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Three experiments were conducted that provide a direct examination of within-category discontinuity
manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems
proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron’s (1998) competition
between verbal and implicit systems model. Discontinuous categories adversely affected information-
integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not
lead to a significant decline in performance. The distance to the bound provides a reasonable description
of the generalization profile associated with the hypothesis-testing system, whereas the distance to the
bound plus the distance to the trained response region provides a reasonable description of the
generalization profile associated with the procedural-based learning system. These results suggest that
within-category discontinuity differentially impacts information-integration but not rule-based category
learning and provides information regarding the detailed processing characteristics of each category
learning system.
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Categorization is an important skill that is critical to the survival
of all organisms. For example, knowledge of category membership
provides information about how an object should be used or
manipulated or whether it should be approached or avoided. As
such, categorization can be used to help guide many behaviors
under a variety of circumstances. Category learning involves lay-
ing down a memory trace that improves the efficiency (i.e., accu-
racy and speed) of responding. It is now widely accepted that
mammals have multiple memory systems (Poldrack & Packard,
2003; Schacter, 1987; Squire, 1992), and thus it is reasonable to

postulate that multiple category learning systems might also exist.
The convergence of evidence in support of multiple category
learning systems is growing and comes from a wide range of
research areas including animal learning (McDonald & White,
1993, 1994; Packard & McGaugh, 1992), neuropsychology (Filo-
teo, Maddox, & Davis, 2001a, 2001b; Maddox & Filoteo, 2001,
in press; Myers et al., 2003), functional neuroimaging (Poldrack,
Prabhakaran, Seger, & Gabrieli, 1999; Reber, Stark, & Squire,
1998; E. E. Smith, Patalano, & Jonides, 1998), and cognitive
psychology (for reviews, see Keri, 2003, and Maddox & Ashby,
2004)1. Most multiple-systems theorists argue for at least one
explicit system that is tied to conscious awareness and for at least
one implicit system that does not have full access to conscious
awareness. One of the most successful multiple systems models of
category learning, and the only one that specifies the underlying
neurobiology, is the competition between verbal and implicit sys-
tems model (COVIS; Ashby, Alfonso-Reese, Turken, & Waldron,

1 In some ways the multiple-systems approach grew out of the multiple-
process approach to category learning that suggests that observers have
available different processing modes that can be used during category
learning (Allen & Brooks, 1991; Erickson & Kruschke, 1998; Kemler-
Nelson, 1984; Nosofsky, Palmeri, & McKinley, 1994; Pickering, 1997;
Reber & Squire, 1994; Rehegr & Brooks, 1993; J. D. Smith & Shapiro,
1989).
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1998; Ashby & Waldron, 1999). COVIS postulates two systems
that compete throughout learning—an explicit, hypothesis-testing
system that uses logical reasoning and depends on working mem-
ory and executive attention, and a procedural-based learning sys-
tem that relies more on incremental and feedback-learning
processes.

In COVIS, the explicit, hypothesis-testing system is assumed to
dominate the learning of rule-based (RB) tasks, whereas the im-
plicit, procedural-based learning system dominates the learning of
information-integration (II) tasks. RB category learning tasks are
those in which the category structures can be learned via some
explicit reasoning process. Frequently, the rule that maximizes
accuracy (i.e., the optimal rule) is easy to describe verbally (Ashby
et al., 1998). For example, if the stimulus is a line that varies in
length and orientation, the observer might set a criterion along line
length to determine whether the line is short or long and a criterion
along orientation to determine if the angle is shallow or steep. The
decision along each dimension might then be integrated to deter-
mine category membership (e.g., short, shallow angle lines are
assigned to Category A; all others are assigned to Category B).
This integration is postdecisional because a decision is first made
about the value along each dimension, and that information is
explicitly integrated to generate a response. II category learning
tasks, on the other hand, are those in which accuracy is maximized
only if information from two or more stimulus components is
integrated at some predecisional stage that occurs outside of con-
scious awareness, such as when observers adopt a weighted linear
combination of the dimensional values (Ashby & Gott, 1988). In
many cases, the optimal rule in II tasks is difficult or impossible to
describe verbally (Ashby et al., 1998). Postdecisional integration
rules, like the one described above for RB categories, can be
applied to II conditions, but they generally lead to suboptimal
performance levels.

COVIS assumes that learning in RB tasks is dominated by an
explicit system that uses working memory2 and executive attention
and is mediated primarily by the anterior cingulate, the prefrontal
cortex, and the head of the caudate nucleus. This system learns
through a conscious process of hypothesis generation and testing.
Thus, this system should be flexible with respect to the placement
and timing of the feedback and the response requirements but
should be affected by manipulations that increase the working
memory load or executive attention demands of the task. In con-
trast, learning in II tasks is assumed to be dominated by an implicit
procedural-based learning system that is mediated largely within
the tail of the caudate nucleus (Ashby et al., 1998; Ashby & Ell,
2001; Willingham, 1998). It has been proposed that a dopamine-
mediated reward signal is critical for learning in this system. The
idea is that an unexpected reward causes dopamine to be released
from the substantia nigra into the tail of the caudate nucleus, and
that the presence of this dopamine strengthens recently active
synapses (e.g., Schultz, 1992; Wickens, 1993). A procedural-based
learning system that is mediated within the tail of the caudate
nucleus would not be accessible to conscious awareness and is far
removed from working memory.3 As a result, learning in this
system should depend heavily on the placement and timing of the
feedback and, because of its procedural nature, should be affected
by the response requirements. On the other hand, under acceptable
feedback and response requirement conditions, II learning should

be essentially automatic and should not be affected by working
memory load or attentional demands.

Each of these predictions has been tested empirically (see Mad-
dox & Ashby, 2004 for a detailed review). To examine the effects
of the placement and timing of the feedback, researchers compared
RB and II category learning across an observational training con-
dition (in which observers were informed before stimulus presen-
tation of what category the ensuing stimulus was from) and a
traditional feedback training condition (in which the category label
followed the response; Ashby, Maddox, & Bohil, 2002) and across
an immediate feedback condition (in which corrective feedback
was provided immediately following the response) and a delayed
feedback condition (in which corrective feedback was delayed by
2.5, 5.0 or 10.0 s following the response; Maddox, Ashby, &
Bohil, 2003; see also Maddox & Ing, 2005). In line with predic-
tions based on COVIS, observational training and delayed feed-
back negatively impacted II category learning but had little effect
on RB category learning.

To examine the effects of the response requirements, Ashby, Ell,
and Waldron (2003; see also Maddox, Bohil, & Ing, 2004) incor-
porated a procedure originally developed by Willingham, Wells,
Farrell, and Stemwedel (2000) into a category-learning task to
study serial reaction time. Willingham et al. (2000) showed that
changing the location of the response keys interferes with SRT
learning, even when the sequence of stimulus positions is un-
changed. In addition, they showed that SRT learning is unaffected
when the sequence of finger movements is changed as long as the
location of the response keys remains fixed. If the implicit system
in COVIS is procedural-based learning, then it should be the case
that changing the location of the response keys would adversely
affect learning in this system, and thus II category learning,
whereas changing the finger press associated with each category
response should not. Ashby et al. (2003) tested and found support
for this prediction.

To examine the effect of working memory load and executive
attention, researchers examined RB and II learning when the
participant was asked to perform a second working memory de-
manding task. Waldron and Ashby (2001) showed that RB cate-
gory learning was disrupted more than II category learning by the
simultaneous performance of a numerical Stroop task, and Mad-
dox, Ashby, Ing, and Pickering (2004) showed that RB category
learning was disrupted by a sequential memory scanning task,
whereas II category learning was not.

Taken together, these studies provide support for the existence
of separate hypothesis-testing and procedural-based learning sys-
tems of category learning. Even so, they tell us little about the
detailed properties of these systems. The overriding aim of the
present research is to begin this more detailed examination. The

2 Many argue for the existence of an implicit form of working memory
that may not be available to conscious awareness. However, when we use
the term working memory, we refer to a conscious, verbalizable process.

3 Crick and Koch (1990, 1995, 1998) offered a cognitive neuroscience
theory of consciousness that states that one can have conscious awareness
only of activity in brain areas that project directly to the prefrontal cortex.
The caudate nucleus does not project to the prefrontal cortex (it first
projects through the thalamus), so the Crick–Koch hypothesis predicts that
we are not aware of activity within the caudate nucleus.
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primary focus of this research is on the procedural-based learning
system, although we examined RB category learning in Experi-
ment 1. Our approach was to examine II category learning across
a series of category structures that differ systematically in ways
that should have affected procedural-based learning. These more
direct manipulations will allow us to rigorously test predictions
regarding the nature of learning within each system.

The three experiments presented in this report provide a first
step toward the more ambitious goal of understanding the quali-
tative properties of each system through systematic manipulation
of the category structures. All three studies used the same stimuli,
consisting of a line that varies in length and orientation and the
randomization technique developed by Ashby and Gott (1988). In
the randomization technique, each category is represented by a
single bivariate normal distribution or a collection of bivariate
normal distributions (bivariate because the stimuli are two-
dimensional). The optimal decision bound can also be defined and
constructed in such a way that either a RB or II strategy is optimal
(i.e., maximizes accuracy). Each category exemplar is generated
by taking a random sample from the relevant bivariate normal
distribution and constructing a stimulus with the associated length
and orientation value. Because of the two-dimensional nature of
the stimuli, each stimulus can be represented by a point in a
two-dimensional length–orientation space. The collection of stim-
uli used in a particular experimental condition can be displayed in
a two-dimensional scatter plot. The scatter plots and optimal
decision bounds used in Experiments 1–3 are shown later in this
article.

Experiment 1 examined the effects of within-category disconti-
nuity on RB and II category learning using structurally equivalent
categories. Within-category discontinuity was manipulated by
varying the location of some stimulus clusters relative to others
within the same category. We predicted that within-category dis-
continuity would differentially impact II and RB category learning.
Where there are discontinuous clusters of stimuli belonging to the
same category, observers are required to learn to associate clusters
of stimuli that are very different in terms of their perceptual
appearance to the same category. Because procedural-based learn-
ing systems appear to be highly dependent on stimulus similarity
(e.g., Cohen, Poldrack, & Eichenbaum, 1997), and II category
learning is thought to be mediated by a procedural-based learning
system, we predicted that II category learning would be adversely
affected by discontinuous clusters. Such a prediction was also
based on other lines of research. For example, previous studies
have shown that perceptual learning (a possible form of procedural
learning) appears to be highly stimulus specific (e.g., Schoups,
Vogels, & Orban, 1995; Shiu & Pashler, 1992; Vogels & Orban,
1985), suggesting that the acquisition of certain experience-
dependent perceptual effects do not readily generalize to changes
in even basic perceptual features such as orientation. Thus, II
category learning should be adversely affected by the need for
observers to learn to categorize clusters of different looking stimuli
into the same category. In contrast, we predicted that the impact of
within-category discontinuity would have minimal effects on RB
learning given that it is a decision rule that is learned by the
hypothesis-testing system. This decision rule is not derived from
the specific values of the stimulus attributes as is the case in II
category learning, but rather the rule that is learned is more
abstract and therefore should be impacted to a lesser degree by

discontinuous category clusters. Thus, as long as the discontinuous
clusters all follow the same rule, then RB category learning should
be unaffected. To anticipate, we confirmed the prediction. Exper-
iments 2 and 3 were designed to examine the procedural-based
learning system in more detail. Experiment 2 reexamined the effect
of within-category discontinuity when the amount of stimulus
space trained was controlled. Experiment 3 examined three levels
of within-category discontinuity to determine whether increasing
within-category discontinuity led to a consistent decrease in per-
formance or whether any amount of within-category discontinuity
led to a performance decrement.

Experiment 1

In Experiment 1, we constructed II and RB categories for which
either a single cluster of stimuli was associated with each category
(no spread [NS] condition) or two discontinuous clusters of stimuli
(i.e., perceptually dissimilar clusters) were associated with each
category (discontinuous spread [DS] condition). Scatter plots of
the stimuli and optimal bounds are displayed in the top four panels
of Figure 1. The bottom two panels display the stimuli used in the
transfer phase and will be described later. In the II-DS condition,

Figure 1. Scatter plots of the stimuli along with the optimal decision
bounds from the four conditions of Experiment 1 and the transfer items
used in the rule-based and information-integration conditions. Open
squares denote stimuli from Category A. Filled triangles denote stimuli
from Category B.
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two discontinuous clusters of stimuli (each composed of two
subclusters; see Table 1) are associated with Category A and two
with Category B, but the same decision rule can be used to classify
each pair of clusters within a category. In the II-NS condition, a
single cluster of stimuli is associated with Category A and a
separate cluster with Category B. It is important to note that the
same decision rule is optimal in both conditions.

Structurally equivalent RB conditions were also constructed by
rotating the II condition stimuli 45° around the center of the
length–orientation space.4 In the RB-DS condition, we again have
two discontinuous clusters of stimuli associated with Category A
and a separate pair of discontinuous clusters associated with Cat-
egory B. A single, linear decision bound can be used to accurately
classify all clusters. In the RB-NS condition, we have a single
cluster associated with Category A and a single cluster associated
with Category B. Again, the same decision bound can be used to
optimally classify the stimuli across both conditions.

If the procedural-based learning system is dependent on within-
category similarity, II category learning will be adversely affected

by discontinuous clusters. If the hypothesis-testing system learns
an abstract rule and that rule is identical across DS and NS
conditions, then RB category learning should be unaffected by
discontinuous clusters. We tested these predictions in Experiment
1. For exploratory purposes, we also included at the end of each
experimental session a set of transfer trials in which no corrective
feedback was provided. The transfer stimuli (see Figure 1) in-
cluded stimuli from the portion of the length–orientation space
presented during training, as well as items from novel (untrained)
portions of the space. The transfer trials were included because it
was of interest to examine performance generalization to portions
of the stimulus space that were not encountered during training. If
an abstract rule is learned by the hypothesis-testing system, then
learning should generalize fairly well to novel (untrained) items in
the RB condition. In fact, untrained items that are better described
by the rule should yield superior performance. On the other hand,
if learning involves linking regions of the stimulus space with a
particular category response, as predicted by the procedural-based
learning system, then generalization should not be as good in the
II condition and should be worse for transfer items coming from
regions of the stimulus space that are farther from the training
items, even if they are well described by the optimal rule.

Method

Observer. We solicited 16 observers (8 women and 8 men) from the
University of Texas community and paid them $25 for participating in this
study. Each observer completed all four experimental conditions with the
condition order being determined from a Latin square. Only one of the four
conditions (approximately 60 min) was completed during a single test day,
and 1 rest day was required between testing sessions. Visual acuity was
tested in each observer, and all observers had 20/20 vision or vision
corrected to at least 20/20.

Stimuli and stimulus generation. The experiment used the randomiza-
tion technique introduced by Ashby and Gott (1988). The category struc-
tures are displayed in Figure 1 along with the optimal decision bound(s).
The category distribution parameters are outlined in Table 1 and optimal
accuracy was 95%. In the RB-NS and II-NS conditions, 120 stimuli were
sampled randomly from each of the four distributions for a total of 480
stimuli. In the RB-DS and II-DS conditions, 60 stimuli were sampled
randomly from each of the eight distributions for a total of 480 stimuli. The
resulting 480 stimuli were randomized and divided into five 96-trial blocks.
These were presented during categorization training. Sixty stimuli (30 from
the A response region and 30 from the B response region) were used during
the transfer phase (see Figure 1). Each of these stimuli was presented twice
for a total of 120 transfer trials.

Procedure. Each observation was run individually in a dimly lit testing
room with an approximate viewing distance of 35 cm. The observers were
informed that there were two equally likely categories. They were informed
that perfect performance was impossible but that high levels of accuracy
could be achieved. They were instructed to learn about the categories, to be
as accurate as possible, and to not worry about speed of responding. At the
start of each training trial, a fixation point was displayed for 1 s and then
the stimulus appeared. The stimulus remained on the screen until the
observer generated a response by pressing one of two keys. The correct
category label was then presented on the screen for 1 s along with the word
wrong if their response was incorrect or right if their response was correct.

4 By structurally equivalent, we mean category structures for which the
optimal accuracy, number of stimulus clusters, within-cluster scatter, and
cluster coherence is equivalent across RB and II conditions.

Table 1
Category Distribution Parameters From Experiment 1

Category �l �o �l �o covlo

Information-integration discontinuous spread

A1 86 83 10 10 0
A2 107 104 10 10 0
B1 171 168 10 10 0
B2 192 189 10 10 0
A3 108 61 10 10 0
A4 129 82 10 10 0
B3 193 146 10 10 0
B4 214 167 10 10 0

Information-integration no spread

A1 86 83 10 10 0
A2 107 104 10 10 0
B1 171 168 10 10 0
B2 192 189 10 10 0

Rule-based discontinuous spread

A1 134 50 10 10 0
A2 134 80 10 10 0
B1 166 50 10 10 0
B2 166 80 10 10 0
A3 134 170 10 10 0
A4 134 200 10 10 0
B3 166 170 10 10 0
B4 166 200 10 10 0

Rule-based no spread

A1 134 50 10 10 0
A2 134 80 10 10 0
B1 166 50 10 10 0
B2 166 80 10 10 0

Note. Optimal accuracy was held constant at 95% in all conditions. �l �
the population mean on the length dimension; �o � the population mean
on the orientation dimension; �l � the population standard deviation on the
length dimension; �o � the population standard deviation on the orienta-
tion dimension; covlo � the population covariance between length and
orientation.
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Once feedback was given, the next trial was initiated. The procedure for the
transfer trials was identical except that feedback was omitted.

Results

Training block analyses. Analyses were performed separately
on each of the five 96-trial blocks of data. A nature of the Optimal
Decision Strategy (RB vs. II) � Within-Category Discontinuity
(DS vs. NS) � Block (five 96-trial blocks) within-observer design
analysis of variance (ANOVA) was conducted on the accuracy
rates. The accuracy rates averaged across observers are presented
in Figure 2. The main effects of nature of the optimal rule, F(1,
15) � 16.53, p � .01, within-category discontinuity, F(1, 15) �
49.02, p � .001, and block, F(4, 60) � 27.15, p � .001, were
significant. The nature of the Optimal Rule � Within-Category
discontinuity, F(1, 15) � 18.35, p � .01, nature of the Optimal
Rule � Block, F(4, 60) � 7.24, p � .001, and the three-way
interaction, F(4, 60) � 4.88, p � .01, were all significant. To
determine the locus of the three-way interaction, we conducted
follow-up analyses that examined the effects of the nature of the
optimal rule and within-category discontinuity on a block-by-
block basis. In all five blocks of trials, there was a significant
decline in performance for the II-DS relative to the II-NS condi-
tion, yielding performance drops of .10, .10, .10, .10, and .17 in
Blocks 1–5, respectively (all ps � .001). On the other hand, there
was no significant performance difference across the RB-DS and
RB-NS conditions (all ps � .05 except in Block 3), yielding
performance differences of only .04, .01, .06, .01, and .00 in
Blocks 1–5, respectively.

Transfer block analyses. To provide an initial examination of
transfer performance, we conducted a nature of the Optimal De-
cision Strategy (RB vs. II) � Within-Category Discontinuity (DS
vs. NS) within-observer design ANOVA on the transfer block
accuracy rates. The accuracy rates averaged across observers are
presented in Figure 2 and are denoted by the block marked T for
transfer. Only the main effect of nature of the optimal rule, F(1,
15) � 8.99, p � .01, was significant. As suggested by Figure 2, RB
category learning led to better transfer (0.83) relative to transfer
following II category learning (0.70). To determine how perfor-

mance changed from the final training block to the transfer block,
we computed a difference score by subtracting transfer perfor-
mance from performance in the final training block and subjecting
this score to the same ANOVA. The main effect of within-category
discontinuity, F(1, 15) � 20.16, p � .001, and the interaction, F(1,
15) � 10.98, p � .01, were both significant, whereas the effect of
the nature of the optimal rule was marginally significant, F(1,
15) � 3.63, p � .08. To determine the locus of the interaction, we
compared the NS and DS difference scores separately for the RB
and II category structures. For the RB structures, the effect of
within-category discontinuity was nonsignificant, t(15) � 1.34, ns,
with no change in accuracy from the final training to the transfer
block in the NS condition and a slight increase of .03 in the DS
condition. The effect of within-category discontinuity in the II
condition, on the other hand, was highly significant, t(15) � 4.60,
p � .001, and suggested a small increase in accuracy for the DS
condition of .05 but a large drop of .13 for the NS condition.

Recall that the transfer items were sampled from trained and
untrained regions of the stimulus space, and that participants in the
DS conditions were presented with a wider range of items. These
initial transfer results suggest a strong interaction between the
nature of the optimal rule and within-category discontinuity. In the
RB conditions, in which observers are hypothesized to learn an
explicit, verbalizable rule, the within-category discontinuity ma-
nipulation has little effect on transfer performance. In other words,
whether observers were trained on a small or larger portion of the
stimulus space had no effect on global transfer accuracy. On the
other hand, in the II conditions, in which observers are assumed to
assign responses to regions of the stimulus space and a decision
bound is not learned directly, transfer performance was better in
the DS condition, in which more of the stimulus space was trained,
than in the NS condition, in which less of the stimulus space was
trained. It is worth mentioning that task difficulty cannot be used
to explain this finding, as II-NS performance was significantly
better than DS performance by the final block of training.

To gain a more detailed understanding of the transfer results, we
partitioned the transfer stimuli into 12 groups of stimuli, 6 groups
on the A side of the optimal decision bound and 6 groups on the
B side of the decision bound. The idea was to examine perfor-
mance for (a) items sampled from the trained region of the stim-
ulus space, (b) items sampled from untrained regions of the space
that were equidistant to the optimal bound with trained items, and
(c) items sampled from an untrained region of the space that were
farther from the optimal bound. The partitioning is outlined in
Figure 1. For ease of exposition we focus the description on the RB
transfer items. Three vertical lines and two horizontal lines parti-
tion the 60 transfer stimuli into the 12 groups. The two stimuli in
the lower left portion are from an untrained region of the stimulus
space, are far from the optimal bound, and are on the A side of the
bound. These items are directly to the left of the transfer items that
were sampled from the trained portion of the stimulus in both the
DS and NS conditions. Similarly, the two stimuli in the lower right
portion are from an untrained region of the stimulus space, are far
from the optimal bound, and are on the B side of the bound. These
items are directly to the right of transfer items that were sampled
from the trained portion of the stimulus in both the DS and NS
conditions. This collection of four items (two from the A side and
two from the B side of the bound) is referred to as far/DS–NS items
because they are far from the bound (on either the A or B side) and

Figure 2. Proportion correct (averaged across observers, � SE) from
Experiment 1. RB-DS � rule-based discontinuous-spread condition; RB-
NS � rule-based no-spread condition; II-DS � information-integration
discontinuous-spread condition; II-NS � information-integration no-
spread condition; T � transfer.
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are directly next to items trained in the DS and NS conditions. The
four stimuli directly above the far/DS–NS items (two from the A
and two from the B side of the bound) are also far from the bound,
but they are next to an untrained region of the space and thus are
referred to as far/untrained items. The four items directly above
these again are far from the bound and next to items from the
trained region of the space but only in the DS condition. These are
referred to as far/DS items. The column of items to the right (on the
A side of the bound) and to the left (on the B side of the bound)
of these far items are near the bound and so are referred to as
near/DS–NS, near/untrained, and near/DS items going from the
bottom to the top, respectively. The proportion correct (averaged
across observers) for these six types of items in the II-DS, II-NS,
RB-DS, and RB-NS conditions are displayed in Table 2. The
groups of stimuli that were trained in each condition are high-
lighted in bold type.

First, we compared transfer performance across the near/DS–
NS, near/untrained, and near/DS items separately for each condi-
tion using a one-way ANOVA. We were interested in determining
whether categorization performance differed for items equidistant
from the decision bound but from different regions of the space
(trained or untrained). We first examined performance in the near
RB-NS and II-NS conditions because (a) this provided the best test
of our hypotheses given that trained items were confined to one
cluster of stimulus space for each category (whereas this was not
the case for the RB-DS and II-DS conditions), thereby allowing us
to determine whether transfer accuracy decreases at the furthest
points from the trained region, and (b) by examining this effect in

the near transfer items only, we were able to hold constant the
impact of the distance to the bound. Thus, these comparisons
should provide the best insight in the nature of what is learned by
the hypothesis-testing and procedural-learning systems. For the
II-NS conditions the effect of stimulus type was significant, F(2,
30) � 18.24, p � .001, whereas for the RB-NS condition the effect
was nonsignificant, F(2, 30) � 2.13, p � .05. Post hoc analyses of
the II-NS results indicated that performance was significantly
worse for the near/DS (untrained items in this condition) than for
the near/untrained items, and that performance for the near/
untrained items was significantly worse than for the near/DS–NS
items. In other words, as distance from the training items increased
for items equidistant from the optimal decision bound, II transfer
performance declined, whereas RB transfer performance remained
statistically unchanged. This is a strong piece of evidence in
support of the prediction that it is a rule that is learned by the
hypothesis-testing system, and that perceptually similar stimulus-
category label assignments are learned by the procedural-learning
system.

We also conducted the analogous set of analyses for the II-DS
and for the RB-DS conditions, although these analyses could
potentially provided somewhat less of a stringent test of the effects
of distance to the trained regions because more of the stimulus
space was trained in the II-DS and RB-DS conditions. For both the
II-DS and RB-DS conditions, the effect of stimulus type was
significant, II-DS, F(2, 30) � 5.16, p � .05; RB-DS, F(2, 30) �
4.02, p � .05. Post hoc analyses of the II-DS results indicated that
performance was significantly worse for the near/untrained items
than for the near/DS–NS or near/DS items, and that performance
was equivalent across the near/DS–NS and near/DS items. This
pattern was expected, as both the near/DS-NS and near/DS items
were trained in the II-DS condition. Post hoc analyses of the
RB-DS results led to the same conclusion, but, it is important to
note that the effects were about half the magnitude of those from
the II-DS condition. The finding that untrained items as equidistant
to the decision bound as trained items yield worse transfer perfor-
mance in II conditions provides strong support for the hypothesis
that the procedural-learning system learns to assign perceptually
similar items to the same category label and does not learn a
decision bound directly. The finding that this same pattern does not
occur in RB tasks (e.g., the RB-NS condition), and that when it
does occur, as in the RB-DS condition, the effect is much smaller
(5% decline for near/untrained relative to near/trained for RB-DS,
but an 11% decline in the II-DS condition), suggests that it is a
decision rule that is being learned by the hypothesis-testing sys-
tem. It is important to note that these effects were observed despite
the fact that more of the stimulus space was trained in the II-DS
and the RB-DS conditions as compared with the II-NS and the
RB-NS conditions.

To examine potential differences in the two systems more fully,
we replicated these analyses for the far items. In this case, none of
the items were from a trained region of the space, but they did
differ in distance from trained items. Again, we predicted no effect
of stimulus type for the RB conditions because a decision rule is
learned and all far items are equally distant from the rule. On the
other hand, we did predict an effect of stimulus type for the II
conditions, especially the II-NS condition, as items farther from
the trained region of the space should yield lower performance.
Both predictions were born out in the analyses of the far transfer

Table 2
Probability Correct for the Transfer Trials From Experiment 1

Transfer trial

Distance to bound

Near Far

II-DS

DS 0.75 0.78
Untrained 0.65 0.78
DS-NS 0.73 0.79

II-NS

DS 0.59 0.72
Untrained 0.71 0.88
DS-NS 0.77 0.92

RB-DS

DS 0.85 0.91
Untrained 0.79 0.96
DS-NS 0.84 0.95

RB-NS

DS 0.76 0.89
Untrained 0.78 0.93
DS-NS 0.82 0.96

Note. Groups of stimuli that were trained in each condition are in bold-
face. II-DS � information-integration discontinuous-spread condition; II-
NS � information-integration no-spread condition; RB-DS � rule-based
discontinuous-spread condition; RB-NS � rule-based no-spread condition.
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items. The effect of stimulus type was significant for the II-NS
condition, F(2, 30) � 13.28, p � .001, yielding significantly worse
performance for the far/DS items relative to the far/untrained items
and relative to the far/DS-NS items, although performance did not
differ between the far/untrained, and far/DS-NS items. The effect
of stimulus type was nonsignificant in the other three conditions,
II-DS, F(2, 30) � 1; RB-NS, F(2, 30) � 2.83, p � .05; RB-DS,
F(2, 30) � 1.93, p � .05. One excellent example of the perfor-
mance difference between the RB and II tasks can be seen when
one compares the RB-NS and II-NS conditions. In the RB-NS
condition, the far/DS items yield an accuracy rate of .89, which is
only slightly lower than the accuracy rate of .96 for the far/DS-NS
items. In the II-NS condition, on the other hand, accuracy for the
far/DS items is .72, whereas accuracy for the far/DS-NS items is
.93. This is a drop of .21, whereas in the analogous RB condition,
the drop was only .07. Taken together these results suggest that a
rule is extracted in the RB conditions and items that better follow
the rule (i.e., items more distant from the bound), regardless of
whether they are near or close to trained items, yield higher
accuracy rates. In contrast, II category learning is characterized by
a strengthening of the relationship between responses and regions
of the stimulus space. In this case, as the distance between a
transfer item and a trained region of the space increases, accuracy
generally decreases.

It is important to make clear that we are not arguing that
distance to the bound has no effect on II category learning. An
examination of Table 2 suggests that distance to the bound affects
both RB and II category learning. Rather, our claim is that distance
to the bound alone seems to characterize performance of the
hypothesis-testing system, whereas there is a large effect of dis-
tance to the training items (along with distance to the bound
effects) on II category learning. To our knowledge, this is the first
study to directly and rigorously test this prediction.

Discussion

The results from Experiment 1 suggest that RB category learn-
ing is unaffected by within-category discontinuity when the opti-
mal decision bound remains constant. On the other hand, II cate-
gory learning is adversely affected by within-category
discontinuity. The transfer results suggest a qualitative difference
in the nature of the learning in the two systems. RB category
learning is abstract in that a rule is learned directly and learning is
less tied to the specific stimulus regions trained, resulting in a
strong distance-to-the-bound effect. In contrast, II learning is more
directly tied to the specific regions of the stimulus space that were
trained, a rule is not learned directly, and distance from the trained
regions strongly affects performance.

These data suggest that the procedural-based categorization
learning system is highly dependent on the continuity of stimulus
similarity within a category, whereas the hypothesis-testing system
is not. There is, however, one alternative explanation for the effect
on II category learning that cannot be ruled out at this point. It is
possible that the poor II learning in the DS condition relative to the
NS condition was due to the fact that more of the stimulus space
had to be learned in the former condition, and, as such, the
differences observed were not due to the fact that the category
clusters were discontinuous. Recall that twice as many within-
category clusters were trained in the DS condition than in the NS

condition. Perhaps within-category discontinuity is irrelevant, and
instead, II category learning decreases as the amount of the stim-
ulus space to be trained increases. Experiment 2 was conducted to
address this shortcoming.

Experiment 2

Experiment 2 continued our examination of the effect of within-
category discontinuity on II category learning, but in this experi-
ment, we equated the amount of the stimulus space to be trained
across conditions. In addition, we replaced the within-observer
design used in Experiment 1 with a between-observer design. RB
conditions were not included because no effect of within-category
spread was observed in Experiment 1. The NS condition from
Experiment 1 was replaced with two continuous spread (CS)
conditions. Scatter plots of the stimuli from the continuous spread
A (CS-A) and continuous spread B (CS-B) conditions, along with
the optimal bounds, are displayed in Figure 3. Figure 3 also
displays the stimuli for the DS condition. Notice that the optimal
decision bound is identical across all three conditions. If the
within-category discontinuity effect observed in Experiment 1 was
due to differences in the amount of stimulus space trained, then
there would be no performance difference observed across the
three conditions. On the other hand, if within-category spread had
been the mediating factor, then we predicted worse performance in
the DS condition than in either CS condition.

To continue our exploratory analysis of generalization, we pre-
sented a block of transfer stimuli at the end of the study. These
stimuli are presented in Figure 3. Notice that a larger range of the
stimulus space is examined during transfer in Experiment 2 as
compared with Experiment 1. We took this approach to better
characterize transfer performance.

Figure 3. Scatter plots of the stimuli along with the optimal decision
bounds from the three conditions of Experiment 2 and the transfer items.
Open squares denote stimuli from Category A. Filled triangles denote
stimuli from Category B.
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Method

Observer. We solicited 70 observers (24 in the DS condition and 23 in
each of the CS conditions) from the University of Texas community. The
observers received course credit or were paid for participating in this study.
Visual acuity was tested in each observer, and all observers had 20/20
vision, or vision corrected to at least 20/20.

Stimuli and stimulus generation. The stimuli and stimulus generation
procedure was identical to that used in Experiment 1, except that the
number of transfer stimuli was increased to 168, with each item presented
once. The category structures are displayed in Figure 3 along with the
optimal decision bounds. The category distribution parameters are outlined
in Table 3, and optimal accuracy was 95%.

Procedure. The procedure was identical to that used in Experiment 1.

Results

Training block analyses. Analyses were performed separately
on each of the five 96-trial blocks of data. A Within-Category
Discontinuity (DS vs. CS-A vs. CS-B) � Block (five 96-trial
blocks) mixed-design ANOVA was conducted on the accuracy
rates. The accuracy rates averaged across observers are presented
in Figure 4. The main effects of within-category discontinuity, F(2,

67) � 3.31, p � .05, and block, F(4, 268) � 7.54, p � .001, were
significant, whereas the interaction was nonsignificant, F(8,
268) � 1.22, p � .05. Post hoc analyses of the within-category
discontinuity effect suggested that performance was significantly
worse in the DS condition (.55) than in both CS conditions ( p �
.05). Performance in the CS-A (.59) and CS-B (.59) conditions did
not differ.

These results suggest that within-category discontinuity does
have an adverse effect on II category learning when the amount of
stimulus space trained is held constant. To quantify the magnitude
of this effect, we computed the average probability correct across
the two CS conditions minus that in the DS condition. For Blocks
1–5, respectively, these values are .01, .03, .05, .05, and .07.

Transfer block analyses. As in Experiment 1, we began by
examining overall transfer performance. We conducted a within-
category discontinuity (DS vs. CS-A vs. CS-B) ANOVA on the
transfer block accuracy rates. The accuracy rates averaged across
observers are presented in Figure 4 and are denoted by the block
marked T for transfer. The effect of within-category discontinuity
was nonsignificant, F(2, 67) � 1.25, p � .05. To determine how
performance changed from the final training block to the transfer
block, we computed a difference score by subtracting transfer
performance from performance in the final training block and
subjected this score to the same ANOVA. The within-category
discontinuity effect was nonsignificant, F(2, 67) � 1.20, p � .05.
It is interesting that the difference scores were all near 0 (DS �
�.03, CS-A � .01, CS-B � 0).

To gain a more detailed understanding of the transfer results, we
partitioned the transfer stimuli into 30 groups of stimuli, 15 groups
on the A side of the optimal decision bound and 15 groups on the
B side of the decision bound. The partitions are outlined in the
bottom panel of Figure 3. We took the same general approach that
we did in Experiment 1, examining transfer items at different
distances from the optimal bound and different distances from
trained areas of the stimulus space. Because we had a much larger
set of transfer items, the partitioning was more fine grained. The
15 partitions on each side of the bound were constructed from the
factorial combination of three distances to the optimal bound: near,
medium, or far from the bound with 5 partitions orthogonal to the
optimal decision bound. With respect to distance to the bound,
only near items were potentially from trained regions of the
stimulus space. Whether they were from trained or untrained
regions depended on the condition. With respect to the 5 partitions
orthogonal to the optimal decision bound, the two most extreme

Table 3
Category Distribution Parameters From Experiment 2

Category �l �o �l �o covlo

Discontinuous spread

A1 136 83 10 10 0
A2 157 104 10 10 0
A3 221 168 10 10 0
A4 242 189 10 10 0
B1 158 61 10 10 0
B2 179 82 10 10 0
B3 243 146 10 10 0
B4 264 167 10 10 0

Continuous spread–A

A1 136 83 10 10 0
A2 157 104 10 10 0
A3 178 126 10 10 0
A4 199 147 10 10 0
B1 158 61 10 10 0
B2 179 82 10 10 0
B3 201 103 10 10 0
B4 222 124 10 10 0

Continuous spread–B

A1 178 126 10 10 0
A2 199 147 10 10 0
A3 221 168 10 10 0
A4 242 189 10 10 0
B1 201 103 10 10 0
B2 222 124 10 10 0
B3 243 146 10 10 0
B4 264 167 10 10 0

Note. Optimal accuracy was held constant at 95% in all conditions. �l �
the population mean on the length dimension; �o � the population mean
on the orientation dimension; �l � the population SD on the length
dimension; �o � the population SD on the orientation dimension; covlo �
the population covariance between length and orientation.

Figure 4. Proportion correct (averaged across observers, � SE) from
Experiment 2. DS � discontinuous-spread condition; CS-A � continuous-
spread condition A; CS-B � continuous-spread condition B; T � transfer.
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levels were always untrained. For ease of presentation, we aver-
aged across analogous partitions on the A and B side of the bound,
as we did in Experiment 1. The proportion correct (averaged across
observers) for these 15 partitions separately by condition are
displayed in Table 4. The groups of stimuli from trained regions of
the space are highlighted in bold type.

Our approach was to compare trained and untrained region item
accuracy separately for each distance to the bound (near, medium,
and far). We conducted three mixed-design ANOVAs (one for
each distance to the bound), all with within-category discontinuity
as a between-subjects factor and trained versus untrained region as
a within-subjects factor. For near items, the effect of training was
significant, F(1, 67) � 4.71, p � .05, but the main effect of
condition and the interaction were both nonsignificant, Fs(1, 67) �
1. As expected, items from the untrained region yielded lower
accuracy than items from the trained region. The same pattern held
for medium and far items. Specifically, the main effect of training
was significant, medium, F(1, 67) � 34.72, p � .001; far, F(1,
67) � 9.13, p � .01, whereas the main effect of condition,
medium, F(2, 67) � 1.67, p � .05; far, F(2, 67) � 1.27, p � .05,
and the interaction were nonsignificant, medium, F(2, 67) � 1.20,
p � .05; far, F(2, 67) � 1.

Two comments are in order. First, these data suggest that items
from untrained regions yield lower accuracy than items from
trained regions even when distance to the bound is controlled. This
replicates the effects observed in Experiment 1. Second, there was
no effect of condition, whereas there were performance differences
across the II-DS and II-NS conditions in Experiment 1. Most
likely, the fact that the amount of space trained is held constant
here partially explains this result. In summary, as in Experiment 1,

II transfer performance appears to be governed by both distance to
the bound and distance from the trained regions.

Discussion

The results from Experiment 2 suggest that within-category
spread adversely affects II category learning even when the
amount of stimulus space trained is controlled across conditions. In
contrast, discontinuity did not influence RB category learning (see
Experiment 1). It is worth mentioning that overall accuracy levels
were lower in Experiment 2 than in Experiment 1. This is likely
due to the fact that Experiment 1 was run within-observers, which
would give observers more exposure to the nature of the stimuli
and tasks. Even so, this does not diminish the fact that disconti-
nuity had a strong effect on II category learning when the amount
of stimulus space trained was equated. Experiment 3 takes the next
step by examining the effects of within-category discontinuity
parametrically. Specifically, we examined three levels of within-
category discontinuity and their effects on II category learning.

Experiment 3

Experiment 3 compared performance across three within-
category discontinuity conditions to determine whether increases
in the magnitude of within-category discontinuity are associated
with decreases in performance, or whether any level of within-
category spread is associated with a decrease in performance. To
achieve this goal, we compared performance in a CS condition
with that in a low DS (LDS) and a high DS (HDS) condition. As
in Experiment 2, we held the amount of stimulus space trained
constant across conditions, and the conditions were such that the
optimal decision bound was identical. Scatter plots of the stimuli
along with the optimal decision bound for all three conditions are
displayed in Figure 5. If the magnitude of the within-category
discontinuity affected performance, then we would have expected
a monotonic decline in performance across the CS, LDS, and HDS
conditions. On the other hand, if any within-category discontinuity
had an equivalent effect, then we would have predicted worse, but
equivalent, performance in the two DS conditions relative to the
CS condition. We again include a block of transfer stimuli at the
end of the study (see Figure 5).

Method

Observer. We solicited 69 observers (29 in the continuous condition,
21 in the low spread condition, and 19 in the high spread condition) from
the University of Texas community. Observers received course credit or
pay for participating in this study. Visual acuity was tested in each
observer, and all observers had 20/20 vision, or vision corrected to at least
20/20.

Stimuli, stimulus generation, and procedures. The stimuli, stimulus
generation, and experimental procedures were identical to those used in
Experiment 2. The category structures are displayed in Figure 5 along with
the optimal decision bound(s). The category distribution parameters are
outlined in Table 5, and optimal accuracy was 95%.

Results

Training block analyses. Analyses were performed separately
on each of the five 96-trial blocks of data. A Within-Category
Discontinuity (CS vs. LDS vs. HDS) � Block (five 96-trial

Table 4
Probability Correct for the Transfer Trials From Experiment 2

Transfer trial

Distance to optimal bound

Near Medium Far

Discontinuous spread

Untrained 0.54 0.57 0.62
Trained 0.56 0.65 0.65
Untrained 0.55 0.61 0.70
Trained 0.54 0.66 0.65
Untrained 0.50 0.58 0.57

Continuous spread-A

Untrained 0.52 0.64 0.66
Untrained 0.60 0.69 0.77
Trained 0.59 0.74 0.74
Trained 0.55 0.68 0.74
Untrained 0.54 0.52 0.58

Continuous spread-B

Untrained 0.52 0.62 0.68
Trained 0.60 0.74 0.70
Trained 0.61 0.76 0.77
Untrained 0.58 0.67 0.76
Untrained 0.52 0.61 0.57

Note. Groups of stimuli from trained regions of the space are in boldface.
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blocks) mixed-design ANOVA was conducted on the accuracy
rates. The accuracy rates averaged across observers are presented
in Figure 6. The main effects of within-category discontinuity, F(2,
66) � 7.14, p � .01, and block, F(4, 264) � 28.33, p � .001, were
significant. The interaction was nonsignificant, F(8, 264) � 1.01,

p � .05. Post hoc analyses of the within-category discontinuity
main effect suggested better performance in the CS condition than
in both the LDS and HDS conditions ( p � .05) and equivalent
performance in the LDS and HDS conditions. This result suggests
that increasing the magnitude of the spread does not lead to a
monotonic decline in performance, but rather that any spread
adversely affects II learning. Although there was a trend toward
LDS performance to be better than HDS performance during the
final block of training, this effect was nonsignificant based on a t
test ( p � .05). Even so, the results do suggest that, with additional
training, the monotonic decline in performance with increased DS
observed during the final training block might increase in
magnitude.

Transfer block analyses. As in the previous two experiments,
we conducted a within-category discontinuity (CS vs. LDS vs.
HDS) ANOVA on the transfer block accuracy rates. The accuracy
rates averaged across observers are presented in Figure 6 and are
denoted by the block marked T for transfer. The effect of within-
category discontinuity was nonsignificant, F(2, 67) � 1. To de-
termine how performance changed from the final training block to
the transfer block, we computed a difference score by subtracting
transfer performance from performance in the final training block
and subjected this score to the same ANOVA. The within-category
discontinuity effect was significant, F(2, 66) � 4.93, p � .01. Post
hoc analyses indicated that performance declined from the final
training to the transfer block in all conditions, with the decline
being largest in the CS condition (.098), intermediate in the LDS
condition (.055), and smallest in the HDS condition (.020).

We performed the same type of partitioning in these data that we
did in Experiment 2, except that the partitioning was more fine-
grained. Specifically, instead of examining five partitions orthog-
onal to the optimal decision bound we examined eight. This
change was needed because the trained subregions were smaller in
Experiment 3 (compare Figures 3 and 5). The probability correct
(averaged across observers) for these 24 partitions separated by
condition are displayed in Table 6. The groups of stimuli from
trained regions of the space are highlighted in bold type.

We followed the approach in Experiment 2 and conducted three
mixed-design ANOVAs (one for each distance to the bound: near,
medium, and far) all using within-category spread as a between-
subjects factor and trained versus untrained region as a within-
subjects factor. For near items, the effect of training was signifi-

Figure 5. Scatter-plots of the stimuli along with the optimal decision
bounds from the three conditions of Experiment 3 and the transfer items.
Open squares denote stimuli from Category A. Filled triangles denote
stimuli from Category B.

Table 5
Category Distribution Parameters From Experiment 3

Category �l �o �l �o covlo

Continuous spread

A1 136 83 10 10 0
A2 157 104 10 10 0
B1 158 61 10 10 0
B2 179 82 10 10 0

Low discontinuous spread

A1 136 83 10 10 0
A2 199 147 10 10 0
B1 158 61 10 10 0
B2 222 124 10 10 0

High discontinuous spread

A1 136 83 10 10 0
A2 242 189 10 10 0
B1 158 61 10 10 0
B2 264 167 10 10 0

Note. Optimal accuracy was held constant at 95% in all conditions. �l �
the population mean on the length dimension; �o � the population mean
on the orientation dimension; �l � the population SD on the length
dimension; �o � the population SD on the orientation dimension; covlo �
the population covariance between length and orientation.

Figure 6. Proportion correct (averaged across observers, � SE) from Ex-
periment 3. CS � continuous-spread condition; LDS � low discontinuous-
spread condition; HDS � high discontinuous-spread condition; T �
transfer.
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cant, F(1, 66) � 8.88, p � .01, but the main effect of condition and
the interaction were both nonsignificant, (Fs � 1). As expected,
items from the untrained region yielded lower accuracy than items
from the trained region. The same pattern held for medium and far
items. Specifically, the main effect of training was significant,
medium, F(1, 66) � 29.64, p � .001; far, F(1, 66) � 19.41, p �
.01, whereas the main effect of condition (medium, F � 1; far, F �
1), and the interaction were nonsignificant, medium, F(2, 66) �
1.90, p � .05; far, F(2, 66) � 2.13, p � .05. These findings mimic
those from Experiment 2 and suggest that items from untrained
regions of the space yield lower transfer performance than items
from trained regions of the space, with some evidence that perfor-
mance declines with distance from a trained region (when distance
to the bound is held fixed). In addition, transfer performance
increases as distance to the bound increases. In summary, II
transfer performance appears to be governed by both distance to
the bound and distance from the trained regions.

Discussion

The results from Experiment 3 converge with the results from
Experiment 2, suggesting that within-category discontinuity ad-
versely affects II category learning even when the amount of

stimulus space trained is controlled across conditions. Although
only a single study, Experiment 3 also suggests that both a low and
high within-category DS lead to approximately the same perfor-
mance decrement suggesting that the existence of within-category
discontinuity, and not the magnitude of such discontinuity, deter-
mines performance. Even so, during the final block of training
there was a monotonic decline in performance as the magnitude of
the spread increased, although this effect was nonsignificant.

General Discussion

The aim of the studies outlined in this report was to examine the
qualitative properties of the implicit, procedural-based learning
and explicit, hypothesis-testing systems proposed in COVIS. In-
formation regarding the processing characteristics of the two sys-
tems has been obtained in a number of previous studies (for a
review, see Maddox & Ashby, 2004), but in each case the exam-
ination was indirect in the sense that a single II and RB category
structure was selected and some external manipulation was intro-
duced. The current studies take the next, more direct, step by
introducing systematic manipulations of the II and RB category
structures. In COVIS, the procedural-learning system is involved
in learning II categories. Processing in this system is not directly
accessible to conscious awareness and is mediated largely within
the tail of the caudate nucleus (Ashby et al., 1998; Ashby & Ell,
2001; Willingham, 1998). Learning in this system is incremental
and requires a dopamine reward signal. In COVIS, the hypothesis-
testing system learns RB categories. This system uses working
memory and executive attention and is mediated primarily by the
anterior cingulate, the prefrontal cortex, and the head of the cau-
date nucleus. This system appears to learn through a conscious
process of hypothesis generation and testing.

The focus of this report was on the effects of within-category
discontinuity on II and RB category learning. Because learning in
the procedural-based categorization learning system involves as-
sociating perceptually similar clusters of stimuli with the same
categorization response, we predicted that within-category discon-
tinuity should affect the learning of II category structures. In
particular, increasing within-category discontinuity should ad-
versely affect II category learning. Because learning in the
hypothesis-testing categorization system requires abstracting a
rule, we postulated that within-category discontinuity should have
no effect on RB learning as long as the optimal rule remains
constant across within-category discontinuity conditions.

Experiment 1 examined the effects of within-category disconti-
nuity on II and RB category learning. In the NS condition, the
items from each category were perceptually similar and the per-
ceptual variation across a category was gradual. In the DS condi-
tion, two distinct and perceptually dissimilar clusters of stimuli
were associated with each category (see Figure 1). Both the DS
and NS conditions were run with II and RB category structures. It
is important to note that the optimal decision bound was equivalent
across discontinuous and NS conditions. As predicted, the DS
manipulation led to a large performance decrement in II category
learning but did not lead to a performance decrement in RB
category learning.

Although we argue that the results of Experiment 1 were due to
within-category discontinuity, another possible explanation was
that the effects observed could have been due to the amount of

Table 6
Probability Correct for the Transfer Trials From Experiment 3

Transfer trial

Distance to optimal bound

Near Medium Far

High discontinuous spread

Untrained 0.61 0.57 0.68
Trained 0.68 0.75 0.72
Untrained 0.59 0.71 0.67
Untrained 0.61 0.63 0.79
Untrained 0.56 0.61 0.76
Untrained 0.50 0.61 0.64
Trained 0.63 0.70 0.78
Untrained 0.51 0.54 0.53

Low discontinuous spread

Untrained 0.53 0.50 0.58
Untrained 0.60 0.58 0.61
Untrained 0.63 0.58 0.75
Trained 0.67 0.69 0.79
Untrained 0.64 0.76 0.82
Untrained 0.63 0.67 0.76
Trained 0.63 0.70 0.76
Untrained 0.58 0.58 0.65

Continuous spread

Untrained 0.54 0.53 0.57
Untrained 0.60 0.62 0.55
Untrained 0.59 0.63 0.61
Untrained 0.59 0.65 0.75
Untrained 0.64 0.72 0.87
Trained 0.63 0.72 0.74
Trained 0.61 0.68 0.80
Untrained 0.52 0.60 0.64

Note. Groups of stimuli from the trained regions of the space are in
boldface.
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stimulus space that was trained. Specifically, the DS condition
trained a larger portion of the stimulus space, and this could have
led to the decreased learning in that condition. Experiment 2
addressed this possibility by equating the amount of stimulus space
trained. Within-category discontinuity continued to adversely af-
fect II category learning when the amount of stimulus space
trained was equated. Experiment 3 examined the effects of within-
category discontinuity parametrically by examining three levels of
discontinuity: CS, LDS, and HDS. Performance in both DS con-
ditions was worse than that observed in the CS condition, but the
LDS and HDS conditions yielded the same level of performance.
However, during the final training block, HDS performance was
worse than low CS performance, suggesting that perhaps with
additional training a monotonic decline in performance with in-
creasing spread would emerge. Future research should address this
important issue.

All three experiments included a block of transfer trials at the
end of each session that included items of differing distances from
the optimal decision bound as well as items from trained and
untrained regions of the stimulus space. The results were clear.
Transfer performance in the RB conditions was mediated by
distance to the bound regardless of whether items were sampled
from trained or untrained regions. Transfer performance in the II
conditions, on the other hand, was mediated by both distance to the
bound and distance from the trained-regions of the stimulus space.
Specifically, as the distance to the bound increased, transfer per-
formance generally increased. However, for items equidistant from
the decision bound, transfer performance was better for items
sampled from the trained rather than the untrained regions of the
space.

Within-Category Discontinuity Effects

These data add to the growing body of research in support of the
existence of functionally and neurobiologically distinct category
learning systems. Ashby and his colleagues proposed that with RB
structures, learning is mediated by a circuit that includes the
anterior cingulate, the prefrontal cortex, and the head of the cau-
date nucleus, whereas in II tasks, learning is mediated largely
within the tail of the caudate nucleus (with visual stimuli; Ashby
et al., 1998; Ashby & Ell, 2001; Ashby, Isen, & Turken, 1999;
Ashby & Waldron, 1999; and the body of the caudate for auditory
stimuli; Maddox, Molis, & Diehl, 2002). The mechanisms that
mediate learning-related changes in synaptic efficacy within these
two neural circuits are qualitatively different, and such differences
suggest that within-category discontinuity may have different ef-
fects on RB and II tasks. The hypothesis-testing category learning
system proposed above is under conscious control and has full
access to working memory and executive attention, and accurate
RB category learning depends on good use of these processes. As
long as the optimal rule remains constant, the working memory
load and executive attention resources necessary to learn the rule
should remain constant, and performance should be unaffected
regardless of the degree of within-category discontinuity. On the
other hand, the procedural-based learning system learns to associ-
ate clusters of visual cortical cells with a specific response loca-
tion. Ashby and Waldron (1999; see also Ashby, Waldron, Lee, &
Berkman, 2001; Maddox, 2001, 2002; Waldron & Ashby, 2001)
proposed a neurobiologically plausible model of learning in this

system. In short, visual stimuli are represented perceptually in
higher level visual areas, such as inferotemporal cortex (IT). Given
the many-to-one convergence of information from IT into the
striatum (Wilson, 1995), it is assumed that a low-resolution map of
the perceptual space is represented among the striatal units. As the
observer gains experience with the task, each unit becomes asso-
ciated with a particular response through a gradual incremental
learning process. Thus, the striatum can be thought of as associ-
ating a categorization response with a cluster of visual cortical
cells that are associated with perceptually similar stimuli. When
accurate performance requires that perceptually dissimilar clusters
of stimuli be associated with the same response, this system is
required to train and disambiguate more striatal units, which ulti-
mately leads to a performance decrement.

When designing Experiment 3, our expectation was that we
would observe a monotonic decline in accuracy with increased DS.
Our thinking was that perceptual information about the stimuli
might be spatio-topically represented in the tail of the caudate in
such a way that items that look more alike will activate cells that
are closer in proximity. With continuous categories, caudate cells
that are spatially close will be activated for items from the same
category, whereas in the high discontinuous condition, caudate
cells that are spatially separated will be activated for items from
the same category, with an intermediate situation holding in the
low discontinuous condition. For the continuous condition, when
dopamine is released into the caudate, the neurotransmitter only
has to be distributed within a continuous group of cells, whereas
for the other conditions, dopamine has to be distributed to clusters
of spatially separate cells. As the cluster distance increases, the
impact of the dopamine lessens because the same amount of
dopamine is released regardless of cluster continuity. At this stage,
this is still a viable hypothesis especially given the results from the
final training block. One avenue for future research would be to
increase the amount of training to determine whether the accuracy
trend observed in Block 5 increases in magnitude. Another avenue
would be to increase the discontinuity. It is possible that the
discontinuity difference across the low and high discontinuous
conditions was too small to yield a significant effect.

Effects of the Amount of Stimulus Space Trained

These data provide strong support for the prediction that the
procedural-learning based system should be adversely affected by
within-category discontinuity, but there is also some evidence that
the amount of stimulus space trained during learning also affects
performance. Notice that the amount of stimulus space trained in
the Experiment 3 CS condition was half of that trained in the two
CS conditions in Experiment 2. Performance was better in the
Experiment 3 CS condition (.70) than in the two CS conditions in
Experiment 2 (CS-A � .59, CS-B � .59) that trained twice as
much of the stimulus space.

The interpretation of these results is very similar to that outlined
above for discontinuous category spread. II category learning by
the procedural-learning based system involves learning to associ-
ate units in the striatum with a categorization response. Each
striatal unit is associated with a cluster of visual cortical cells that
are associated with perceptually similar stimuli. When accurate
performance requires that more clusters of stimuli be associated
with the same response, this system is required to train more
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striatal units, which ultimately leads to a performance decrement.
This results when more of the stimulus space is trained regardless
of whether the spread is continuous.

Generalization Profiles for the Two Systems

The transfer results from Experiment 1 provide some of the
strongest and perhaps most striking evidence in support of distinct
category learning systems. These results suggest that the nature of
performance generalization might be very different in the two
category learning systems. An abstract rule appears to be learned
in the RB conditions that leads to a distance-to-the-bound effect
whereby stimuli that are farther from the bound yield higher
accuracy rates, even though stimuli from this region were never
presented during training and might be quite distant from trained
items (e.g., far/DS items in the RB-NS condition). This rule is
abstract in the sense that it can be applied to novel items and is not
tied directly to the trained items. Items that are more representative
of the rule (e.g., very short lines relative to a short line vs. long line
categorization problem) yield higher accuracy rates. This result is
very much in line with that predicted from the explicit, hypothesis-
testing system proposed in COVIS, and in following, strongly
suggests that those brain structures involved in this system (i.e.,
prefronto-cortical-thalamic loops and the head of the caudate)
represent this rule. II learning is also partially affected by distance
to the bound, but in contrast to the RB system, it appears to be
more closely linked to the regions of the stimulus space that are
trained. Transfer performance for items equidistant to the decision
bound declined with distance from the training items in the II
condition but not in the RB condition, suggesting that generaliza-
tion in II tasks is strongly affected by the distance to the trained
response region, with more distant items yielding worse
performance.

It is important to be clear that we are not arguing that specific
training item effects on RB category learning do not exist. On the
contrary, a large body of work (e.g., Allen & Brooks, 1991;
Sakamoto & Love, 2004) suggests that specific exemplars can
have a strong effect on RB category learning. Although more work
is needed, our belief is that specific training items have less effect
on RB category learning than II category learning, especially when
the categories are composed of large numbers of stimuli con-
structed from simple perceptual dimensions. An important focus of
future research should be on attempting to merge these two dif-
ferent, but related, approaches.

Model-Based Analyses of Participant’s Strategies

The conclusions drawn from the accuracy results are suggestive
of two unique category learning systems. Even so, it is also
important to determine what strategies an observer might use when
solving these tasks. An understanding of strategy use and how
these strategies might be affected by the nature of the category
structures and the within-category discontinuity manipulation is of
central importance to a more complete understanding of category
learning. In addition, and perhaps more important, it is critical to
determine whether participants are using a strategy similar to the
optimal or are using a qualitatively different strategy. To determine
the strategies used by observers in the present study, we fit a
number of different decision bound models (Ashby, 1992; Maddox

& Ashby, 1993) to the individual participant’s block by block data.
The details of our model-based approach are outlined in numerous
published articles (e.g., Maddox, Filoteo, Hejl, & Ing, 2004) and
will not be elaborated here. The important point is the two different
classes of models that were applied. One class is compatible with
the assumption that observers used an explicit hypothesis-testing
strategy and one class assumes an II strategy. In general, the results
support the assumption that participants were using hypothesis-
testing strategies to solve the RB task and II strategies to solve the
II tasks. These results support our conclusions that discontinuous
category clusters impact II category learning but not RB category
learning.

Discontinuous Category Learning Under Extended
Training

In all three experiments we found that assigning discontinuous
clusters of stimuli to the same category label led to poor II
category learning relative to NS conditions. We attributed this
effect to the fact that more striatal units were required to learn the
II discontinuous category structures. One obvious question to ask
is whether participants can learn discontinuous, II categories if
given enough experience. We recently conducted a study in which
4 observers completed two consecutive sessions in the Experiment
1, II-DS condition and 4 observers completed two consecutive
sessions in the Experiment 1, II-NS condition. By the final block
of training in Session 1, the average proportion correct in the II-DS
and II-NS conditions was .71 and .82, respectively. These values
are in line with those from Experiment 1 (II-DS � .66; II-NS �
.82), and suggest a large performance decrement for discontinuous
category clusters. By the final block of training in Session 2,
however, the average proportion correct in the II-DS and II-NS
conditions was .80 and .83, respectively. In addition, the final
block of data for all observers in Session 2 was best accounted for
by an II model. These data suggest that observers can in fact learn
to assign discontinuous clusters of stimuli to the same category
nearly as well as they learn to assign a single coherent cluster of
stimuli to the same category, but that extended training is required
to do so. This finding supports our claim that more striatal units are
necessary to learn the II-DS structures and that this process re-
quires additional experience with the category exemplars.

An Alternative Complexity Explanation

One might argue that discontinuity affects II and not RB cate-
gory learning because II categories are more difficult to learn. The
idea being that any increase in difficulty, such as the discontinuity
manipulation, will affect a potentially more complex task, such as
an II task, more so than a potentially less complex task, such as an
RB task. The data from the NS conditions from Experiment 1 do
suggest that the unidimensional RB task was learned more quickly
than the multidimensional II task, so this is a reasonable alternative
explanation. However, there are a number of results that argue
against this complexity explanation. First, the complexity argu-
ment would predict that requiring participants to perform a cate-
gorization task and a second task should adversely affect II cate-
gory learning more than RB category learning. COVIS, on the
other hand, predicts the opposite, as the second task places a
greater demand on working memory. Consistent with predictions
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based on COVIS, the results from two studies (Maddox, Ashby,
Ing, & Pickering, 2004; Waldron & Ashby, 2001) indicated that
the secondary task impacted RB category learning more so than II
category learning, even though the RB task was less difficult than
the II task. Second, Maddox and Ing (2005; see also Maddox,
Bohil, & Ing, 2004) examined the effects of delayed feedback on
II and RB category learning, but in their study, the RB category
learning task required that both stimulus dimensions be attended.
In their study, this multidimensional, conjunctive RB task was
more complex than the analogous multidimensional II task (on the
basis of the category-level discriminability required to equate
control condition performance). Because the conjunctive RB task
was more complex, the complexity explanation predicts that de-
layed feedback should affect RB category learning more than it
affects II category learning, as delaying the feedback increases the
complexity of the task. COVIS, on the other hand, predicts that
delayed feedback should affect II but not RB category learning. In
line with the predictions from COVIS, delayed feedback adversely
affected the simpler II task but not the more complex RB task.
Thus, taking these findings into account, it does not appear that
task complexity can entirely explain why category discontinuity
impacted II but not RB category learning.

Alternative Theories of Category Learning

Despite the growing interest in multiple systems approaches to
category learning, a number of single system models of category
learning remain popular. Two single system alternatives are
exemplar-similarity models, such as Nosofsky’s (1986) general-
ized context model (GCM) and Kruschke’s (1992) attention learn-
ing coverage map. To our knowledge, neither of these single
system approaches could provide an a priori accounting of the
differential impact of category discontinuity on the II and RB tasks
in the present study. Even so, it is likely that either single-system
model could account for the observed data by postulating different
parameter settings across conditions. For example, the estimate of
the psychological scaling parameter (c) in the GCM might be
smaller in the DS condition relative to the NS condition resulting
in a performance decrement. This could account for the disconti-
nuity effect on II category learning. To account for the lack of an
effect of discontinuity on RB category learning, the GCM would
likely adjust the attention weight parameter (w) so that selective
attention was operative. Although one might argue that selective
attention constitutes a separate cognitive system in and of itself
(and thus does not adhere to the concept of a single system),
adjustments in selective attention could effectively wash out any
performance differences due to the use of different c parameters in
the two discontinuity conditions. This post hoc adjustment of
parameter values might account for the performance dissociation
we observed in the II and RB conditions.

It is also important to point out that multiple system models
other than COVIS have also been developed. In fact, there is a long
and rich tradition in category learning that focuses on the distinc-
tion between rule application and similarity-based processing (e.g.,
Allen & Brooks, 1991; Brooks, 1978; Folstein & Van Petten,
2004; Kemler-Nelson, 1984; J. D. Smith & Shapiro, 1989; see also
Shanks & St. John, 1994). Several of these other multiple systems
models have similar components as COVIS. For example, in the
model proposed by E. E. Smith et al. (1998), rule application

involves a high working memory load and requires analytic, serial
processing of criterial attributes with differential weighting of
attributes, much like the hypothesis-testing system in COVIS.
Similarly, one system in Erickson and Kruschke’s (2002) attention
to rules and instances in a unified model instantiates rules in a
similar manner as the hypothesis-testing system in COVIS. Where
these other multiple-system models differ from COVIS is in their
proposal of a second system that is a similarity-based process. In
contrast, the second system in COVIS is a procedural-based learn-
ing system that is involved in associating category labels (or
responses) to regions of perceptual space. As noted above,
similarity-based models have a difficult time providing an a priori
accounting of the findings from the present study. Even so, like the
single-system approaches outlined above, it is likely that multiple
process models, such as ATRIUM, could account for the observed
data by postulating different parameter settings across conditions.

Another important difference between COVIS and other multi-
ple systems models is the detail in which COVIS proposes the
neurobiological underpinnings of the different category learning
systems. Although the neurobiology of category learning has been
elaborated in the context of other multiple-systems models (e.g.,
Patalano, Smith, Jonides, & Koeppe, 2001), COVIS has the added
advantage of incorporating biological constraints into its architec-
ture that have enabled more detailed predictions of the impact of
various experimental manipulations on category learning. For ex-
ample, COVIS hypothesizes that the II system relies on the many-
to-one convergence of cells from the IT cortex onto cells within
the tail of the caudate. Such a funneling of information onto the
caudate results in the prediction that II category learning will be
better when stimuli from a category are perceptually similar (i.e.,
when there is no discontinuity in the distribution of stimuli within
a category), which was supported by the findings in the present
study. Other biological constraints have also been incorporated
into predictions made by COVIS. For example, based on COVIS,
the dopamine-reward signal associated with feedback has to occur
in close temporal proximity to the response in order for efficient II
category learning to occur. This prediction has been supported by
the finding that delayed feedback negatively impacts II category
learning (Maddox et al., 2003; Maddox & Ing, 2005). Thus,
COVIS attempts to provide computationally and biologically plau-
sible accounts of multiple category learning systems.

Conclusions

To summarize, the studies outlined in this report provide a direct
examination of the qualitative properties of the implicit,
procedural-based and explicit, hypothesis-testing systems pro-
posed in COVIS by systematically manipulating within-category
discontinuity while holding a number of important structural prop-
erties fixed. Experiment 1 showed that within-category disconti-
nuity adversely affects II but not RB category learning. Experi-
ments 2 showed that the DS effect observed in Experiment 1
continued to hold when the amount of stimulus space trained was
controlled. Experiment 3 showed that increasing the magnitude of
the within-category discontinuity does not lead to a significant
decline in performance, except perhaps during the final block of
training. Although preliminary at this stage, we also found evi-
dence that the distance to the bound provides a reasonable descrip-
tion of the generalization profile associated with the hypothesis-
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testing system, whereas the distance to the bound plus the distance
to the trained response region provides a reasonable description of
the generalization profile associated with the procedural-learning
system. These data provide useful information regarding the de-
tailed processing characteristics of each category learning system.
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