
A HYBRID GENETIC ALGORITHM – A NEW APPROACH TO SOLVE

TRAVELING SALESMAN PROBLEM

G.ANDAL JAYALAKSHMI
Computer Science and Engineering Department, Thiagarajar College of Engineering, Madurai, Tamilnadu,

India
Email: andal_m@yahoo.com

 S.SATHIAMOORTHY
Computer Science and Engineering Department, Thiagarajar College of Engineering, Madurai, Tamilnadu,

India
Email: s.sathiamoorthy@sify.com

and
R.RAJARAM

Information Technology Department, Thiagarajar College of Engineering, Madurai, Tamilnadu, India
Email: andal_m@yahoo.com

This paper introduces three new heuristics for the Euclidean Traveling Salesman Problem

(TSP). One of the heuristics called Initialization Heuristics (IH) is applicable only to the

Euclidean TSP, while other two heuristics RemoveSharp and LocalOpt can be applied to all

forms of symmetric and asymmetric TSPs. A Hybrid Genetic Algorithm (HGA) has been

designed by combining a variant of an already existing crossover operator with these

heuristics. One of the heuristics is for generating initial population, other two are applied to the

offspring either obtained by crossover or by shuffling. The last two heuristics applied to

offspring are greedy in nature, hence to prevent getting struck up at local optimum we have

included proper amount of randomness by using the shuffling operator. We studied the effect

of these heuristics by conducting experiments, which show that the results obtained by our

Hybrid GA outperformed the results obtained by existing GA in certain problems. These

heuristics matched “Best Known” solutions in most cases. In others it produced results with

one% tolerance, when compared with those of nature-inspired algorithms such as Simulated

Annealing (SA), Evolutionary Computation (EP) and Ant Colony System (ACS).

Implementation of these heuristics is simple. Our convergence rate is found to be high and the

optimal solution is obtained in a fewer number of iterations.

Keywords: Initialization Heuristics; RemoveSharp; LocalOpt; Hybrid Genetic Algorithm

1. Introduction

The Euclidean Traveling Salesman Problem (TSP) involves finding the shortest
Hamiltonian Path or Cycle in a graph of N cities. The distance between the two cities is
just the Euclidean distance between them. This problem is a classic example of Non
Polynomial-hard problem and is therefore impossible to search for an optimal solution
for realistic sizes of N. This motivated many researchers to develop heuristic search
methods for searching the solution space. The heuristics are widely accepted even though
they produce sub-optimal solutions, because they converge in polynomial time. The TSP
is probably the most-studied optimization problem of all time. Applications of TSP
include Circuit board drilling applications with up to 17,000 cities4, X-ray

crystallography instances with up to 14,000 cities4 and instances arising in VLSI
fabrication have been reported with as many as 1.2 million cities4. Moreover, 5 hours on
a multi-million dollar computer for an optimal solution may not be cost-effective if one
can get sub optimal solutions with acceptable error tolerance in seconds on a Personal
Computer. Thus there remains a need for heuristics4.

The theoretical foundations of genetic algorithms assume that there exists some

(ideally binary) representation of a problem that can be manipulated by genetic operators.
Each encoding is referred to as a “genotype”. When the problem can be represented as an
n-bit string, it can be shown that genetic algorithms sample hyperplanes in an n-
dimensional hypercube. When problem specific information exists it is advantageous to
consider a Hybrid GA. They combine local search heuristics with crossover operators.
Genetic algorithms may be crossed with various problem-specific search techniques to
form a hybrid algorithm that exploits the global perspective of the GA and the
convergence of the problem-specific technique. Hybrid Genetic Algorithms is a
population-based approach for heuristic search in optimization problems. They execute
orders of magnitude faster than traditional Genetic Algorithms for some problem
domains.

This paper is organized as follows. In section 2 we describe the proposed Hybrid

Genetic Algorithm (HGA) for solving the TSP. In section 3 the crossover algorithm used
in the HGA is given. In section 4 the IH is explained. Section 5 introduces the
RemoveSharp heuristic algorithm with an analysis of its time complexity. Section 6
describes the LocalOpt algorithm and its time complexity is also analyzed. Section 7 is
dedicated to the study of some characteristics of the Hybrid GA, this includes the study of

• how the IH results in quicker convergence.
• optimal size of the population to be used.
• optimal probability of the shuffling operator.
• optimal size for the NEARLIST (introduced in Section 5).
• the parameter value for LocalOpt.

Section 8 gives implementation details and provides an overview of results on a

set of standard test problems. Comparisons of the results obtained using HGA with
results by well-known algorithms like Ant Colony System, Evolutionary Computation,
Genetic Algorithm and Simulated Annealing have been done. The results are also
compared with 'Best Known' results available in the TSPLIB site3. In the final section, we
conclude the paper with a summary of observations.

2. The Hybrid Genetic Algorithm

The Hybrid Genetic Algorithm is designed to use heuristics for Initialization of
population and improvement of offspring produced by crossover. The
InitializationHeuristics algorithm is used to initialize a part of the population; remaining
part of the population will be initialized randomly. The offspring is obtained by crossover
between two parents selected randomly. The tour improvement heuristics: RemoveSharp
and LocalOpt are used to bring the offspring to a local minimum. If cost of the tour of the
offspring thus obtained is less than the cost of the tour of any one of the parents then the
parent with higher cost is removed from the population and the offspring is added to the

population. If the cost of the tour of the offspring is greater than that of both of its parent
then it is discarded. For shuffling, a random number is generated within one and if it is
less than the specified probability of the shuffling operator, a tour is randomly selected
and is removed from the population. Its sequence is randomized and then added to the
population. The algorithm works as below:

Step 1 :

♦ Initialize a part of population using InitializationHeuristics algorithm
♦ Initialize remaining part of population randomly

Step 2 :
♦ Apply RemoveSharp algorithm to all tours in the initial population
♦ Apply LocalOpt algorithm to all tours in the initial population

Step 3 :
♦ Select two parents randomly
♦ Apply Crossover between parents and generate an offspring
♦ Apply RemoveSharp algorithm to offspring
♦ Apply LocalOpt algorithm to offspring
♦ If TourCost(offspring) < TourCost(any one of the parents) then replace the

weaker parent by the offspring
Step 4 :

Shuffle any one randomly selected tour from population
Step 5 :

Repeat steps 3 and 4 until end of specified number of iterations.

3. Crossover

The crossover operator that is used here is a slight variant of the crossover operator
devised by Darrell Whitley2. The crossover operator uses an “edge map” to construct an
offspring which inherits as much information as possible from the parent structures. This
edge map stores information about all the connections that lead into and out of a city.
Since the distance is same between any two cities, each city will have atleast two and
atmost four edge associations (two from each parent).

3.1 The crossover algorithm

Step 1 :

Choose the initial city from one of the two parent tours. (It can be chosen
randomly or according to criteria outlined in step 4). This is the “current city”.
Step 2 :

Remove all occurrences of the “current city ” from the left-hand side of the edge
map.
Step 3 :

If the “current city” has entries in its edgelist go to step 4; otherwise, go to step
5.
Step 4 :
 Determine which city in the edgelist of the “current city”, has shortest edge with the
“current city”. The city with the shortest edge is included in the tour. This city becomes
the “current city”. Ties are broken randomly. Go to step 2.

Step 5 :
 If there are no remaining unvisited cities, then STOP. Otherwise, randomly choose
an unvisited city and go to step 2.

The difference between the Crossover algorithm of Darrell Whitley and this is
only in the fourth step of the algorithm. He selected the city with least entries in its
edgelist as the next city, while we choose the city nearest to the current city. This
introduces greedy heuristic in the crossover operator too.

4. Initialization Heuristics

The InitializationHeuristics (IH) algorithm can be applied only to Euclidean TSP. It
initializes the population depending upon a greedy algorithm. The greedy algorithm
arranges the cities depending on their x and y coordinates.

The tours are represented in linked-lists. First an initial list is obtained in the

input order (Input List). The linked-list that is obtained after applying the initialization
heuristics is the “Output List”. During the process of applying the initialization heuristics
all the cities in the “Input List” will be moved one by one to the “Output List”.

4.1 The initialization heuristics algorithm

Step 1 :
 Select four cities, first one with largest x-coordinate value, second one with
least x-coordinate value, third one with largest y-coordinate and fourth one with least y-
coordinate value. Move them from the “Input List” to the “Output List”.
Step 2 :

From among the possible sequences of the four cities find the sequence of
minimum cost and change the sequence of four cities in the “Output List” to the
minimum sequence.
Step 3 :

Randomize the elements in the “Input List”.

Step 4 :
Remove the head element of the “Input List” and insert it into the “Output List”

at the position where the increase in the cost of the tour is minimum. Suppose M is the
cost of the tour before insertion and N be the cost of the tour after insertion. The position
of insertion is selected such that N-M is minimum.
Step 5 :

Repeat Step 4 until all elements in the “Input List” are moved to the “Output
List”.

Depending on the sorting criteria in Step 3 of the above algorithm various
results will be obtained. RemoveSharp and LocalOpt heuristics are applied to the
offspring obtained by this method and added to the initial population. Experiments show
that IH results in quicker convergence. The best offspring obtained by the IH varies from
‘Best Known’ solution to at most 15% error. In case of Berlin52 (a 52-city problem) and
Eil51 (a 51-city problem) the optimum result was obtained during initialization itself.
This shows the robustness of the initialization heuristics.

4.2 An example

Figure 1(a) shows a 10-city problem. Figure 1(b) shows the Boundary Tour formed from
four extreme cities. Figure 1(c), 1(d), 1(e) & 1(f) shows the four possible tours that can
be formed when city 'E' is moved to the “Output List”. It is obvious from the figures that
the Tour in Figure 1(e) will result in minimum increase in the cost of the tour in the
“Output List”. Similarly other cities will be moved one by one to the “Output List”.

Fig. 1. IH applied to a 10-city Problem

5. The RemoveSharp Algorithm

The RemoveSharp algorithm removes sharp increase in the tour cost due to a city, which
is badly positioned. The algorithm works as below:

Step 1: A list (NEARLIST) containing the nearest m cities to a selected city is created.
Step 2: RemoveSharp removes the selected city from the tour and forms a tour with N-1

cities.
Step 3: Now the selected city is reinserted in the tour either before or after any one of the

cities in NEARLIST and the cost of the new tour length is calculated for each
case.

Step 4: The sequence, which produces the least cost, is selected.
Step 5: The above steps are repeated for each city in the tour.

5.1 An example

 Fig. 2. A tour with a badly positioned city Fig. 3. The tour after RemoveSharp is applied

In Figure 2 the city 5 is in between the cities 3 and 7, while it is obvious that the nearest
cities to it are city 0, 1, 6 and 8. RemoveSharp will move city 5 between the cities 0 and
1, resulting in a decrease in the tour cost as shown in Figure 3.

5.2 Time complexity of RemoveSharp

As discussed in Step 2 of the algorithm, when a city is removed during RemoveSharp
there will be a decrease in the tour cost. Suppose the sequence of the cities be

 - - -P - C - N- - - - - - - - AP - A - AN - - -

C is the city to be removed to perform RemoveSharp. Let P be the city previous to the
city C and N the city next to it. RemoveSharp will move the city C to a new position, if
the increase in the tour length after moving it to the new position is less than the decrease
in cost caused due to removing it from the position between P and N. If city A is in the
near list then RemoveSharp will check possibility of moving to the locations before A i.e.
AP and after A i.e. AN.

The decrease in tour length will be:

 DECREASE = Dist(P,C) + Dist(C,N) - Dist(P,N)

If C is moved to the location previous to A i.e. AP , increase in tour cost will be:

 INCREASEP = Dist(AP,C) + Dist(C,A) - Dist(AP,A)

If C is moved the location next to A i.e. AN increase in tour cost will be:

 INCREASEN = Dist(A,C) + Dist(C,AN) - Dist(A,AN)

When RemoveSharp is applied, DECREASE is calculated once, while
INCREASEN and INCREASEP are calculated for every city in the NEARLIST. Time
complexities for DECREASE, INCREASEN and INCREASEP are same and let it be x.
INCREASEN and INCREASEP should be compared with DECREASE for each city in
the NEARLIST. Let y be the time taken for one comparison. All these calculations need to
be done for every city in the tour.

Time Complexity for RemoveSharp = n * (x + 2m * x + 2m * y)

Here, m the size of NERALIST, x the time taken by for DECREASE,

INCREASEN and INCREASEP and y the time taken for comparison are constants.
Therefore,

 Time Complexity for RemoveSharp ~= O(n)

6. The LocalOpt Algorithm

The LocalOpt algorithm will select q consecutive cities (Sp+0 , Sp+1 , , Sp+q-1) from
the tour and it arranges cities Sp+1 , Sp+2 , , Sp+q-2 in such a way that the distance is
minimum between the cities Sp+0 and Sp+q-1 by searching all possible arrangements. The
value of p varies from 0 to n-q, where n is the number of cities.

6.1 An example
 In Figure 4 it is quite clear that the distance between the cities 6 and 1 can be reduced if
some rearrangements are made in the sequence of the cities between them. LocalOpt will
make all possible rearrangements and replace them to the sequence as shown in Figure 5.

 Fig. 4. A bad tour Fig. 5. The tour after LocalOpt is applied

6.2 Time complexity of LocalOpt

The time complexity of LocalOpt varies with value of q, the number of consecutive cities
taken for LocalOpt at a time. When q cities in a sequence are considered then all possible
combinations of q -2 cities need to be calculated. There will be (q-2)! combinations, in
each case q-1 additions need to be done to evaluate the cost of the sequence and one
comparison to check whether the sequence is minimum or not. These need to be done for
n consecutive sequence of q cities starting from each city in the tour. Therefore,

Time Complexity of LocalOpt = n * (((q-2)!* (q-1)) additions + (q-2)! comparisons)

 As n alone is a variable,

Time Complexity ~= O(n) (provided q is small (<=6))

 Fig. 6. Time taken by RemoveSharp and LocalOpt

The time taken by RemoveSharp and LocalOpt are plotted for

50,75,100,150,200,500 and 800 city problems.

The plot shows that the time taken by RemoveSharp and LocalOpt are linear in

nature. This ensures that the heuristics are best suited for even problems of large size.

7. Analysis of the Characteristics of The Hybrid GA

The effects of various parameters and heuristics are analyzed by keeping the values of the
other parameters to the best values. The best performance of HGA is found when the
values of the parameters are set as below:

RemoveSharp (m) : 15 LocalOpt(q) : 6
Probability of
Shuffling operator : 0.02 Population size : 50
Initialization : IH used

Time taken for RemoveSharp and LocalOpt

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900

No. of Cities

T
im

e
(M

ic
ro

 S
ec

on
ds

)

Removesharp (m=15) LocalOpt (q=6)

7.1 Effects of InitializationHeuristics

 Fig. 7. Tour lengths obtained by HGA for Eil101 and d198 with and without IH

 Table 1. Tour lengths obtained by HGA for Eil101 and d198 with and without IH

 Best Integer Tour Length after Condition Problem
Name

1000 Trials 2000
Trials

3000
Trials

4000
Trials

5000
Trials

Eil101 652 652 651 648 645 HGA Without
IH

d198 16834 16834 16834 16834 16795

Eil101 643 643 640 640 640 HGA With IH

d198 16701 16357 16357 16357 16322

The experiments show that the use of IH for initialization results in faster convergence
and better tour lengths.

630

635

640

645

650

655

1000 2000 3000 4000

No. of Trials
T

ou
r

C
os

t

HGA w ith IH HGA w ithout IH

16,000

16,200

16,400

16,600

16,800

17,000

1000 2000 3000 4000

No. of Trials

T
ou

r
C

os
t

HGA w ith IH HGA w ithout IH

7.2 Effect of population size

 Fig. 8. Tour lengths obtained by HGA for Eil101 and d198 with a population size of 30, 50, 75 and 100

 Table 2. Tour lengths obtained by HGA for Eil101 and d198 with a population size of 30, 50, 75 and 100

 Best Integer Tour Length after Population Size Problem
Name 1000

Trials
2000
Trials

3000
Trials

4000
Trials

5000
Trials

Eil101 652 651 647 647 647 30
 d198 16857 16509 16509 16381 16381

Eil101 643 643 640 640 640 50

d198 16701 16357 16357 16357 16357

Eil101 658 652 643 643 643 75
 d198 16857 16791 16791 16791 16791

Eil101 659 656 656 648 648 100
 d198 16857 16857 16479 16373 16373

The experiments show that the optimal value for the size of the population is 50, values
less than and greater than 50 result in greater tour length.

630

640

650

660

670

1000 2000 3000 4000 5000

No. of Trials

T
ou

r
C

os
t

30 50 75 100

16,000
16,200
16,400
16,600
16,800
17,000

1000 2000 3000 4000 5000

No. of Trials

T
ou

r
C

os
t

30 50 75 100

7.3 Effect of shuffling operator

 Table 3. Tour lengths obtained by HGA for Eil101 and d198 with shuffling probability from 0% to 20%

 Best Integer Tour Length After Shuffling
Operator
probability

Problem
Name

1000
Trials

2000 Trials 3000 Trials 4000 Trials 5000 Trials

Eil101 665 660 658 652 648 0.00%
 d198 16,791 16,791 16,509 16,509 16,509

Eil101 643 643 643 640 640 2.00%
d198 16,701 16,357 16,357 16,357 16,357
Eil101 658 652 652 652 636 5.00%

d198 16,509 16,509 16,509 16,509 16,509

Eil101 651 646 646 646 646 10.00%

d198 16,509 16,509 16,509 16,509 16,509
Eil101 663 655 655 652 652 20.00%

d198 16,480 16,480 16,476 16,476 16,476

 Fig. 9. Tour lengths obtained by for Eil101 and d198 with shuffling probability from 0% to 20%

The optimal value for the shuffling operator probability is found to be 0.02 as the values
less than and greater than this do not contribute to the convergence.

620
630
640
650
660
670

1000 2000 3000 4000 5000

No. of Trials

T
ou

r
C

os
t

0 0.02 0.05 1 2

16,000
16,200
16,400
16,600
16,800
17,000

1000 2000 3000 4000 5000

No. of Trials

T
ou

r
C

os
t

0 0.02 0.05 1 2

7.3 Effect of Remove Sharp

 Fig. 10. Tour lengths by HGA for Eil101 and d198 with size of NEARLIST from 0 to 25

 Table 4. Tour lengths obtained by HGA for Eil101 and d198 with size of NEARLIST from 0 to 25

Best Integer Tour Length After Size of
NEARLIST

Problem
Name 1000

Trails
2000
Trials

3000 Trails 4000
Trails

5000 Trials

Eil101 700 692 692 692 692 0
 d198 19,539 18,688 18,688 18,688 18,688

Eil101 670 648 647 647 647 2

d198 17,059 17,059 17,059 17,059 17,059
Eil101 650 647 647 647 645 5
d198 17,260 17,260 17,260 16,846 16,846

Eil101 658 653 643 642 642 10
d198 16,977 16.696 16,599 16,599 16,599

Eil101 658 653 643 642 642 15
d198 16,701 16,357 16,357 16,357 16,357

Eil101 664 660 645 645 643 25
d198 16,857 16,425 16,425 16,425 16,399

The optimal size of NEARLIST is found to be 15 as sizes greater than 15 result in less
improvement but takes a large amount of time.

6 40

6 50

6 60

6 70

6 80

6 90

7 00

1 00 0 2 00 0 3 00 0 4 00 0 5 00 0

No . o f Tr ia ls

T
ou

r
C

os
t

0 2 5 1 0 1 5 2 0

1 4 , 0 0 0

1 5 , 0 0 0

1 6 , 0 0 0

1 7 , 0 0 0

1 8 , 0 0 0

1 9 , 0 0 0

2 0 , 0 0 0

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

N o . o f T r ia ls

T
ou

r
C

os
t

0 2 5 1 0 1 5 2 0

7.4 Effect of LocalOpt

Table 5. Tour lengths by HGA for Eil101 and d198 with and without LocalOpt

 Best Integer Tour Length after Condition Problem Name

1000
Trails

2000
Trials

3000
Trails

4000 Trails 5000
Trials

Eil101 663 648 646 645 645 HGA without
LocalOpt

d198 16708 16695 16404 16404 16404

Eil101 658 653 643 642 642 HGA with
LocalOpt (q=6)

d198 16701 16357 16357 16357 16357

 Fig. 11. Tour lengths by HGA for Eil101 and d198 with and without LocalOpt

Table VI shows that the effect of LocalOpt is not very high. LocalOpt is not tried with
values of q>6 as the increase in time complexity is combinatorial.

8. Results and Discussion

Experimental runs of the RemoveSharp algorithm have shown that m = 20 (m is the
number of cities in the NEARLIST) results in slight improvement in convergence rate
when compared to m=15. But, it takes considerably more amount of time. Hence we

630

640

650

660

670

1000 2000 3000 4000 5000

No. of Trails

T
ou

r
C

os
t

q=0 q=6

16000

16200

16400

16600

16800

1000 2000 3000 4000 5000

No. of Trials

T
ou

r
C

os
t

q=0 q=6

chose m = 15. As shown by the Time Complexity Equation of LocalOpt, the time
complexity of LocalOpt varies combinatorial with the variation of q. We chose q = 6. The
initial population was kept at 50, as 75 and 100 decreased convergence rate and values
less than 50 resulted in a local optimum. Of the 50 initial population 22 are obtained
using IH (with different sorting criteria) and the rest are randomly generated. The
probability of the shuffling operator was kept at 0.02 as higher shuffling rate will worsen
the convergence rate. The algorithm has been implemented on an IBM CYRIX 233Mhz
station with Windows 98 operating system. The program, written in Visual C++ 6.0
comprises approximately 3,000 lines of source code. The experimental results have been
achieved with the machine running its normal daily loads in addition to our algorithm.

 Table 6. Comparison of HGA with other heuristics on geometric instances of the symmetric tsp.

Problem
name

ACS HGA EP GA SA Optimum

Eil50
50-city
problem

425
(427.96)
[1830]

426
(428.871)
[538]
{for Eil51}

426
(427.86)
[100000]

428
(N/A)
[25000]

443
(N/A)
[68512]

425
(ACS)

Eil75
75-city
problem

535
(542.37)
[3,480]

538
(544.36)
[6919]
{for Eil76}

542
(N/A)
[325000]

545
(N/A)
[80000]

580
(N/A)
[173250]

535
(ACS)

KroA100
100-city
problem

21282
(21285.44)
[4820]

21282
(21285.44)
[851]

N/A
(N/A)
[N/A]

21761
(N/A)
[N/A]

N/A
(N/A)
[N/A]

21282
(ACS &
HGA)

d198
198–city
problem

15888
(N/A)
[585000]

15849
(15876.38)
[37367]

N/A
(N/A)
[N/A]

N/A
(N/A)
[N/A]

N/A
(N/A)
[N/A]

15849
(HGA)

We report the best integer tour length, the best real tour length (in parenthesis) and the number of

trials required to find the best integer tour length (in square brackets). The optimal length listed in the last
column is available only for integer tour lengths. N/A means "Not Available".

 Fig. 12. Best Integer Tour Length obtained by ACS, HGA, EP, GA and SA for Eil75

500

520

540

560

580

ACS HGA EP GA SA
Algorithm

Eil75

 Fig. 13. Best Integer Tour Length obtained by ACS, HGA, EP, GA and SA for Eil50

 Fig. 14. Best Integer Tour Length obtained by ACS and HGA for KroA100

 Fig. 15. Best Integer Tour Length obtained by ACS and HGA for d198

0

10000

20000

30000

ACS HGA
Algorithm

KroA100

15820

15840
15860
15880
15900

ACS HGA
Algorithm

D198

410

420

430

440

450

ACS HGA EP GA SA
Algorithm

Eil50

 Fig. 16. Number of trials taken by different algorithms

Table 6 reports the results on the geometric instances. The heuristics with which we
compare the Hybrid GA in this case are ACS, GA, EP, and SA. The difference between
integer and real tour length is that in the first case distances are measured by integer
numbers, while in the second case by floating point approximations of real numbers. All
the results for ACS, GA, EP and SA are from1. In TSPLIB only Eil51 and Eil76 are
available which have an additional city to Eil50 and Eil75 respectively.

Table 7. Comparison of results of HGA with Best Known results on geometric instances of the symmetric tsp

Problem Name HGA Best Known result Relative error
Berlin52 7542 (7544.37) 7542 (7544.37) 0.00 %

Att48 10,628 10,628 0.00 %

Eil51 426 (428.87)* 426 (429.98) 0.00 %
Eil76 538 (544.37)* 538 (545.39) 0.00 %
Eil101 629 (640.975)* 629 (642.31) 0.00 %
KroA100 21,282 21,282 0.00 %
KroE100 22,068 22,068 0.00 %
Rat99 1211 1211 0.00 %
KroC100 20,749 20,749 0.00%
KroB100 21,141 21,141 0.00%
Bier127 118,282 118,282 0.00%
KroD100 21,306 21,294 0.07%
D198 15,788 15,780 0.05%
kroA200 29,368 29,368 0.00%

 * New Best Results given by Hybrid GA
 We report the best integer tour length and the best real tour length (in parenthesis - if available). In the
last column the relative error is given.

 Table 7 shows that the new HGA performs comparable to other existing
algorithms. In case of Eil51, Eil76 and Eil101 new best real length tours are also
obtained. All the ‘Best Known’ results are from reference 1, reference 2, and reference 3.
The Real Tour Lengths are obtained from the sequence of Optimal Results given in
TSPLIB3.

0

100 00 0

2 00 00 0

3 00 00 0

4 00 00 0

5 00 00 0

6 00 00 0

ACS HGA EP GA S A

Algorithm

No. of Trials taken by HGA Vs Other algorithms

Eil50 Eil75 K roA100 D198

8. Conclusion
We find that the implementation of these three heuristics result in near optimal solutions
in most of the cases and improvement in a few cases. These heuristics are simple,
straightforward and easy to implement when compared to other algorithms. In
investigating the parameters of the algorithm the following conclusions have been
reached

• The convergence rate is very fast when the IH is used for initialization when

compared to random initialization.
• Size of NEARLIST can be varied from 10 to 20 depending on the

distribution of the cities.
• An increase in the parameter q in LocalOpt results in a combinatorial

increase in time complexity. The effect of it is very small on the
convergence rate.

The algorithm compares favorably with previous attempts to apply other

heuristic algorithms like Ant Colony System, Genetic Algorithms, Evolutionary
Programming, and Simulated Annealing. Nevertheless, competition on the TSP is very
tough, and a combination of a constructive method (IH) which generates good starting
solutions with local search (which takes these solutions to a local optimum) seems to be
the best strategy1. We have shown that the IH is a very good constructive heuristic to
provide such starting solutions and RemoveSharp & LocalOpt are very good local
optimizers.

References

1. Marco Dorigo and Maria Gambardella - “Ant Colony System: A Cooperative Learning Approach
To Traveling Salesman Problem” - 1997
2. Darrell Whitley, Timothy Startweather and D’Ann Fuquay - “Scheduling Problems And
Traveling Salesman: The Genetic Edge Recombination Operator” - 1989
3. TSPLIB: http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPIB95/TSPLIB.html.
4. Zbigniew Michalewicz - “Genetic Algorithms + Data Structures = Evolution Programs” – 1993
5. Prasanna Jog, Jung Y. Suh and Dirk Van Gucht – "Effects Of Population Size, Heuristic
Crossover And Local Improvement On A Genetic Algorithm For The Traveling Salesman Problem"
– ICGA'89 – 1989
6. Ellis Horowitz and Sartaj Sahni – "Fundamentals Of Computer Algorithms", Galgotia
Publications Pvt. Ltd., New Delhi - 1996
7. Melanie Mitchell – "An Introduction To Genetic Algorithms", Prentice Hall of India Pvt. Ltd.,
New Delhi - 1998

