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This paper introduces three new heuristics for the Euclidean Traveling Salesman Problem 

(TSP). One of the heuristics called Initialization Heuristics (IH)  is applicable only to the 

Euclidean TSP, while other two heuristics RemoveSharp and LocalOpt can be applied to all 

forms of symmetric and asymmetric TSPs. A Hybrid Genetic Algorithm (HGA)  has been 

designed by combining a variant of an already existing crossover operator with these 

heuristics. One of the heuristics is for generating initial population, other two are applied to the 

offspring either obtained by crossover or by shuffling. The last two heuristics applied to 

offspring are greedy in nature, hence to prevent getting struck up at local optimum we have 

included proper amount of randomness by using the shuffling operator. We studied the effect 

of these heuristics by conducting experiments, which show that the results obtained by our 

Hybrid GA outperformed the results obtained by existing GA in certain problems. These 

heuristics matched “Best Known” solutions in most cases. In others it produced results with 

one% tolerance, when compared with those of nature-inspired algorithms such as Simulated 

Annealing (SA), Evolutionary Computation (EP) and Ant Colony System (ACS). 

Implementation of these heuristics is simple. Our convergence rate is found to be high and the 

optimal solution is obtained in a fewer number of iterations. 
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1. Introduction 
 
The Euclidean Traveling Salesman Problem (TSP) involves finding the shortest 
Hamiltonian Path or Cycle in a graph of N cities. The distance between the two cities is 
just the Euclidean distance between them. This problem is a classic example of Non 
Polynomial-hard problem and is therefore impossible to search for an optimal solution 
for realistic sizes of N. This motivated many researchers to develop heuristic search 
methods for searching the solution space. The heuristics are widely accepted even though 
they produce sub-optimal solutions, because they converge in polynomial time. The TSP 
is probably the most-studied optimization problem of all time. Applications of TSP 
include Circuit board drilling applications with up to 17,000 cities4, X-ray 



crystallography instances with up to 14,000 cities4 and instances arising in VLSI 
fabrication have been reported with as many as 1.2 million cities4. Moreover, 5 hours on 
a multi-million dollar computer for an optimal solution may not be cost-effective if one 
can get sub optimal solutions with acceptable error tolerance in seconds on a Personal 
Computer. Thus there remains a need for heuristics4. 

 
The theoretical foundations of genetic algorithms assume that there exists some 

(ideally binary) representation of a problem that can be manipulated by genetic operators. 
Each encoding is referred to as a “genotype”. When the problem can be represented as an 
n-bit string, it can be shown that genetic algorithms sample hyperplanes in an n-
dimensional hypercube. When problem specific information exists it is advantageous to 
consider a Hybrid GA. They combine local search heuristics with crossover operators. 
Genetic algorithms may be crossed with various problem-specific search techniques to 
form a hybrid algorithm that exploits the global perspective of the GA and the 
convergence of the problem-specific technique. Hybrid Genetic Algorithms is a 
population-based approach for heuristic search in optimization problems. They execute 
orders of magnitude faster than traditional Genetic Algorithms for some problem 
domains. 

 
This paper is organized as follows. In section 2 we describe the proposed Hybrid 

Genetic Algorithm (HGA) for solving the TSP. In section 3 the crossover algorithm used 
in the HGA is given. In section 4 the IH is explained. Section 5 introduces the 
RemoveSharp heuristic algorithm with an analysis of its time complexity. Section 6 
describes the LocalOpt algorithm and its time complexity is also analyzed. Section 7 is 
dedicated to the study of some characteristics of the Hybrid GA, this includes the study of 

• how the IH results in quicker convergence. 
• optimal size of the population to be used.  
• optimal probability of the shuffling operator. 
• optimal size for the NEARLIST (introduced in Section 5). 
• the parameter value for LocalOpt. 

               
Section 8 gives implementation details and provides an overview of results on a 

set of standard test problems. Comparisons of the results obtained using HGA with 
results by well-known algorithms like Ant Colony System, Evolutionary Computation, 
Genetic Algorithm and Simulated Annealing have been done. The results are also 
compared with 'Best Known' results available in the TSPLIB site3. In the final section, we 
conclude the paper with a summary of observations.             

 
2. The Hybrid Genetic Algorithm 
 
The Hybrid Genetic Algorithm is designed to use heuristics for Initialization of 
population and improvement of offspring produced by crossover. The 
InitializationHeuristics algorithm is used to initialize a part of the population; remaining 
part of the population will be initialized randomly. The offspring is obtained by crossover 
between two parents selected randomly. The tour improvement heuristics: RemoveSharp 
and LocalOpt are used to bring the offspring to a local minimum. If cost of the tour of the 
offspring thus obtained is less than the cost of the tour of any one of the parents then the 
parent with higher cost is removed from the population and the offspring is added to the 



population. If the cost of the tour of the offspring is greater than that of both of its parent 
then it is discarded. For shuffling, a random number is generated within one and if it is 
less than the specified probability of the shuffling operator, a tour is randomly selected 
and is removed from the population. Its sequence is randomized and then added to the 
population. The algorithm works as below: 

 
Step 1 :  

♦ Initialize a part of population using InitializationHeuristics algorithm 
♦ Initialize remaining part of population randomly 

Step 2 :  
♦ Apply RemoveSharp algorithm to all tours in the initial population 
♦ Apply LocalOpt algorithm to all tours in the initial population 

Step 3 : 
♦ Select two parents randomly   
♦ Apply Crossover between parents and generate an offspring 
♦ Apply RemoveSharp algorithm to offspring 
♦ Apply LocalOpt algorithm to offspring 
♦ If TourCost(offspring) < TourCost(any one of the parents) then replace the 

weaker parent by the offspring 
Step 4 : 

Shuffle any one randomly selected tour from population      
Step 5 : 

Repeat steps 3 and 4 until end of specified number of iterations. 
 

3. Crossover 
 

The crossover operator that is used here is a slight variant of the crossover operator 
devised by Darrell Whitley2. The crossover operator uses an “edge map” to construct an 
offspring which inherits as much information as possible from the parent structures. This 
edge map stores information about all the connections that lead into and out of a city. 
Since the distance is same between any two cities, each city will have atleast two and 
atmost four edge associations (two from each parent). 
 
3.1  The crossover algorithm 
 
Step 1 : 

Choose the initial city from one of the two parent tours. (It can be chosen 
randomly or according to criteria outlined in step 4). This is the “current city”. 
Step 2 : 

Remove all occurrences of the “current city ” from the left-hand side of the edge 
map.  
Step 3 :  

If the “current city” has entries in its edgelist go to step 4; otherwise, go to step 
5. 
Step 4 : 
 Determine which city in the edgelist of the “current city”, has shortest edge with the 
“current city”. The city with the shortest edge is included in the tour. This city becomes 
the “current city”. Ties are broken randomly. Go to step 2. 



Step 5 : 
 If there are no remaining unvisited cities, then STOP. Otherwise, randomly choose 
an unvisited city and go to step 2. 

The difference between the Crossover algorithm of Darrell Whitley and this is 
only in the fourth step of the algorithm. He selected the city with least entries in its 
edgelist as the next city, while we choose the city nearest to the current city. This 
introduces greedy heuristic in the crossover operator too.     
 
4. Initialization Heuristics  

 
The InitializationHeuristics (IH) algorithm can be applied only to Euclidean TSP. It 
initializes the population depending upon a greedy algorithm. The greedy algorithm 
arranges the cities depending on their x and y coordinates.  

 
The tours are represented in linked-lists. First an initial list is obtained in the 

input order (Input List). The linked-list that is obtained after applying the initialization 
heuristics is the “Output List”. During the process of applying the initialization heuristics 
all the cities in the “Input List” will be moved one by one to the “Output List”. 
 
4.1 The initialization heuristics algorithm 
 
Step 1 : 
 Select four cities, first one with largest x-coordinate value, second one with 
least x-coordinate value, third one with largest y-coordinate and fourth one with least y-
coordinate value. Move them from the “Input List” to the “Output List”. 
Step 2 :  

From among the possible sequences of the four cities find the sequence of 
minimum cost and change the sequence of four cities in the “Output List” to the 
minimum sequence.  
Step 3 :  

Randomize the elements in the “Input List”.  
 

Step 4 : 
Remove the head element of the “Input List” and insert it into the “Output List” 

at the position where the increase in the cost of the tour is minimum. Suppose M is the 
cost of the tour before insertion and N be the cost of the tour after insertion. The position 
of insertion is selected such that N-M is minimum. 
Step 5 :  

Repeat Step 4 until all elements in the “Input List” are moved to the “Output 
List”.  
 

Depending on the sorting criteria in Step 3 of the above algorithm various 
results will be obtained. RemoveSharp and LocalOpt heuristics are applied to the 
offspring obtained by this method and added to the initial population. Experiments show 
that IH results in quicker convergence. The best offspring obtained by the IH varies from 
‘Best Known’ solution to at most 15% error. In case of Berlin52 (a 52-city problem) and 
Eil51 (a 51-city problem) the optimum result was obtained during initialization itself. 
This shows the robustness of the initialization heuristics.  



 
4.2  An example 
 
Figure 1(a) shows a 10-city problem. Figure 1(b) shows the Boundary Tour formed from 
four extreme cities. Figure 1(c), 1(d), 1(e) & 1(f) shows the four possible tours that can 
be formed when city 'E' is moved to the “Output List”. It is obvious from the figures that 
the Tour in Figure 1(e) will result in minimum increase in the cost of the tour in the 
“Output List”. Similarly other cities will be moved one by one to the “Output List”.     

 

 
Fig. 1.  IH applied to a 10-city Problem 

 
  

5. The RemoveSharp Algorithm 
 

The RemoveSharp algorithm removes sharp increase in the tour cost due to a city, which 
is badly positioned. The algorithm works as below: 
 
Step 1: A list (NEARLIST) containing the nearest m cities to a selected city is created. 
Step 2: RemoveSharp removes the selected city from the tour and forms a tour with N-1      

cities.  
Step 3: Now the selected city is reinserted in the tour either before or after any one of the    

cities in NEARLIST and the cost of the new tour length is calculated for each 
case. 

Step 4: The sequence, which produces the least cost, is selected.  
Step 5: The above steps are repeated for each city in the tour.   
 
 



 
 
5.1  An example 

                        
              Fig. 2. A tour with a badly positioned city               Fig. 3. The tour after RemoveSharp is applied 
 
 
In Figure 2 the city 5 is in between the cities 3 and 7, while it is obvious that the nearest 
cities to it are city 0, 1, 6 and 8. RemoveSharp will move city 5 between the cities 0 and 
1, resulting in a decrease in the tour cost as shown in Figure 3. 

 
5.2  Time complexity of RemoveSharp 

 
As discussed in Step 2 of the algorithm, when a city is removed during RemoveSharp 
there will be a decrease in the tour cost.  Suppose the sequence of the cities be 

 
                               - - -P - C - N- - - - - - - - AP - A - AN - - -   
 

C is the city to be removed to perform RemoveSharp. Let P be the city previous to the 
city C and N the city next to it. RemoveSharp will move the city C to a new position, if 
the increase in the tour length after moving it to the new position is less than the decrease 
in cost caused due to removing it from the position between P and N. If city A is in the 
near list then RemoveSharp will check possibility of moving to the locations before A i.e. 
AP and after A i.e. AN.  

 
The decrease in tour length will be: 
 
               DECREASE   =   Dist(P,C)   +   Dist(C,N)   -   Dist(P,N) 
 

If C is moved to the location previous to A  i.e. AP , increase in tour cost will be: 
 

               INCREASEP    =   Dist(AP,C)   +   Dist(C,A)   -   Dist(AP,A) 
 

If C is moved the location next to A i.e. AN increase in tour cost will be: 
 

              INCREASEN    =   Dist(A,C)   +   Dist(C,AN)   -   Dist(A,AN) 
 



When RemoveSharp is applied, DECREASE is calculated once, while 
INCREASEN and INCREASEP are calculated for every city in the NEARLIST. Time 
complexities for DECREASE, INCREASEN and INCREASEP are same and let it be x. 
INCREASEN and INCREASEP should be compared with DECREASE for each city in 
the NEARLIST. Let y be the time taken for one comparison. All these calculations need to 
be done for every city in the tour. 

 
Time Complexity for RemoveSharp   =   n * ( x + 2m * x + 2m * y ) 
 
Here, m the size of NERALIST, x the time taken by for DECREASE, 

INCREASEN and INCREASEP  and y  the time taken for comparison are constants. 
Therefore, 

 
                   Time Complexity for RemoveSharp  ~=  O(n)  
 

6.  The LocalOpt Algorithm 
 

The LocalOpt algorithm will select q consecutive cities (Sp+0 , Sp+1 , . . . . . , Sp+q-1) from 
the tour and it arranges cities Sp+1 , Sp+2  , . . . . , Sp+q-2 in such a way that the distance is 
minimum between the cities Sp+0 and  Sp+q-1 by searching all possible arrangements. The 
value of p varies from 0 to n-q, where n is the number of cities. 

 
6.1  An example 
 In Figure 4 it is quite clear that the distance between the cities 6 and 1 can be reduced if 
some rearrangements are made in the sequence of the cities between them. LocalOpt will 
make all possible rearrangements and replace them to the sequence as shown in Figure 5. 

             
                                     Fig. 4. A bad tour                   Fig. 5. The tour after LocalOpt is applied 

 
 
 
 
 
         

 



6.2  Time complexity of LocalOpt 
 

The time complexity of LocalOpt varies with value of q, the number of consecutive cities 
taken for LocalOpt at a time. When q cities in a sequence are considered then all possible 
combinations of q -2 cities need to be calculated. There will be (q-2)! combinations, in 
each case q-1 additions need to be done to evaluate the cost of the sequence and one 
comparison to check whether the sequence is minimum or not. These need to be done for 
n consecutive sequence of q cities starting from each city in the tour. Therefore, 

 
Time Complexity of LocalOpt = n * (((q-2)!* (q-1) ) additions  +  (q-2)! comparisons ) 

 
    As n alone is a variable, 

 
Time Complexity ~= O(n)  (provided q is small (<=6)) 

                       Fig. 6. Time taken by RemoveSharp and LocalOpt 
 

 
The time taken by RemoveSharp and LocalOpt are plotted for 

50,75,100,150,200,500 and 800 city problems. 
 
The plot shows that the time taken by RemoveSharp and LocalOpt are linear in 

nature. This ensures that the heuristics are best suited for even problems of large size. 
 
7. Analysis of the Characteristics of The Hybrid GA 

 
The effects of various parameters and heuristics are analyzed by keeping the values of the 
other parameters to the best values. The best performance of HGA is found when the 
values of the parameters are set as below: 

RemoveSharp (m)  : 15   LocalOpt(q)  : 6 
Probability of  
Shuffling operator  : 0.02   Population size : 50 
Initialization  : IH used 

Time taken for RemoveSharp and LocalOpt 
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7.1 Effects of InitializationHeuristics  

 
                         Fig. 7. Tour lengths obtained by HGA for Eil101 and d198 with and without IH 

 
                           Table 1.  Tour lengths obtained by HGA for Eil101 and d198 with and without IH 
 

            Best Integer Tour Length after Condition Problem 
Name  

1000 Trials  2000 
Trials 

3000 
Trials  

4000 
Trials  

5000 
Trials  

Eil101 652 652 651 648 645 HGA Without 
IH 

d198 16834 16834 16834 16834 16795 

Eil101 643 643 640 640 640 HGA With IH 

d198 16701 16357 16357 16357 16322 

      
  

The experiments show that the use of IH for initialization results in faster convergence 
and better tour lengths. 
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7.2 Effect of population size 

 
           Fig. 8. Tour lengths obtained by HGA for Eil101 and d198 with a population size of 30, 50, 75 and 100 
 
 
 
        Table 2. Tour lengths obtained by HGA for Eil101 and d198 with a population size of 30, 50, 75 and 100 
 

            Best Integer Tour Length after Population Size Problem 
Name  1000 

Trials  
2000 
Trials 

3000 
Trials  

4000 
Trials  

5000 
Trials  

Eil101 652 651 647 647 647 30 
 d198 16857 16509 16509 16381 16381 

Eil101 643 643 640 640 640 50 

d198 16701 16357 16357 16357 16357 

Eil101 658 652 643 643 643 75 
 d198 16857 16791 16791 16791 16791 

Eil101 659 656 656 648 648 100 
 d198 16857 16857 16479 16373 16373 

 
The experiments show that the optimal value for the size of the population is 50, values 
less than and greater than 50 result in greater tour length. 
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7.3  Effect of shuffling operator  
  
    Table 3. Tour lengths obtained by HGA for Eil101 and d198 with shuffling probability from 0% to 20% 
 

                               Best Integer Tour Length  After Shuffling 
Operator 
probability 

Problem 
Name  

1000 
Trials  

2000 Trials 3000 Trials  4000 Trials  5000 Trials  

Eil101 665 660 658 652 648 0.00% 
 d198 16,791 16,791 16,509 16,509 16,509 

Eil101 643 643 643 640 640 2.00% 
d198 16,701 16,357 16,357 16,357 16,357 
Eil101 658 652 652 652 636 5.00% 

d198 16,509 16,509 16,509 16,509 16,509 

Eil101 651 646 646 646 646 10.00% 

d198 16,509 16,509 16,509 16,509 16,509 
Eil101 663 655 655 652 652 20.00% 

d198 16,480 16,480 16,476 16,476 16,476 

  
 

                    Fig. 9. Tour lengths obtained by for Eil101 and d198 with shuffling probability from 0% to 20% 
 
The optimal value for the shuffling operator probability is found to be 0.02 as the values 
less than and greater than this do not contribute to the convergence. 
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7.3 Effect of Remove Sharp  

                            Fig. 10. Tour lengths by HGA for Eil101 and d198 with size of NEARLIST from 0 to 25 
 
 
        Table 4. Tour lengths obtained by HGA for Eil101 and d198 with size of NEARLIST from 0 to 25 
 

Best Integer Tour Length  After Size of 
NEARLIST 

Problem 
Name 1000 

Trails 
2000 
Trials 

3000 Trails 4000 
Trails 

5000 Trials 

Eil101 700 692 692 692 692 0 
 d198 19,539 18,688 18,688 18,688 18,688 

Eil101 670 648 647 647 647 2 

d198 17,059 17,059 17,059 17,059 17,059 
Eil101 650 647 647 647 645 5 
d198 17,260 17,260 17,260 16,846 16,846 

Eil101 658 653 643 642 642 10 
d198 16,977 16.696 16,599 16,599 16,599 

Eil101 658 653 643 642 642 15 
d198 16,701 16,357 16,357 16,357 16,357 

Eil101 664 660 645 645 643 25 
d198 16,857 16,425 16,425 16,425 16,399 

 
The optimal size of NEARLIST is found to be 15 as sizes greater than 15 result in less 
improvement but takes a large amount of time. 
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7.4 Effect of LocalOpt 
 

Table 5. Tour lengths by HGA for Eil101 and d198 with and without LocalOpt 

           Best Integer Tour Length  after Condition Problem Name  

1000 
Trails  

2000 
Trials 

3000 
Trails  

4000 Trails  5000 
Trials  

Eil101  663  648  646 645  645  HGA without 
LocalOpt 

d198 16708 16695  16404 16404 16404 

Eil101 658 653 643 642  642 HGA with 
LocalOpt (q=6) 

d198 16701 16357 16357 16357 16357 

 

             Fig. 11. Tour lengths by HGA for Eil101 and d198 with and without LocalOpt 
 

Table VI shows that the effect of LocalOpt is not very high. LocalOpt is not tried with 
values of q>6 as the increase in time complexity is combinatorial. 
 
8. Results and Discussion  

 
Experimental runs of the RemoveSharp algorithm have shown that m = 20 (m is the 
number of cities in the NEARLIST) results in slight improvement in convergence rate 
when compared to m=15. But, it takes considerably more amount of time. Hence we 
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chose m = 15. As shown by the Time Complexity Equation of LocalOpt, the time 
complexity of LocalOpt varies combinatorial with the variation of q. We chose q = 6. The 
initial population was kept at 50, as 75 and 100 decreased convergence rate and values 
less than 50 resulted in a local optimum. Of the 50 initial population 22 are obtained 
using IH (with different sorting criteria) and the rest are randomly generated. The 
probability of the shuffling operator was kept at 0.02 as higher shuffling rate will worsen 
the convergence rate. The algorithm has been implemented on an IBM CYRIX 233Mhz 
station with Windows 98 operating system. The program, written in Visual C++ 6.0 
comprises approximately 3,000 lines of source code. The experimental results have been 
achieved with the machine running its normal daily loads in addition to our algorithm. 
 
            Table 6. Comparison of HGA with other heuristics on geometric instances of the symmetric tsp.  

 
Problem 
name 

ACS HGA EP GA SA Optimum 

Eil50 
50-city 
problem 

425 
(427.96) 
[1830] 

426 
(428.871) 
[538] 
{for Eil51} 

426 
(427.86) 
[100000] 

428 
(N/A) 
[25000] 

443 
(N/A) 
[68512] 

425 
(ACS) 

Eil75 
75-city 
problem 

535 
(542.37) 
[3,480] 

538 
(544.36) 
[6919] 
{for Eil76} 

542 
(N/A) 
[325000] 

545 
(N/A) 
[80000] 

580 
(N/A) 
[173250] 

535 
(ACS) 

KroA100 
100-city 
problem 
 

21282 
(21285.44) 
[4820] 

21282 
(21285.44) 
[851] 

N/A 
(N/A) 
[N/A] 

21761 
(N/A) 
[N/A] 

N/A 
(N/A) 
[N/A] 

21282 
(ACS & 
HGA) 

d198 
198–city 
problem  
 

15888 
(N/A) 
[585000] 

15849 
(15876.38) 
[37367] 

N/A 
(N/A) 
[N/A] 

N/A 
(N/A) 
[N/A] 

N/A 
(N/A) 
[N/A] 

15849 
(HGA) 

 
We report the best integer tour length, the best real tour length (in parenthesis) and the number of 

trials required to find the best integer tour length (in square brackets). The optimal length listed in the last 
column is available only for integer tour lengths. N/A means "Not Available". 

 

 
     Fig. 12. Best Integer Tour Length obtained by ACS, HGA, EP, GA and SA for Eil75 
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         Fig. 13. Best Integer Tour Length obtained by ACS, HGA, EP, GA and SA for Eil50 
 
 

                 Fig. 14. Best Integer Tour Length obtained by ACS and HGA for KroA100 
 
 

                    Fig. 15. Best Integer Tour Length obtained by ACS and HGA for d198 
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                                   Fig. 16. Number of trials taken by different algorithms 
 

Table 6 reports the results on the geometric instances. The heuristics with which we 
compare the Hybrid GA in this case are ACS, GA, EP, and SA. The difference between 
integer and real tour length is that in the first case distances are measured by integer 
numbers, while in the second case by floating point approximations of real numbers.  All 
the results for ACS, GA, EP and SA are from1. In TSPLIB only Eil51 and Eil76 are 
available which have an additional city to Eil50 and Eil75 respectively.   

 
Table 7. Comparison of results of HGA with Best Known results on geometric instances of the symmetric tsp  

 
Problem Name HGA  Best Known result Relative error  
Berlin52 7542 (7544.37) 7542  (7544.37) 0.00 % 

Att48 10,628 10,628 0.00 % 

Eil51 426  (428.87)* 426  (429.98) 0.00 % 
Eil76 538  (544.37)* 538  (545.39) 0.00 % 
Eil101 629  (640.975)* 629  (642.31) 0.00 % 
KroA100 21,282 21,282 0.00 % 
KroE100 22,068 22,068 0.00 % 
Rat99 1211 1211 0.00 % 
KroC100 20,749 20,749 0.00% 
KroB100 21,141 21,141 0.00% 
Bier127 118,282 118,282 0.00% 
KroD100 21,306 21,294 0.07% 
D198 15,788 15,780  0.05% 
kroA200 29,368 29,368 0.00% 

            *  New Best Results given by Hybrid GA  
               We report the best integer tour length and the best real tour length ( in parenthesis - if available). In the 
last column the relative error is given. 
 
 
            Table 7 shows that the new HGA performs comparable to other existing 
algorithms. In case of Eil51, Eil76 and Eil101 new best real length tours are also 
obtained. All the ‘Best Known’ results are from reference 1, reference 2, and reference 3. 
The Real Tour Lengths are obtained from the sequence of Optimal Results given in 
TSPLIB3.  

0

100 00 0

2 00 00 0

3 00 00 0

4 00 00 0

5 00 00 0

6 00 00 0

ACS HGA EP GA S A

Algorithm

No. of Trials taken by HGA Vs Other algorithms

Eil50 Eil75 K roA100 D198



 
8. Conclusion 
We find that the implementation of these three heuristics result in near optimal solutions 
in most of the cases and improvement in a few cases. These heuristics are simple, 
straightforward and easy to implement when compared to other algorithms. In 
investigating the parameters of the algorithm the following conclusions have been 
reached  

 
• The convergence rate is very fast when the IH is used for initialization when         

compared to random initialization. 
• Size of NEARLIST can be varied from 10 to 20 depending on the 

distribution of the cities. 
• An increase in the parameter q in LocalOpt results in a combinatorial 

increase in time complexity. The effect of it is very small on the 
convergence rate. 

 
The algorithm compares favorably with previous attempts to apply other 

heuristic algorithms like Ant Colony System, Genetic Algorithms, Evolutionary 
Programming, and Simulated Annealing. Nevertheless, competition on the TSP is very 
tough, and a combination of a constructive method (IH) which generates good starting 
solutions with local search (which takes these solutions to a local optimum) seems to be 
the best strategy1. We have shown that the IH is a very good constructive heuristic to 
provide such starting solutions and RemoveSharp & LocalOpt are very good local 
optimizers.       
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