffer dimensioning

for delay-sensitive applications. Through a numerical study

of the obtained results, this paper provides several interesting

insights. For instance, increasing the buffer size does not



Fig. 1: Two flows at a constant-rate link with finite buffer

necessarily lead to a delay decrease, and that is due to

the interplay between delay due to losses (unbounded by

convention) and queueing (more exactly, fewer losses com-

pensates for increasing queueing delay). Moreover, numerical

results indicate that buffer provisioning is insensitive to the

type of constraint (on loss and delay) in high multiplexing

regimes. An interesting consequence is that the problem of

buffer provisioning subject to per-flow delay constraints can

be reduced to the much simpler problem of buffer provisioning

under loss constraints.

The rest of the paper is organized as follows. The next sec-

tion describes the system model. Sec. III derives upper bounds

on the aggregate and per-flow loss probabilities. Sec. IV

derives per-flow delay bounds by using the results on loss.

These results are numerically illustrated in Sec. V. Finally,

Sec. VI concludes the paper.

II. SYSTEM MODEL

The time model is discrete with events (e.g., traffic arrivals)

occurring at time instants t = 0, 1, 2, . . . For some arrival

process, the instantaneous arrivals at time t is denoted by a(t),
and the total arrivals during (s, t] is denoted by A(s, t). Note
that a(t) = A(t− 1, t) and denote A(t) = A(0, t).

We consider the queueing scenario depicted in Fig. 1. A

through (arrival) flow A0 and a cross flow Ac share a FIFO

link with capacity C and a buffer with size K . To define

the arrival processes, in great generality, we use the bounding

approach of the Stochastic Network Calculus [6], [11]. For

some generic arrival process A(t) (standing for both A0(t)
and Ac(t)), we consider a model with a statistical sample

path envelope G and bounding function ε(σ), satisfying for

all t, σ ≥ 0

Pr
{

max
s≤t

(

A(s, t)− G(t− s;σ)
)

≥ 0
}

≤ ε(σ) . (1)

Such an envelope can be constructed for the broad class

of Exponentially Bounded Burstiness (EBB) traffic arrivals

[23]. An arrival process A is said to be EBB with parameters

(M,ρ, α), and is represented by A ∼ (M,ρ, α), if for all

0 ≤ s ≤ t and σ ≥ 0

Pr{A(s, t) ≥ ρ(t− s) + σ} ≤ Me−ασ . (2)

Indeed, if A ∼ (M,ρ, α), then for any γ > 0 (see [11], The-

orem 3.13)

G(t;σ) = (ρ+ γ)t+ σ; ε(σ) =
Me−ασ

1− e−αγ
(3)

is a statistical sample path envelope satisfying Eq. (1).

The performance metric of interest is the per-flow delay,

in particular of A0; auxiliary and helpful metrics are the total

backlog and loss processes (i.e., of the aggregate A0+Ac). To

define these processes, suppose that A is some generic arrival

process at a node (link + buffer) and D is the corresponding

departure process. The backlog at some time is the total

number of stored units in the buffer due to insufficient link

capacity. In turn, the delay of a traffic unit from A is defined

as the time difference between the arrival and departure of that

particular unit. If the unit is lost, due to buffer overflow, then

the delay is infinite by convention.

Clearly, no losses occur in a node with unlimited buffer

capacity. This assumption considerably simplifies the backlog

and delay analysis, since the backlog B(t) and virtual delay

W (t) processes, at some time t, can be simply expressed as

B(t) = A(t)−D(t) (4)

and

W (t) = inf{s ≥ 0 | A(t) ≤ D(t+ s)} . (5)

Moreover, the network calculus provides backlog and delay

bounds for various scheduling algorithms. The following delay

bound is helpful in this paper:

Theorem 1 (Per-flow delay for FIFO and infinite buffer [5]):

Consider the queueing scenario from Fig. 1 with the two

flows being served in FIFO order, and assume that K = ∞.

Denote Atot = A0 + Ac and assume that it has a statistical

sample path envelope Gtot with bounding function εtot, as in

Eq. (1). Then the delay process W0(t) of the through flow

satisfies for all t ≥ 0

Pr{W0(t) > d(σ)} ≤ εtot(σ) ,

where d(σ) = inf{s | ∀τ ≥ 0 : C(τ + s) > Gtot(τ ;σ)}.

If the buffer size is finite, however, then the expressions for

B(t) and W (t) from Eqs. (4)-(5) get more compounded since

an inherent loss process must be accounted for. Our approach

to analyze the delay process, in which we are particularly

interested in, will be to separate the loss process from the

rest. The delay of the loss process is unbounded, whereas the

delay of the rest of the arrival process can be bounded with

Theorem 1; Section IV will elaborate on this approach.

III. LOSS PROBABILITY

In this section we provide upper bounds on the loss proba-

bility in a finite buffer system; such bounds will be used for

the main per-flow delay analysis. We first treat the aggregate

loss and then the per-flow loss.



A. Aggregate loss probability

Consider the queueing scenario from Fig. 1 at the aggregate

level, i.e., we are interested in the loss probability for the

aggregate A = A0 + Ac. Assume that A is EBB with A ∼
(M,ρ, α). To analyze the corresponding loss process L(t), we
need the backlog process B(t) defined recursively as

B(t) = min
(

[B(t− 1) + a(t)− C]+,K
)

∀t ≥ 1 ,

with the initial conditionB(0) = 0. Cruz and Liu [8] converted
this recursion into the non-recursive expression

B(t) = min
0≤u≤t

(

max
u≤s≤t

(

A(s, t)− C(t− s),

A(u, t)− C(t− u) +K
))

. (6)

Since L(t) = [B(t − 1) + a(t) − C − K]+, a non-recursive

expression for L(t) immediately follows from Eq. (6) [8]

L(t) = min
0≤u<t

(

max
u≤s<t

(

[A(s, t)− C(t− s)−K]+,

A(u, t)− C(t− u)
))

. (7)

Next we use these deterministic expressions for B(t) and

L(t) to derive loss and backlog bounds probabilities. For some

fixed 0 ≤ u ≤ t, define j = t − u, x = Me−α(C−ρ), and

y = e−αK . Then, from Eq. (7), for ℓ ≥ 0

Pr{L(t) ≥ ℓ}

≤ min
1≤j<t

Pr
{

max
t−j≤s<t

(

A(s, t)− C(t− s)−K,

A(t− j, t)− Cj
)

≥ ℓ
}

(8)

≤ min
1≤j<t

(

Pr{A(t− j, t) ≥ Cj + ℓ}

+

t−1
∑

s=t−j+1

Pr{A(s, t) ≥ C(t− s) +K + ℓ}
)

(9)

≤ e−αℓ min
(

x, min
1<j<t

(xj + xj−1y + . . .+ xy)
)

. (10)

In Eq. (8) we used P (X ∩ Y ) ≤ min(P (X), P (Y )) for any

events X and Y , and in Eq. (9) we used Boole’s inequality.

In the last line we used the EBB definition of A.

If x + y > 1, then the optimal choice of j in Eq. (9) is

j = 1; otherwise, j = t− 1. Then, from Eq. (10), we have

Pr{L(t) ≥ ℓ} ≤ Me−αℓe−α(C−ρ)X(α,K) , (11)

where

X(α,K) = min
(

1,
e−αK

1− e−α(C−ρ)

)

. (12)

We point out that Eq. (11) can be recovered using the analysis

from [21], and only partially recovered using the analysis

from [8] with X(α,K) = e−αK

1−e−α(C−ρ) (i.e., the second term

in the minimum from Eq. (12)). Our bound thus improves

upon the corresponding bound obtained from [8] by implicitly

capturing the loss probability in a bufferless regime, i.e., for

the values of K for which the minimum in Eq. (12) evaluates

to 1. The improvement can be quite sharp in multiplexing

scenarios, and is of practical interest as it manifests itself for

small buffer sizes.

The loss probability from Eq. (10) lends itself to an upper

bound on the average loss per time unit, i.e.,

E[L(t)] =
∞
∑

ℓ=1

Pr{L(t) ≥ ℓ}

≤
e−α

1− e−α
Me−α(C−ρ)X(α,K) . (13)

This bound further lends itself to a bound on the loss proba-

bility P loss
K , i.e.,

P loss
K ≤

E[L(t)]

ρav
, (14)

where ρav denotes the average rate of arrivals.

A useful result for later is a bound on the backlog process

B(t). Following the same argument to obtain Eq. (11) from

Eq. (7), but working directly on Eq. (6), we get for all b ≥ 0

Pr{B(t) ≥ b} ≤ Me−α(b−K)e−α(C−ρ)X(α,K) . (15)

B. Per-flow loss probability

Now we consider the queueing scenario from Fig. 1 at the

per-flow level, and derive an upper bound on the per-flow (i.e.,

A0) loss probability P loss
K,0 . A trivial bound can be obtained by

first computing the average loss E[Ltot(t)] for the aggregate

A0 + Ac as in Eq. (13). Then, considering the losses of the

aggregate flow as an upper bound for the losses of the through

flow A0, we get

P loss
K,0 ≤

E[Ltot(t)]

ρav0
, (16)

where ρav0 is A0’s average rate. This bound, however, is

conceivably loose because of the worst-case assumption on

the through flow’s losses.

In the following we derive tighter per-flow loss probability

bounds than the one from Eq. (16), by carefully accounting

for per-flow losses and properties of FIFO scheduling. We

distinguish two cases: a general case which dispenses with

any statistical independence assumptions on the flows, and a

second case which considers such additional assumptions.

1) General case (no statistical independence assumptions):

Consider the scenario depicted in Fig. 1. Both the through

and cross flows are EBB with parameters A0 ∼ (M0, ρ0, α0)
and Ac ∼ (Mc, ρc, αc). The aggregate Atot = Ac+A0 is also

EBB with parameters Atot ∼ (Mtot, ρ0+ρc, αtot) [23], where

Mtot = M0 +Mc, αtot =
α0αc

α0 + αc

.

We now make the technical observation that a necessary

condition to have at least ℓ losses of the through flow at time

slot t is that the total loss and the through flow arrivals in that

time slot are both larger than ℓ. This joint condition can be

formally expressed as

{L0(t) ≥ ℓ} ⊂

(

⋂ {a0(t) ≥ ℓ}
{Ltot(t) ≥ ℓ}

)

. (17)



Applying the inequality P (X ∩ Y ) ≤ min (P (X), P (Y )) for
some events X and Y , Eq. (17) yields:

Pr{L0(t) ≥ ℓ}

≤ min
(

Pr{a0(t) ≥ ℓ},Pr{Ltot(t) ≥ ℓ}
)}

(18)

≤

{

Mtote
−αtot(ℓ+C−ρc−ρ0)X(αtot,K) if ℓ < ℓcr

M0e
−α0(ℓ−ρ0) if ℓ ≥ ℓcr

.

(19)

In the last line we used the EBB definition of the through flow

along with Eq. (11), and we also computed the minimum from

Eq. (18). ℓcr is given as the value of ℓ for which the two terms

in Eq. (19) are equal, i.e.,

ℓcr =
log(We−α0ρ0)− log(M0)

αtot − α0
,

where

W = Mtote
−αtot(C−ρc−ρ0)X(αtot,K) .

Using the obtained bound on the distribution of L0(t), an
upper bound on the through flow’s average instantaneous loss

(per time unit) is

E [L0(t)] =

∞
∑

ℓ=1

Pr{L0(t) ≥ ℓ}

≤
∑

1≤ℓ<ℓcr

We−αtotℓ +
∑

ℓ≥ℓcr

M0e
−α0(ℓ−ρ0)

=
e−αtot − e−αtotℓcr

1− e−αtot
W +

M0e
−α0(ℓcr−ρ0)

1− e−α0
.

(20)

Finally, an upper bound on the per-flow loss probability is

P loss
K,0 ≤

E[L0(t)]

ρav0
. (21)

2) Additional statistical independence assumptions: Con-

cretely, here we assume that A0(t) and Ac(t) are statistically

independent, and that they also have independent increments.

These additional assumptions conceivably lend themselves to

an improvement on the loss probability bound from Eq. (21).

Indeed, using the independence of A0(t) and Ac(t), a

tighter EBB envelope can be first obtained for the aggregate

Atot(t) [23]. Denote for convenience by the subscript min

(max) as the subscript of the flow with the smaller (larger)

α value. For instance, if α0 < αc, then αmin = α0 and

Mmin = M0. Then, Atot = A0 +Ac is EBB with parameters

Atot ∼ (Mtot, ρ0+ ρc, αtot), where Mtot and αtot are chosen

such that or all σ ≥ 0

Mmax+2Mmin+σMminMmaxαmin ≤ Mtote
(αmin−αtot)σ .

Next, let us observe that the total traffic that can be served

without loss at slot t is [K−B(t−1)]++C. Suppose that the

cross flow arrivals ac(t) leave only k units available for the

through flow to be served without loss. Then, in order to have

at least ℓ through flow losses at time slot t, the through flow

arrivals a(t) must exceed ℓ + k. Varying k over all possible

values provides a necessary condition for the through flow loss

event:

{L0(t) ≥ ℓ} ⊂
(

∃0 ≤ k ≤ K + C :
⋂ {a0(t) ≥ ℓ+ k}

{Btot(t− 1) + ac(t) ≥ Z}

)

(22)

where Z(k) = K+C−k. Since a0(t) and ac(t)+Btot(t−1)
are independent events, according to the enforced statistical

independence assumptions, Eq. (22) implies that

Pr{L0(t) ≥ ℓ} ≤ max
0≤k≤K+C

(

Pr{a0(t) ≥ ℓ+ k}×

Pr{Btot(t− 1) + ac(t) ≥ Z}
)

. (23)

Moreover, since ac(t) and Btot(t − 1) are also independent

events, we get the bound

Pr{Btot(t− 1) + ac(t) ≥ Z(k)} ≤ U(k) , (24)

by applying Lemma 6.1 in [11] and Eq. (15), where

U(k) = 1− Y (K)
(

1 +
αtote

−αc(Z(k)−ρc)

αtot − αc

−

(

1 +
αtotMc

αc − αtot

)

e−αtot(Z(k)−ρc)
)

.

and Y (K) = Mtote
−αtot(C−ρc−ρ0−K)X(αtot,K). Inserting

Eq. (24) into Eq. (23), and using the EBB definition of the

through flow, we further get

Pr{L0(t) ≥ ℓ} ≤ max
0≤k≤K+C

(

Pr{a0(t) ≥ ℓ+ k}U(k)
)

≤ e−α0ℓ max
0≤k≤K+C

(

e−α0(k−ρ0)U(k)
)

.

Integrating the tail bounds yields

E [L0(t)] =
∑

ℓ≥1

Pr{L0(t) ≥ ℓ}

≤
e−α0

1− e−α0
max

0≤k≤K+C

(

e−α0(k−ρ0)U(k)
)

. (25)

Inserting Eq. (25) into Eq. (21) finally gives an upper bound

on the through flow loss probability; note that all these bounds

are invariant to the time t, and thus hold in steady-state.

IV. PER-FLOW DELAY ANALYSIS

In this section we reconsider the queueing scenario from

Fig. 1 and derive the main result from this paper, i.e., per-

flow (i.e., for A0) bounds on the delay distribution.

The delay at a finite buffer link must account for the delay of

data losses (infinite by convention) and the queueing delay of

the rest of the data. Denoting the through flow’s delay process

by W0(t), the total probability law yields for all d0 ≥ 0

Pr{W0(t) > d0} ≤ Pr{W0(t) = ∞}+ Pr{W0(t) < ∞}×

Pr{W0(t) > d0 | W0(t) < ∞} , (26)

where we used Pr{W0(t) > d0 | W0(t) = ∞} = 1 in the first

line. Note also that Pr{W0(t) = ∞} = P loss
K,0 , for which an



Fig. 2: Modelling the link with finite buffer from Fig. 1 by
concatenating a clipper and a link with unlimited buffer

upper bound is available from the previous section. The second

probability can be bounded with Pr{W0(t) < ∞} ≤ 1.
In turn, to compute an upper bound on the third probability

in Eq. (26), we use clippers. These are bufferless network

elements which take as input an arrival process, drop the

data units which violate a predefined (deterministic) envelope

function, and output a process conforming to the envelope. In

other words, the output D(t) of a clipper associated with an

envelope function G(t) satisfies for all t ≥ 0

max
0≤s≤t

(D(s, t)−G(t− s)) ≤ 0 .

In our case, the FIFO link with capacity C and finite buffer

K can be modelled by concatenating a clipper with envelope

function G(t) = Ct + K and a link with capacity C and

infinite buffer, as depicted in Fig. 2 (see [7]). We denote the

clipper’s output, i.e., the total (aggregate) traffic which is not

lost, by A′
tot(t). Moreover, according to the definition of a

clipper,

A′
tot(s, t) ≤ C(t− s) +K ∀0 ≤ s ≤ t . (27)

Recall that if A0 ∼ (M0, ρ0, α0) and Ac ∼ (Mc, ρc, αc) are
EBB, then their aggregateAtot = A0+Ac is EBB as well with

Atot ∼ (Mtot, ρ0+ ρc, αtot). Following the construction from

Eq. (3), and accounting for Eq. (27), we obtain the following

sample path envelope for A′
tot for any γ > 0

G′
tot(t;σ) = min ((ρ0 + ρc + γ)t+ σ,Ct +K)

with bounding function ε(σ) = Mtote
−αtotσ

1−e−αtotγ
. We can now

apply Theorem 1 and get the following probabilistic delay

bound for A′
tot(t)

d0(σ) =
min(σ,K)

C
, (28)

in the sense that

Pr{W0(t) > d0(σ) | W0(t) < ∞} ≤
Mtote

−αtotσ

1− e−αtotγ

for any 0 < γ ≤ C − ρ0 − ρc. Finally, by inserting the above

result into Eq. (26), we get that d(σ) from Eq. (28) is also an

upper bound on the per-flow delay in a finite buffer queueing

system in the sense that

Pr{W0(t) > d0(σ)} ≤ P loss
K,0 +

Mtote
−αtotσ

1− e−αtotγ
. (29)

We point out that P loss
K,0 can be bounded according to under-

lying statistical independence assumptions.

V. NUMERICAL EXAMPLES

In this section we illustrate numerically several derived

results so far. We consider discrete-time Markov modulated

On-Off (MMOO) sources, which can be represented with a

two state discrete and homogenous Markov chain. At each

time slot, an MMOO source is either in state ‘0’ during which

the source is idle, or in state ‘1’ during which the source

generates traffic at constant rate P . The transition probabilities

for 0 → 1 and 1 → 0 are 1− p00 and 1− p11, respectively.

If A is an aggregate of n statistically independent MMOO

sources, then A is EBB with parameters A ∼ (1, nEb(α), α)
for any α > 0 [6], where

Eb(α) ≤
1

α
log(p00 + p11e

αP

+
√

(p00 + p11eαP )2 − 4(p00 + p11 − 1)eαP ) .

(30)

To account for different levels of burstiness, we consider two

types of MMOO sources with parameters displayed in Table I.

The average rates of a source is ρav = P (1−p00)
2−p00−p11

, and is set

to 0.15 Mbps for both types. An indicator of the burstiness

of an MMOO source is the average cycle time T to return to

the same state in the underlying Markov chain; this is given

by T = 2−p00−p11

(1−p00)(1−p11)
. We set T = 100 ms for Type 1 and

T = 500 ms for Type 2, which means that a Type 2 source is

more bursty than a Type 1 source.

P (Mbps) ρav(Mbps) T (ms) p00 p11

Type 1 1.5 0.15 100 0.989 0.9

Type 2 1.5 0.15 500 0.9978 0.9802

TABLE I: Traffic parameters.

To fit the two flows in the queueing scenario from Fig. 1,

we assume that there are N MMOO sources at the link,

out of which N0 form the through flow A0, and the rest

Nc = N −N0 form the cross flow Ac. We do not make any

statistical assumption between the through and cross flows, and

thus we use Eqs. (20) and (21) to compute loss probabilities,

and Eq. (29) to compute the probabilistic delay bounds in all

examples. Note, however, that the MMOO sources formingN0

and Nc are locally independent for the EBB characterization

of A to hold.

The discrete time unit is set to 1 ms. The link capacity is

C = Nρav

utot
Mbps, where utot is the total link utilization; this

is fixed to 90% regardless of N and the traffic types. In all

examples we numerically optimize over the parameter α, for

both through and cross flows, which stems from Eq. (30) and

appears in all the bounds.

A. The improvement on the aggregate loss probability

The first example concerns with the improvement of our

aggregate loss probability bound from Eq. (14) relative to 1)

the corresponding bound obtained by applying the analysis

from [8], and 2) the overflow probability approximation
P∞

K

utot
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Fig. 3: Comparison of three aggregate loss probability bounds. We
fix the loss probability P loss

= 0.1, the utilization = 90%, and
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from [22]. Fig. 3 illustrates the required buffer size, as a func-

tion of the number of sources N , to satisfy a loss probability

P loss
K = 0.1. There are two sets of curves corresponding to

the two types of sources from Table I. En passant, we observe

that the accuracy of
P∞

K

utot
, compared to the two other bounds,

degrades drastically as N increases. This was also observed

and justified analytically in [13], which showed in particular

that P∞
K scales differently (in N ) than the loss probability.

More interestingly, we remark the sharp improvement of

our bound relative to the one from [8], especially for very

bursty traffic (i.e., Type 2). The difference stems from the fact

that, in addition to the finite buffer overflow in [8], our bound

also captures the loss probability of bufferless multiplexing.

As N increases, bufferless multiplexing eventually satisfies the

loss probability constraint. The transition point can be visually

perceived in Fig. 3 where our bound sharply drops to zero;

formally, the transition occurs for the smallest buffer size K

for which X(α,K) = 1 in Eq. (14).

B. The impact of finite buffer on per-flow delays

Figs. 4 and 5 illustrate the difference between the per-

flow delay bounds computed with Eq. (29) (which accounts

for finite buffers) and with Theorem 1 (which assumes an

unlimited buffer capacity).

Each curve in the plots starts from a different buffer size;

note that, for values smaller than the starting point, P loss
K,0 in

Eq. (29) is larger than ε and thus the corresponding delay

bound associated with ε is unbounded. Once the buffer size

is large enough to guarantee a loss probability smaller than

ε, then the system can guarantee a probabilistic delay bound.

After that point, it is interesting to observe that the delay is

not monotonous in the buffer size. At the beginning, the delay

increases since the queueing delay has a smaller weight than

the (infinite) delay due to losses. In that case, increasing the

buffer size leads to accommodating more bursty traffic which

in turn increases the delay. As the buffer size increases, after

a threshold value, however, the delay due to losses starts to

play a lesser role (i.e., less and less traffic is dropped) and the

delay starts to decrease.

A further interesting observation is that the delay in a finite

buffer system can be smaller than the delay in an unlimited

buffer system. This is because large bursts may be dropped

at small buffer sizes; accordingly, high delays may be cut

especially for bursty arrivals, e.g., Type 2 sources. Moreover,

Figs. 4 and 5 suggest that depending on the buffer size,

estimating the delay using the infinite buffer approximation

can be misleading. For instance, in Fig. 5b with Nc = 10,
the inaccuracies are 27%, 22%, and 19%, respectively, for

ε = 10−1, ε = 10−2, and ε = 10−3; the corresponding curve

from Theorem 1 is not shown in the figure for the sake of

clarity.

Let us next more closely compare the delay bounds from

Figs. 4 and 5 in a finite versus infinite buffer size queue, by

focusing on the impact of the number of flows N and the

traffic mix.

• The impact of the number of flows N :

Increasing N is equivalent to increasing the capacity while

fixing the utilization. As shown in Fig. 4b, the difference

between the delay bound in an infinite buffer queue and that

of a finite buffer queue can be considerable for smaller values

of N , i.e., N = 300. However, as N increases, statistical

multiplexing kicks in and the difference decays. In other

words, the loss probability decays and the total delay in a finite

buffer system converges to the queuing delay in an unlimited

buffer system.

• The impact of traffic mix:

Traffic mix is the ratio between the number of through and

cross flows in the aggregate flow. We have included three

different traffic mixesNc = 1, Nc = 10, andN0 = 1 in Figs. 4
and 5. The cases N0 = 1 and Nc = 1 share the property that

they have the same statistical multiplexing gain. Thus, under

the unlimited buffer assumption, Theorem 1 yields identical

delay bounds for both cases. The case of Nc = 10 has the

largest required buffer size among the three traffic mixes since

it features the smallest multiplexing gain. We have not plotted

the corresponding delay bound for Nc = 10 for the sake of

clarity of the plots. Comparing all curves with identical ε in

Figs. 5a and 5b shows that the effect of traffic mixes varies

with the burstiness of the input traffic. When the through flow

is tiny (N0 = 1), and for Type 2 bursty traffic, smaller buffer

sizes lead to smaller delays (compared to those of Type 1
traffic). In particular, study this property for ε = 10−1. This is

happening because smaller buffer sizes cut the massive bursts

of the cross flow which increase the delay of the through flow.

Another important observation is that in both Figs. 5a and

5b, decreasing ε works in favor of Nc = 1 with respect to

N0 = 1. This is justified by noting that the corresponding

curves to larger ε have finite delay bounds for larger values

of buffer sizes; moreover, larger buffer size is equivalent to

accommodating larger burstiness, which is more beneficial to

the through flow when it has a larger share in the traffic mix.
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Fig. 4: The impact of considering finite buffers on per-flow delay computations; ε = 0.1, N = 300, 600, 900 with N0 +Nc = N , A0 is
either very tiny (when N0 = 1) or very large (when Nc = 1, 10), relative to the aggregate A0 + Ac, utilization = 90%, and the source
types from Table I (Type 1 (less bursty) in (a) and Type 2 (more bursty) in (b)); for Nc = 1, the infinite buffer approximation result (with
Theorem 1) is also shown.
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Fig. 5: The impact of considering finite buffers on per-flow delay computations; ε = 10−1, 10−2, 10−3, N = 300, N0 +Nc = N , A0 is
either very tiny (when N0 = 1) or very large (when Nc = 1, 10), relative to the aggregate A0 + Ac, utilization = 90%, and the source
types from Table I (Type 1 (less bursty) in (a) and Type 2 (more bursty) in (b)); for Nc = 1, the infinite buffer approximation result (with
Theorem 1) is also shown.

C. Buffer provisioning

Most of existing buffer provisioning results are based on

a loss constraint. In this paper, a buffer provisioning method

based on a delay constraint can be extracted from our delay

analysis. Fig. 6a compares two buffer provisioning approaches

with constraints on both delay and loss. We fix the violation

probability of both methods to ε and compute the minimum

buffer that satisfies the loss and delay constraints, separately.

The delay constraint in this example is set to be 1.01d0,
where d0 is the delay in an unlimited buffer queue (we based

this choice on the observations from Figs. 4 and 5 regarding

delays in finite vs. infinite buffers). Fig. 6a shows that at small

values of N , the required buffer for the delay constraint is

considerably larger than that of the loss constraint. However, as

N increases, both provisioning methods yield the same results,

which suggests that buffer provisioning is insensitive to the

type of constraint in high multiplexing regimes.

VI. CONCLUSION

In this paper we have derived non-asymptotic per-flow delay

bounds at a link with FIFO scheduling and finite buffer,

and for a broad class of arrival processes covering Markov

arrivals. The non-asymptotic aspect is particularly important

since the obtained results can be applied in scenarios with a

small to moderate number of flows and buffer sizes. Equally

importantly, since the obtained results are derived at the per-

flow level, they can be applied for service differentiation at
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Fig. 6: Comparison of buffer size provisioning methods based on through flow loss constraint (i.e., P loss
K,0 = ε) and delay constraint as a

function of total number of flows N = N0 +Nc, utilization=90%, and the source types from Table I (Type 1 (less bursty) in (a) and Type 2

(more bursty) in (b))

a FIFO link, in particular for buffer provisioning for delay

sensitive applications. Numerical illustrations revealed several

interesting insights related to the dependency of the per-flow

delay on the buffer size. Perhaps the most striking and counter-

intuitive observation is that per-flow delay is not monotonous

in the buffer size, as an effect of the interplay between

delays due to losses and queueing. Another observation is

that the type of probabilistic constraint (loss or delay) appears

not to matter for the buffer provisioning problem in high

multiplexing regimes, whereby per-flow delay constraints can

be replaced by conceivably easier to handle loss constraints.
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