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1 Introduction

There has long been an interest in long memory models, especially with applications to

financial times series. For reviews of the literature, see Robinson (1994), Beran (1994) and

Baillie (1996). Of particular interest in econometrics is the fractionally integrated model

(Granger, 1981, Granger and Joyeux, 1980, and Hosking, 1981) whose difference of order d is

a short-memory process often modelled as an ARMA process for which the autocorrelations

decays exponentially. The parameter d can be non-integer valued and when 0 < d < 1,

the autocorrelations decays very slowly, a characteristic of long memory processes. Various

methods have been proposed to estimate the long memory parameter d. One often used is

a semiparametric estimator in the frequency domain which does not require a distributional

assumption on the process generating the difference of order d of the series. A popular method

is the log periodogram regression proposed by Geweke and Porter-Hudak (1983), whose large

sample distribution was analyzed by, among others, Robinson (1995) and Hurvich, Deo and

Brodsky (1998) as well as Phillips (2007) who covers the unit root case d = 1. Applications

to macroeconomics, international trade and finance are numerous. For example, Ding et al.

(1993) argue that stock returns volatility is well described by a long memory process.

Recently, there has been an upsurge of interest on the possibility of confusing long memory

and structural changes in level. The idea extends that exposited in Perron (1989, 1990) who

showed that structural changes and unit roots (d = 1) are easily confused in the sense that,

with a stationary process contaminated by structural changes, the estimate of the sum of

the autoregressive coefficients is biased towards 1 and that tests of the null hypothesis of a

unit root are biased towards non-rejection. This phenomenon has been shown to apply in

the long memory context as well. When a stationary short memory process is contaminated

by structural changes in level the estimate of d is biased away from 0 and the autocovariance

function exhibits a slow rate of decay. Relevant references on this issue include Diebold and

Inoue (2001), Engle and Smith (1999), Gourieroux and Jasiak (2001), Granger and Ding

(1996), Granger and Hyung (2004), Lobato and Savin (1998), Mikosch and Stărică (2004a),

Parke (1999) and Teverosovky and Taqqu (1997). While some papers contain theoretical

results related to the fact that the variance and autocorrelations have similar properties under

structural change and long memory, most of the evidence was obtained through simulations

and no theoretical results are available pertaining to the distribution of the estimate of the

long memory parameter d in the presence of a short memory process with level shifts.

The specification adopted in this paper is one for which the series of interest is the sum
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of a short memory process and a jump or level shift component. For the latter, we specify

the commonly used simple mixture model such that the component is the cumulative sum

of a process which is 0 with some probability (1 − p/T ) and is some random variable with

probability p/T . Level shifts then occur with some probability p/T that we make dependent

on the sample size to obtain non-degenerate limiting results. The underlying idea is to have

infrequent changes that are more akin to structural changes rather than a large number of

changes which would make the level shift component basically an integrated process (d = 1).

By scaling the probability of a level shift by T , this aim is achieved in large samples (of

course, this specification has no effect in finite samples). This allows us to use a Functional

Central Limit Theorem recently obtained by Georgiev (2002) and Leipus and Viano (2003).

We present theoretical results about the limit distributions of the autocorrelation func-

tion and the periodogram. We shall also use theoretical results derived in Perron and Qu

(2007) about the log periodogram estimate of d. These will allow us to explain many of

the findings reported in the literature mentioned above. Moreover, it also allows us to un-

cover new features and gain better insight about the properties of the various estimates.

In particular, we show that the reliance on using the familiar rule of thumb T 1/2 for the

number of frequencies used to estimate the regression, e.g. Diebold and Inoue (2001), allows

only a very narrow picture of the problem. We explain how the limit distribution of the log

periodogram estimate is highly dependent on the number of frequencies used, a feature that

is different from the case where the true underlying process is a pure fractionally integrated

model. Hence, this can be helpful to distinguish structural change from long memory.

Our theoretical results have important practical implications that can be confronted with

the data. An area where such a concern is important pertains to the behavior of stock return

volatility. Several papers have reported that transformations of returns, rt, of the form |rt|θ
for some θ > 0 have times series properties that resemble those of a long-memory process

(see, e.g., Ding, Engle and Granger, 1993, Granger and Ding, 1996 and Lobato and Savin,

1998). Similar evidence applies to log absolute returns (see Stărică and Granger, 2005).

It has also been documented using realized volatility constructed from high frequency data

for various assets (e.g., Andersen and Bollerslev, 1997, Bollerslev and Wright, 2000 and

Andersen, Bollerslev, Diebold and Labys, 2003, among many others).

More recently, attempts have been made to distinguish between the stationary noise

plus level shift and the long-memory models; see, in particular, Granger and Hyung (2004).

They document the fact that, when breaks determined via some pre tests are accounted

for, the evidence for long memory is weaker. This evidence is, however, inconclusive since
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structural change tests are severally biased in the presence of long memory and the log

periodogram estimate is biased downward when sample-selected breaks are introduced. This

is an overfitting problem that Granger and Hyung (2004, p. 416) clearly recognized. Stărică

and Granger (2005) present evidence that log-absolute returns on the S&P 500 index is an

i.i.d. series affected by occasional shift in the unconditional variance and show that such a

specification has a better forecasting performance than the more traditional GARCH(1,1)

model. Mikosch and Stărică (2004b) consider the autocorrelation function of the absolute

returns on the S&P 500 index for the period 1953-1977. They document the fact that for

the full period, it resembles that of a long memory process. But, interestingly, if one omits

the last fours years of data, the autocorrelation function is then very different and looks like

one associated with a short memory process. They explain this finding by arguing that the

volatility of S&P 500 returns has increased over the period 1973-1977.

Our results allow a way of discriminating between the two models based on the auto-

correlation function and the path of the log periodogram estimates d̂ as m varies. We shall

first illustrate the implications using the same data set as in Granger and Hyung (2004). It

consists of 19,868 daily observations for the S&P 500 returns over the period January 4, 1928

to October 30, 2002. It was kindly provided by William Schwert. The source of the data for

the period January 4, 1928 through July 2, 1962 is Schwert (1990). From July 3, 1962 it is

from the CRSP daily returns file. We use log returns (rt = 100[ln(Pt)− ln(Pt−1)] with Pt the

S&P 500 stock price index) whose series is depicted in Figure 1. As a proxy for volatility, we

use log-squared returns following Stărică and Granger (2005). To account for the presence

of zero returns, we use the following measure ln(r2t + 0.001). The conclusions remain the

same if we eliminate returns that are less than 0.000001, which involves 379 observations.

The results are also similar using absolute or square root returns. The sample path of the

log periodogram estimates follows a pattern that would obtain if the underlying process

is one of short-memory with level shifts. We also show that the autocorrelation function

of a short-memory process with level shifts has a special structure, in particular for large

lags its shape (in expected value) depends only on the sample size in contrast to that of a

long-memory process, whose autocorrelation function has a shape dictated by the underlying

process. When analyzed in its entirety, the behavior of the sample autocorrelation function

of stock return volatility also favors a short-memory process with level shifts. In Section 4,

we consider sensitivity analyses to various sub-samples and returns series on other indices,

and obtain similar conclusions. We finally propose a simple test of the null hypothesis of a

long memory which has power against a level shift process. It is based on the difference in
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the estimates d̂ constructed using different numbers of frequencies. The test applied to stock

return volatility shows a rejection of the null hypothesis of a long memory process.

The structure of the paper is as follows. Section 2 describes the data generating process

used throughout and the Functional Central Limit Theorem for the level shift process.

Section 3 considers the limiting distributions of the autocovariance function and of the

periodogram with simulations showing that they provide good approximations. We also

summarize the relevant results from Perron and Qu (2007) about the properties of the log-

periodogram estimate of d. In all cases, we consider how well the theoretical predictions

fit the data when using the series of log squared returns on the S&P 500 index. Section

4 documents via simulations calibrated to estimates obtained from S&P 500 returns over

the period 1980.1-2005.12, that a simple level shift model can easily explain the theoretical

and empirical features documented. Section 5 analyzes via simulations whether standard

long-memory models, with noise and/or with level shifts, can explain the key documented

features in the data. Section 6 proposes simple tests for the null hypothesis of long memory,

which have power against an alternative of a short-memory process with level shifts. Section

7 offers brief conclusions and a mathematical appendix some technical derivations.

2 The data generating process with mean shifts

The data generating process adopted is quite simple, yet rich enough to provide theoretical

explanations for many of the simulation results about the effect of level shifts on long memory

parameter estimates. It is a mixture of a short memory process and a component determined

by shifts occurring according to a Bernoulli process. More specifically, DGP-1 is

xt = c+ vt + uT,t, uT,t =
tP

j=1

δT,j, δT,t = πT,tηt. (1)

Here c is a constant and vt is a short memory process defined by vt = C(L)et with et ∼ i.i.d.

(0, σ2e) and E|et|r < ∞ for some r > 2. The polynomial C(L) satisfies C(L) =
P∞

i=0 ciL
i,P∞

i=0 i|ci| <∞ and C(1) 6= 0. For the level shift component, ηt ∼ i.i.d. (0, σ2η) and πt,T is a

Bernoulli variable that takes value 1 with probability p/T , i.e. πT,t ∼ i.i.d. B(p/T, 1). We

also assume that the components πT,t, ηt, and vt are mutually independent.

Remark 1 Note that p is independent of the sample size T . This specification is needed to
model structural changes in mean, i.e., relatively infrequent events that affect the properties

of the series in a permanent fashion. If p/T converges to some value in (0, 1), the model is

best construed as depicting a standard unit root process.
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Remark 2 We make no claim that model (1) is the true or the best description of the

data generating process for any of the series analyzed. We use this very simple model on

purpose since the goal is to distinguish between level shifts plus short-memory noise and long-

memory and what is needed are the essential elements. All models are approximations and the

usefulness of a particular specification is to be assessed on how well the theoretical predictions

fits the data. If level shifts are an important element, we should expect the estimates to behave

according to our theoretical predictions, at least to a first approximation. If the model is not

a useful approximation, our theoretical predictions will not hold empirically.

A crucial ingredient that will be used throughout the paper is a Functional Central Limit

Theorem for the cumulative level shifts process uT,t. This has been considered by Georgiev

(2002) and Leipus and Viano (2003). The results relevant to our analysis are stated in the

following Lemma where “⇒ ” denotes weak convergence under the Skorohod topology.

Lemma 1 (Georgiev, 2002; Leipus and Viano, 2003) Consider DGP-1 with 0 < p < ∞,
then uT (s) =

P[Ts]
t=1 δT,t ⇒ J(s) where J(s) =

PN(s)
j=0 ηj with N(s) a Poisson process with

jump intensity p which is independent of ηj for all j.

Remark 3 The limiting distribution J(s) depends on the exact distribution of ηt. Below, to

obtain quantitative results to assess important features of the distributions and their adequacy

as approximations to the finite sample distributions, we shall specify a normal distribution.

Since we shall make frequent comparisons with long memory processes, it is useful to

make precise the properties we shall refer to. Here, we will use the following two definitions

of a long memory process. Let {xt}Tt=1 be a stationary time series with spectral density
function fx(w) at frequency w, then xt is said to have long memory if

fx(w) = g(w)w−2d as w→ 0 (2)

with g(w) a slowly varying function as w→ 0 (i.e., for any real t, g(tw)/g(w)→ 1 as w→ 0).

When d > 0, this implies that the spectral density function increases for frequencies that

get close to zero. The rate of divergence to infinity depends on the parameter d. Under

some general conditions, this low-frequency definition is equivalent to the following long-lag

autocorrelation definition (Beran, 1994). Let γx(τ) be the autocorrelation function of xt. If

γx(τ) = c(τ)τ 2d−1 as τ →∞, with c(τ) a slowly varying function as τ →∞, the process is
said to have long memory. For 0 < d < 1/2, this implies that the autocorrelations decreases

to zero at a slow hyperbolic rate which depends on the parameter d, in contrast to the fast

geometric rate of decay that applies to a short-memory process.
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3 The limit distributions of the various statistics

In this section, we examine the properties of some statistics in both the time and frequency

domains under the DGP-1. We consider the autocorrelation function, the periodogram, and

summarize relevant results about the limit distribution of the log-periodogram estimate of the

memory parameter derived in Perron and Qu (2007). We consider how well the theoretical

predictions fit the data when using the series of log squared returns on the S&P 500 index.

3.1 The sample autocovariance function

With an unknown mean, the sample covariance at lag h is defined by R̂(h) = T−1
PT−h

t=1 (xt−
x̄)(xt+h − x̄) with x̄ = T−1

PT
t=1 xt. We shall study the properties of R̂(h) as T →∞ under

two scenarios for the relation between h and T : a) with h/T → 0 as T → ∞ (fixed-h

asymptotic), and b) with h/T → κ as T →∞ (large-h asymptotic). The result for case (a)

is stated in the following Proposition proved in the appendix.

Proposition 1 Under DGP-1, if h/T → 0 as T → ∞, R̂(h) ⇒ Rv(h) +
R 1
0
(J(s) − J̄)2ds,

where J̄ =
R 1
0
J (s) ds and with Rv(h) the autocovariance function of vt.

The limiting distribution has two components. The first is the standard autocovariance

function of the short memory process. The second corresponds to the cumulative level shift

process and is a positive random variable that is independent of the lag h. Hence, for h small

the former will dominate but since it eventually decreases at an exponential rate, the second

component will dominate for h large. Accordingly, the limit will exhibit a very slow rate of

decrease which is a characteristic of a long memory process. Technically, the limiting value

does not decrease to zero as h increases contrary to a stationary process. But recall that

given the condition h/T → 0 as T →∞, the limiting distribution is not tailored to provide
a good approximation for large values of h. This can be achieved by considering the limit

assuming h/T → κ as T →∞, which is stated in the following Proposition.

Proposition 2 Under DGP-1, if h/T → κ as T → ∞, then for 0 < κ < 1, R̂([Tκ]) ⇒R 1−κ
0

¡
J (s)− J̄

¢ ¡
J (s+ κ)− J̄

¢
ds ≡ R(κ) and E(R(κ)) = (pσ2η/6)[(1 − κ)3 − 3(1 − κ2) +

(1− κ3) + 2(1− κ)].

Note that the short memory component is no longer present, since the autocovariance of a

short memory process decays exponentially. Hence, for large h the autocovariance function

is influenced solely by the Poisson process. The functional described in Proposition 2 is
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strictly decreasing as κ increases, though very slowly. Combining Propositions 1 and 2, we

have the following result for the autocorrelation function for 0 < κ < 1:

ρ([Tκ])⇒ R 1−κ
0

¡
J (s)− J̄

¢ ¡
J (s+ κ)− J̄

¢
ds/[

R 1
0
(J(s)− J̄)2ds+Rv(0)].

To assess the adequacy of the asymptotic approximations, Figure 2 presents the results of

a simple simulation experiment. The short-memory component is an AR(1) process of the

form vt = ρvt−1 + et with et ∼ i.i.d. N(0, 1) and ρ = 0.5, 0.9. The level shift component is

specified by (1) with p = 5 and ηt ∼ i.i.d. N(0, 1). The sample size is T = 500, the number of

replications is 10,000 and the first 150 autocorrelations are plotted. We present the median

of the exact values of the autocorrelations and the fixed-h and large-h approximations.

The results show interesting features. First, as documented elsewhere, the finite sample

autocorrelations decrease very slowly, in a way similar to a long-memory process. Consider

now the adequacy of the two asymptotic approximations. For small values of h, the fixed-h

asymptotic provides a good approximation while the large-h asymptotic is not satisfactory,

and vice versa for large values of h. The values of h for which one or the other approximation

is good depend on the correlation in the short-memory component. When ρ = 0.5, the fixed-

h asymptotic is good until lag 4 and the large-h asymptotic is good for h larger than 5.

When ρ = 0.9, the fixed-h is good until roughly lag 20, while the large-h asymptotic is good

for h larger than 40. Hence, both asymptotic approximations are complementary.

Even though a short-memory process with level shifts has an autocorrelation structure

that resembles that of a stationary long memory process for a large number of lags, the two

are not observationally equivalent. Since the feature that characterizes the autocorrelation

function of a long memory process is its behavior for distant lags, it is appropriate to use the

result of Proposition 2 which yields a good approximation in this case. Consider then the

crude approximation of the autocorrelation function given by E(R(κ))/E(R(0)). For a short-

memory process with level shifts, an approximation to the autocorrelations (for large lags)

as a function of κ is f(κ)/(1+a) where f(κ) = [(1−κ)3−3(1−κ2)+(1−κ3)+2(1−κ)] and
a = 6Rv(0)/(pσ

2
η). This is an important result, which can have useful testable implications.

Note first that f(κ) is the approximation that would prevail if the process was a random walk

(see Wichern, 1973). Since a > 0, the autocorrelation with level shifts is a flattened version

that varies between zero when p = 0 and approaches f(κ) as p and σ2η increases, as expected.

The testable implication is that, apart from this scaling, the general shape depends only on

T , the sample size. The autocorrelations initially (almost) linearly decrease (as depicted in

the simulated values in Figure 2). It then crosses the zero axis when κ = 1−p1/2 ≈ 0.293,
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reaches a minimum at κ = 1−p1/6 ≈ 0.592 and increases up to 0 when κ = 1. The sample
autocorrelations of a long memory process is different and crosses the zero axis earlier at a

location depending on the memory parameter (see Section 5).

We now consider the autocorrelation function of the log squared returns of the S&P 500

index as a proxy for its volatility. The top panel of Figure 3 presents the autocorrelation

function up to lag 2,500. It is this kind of graphical representation that has lead many

researchers to conclude that a long memory process is a relevant contender to explain stock

return volatility. The decline appears to be slow and the values are above zero even for lags

as far as 2,000. But with 19,868 daily observations, restricting the analysis to the first 2,500

lags does not allow us to depict the important features discussed above. To that effect, the

bottom panel of Figure 3 presents the autocorrelation functions for all lags. The shape is

almost exactly as predicted by our theory if the underlying process is one of short-memory

with level shifts. It reaches a zero value at roughly lag 5,000 (approximately .25T ), reaches

a minimal value at lag 9,000 and increases back up to 0 at the most distant lag.

But we can confront the data with additional testable implications, in particular the fact

that the autocorrelation function has the same shape irrespective of the size of the sample.

We consider the autocorrelation functions for various sub-samples that all start in 1928

(with the first observation available). To ease presentation, we smoothed the autocorrelation

functions using a non-parametric kernel smoothing method with a normal kernel and the

bandwidth set to T−1/3. The results are presented in Figure 4 for samples of sizes 3, 6 , 9

and 18 thousands daily observations. Again, they fit the theory well. All functions initially

decrease and cross the zero axis at roughly .3T , reach a minimum around 0.6T and go back

to zero for the most distant lags. This has important implications. For instance, consider the

value of the autocorrelation at, say, lag 1,000. With T = 3, 000 it is negative (roughly −0.1),
with T = 6, 000 it is basically zero and with T = 9, 000 or 18, 000 it is positive (roughly 0.1).

Hence, the strength of the evidence about long memory changes drastically with the size of

the sample, being stronger the larger the sample size (the same features hold changing the

sample size using a different sampling frequency keeping the same total span of the data).

3.2 The periodogram

We now consider the behavior of the periodogram under DGP-1. Simulation results presented

in the literature (e.g., Diebold and Inoue, 2001) have documented the fact that semiparamet-

ric methods, such as the log periodogram regression, yield estimates of the memory parameter

d significantly above 0 when the DGP is a short memory process with level shifts. We now
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provide a theoretical analysis of the underlying components of these estimates, namely the

periodogram ordinates (we return to the log periodogram regression in Section 3.3).

The periodogram provides a measure (though imprecise) of the contribution to the total

variability of the series from components at different frequencies. For a series xt and a fre-

quencywj = 2πj/T (j = 1, ..., [T/2]), it is defined by Ix,T (wj) = (1/2πT )|
PT

t=1 xt exp(iwjt)|2,
where i =

√−1 and | · |2 stands for the complex conjugate product. The following decom-
position using the fact that xt = c+ vt + uT,t will be useful:

Ix,T (wj) = Iv,T (wj) + Iu,T (wj) + 2Ivu,T (wj)

=
1

2πT
|
TP
t=1

vt exp(iwjt)|2 + 1

2πT
|
TP
t=1

uT,t exp(iwjt)|2 + 2

2πT

TP
t=1

TP
s=1

vtuT,s cos(wj(t− s)).

Hence, for a particular frequency the contribution to the total variability can be due to

three sources: the short memory process, the level shift process and the interaction between

the two. Note that given our assumption that vt and uT,t are independent, the last term

has mean zero and has no contribution beyond random variation. We have the following

Proposition concerning the order of these three terms.

Proposition 3 For j = 1, ..., [T/2], 1) Iv,T (wj) = (2πT )−1|PT
t=1 vt exp(iwjt)|2 = Op(1);

2) limT→∞E[(j2/T )Iu,T (wj)] = pσ2η/4π
3, and the limiting variance is independent of j and

bounded; hence, Iu,T (wj) = Op(Tj
−2). Also, for a fixed j

T−1Iu,T (wj)⇒ (1/2π)
R 1
0

R 1
0
J(u)J(s) cos(2πj(s− u))dsdu;

3) Ivu,T (wj) = Op(T
1/2j−1), limT→∞E[(j/T 1/2)Ivu,T (wj)] = 0, and, with ηt normally distrib-

uted, the limiting variance is p2σ2η/4π
4.

Proposition 3 goes a long way towards explaining some of the simulation results in the

literature. Consider first the relative magnitude of each term for “small” frequencies in the

sense that j satisfies j = o(T 1/2) as T gets large. In this case, the second term, correspond-

ing to the contribution made by the cumulative level shift component, dominates. As j

increases, the rate of decrease of this component is a random variable with mean −2 and
finite variance (as we shall see in Section 3.3, this implies that the log-periodogram estimate

of the fractional difference parameter should be close to 1 when evaluated using specific

numbers of frequencies). Deviations from this rate decrease with increases in either p or σ2η
(since the importance of the second term increases with increases in p or σ2η). For “large”
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frequencies that satisfy T/j2 = o(1), the second and third components are then op(1) and

the first component dominates, even though it is itself small.

The results of Proposition 3 are also useful to highlight the differences between a short-

memory process with level shifts and a stationary long-memory process. For frequencies

that approach zero, and any given fixed T , the periodogram diverges at rate w−2j , which

from (2) is the rate that would apply for a unit root process. Furthermore, as the frequency

increases, the periodogram of a short-memory process with level shifts decreases faster than

that of a long memory process. Hence, it will be easier to distinguish between the two in

the frequency domain rather than the time domain. This is mainly due to the fact that the

differences in the autocorrelation functions for distant lags sum up to large differences and

imply a different behavior of the spectral density near the origin.

It is important to note the fact that the impact of mean shifts on the periodogram occurs

only at frequencies very close to 0. For large frequencies, the first term dominates and Ix(wj)

in large samples has mean fv(wj), the spectral density of the short memory component at

frequency wj. To assess how rapidly the impact of mean shifts reduces as the frequency

increases, consider DGP-1 with vt ∼ i.i.d N(0, 1) so that fv(wj) = 1/2π and uT,t generated

from a process with p = 10 and σ2η = 1. For T = 500, the ratio E(Iu,T (wj))/E(Iv,T (wj))

then takes the following values: 20.2 (j = 1), 5.04 (j = 2), 2.24 (j = 3), 1.26 (j = 4), 0.81

(j = 5) and 0.56 (j = 6). Hence, the mean shift component dominates the short memory

components only for the first four frequencies up to w4 = π/63.5.

To better highlight the relative importance of each component, Figure 5 presents the me-

dians of the three components from a simulation with 10, 000 replications. We use DGP-1

with the parameters set to T = 500, ηt ∼ i.i.d. N(0, 1), and p = 5. The short memory

process is an AR(1) with i.i.d. N(0, 1) errors and autoregressive parameter 0.7. The results

show that the jump component is clearly dominant for short frequencies but that beyond a

few frequencies the short-memory component dominates (throughout, the cross component

has no first-order effect). The jump component has indeed a very important effect on the

periodogram but this effect is only in a very narrow band close to frequency zero. In our

example, this effect is smaller than the contribution of the short-memory component beyond

frequency π/80 and basically nil beyond frequency π/34. Taking these results into consid-

eration, we conclude that if we use a local method to estimate the memory parameter of a

mean shifting process, the estimate will depend on the number of frequencies used. It will

tend to be less affected by mean shifts if we increase the number of frequencies. A plot of

the periodogram for the S&P 500 log squared returns is presented in Figure 6. The shape
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is exactly what one would expect given the results discussed. Only the first few frequencies

are important, but they have an overwhelming dominance compared to higher frequencies.

Note that the values continue to be small beyond the maximal frequency π/50 reported.

3.3 The log periodogram estimate of d

The log periodogram regression estimator of the memory parameter d was proposed by

Geweke and Porter-Hudak (1983). It is a semi-parametric method which uses only frequen-

cies near zero to avoid possible misspecification caused by high frequency movements. With

Ix,T (wj) the sample periodogram at the jth Fourier frequency wj = 2πj/T (j = 1, ..., [T/2]),

the estimate is obtained from the following regression estimated by least-squares

log(Ix,T (wj)) = c− 2d log(2 sin(wj/2)) + εj

using observations pertaining to frequencies ranging from j = 1 to m. Here m acts as an

upper bound on the number of frequencies used. A popular rule of thumb is m = T 1/2.

As a matter of notation, let aj = − log(2 sin(wj/2)) + (1/m)
Pm

k=1 log(2 sin(wk/2)) and

ST =
Pm

k=1 a
2
j . The estimate of d is then d̂ = (1/2ST )

Pm
j=1 aj log(Ix(wj)).

We summarize the main features of the limit distributions of d̂ derived in Perron and

Qu (2007) when the underlying process is the level shift model with short-memory. First,

when m is near T 1/3, d̂ will be in a neighborhood of 1 with a standard deviation of about

.79/
√
m (provided p ≥ 5). When m is roughly between T 1/3 and T 1/2, d̂ drops to a new level

when the stationary component starts to affect the limiting distribution. The magnitude of

the drop depends on the relative variance of the stationary and level shift components as

well as on the value of p, the frequency of the jumps. As m increases beyond T 1/2 there is

a further gradual decrease in d̂ as the short-memory component becomes increasingly more

important, relative to the level shift component, in determining the limiting distribution.

Note that the rate of increase of m relative to T for which the limit of d̂ is one as derived

in Perron and Qu (2007) is a lower bound somewhat constrained by the method of proof.

What is important is that there is a discontinuity in the asymptotic distribution for small

and larger rates of increase of m. In what follows, we adopt T 1/3 as the bound since it allows

large enough values of m for the sample sizes of the series analyzed.

The picture is very different if the underlying model is that of a long-memory process,

e.g., a fractionally integrated model. Here, the limiting distribution of the log periodogram

estimate d̂ is the same regardless of the rate of increase of m relative to the sample size T .

Indeed, from Hurvich, Deo and Brodsky (1998), we have, for Gaussian processes,
√
m(d̂ −
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d) →d N(0, π2/24) if m = o(T 4/5) and log2(T ) = o(m). The same result holds for non-

Gaussian processes under more stringent conditions on the rate of increase of m (see Deo

and Hurvich, 2001). Hence, we can use the path of the estimates d̂ obtained for a wide range

of values of m to discriminate between the two models.

Consider now the estimates applied to S&P 500 log-squared returns. The log periodogram

estimates d̂ were computed for all values of m ranging from 10 to T 3/4. The results are

presented in Figure 7. The path of d̂ as m varies is almost exactly as predicted by the

theoretical results which apply if the true underlying structure is a short-memory process

with level shifts. Consider first values of m near T 1/3 (m = 27, indicated by the first vertical

solid line from the left). The estimates d̂ are clearly highest in this region with a peak at

0.74. This value is between the 5% and 10% quantiles of the asymptotic distribution of

Theorem 1 provided p ≥ 5 (if p is smaller these quantiles would be lower, see Perron and
Qu, 2007). Hence, these cannot be viewed as significantly different from 1. Furthermore, the

results show that before m takes values near T 1/2 (m = 141, indicated by the second vertical

solid line), the estimate drops suddenly. It reaches a value of 0.49. This is close to estimates

reported in the literature since the rule of thumb m = T 1/2 is often used (see, e.g., Granger

and Ding, 1996). After m = T 1/2, the estimates steadily decline. The decrease between T 1/2

and T 2/3 (m = 734, third vertical solid line) is from 0.49 to 0.36. After T 2/3, the estimates

continue to decline though very slowly. When m = T .8 (2, 745) we have, from results not

reported in the graph, a value less than 0.25.

Can these results be explained by finite sample biases of the log-periodogram estimates

that would prevail if the true underlying process was one of long-memory? The answer

from what is available in the literature is no. For the standard case where the series is

a purely fractionally integrated process, the shape of the bias is basically the same across

value of d, it is small if the short-memory component is weakly correlated, and it is indeed

important when the short-memory component is strongly serially correlated. But the bias is

positive or negative (depending on the second derivative of the spectral density function at

frequency zero of the short-memory component) and increasing with m (see Hurvich, Deo,

Brodsky, 1998, and especially Figure 1 in Andrews and Guggenberger, 2003). For the so-

called long memory stochastic volatility model or perturbed fractional process, i.e., the sum

of a fractionally integrated process plus a stationary noise, a more likely scenario given that

the proxies used for volatility are noisy measures of the true volatility process, the bias is

negative but it is negative for all values of m (see, Deo and Hurvich, 2001, Sun and Phillips,

2003, Breidt, Crato and de Lima, 1998, and Hurvich, Moulines and Soulier, 2005). So both
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cases cannot explain estimates in the nonstationary region for small m and decreasing in the

stationary region for large m. We consider more detailed simulations in Section 5.

It may be argued that our results are specific to the series analyzed and the sample

period considered. We assessed the sensitivity of our findings in several directions using: a)

the same series with different sub-samples; b) other market indices. The inclusion of the

great depression in our sample may be responsible for the main findings as this period may

be atypical with large fluctuations in variance. Hence, we considered the following more

recent periods: 1957-2002, 1973-2002 and 1990-2002 (the last 3,000 observations). They

show again the same results to hold. Indeed, in the most recent period, the results are

even more striking as presented in Figure 8. For other market indices, we considered the

(log-squared) daily returns on the following indices and sample periods (available from the

Wharton Research Data Services): the NASDAQ (1972:12:15 to 2006:12:31; value-weighted

returns), the AMEX (1961:07:03 to 2006:12:31; value weighted returns), and the Dow Jones

(1957:03:04 to 2002:10:20). The results (available in the working paper version) show that the

same patterns hold again, especially for the path of the log-periodogram estimates. Hence,

our results are robust to different sample periods and different market indices.

4 Can a simple level shift model explain the empirical features?

To examine whether the features of the sample autocorrelations and the path of the estimates

of d as a function of m can be reproduced by the short memory plus level shifts model, we

consider a simulation experiment calibrated to empirical estimates. Qu and Perron (2008)

considered methods to estimate the following model for demeaned daily returns rt:

rt = exp(ht/2 + μt/2)εt, ht+1 = φht + συυt, μt+1 = μt + δtσηηt,

where ηt, υt and εt are independent N(0, 1) variables, δt is a sequence of independent

Bernoulli random variables taking value 1 with unknown probability p (i.e., δt ∼ B(1, p))

and ηj, δh, εk and vl are mutually independent for all 1 ≤ j, h, k, l ≤ n. The model implies

log r2t = ht + μt + log ε
2
t . (3)

Hence log r2t is a level shift process satisfying DGP-1. They estimated the model using S&P

500 daily returns for the period 1980.1-2005.12 (6,572 observations) adopting a Bayesian

approach. The posterior means of the parameters were φ = 0.953, συ = 0.148, ση = 1.679,

δt ∼ B(1, 0.00187) and (h1, μ1) = (0.450,−0.210). These imply a level shift every 535
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days, on average, whose magnitude is however large, their standard deviation being 1.679,

compared to a standard deviation of 1.047 for the return series during the period considered.

Using these estimates, we generated 500 samples of size T = 8, 192 (213) using (3). For

each simulated sample, we computed the autocorrelations for all lags between 1 and 8,192

and the log-periodogram estimates of the long-memory parameter using a wide range for the

number of frequency ordinates. The averages over the 500 samples are reported in Figure

9. They generate patterns that are in close agreement with the theory and the empirical

estimates. Hence, the main features uncovered by our theoretical results are easily explained

by a simple level shift model with a short-memory component that is of empirical relevance.

5 Can a long memory process explain the empirical features?

We now consider whether the features of the data analyzed can be explained by various

models with long-memory, with or without a level shift component. To do so we resort to

selected simulation experiments. We performed extensive simulations and only report ones

that are representative of the problem, paying special attention to processes calibrated to

actual data, in particular the S&P 500 returns series over the period 1973-2002, which as we

shall see is the least favorable for the level shift model. The basic data generating process is

given by the following ARFIMA model with level shifts:

x = c+ uT,t + vt, (1− αL)(1− L)dvt = (1− θL)et, (4)

where et ∼ i.i.d. N(0, σ2e) and uT,t is as defined in (1). Without loss of generality, we set c = 0.

In all cases, we use a sample of T = 8, 192 (213) observations (roughly of the same order as

a daily series over the period 1973-2002) and all results are based on 1,000 replications.

Consider first the simple case of a pure long-memory process with uT,t = α = θ = 0 and

d = 0.457, a typical value in the volatility literature. Figure 10 presents the means of the

autocorrelations and the log-periodogram estimates of d as a function of m, along with 90%

confidence intervals. The autocorrelation function has a pattern close to that of a short-

memory process with level shifts though, on average, it decreases faster and crosses the zero

line earlier at roughly 15% of the sample with the value of d considered. From unreported

simulations, the decrease to zero is faster as d is smaller (even with d = 0.8, it crosses the

zero axis at only 20% of the sample). This strong bias is due to the fact that the mean of

the series is imprecisely estimated (see. e.g., Percival, 1993). With respect to the path of

the log-periodogram estimates as a function of m, the picture is very different. The mean

is flat at the true value. Hence, a pure long memory process cannot explain the features of
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the data. Consider now adding a level shift component to the pure long-memory process.

The values used are p = 12 and σv = 1.679 and are based on estimates reported in Qu and

Perron (2008) for the S&P 500 series over the period 1980-2005. The results are presented

in Figure 11. The mean values of the autocorrelations now more closely match those of a

short-memory process with level shifts. However, the path of the log-periodogram estimates

is clearly different. When m = T 1/3, the mean is indeed quite high at (roughly) 0.83 but

the decrease when m reaches T 1/2 is much smaller, the mean value being 0.7, well above

the typical value of 0.45 found in the literature. Also, the decrease as m increases further is

quite small and the estimates stay above 0.5 for all values of m.

We now consider the more realistic case of a long memory process with an important

short-memory component. As found in the literature, an ARFIMA(1,d,1) provides a reason-

able fit to the data. The estimates for the S&P 500 returns series over the period 1973-2002

are d̂ = 0.457, α̂ = 0.298 and θ̂ = 0.751. Hence, there is a strong mean reverting behavior

given the large negative MA coefficient for the short-memory component. The results for

this process without level shifts are presented in Figure 12. Consider first the autocorrela-

tion function. Compared to a short-memory process with level shifts, it decreases to zero

much faster and the mean values are close to zero for lags beyond 1,000 (roughly 12% of the

sample size). Again, the rate of decrease is faster and the point at which the autocorrelations

cross the zero axis is earlier with smaller values of d. More importantly, the means of the

log-periodogram estimates of d show a different pattern. The mean value when m = T 1/3

is roughly the true value, well below one, though the 90% confidence interval is quite wide.

Also, when m reaches T 1/2, the decrease is small, the mean value being roughly 0.45. Of

importance, however, is the substantial decline in the estimates of d when m increases fur-

ther. This is due to the strongly mean reverting short-memory component and will have to

be taken into consideration when constructing tests in the next section.

Consider now adding a level shift component to this ARFIMA(1,d,1) process with the

same values as specified above. The results are presented in Figure 13. The mean of the

autocorrelation function is now indeed close to that of a short-memory process with level

shifts. The pattern of the log periodogram estimates of d is, however, clearly different. When

m = T 1/3, the mean is indeed close to 1, but the decrease when m reaches T 1/2 is small, the

mean being roughly 0.9 with the lower bound of the 95% confidence interval at (roughly)

0.78. Hence, such a process cannot explain the sharp decline observed in the data with

a value close to one when m = T 1/3 and a value below 0.5 when m = T 1/2. When m is

increased beyond T 1/2 there is a steady decrease in the estimates but the values stay well
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above 0.5, unlike what is found in the data analyzed.

We performed a variety of experiments with different configurations and the qualitative

results are the same. In our simulations, we did not considered DGPs with fat-tailed dis-

tributions. Doing so would only reinforce the conclusion that long-memory processes are

unable to replicate the features of the path of the log-periodogram estimates. Indeed, as

shown by the simulations of Wright (2002), the presence of outliers or fat-tailed errors exac-

erbates the negative bias in the log-periodogram estimate of d for all values of m. Hence, a

model with fat-tailed errors would be even less able to generate estimates of d above 0.5 for

small values of m. The intuition is fairly straightforward given that outliers acts as a strong

mean-reverting component which makes a series looks more like a short-memory process.

To summarize, the findings of importance are: 1) in the absence of level shifts, the log-

periodogram estimates of d are not above 0.5 or near one when m is small and there is

accordingly no discontinuity between the estimates with m = T 1/3 and m = T 1/2; 2) with

a level shift component, the estimates of d are high when m is small but, again, there is no

sharp decrease, only a gradual decrease with the estimate staying above 0.5; 3) given the

large confidence interval in the estimates of d whenm is small, a long-memory process with a

strongly mean reverting short-memory component could potentially account for the decline

when m is small as well as the decrease when m is increased further. These considerations

will be used in devising a testing strategy in the next section.

6 A simple test of long memory against mean shifts

Motivated by the results of Perron and Qu (2007) and the simulations reported above, we

propose simple tests of the null hypothesis of a stationary long memory process designed to

have power against a short-memory process affected by mean shifts. The test is based on the

fact that in the latter case the estimate of d crucially depends on the number of frequencies

included in the log-periodogram regression, in particular on the fact that its limit is different

when a different proportion of the sample size is used for the number of frequencies. On the

other hand, if the true process is a fractionally integrated one, the limiting distribution of

the log periodogram estimate is the same for a wide range of the number of frequencies used.

Let d̂a,c denote the log periodogram estimate of the memory parameter when ma,c =

c [T a] frequencies are included in the regression. Under the null hypothesis of a stationary

fractionally integrated process, we have given some conditions on d and m (Horvich, Deo

and Brodsky, 1998, Deo and Hurvich, 2001),
p
c [T a](d̂a,c − d0) →d N (0, π2/24). Now, let
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0 < a < b < 1 with a < 4/5, the test statistic proposed is simply

td(a, c1; b, c2) =
p
24c1 [T a] /π2(d̂a,c1 − d̂b,c2).

This test has a limiting N(0, 1) distribution under the null hypothesis sincep
24c1 [T a] /π2(d̂a,c1 − d̂b,c2) =

p
24c1 [T a] /π2(d̂a,c1 − d0)−

p
24c1 [T a] /π2(d̂b,c2 − d0)

and
p
24c1 [T a] /π2(d̂a,c1−d0)→d N (0, 1), while

p
24c1 [T a] /π2(d̂b,c2−d0) =

p
24 [T b] /π2(d̂b,c2−

d0)
p
c1 [T a] / [T b]→ 0. It also diverges to +∞ under the alternative hypothesis of a station-

ary process affected by level shifts since the limits of d̂a,c1 and d̂b,c2 are different and the limit

of d̂b,c2 is lower than that of d̂a,c1. These properties are stated in the following Proposition.

Proposition 4 Suppose the series {xt} is a stationary Gaussian process with spectral density
in a neighborhood of zero given by fx (w) = |1− exp (−iw)|−2d f∗ (w), with the function
f∗ (w) satisfying f∗ (0) > 0, f∗0 (0) = 0, |f∗00 (w)| < B1 < ∞ and |f∗000 (w)| < B2 < ∞ for

some finite B1, B2. If 0 < a < b < 1 and a < 4/5, then

td(a, c1; b, c2) =
p
24c1 [T a] /π2(d̂a,c1 − d̂b,c2)→d N (0, 1)

Note that the set of assumptions used follow Horvich, Deo and Brodsky (1998). While the

Gaussian assumption is restrictive it appears to be common in the long-memory literature.

It can, however, be relaxed as shown by Deo and Hurvich (2001). They consider a stochastic

volatility model where the log-squared errors, say Zt, is generated by Zt = μ+Yt+ut, where

ut is a short-memory process allowed to be non-Gaussian and Yt is a Gaussian long-memory

process. The result stated in Proposition 4 remains valid in this case under more stringent

conditions on the rate of increase of m in relation to d (see their Theorem 2).

We use this to devise testing procedures to distinguish between a short-memory process

with level shifts and a long memory process with or without level shifts taking into consid-

erations the key features documented in the simulations presented in the last section. The

first issue is to assess whether there is a steady decline in the log-periodogram estimates

for values of m greater than T 1/2, which is consistent with a short-memory process with

level shifts but not with a pure long memory process without level shifts. To that effect

we simply use the statistic td(1/2, 1; , 4/5; 1). The second issue is to assess whether there

is a sharp decline in the estimate of d when m varies between the range T 1/3 and T 1/2.

There are two problems in this case. First, the maximal value need not occur at exactly

T 1/3. For this reason, we consider two statistics that will allow some flexibility. The first
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is the maximum of td(1/3, c1; b, 1) with b fixed at 1/2 and varying c1 between 1 and 2, i.e.,

sup-td = supc1∈[1,2] td(1/3, c1; b, 1). We also consider the mean value over the same range,

i.e., mean-td = meanc1∈[1,2]td(1/3, c1; b, 1). We tried different ranges and the results reported

below did not change. Second, the limit distributions of the sup-td and mean-td tests are

not available and the finite sample distribution is likely to be affected by the underlying

DGP under the null hypothesis given the simulation results presented in the last section. To

overcome these problems, we use a parametric bootstrap procedure to compute the relevant

critical values. For a given series, we estimate an ARFIMA(1,d,1) model, which was shown

to provide a good fit to the data (e.g., Stărică and Granger, 2005). We then simulate the

null distribution of the tests using this as the DGP.

The results for all the series considered are presented in Table 1. Note first that the

statistic td(1/2, 1; 4/5; 1) is significant at the 1% level for all series, consistent with a short-

memory process with level shifts (though also consistent with a long-memory process having

a strongly mean reverting component). Of more importance are the results for the tests

sup-td and mean-td. For the S&P 500 full sample series, both tests reject at the 1% level.

For the sub-sample 1957-2002, they reject at the 5% level. There is no rejection though for

the sample 1973-2002 but a rejection at the 5% level using the sup-td and at the 10% level

using the mean-td for the period 1990-2002, despite the fact that it has a relatively small

sample size. For the NASDAQ and AMEX indices, the mean-td test rejects at the 5% level,

while the sup-td test rejects at the 10% level. For the Dow Jones index, we have a rejection

at the 1% level with the mean-td and at the 5% level with the sup-td.

Overall, the results are consistent with a short-memory process with level shifts: a) there

is significant sharp decrease in the estimate of d for small values of m; b) there is a further

decrease when m is large with estimates well below 0.5 in this range, which is not expected

with a long-memory process with level shifts, in which case the estimates do decline but stay

above 0.5, unless the memory parameter is small and the short-memory noise is large.

To assess whether the rejections obtained can be explained by finite sample biases oc-

curring when the underlying process is one of long memory possibly contaminated by noise,

fat-tailed errors and/or outliers, we conducted simulations. These are calibrated to empirical

estimates obtained from the log squared S&P 500 returns series over the period 1973-2002.

We first estimated an ARFIMA(1,d,1) process of the form (4) without level shifts. The point

estimates were d̂ = 0.457, α̂ = 0.298 and θ̂ = 0.751 which are used as the parameters of the

DGP for the simulations. In order to account for the potential presence of noise, fat-tailed

errors and outliers, the series for each simulation are constructed using the estimated residu-
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als drawn randomly with replacement. For each simulated draw, the bootstrap-based critical

values were computed using 1000 simulations. The rejection frequencies at the 5% nominal

level were computed from 500 such replications. We considered samples of size T = 210, 211,

212 and 213. The results presented in Table 2 show the exact sizes of our tests to be close

to 5%. In fact, the tests tend to be conservative for the larger sample sizes. This can be

explained by the presence of outliers in the estimated residuals from which we draw, which

act as strongly mean-reverting components and, accordingly, produce estimates of d that are

further downward-biased so that the test rejects less often. Hence, we are confident that the

rejections documented above are indicative of a level shift process and not the outcome of a

long-memory process possibly contaminated by noise, fat-tailed errors and outliers.

7 Conclusions

Our paper provided an analysis of various statistics when the underlying model is a short-

memory process contaminated by level shifts. Our theoretical results provide clear practical

implications that can be confronted with the data by looking at the periodogram, the au-

tocorrelation function and the path of the log periodogram estimates as the number of

frequencies used varies. Using data on stock market volatility proxies for various indices and

sample periods, our results show that a short-memory process with level shifts should be

viewed as a serious contender to model volatility. All estimates considered clearly follows a

pattern that would obtain if the true underlying process was one of short-memory contam-

inated by level shifts. Our results suggest that research should be oriented in the direction

of such a class of models to understand the time series properties of stock returns volatility.

Qu and Perron (2008) consider a stochastic volatility model with both a level shift and a

short-memory component and present a Bayesian inference procedure. They show that the

model provides a good fit to the data and forecasts as well, and better in some cases, as

other leading volatility models when applied to S&P 500 and NASDAQ daily returns. Lu

and Perron (2008) present a method to directly estimate a level shift model using an exten-

sion of the Kalman filter and apply it to the logarithm of squared returns for the S&P 500,

AMEX, Dow Jones and NASDAQ stock market return indices. The point estimates imply

few level shifts for all series. But once these are taken into account, there is little evidence

of serial correlation in the remaining noise and, hence, no evidence of long-memory. They

also produce rolling out-of-sample forecasts of squared returns. In most cases, the simple

random level shifts model clearly outperforms a standard GARCH(1,1) model and, in many

cases, it also provides better forecasts than a fractionally integrated GARCH model.
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Appendix
We first state some Lemma that will be used in subsequent proofs.

Lemma A.1 (Georgiev, 2002): Let
R
X(s)dY (s) denote

R
X(s−)dY (s), with X(s−) the

left limit ofX at s, and the stochastic integral being of the Ito type. Also, let f(s) be a continu-
ous function on [0, 1]. Then: 1) T−1

P[Tr]
t=1 uT,tf(t/T )⇒

R r
0
J(s)f(s)ds; 2) T−1

P[Tr]
t=1 u

2
T,tf(t/T )⇒R r

0
J2(s)f(s)ds; 3) T−1/2

P[Tr]
t=1 uT,tεt ⇒

R r
0
J(s)dW (s) if εt is i.i.d.(0, 1) independent of uT,t.

The following lemma concerns the moments of the compound Poisson process J(s). The
proofs are straightforward and, hence, omitted.

Lemma A.2 a) E[J(s)2] = pσ2ηs; and under Normality: b) E[J(s)
4] = 3psσ4η + 3p

2s2σ4η; c)
E[J2(s)(J(u)−J(s))2] = s(u− s)p2σ4η for u > s; and E[J2(u)(J(s)−J(u))2] = u(s−u)p2σ4η
for s > u.

Proof of Propositions 1 and 2: We have

R̂(h) = T−1
T−hP
t=1

(xt − x̄)(xt+h − x̄) = T−1
T−hP
t=1

xtxt+h − (T−1
TP
t=1

xt)
2 + op(1).

Consider the first term,

T−1
T−hP
t=1

xtxt+h = T−1
T−hP
t=1

(vt + uT,t) (vt + uT,t+h)

= T−1
T−hP
t=1

vtvt+h + T−1
T−hP
t=1

vtuT,t+h + T−1
T−hP
t=1

uT,tuT,t+h + T−1
T−hP
t=1

uT,tvt+h

Now, for h/T → 0 as T →∞, we have T−1PT−h
t=1 vtvt+h →p Rv(h), T−1

PT−h
t=1 vtuT,t+h →p 0,

T−1
PT−h

t=1 uT,tvt+h →p 0, and T−1
PT−h

t=1 uT,tuT,t+h ⇒
R 1
0
J2(s)ds using Lemma A.1. Simi-

larly, T−1
PT

t=1 xt = T−1
PT

t=1 vt+T
−1PT

t=1 uT,t ⇒
R 1
0
J(s)ds. Collecting terms, the result of

Proposition 1 (a) follows. When h/T → κ as T →∞, we have T−1PT−h
t=1 vtvt+h →p 0 since

h→∞ and the process is short memory. Also, T−1
PT−[Tκ]

t=1 uT,tuT,t+[Tκ] ⇒
R 1
0
J(s)J(s+κ)ds

and the limit of the other terms remains the same. Consider now E(R(κ)). We have

E(R(κ)) =
R 1−κ
0

E(
¡
J (u)− J̄

¢ ¡
J (u+ κ)− J̄

¢
)du

=
R 1−κ
0

E(J (u)J (u+ κ))du− R 1−κ
0

E(J (u) J̄)du

−R 1−κ
0

E(J (u+ κ) J̄)du+
R 1−κ
0

E(J̄2)du

The solutions to each each of the four terms areR 1−κ
0

E(J (u) J (u+ κ))du =
R 1−κ
0

E(J (u)2)du+
R 1−κ
0

E(J (u) (J (u+ κ)− J (u))du

=
R 1−κ
0

E(J (u)2)du =
R 1−κ
0

puσ2du = (1− κ)2(pσ2/2),

20



R 1−κ
0

E(J (u) J̄)du = pσ2
R 1−κ
0

u(1− u

2
)du = [

(1− κ)2

2
− (1− κ)3

6
]pσ2,R 1−κ

0
E(J (u+ κ) J̄)du = pσ2

R 1−κ
0

(u+ κ)(1− (u+ κ)/2)du = [(1− κ2)/2− (1− κ3)/6]pσ2R 1−κ
0

E(J̄2)du =
R 1−κ
0

(1/3)pσ2du = [(1− κ)/3]pσ2

and the result follows adding all the solutions.

Proof of Proposition 3: Part (1) is a standard result for stationary short memory
processes. For Part (2), we have

j2

2πT 2
|
TP
t=1

uT,t exp(i
2πjt

T
)|2 =

j2

2πT 2

TP
s=1

TP
t=1

uT,suT,t cos(
2πj(t− s)

T
)

⇒ j2

2π

R 1
0

R 1
0
J(u)J(s) cos(2πj(s− u))dsdu

and

E[
j2

2π

R 1
0

R 1
0
J(u)J(s) cos(2πj(s− u))dsdu]

= E[
j2

2π

R 1
0

R u
0
J(u)J(s) cos(2πj(s− u))dsdu] +E[

j2

2π

R 1
0

R 1
u
J(u)J(s) cos(2πj(s− u))dsdu]

=
j2

2π

R 1
0

R u
0
E[J2(s)] cos(2πj(s− u))dsdu+

j2

2π

R 1
0

R 1
u
E[J2(u)] cos(2πj(s− u))dsdu

=
j2

2π

R 1
0

R u
0
psσ2η cos(2πj(s− u))dsdu+

j2

2π

R 1
0

R 1
u
puσ2η cos(2πj(s− u))dsdu =

pσ2η
4π3

,

where we have used the fact that E[J(u)J(s)] = E[J(min(s, u))2]. The result that the
variance is independent of j follows similarly from tedious algebra. For part (3), we have

j

πT 3/2

TP
t=1

TP
s=1

vtuT,s coswj(t− s)⇒ j

π

R 1
0

R 1
0
J(u) cos(2πj(u− v))dudW (v)

and the limit term is easily seen to have mean zero (it also has mean zero in finite samples
since vt and uT,t are assumed to be independent). For the variance, we have:

E[
j

π

R 1
0

R 1
0
J(u) cos(2πj(u− v))dudW (v)]2 =

j2

π2
R 1
0
E[
R 1
0
J(u) cos(2πj(u− v))du]2dv

=
j2

π2
R 1
0
E[
R 1
0

R 1
0
J(u)J(s) cos(2πj(u− v)) cos(2πj(s− v))dsdu]dv

=
j2

π2
R 1
0
E[
R 1
0

R u
0
J(u)J(s) cos(2πj(u− v)) cos(2πj(s− v))dsdu]dv

+
j2

π2
R 1
0
E[
R 1
0

R 1
u
J(u)J(s) cos(2πj(u− v)) cos(2πj(s− v))dsdu]dv

=
j2

π2
R 1
0

R 1
0

R u
0
p2sσ4η cos(2πj(u− v)) cos(2πj(s− v))dsdudv

+
j2

π2
R 1
0

R 1
0

R 1
u
p2uσ4η cos(2πj(u− v)) cos(2πj(s− v))dsdudv =

p2σ4η
4π4

.
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