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Abstract

This paper presents the open-source COREMU1, a scalable and portable parallel emulation framework that decou-

ples the complexity of parallelizing full-system emulators from building a mature sequential one. The key observation is

that CPU cores and devices in current (and likely future) multiprocessors are loosely-coupled and communicate through

well-defined interfaces. Based on this observation, COREMU emulates multiple cores by creating multiple instances

of existing sequential emulators, and uses a thin library layer to handle the inter-core and device communication and

synchronization, to maintain a consistent view of system resources. COREMU also incorporates lightweight mem-

ory transactions, feedback-directed scheduling, lazy code invalidation and adaptive signal control to provide scalable

performance. To make COREMU useful in practice, we also provide some preliminary tools and APIs that can help

programmers to diagnose performance problems and (concurrency) bugs.

A working prototype, which reuses the widely-used QEMU as the sequential emulator, is with only 2500 LOCs

change to QEMU. It currently fully supports x64 and ARM platforms, and can emulates up to 255 2 cores running

commodity OSes with practical performance, while QEMU cannot scale above 32 cores. A set of performance eval-

uation against QEMU indicates that, COREMU has negligible uniprocessor emulation overhead, performs and scales

significantly better than QEMU. We also show how COREMU could be used to diagnose the performance problems and

concurrency bugs of both kernel and parallel applications.

1 Introduction

The continuity of the Moore’s Law has shifted the current computing to multicore or many-core eras. Currently, Quad-

cores and eight cores on a Chip are commercially available. It was predicated that tens to hundreds (even thousands)

of cores on a single chip would appear in the foreseeable future [32].

The advances of many-core hardware also make full-system emulation more important than before, due to the in-

creasing need of pre-hardware development of system software, characterizing performance bottlenecks, exposing and

analyzing software bugs (especially concurrent ones). Full-system emulation, which emulates the entire software stack

including operating systems, libraries and user-level applications, is extremely useful in serving the above purposes.

It is even claimed with evidence that simulators might be inaccurate or even useless if ignoring the system effects [8].

In light of the importance of full-system emulation, there has been a considerable amount of effort to build efficient

full-system emulators. Examples include QEMU [22], Bochs [6], Simics[16] and Parallel Embra [15].

The many-core or multicore computing also creates challenges and opportunities to full-system emulation. On one

hand, the rapid-increasing number of emulated cores requires full-system emulation to be scalable and able to handle a

reasonable scale of input. On the other hand, the abundant cores provide even more resources for full-system emulators

to harness.

Unfortunately, many commodity full-system emulators are sequential and only time-slice emulated cores on a single

physical core in a round-robin fashion [22, 16, 17, 24], or only support discontinued outdated host and guest processor

1We use COREMU to denote our system for anonymous purpose.
2Current xAPIC specification in x86 supports up to 255 cores.
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pairs [15]. Hence, they cannot fully harness the power of likely abundant resources in current CMP architecture,

resulting in poor performance scalability and restricted parallelism.

First, the sequential emulation design indicates linear slowdown when the number of emulated cores grows, thus

scales poorly on current multicore platforms. Figure 1 shows the average execution time of processing 10 MB input

using WordCount, a MapReduce application for shared-memory multiprocessors in the Phoenix testsuite [23], running

on an emulated Debian-Linux with kernel version 2.6.33-1 using the recent version of QEMU. The performance

degrades linearly with the number of cores.
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Figure 1: The execution time of WordCount processing 10 MB input on QEMU running on a 16-core machine.

Second, the sequential design implies that there is limited parallelism exposed among emulated cores. This signifi-

cantly restricts the use of full-system emulator to analyze software behaviors, thus sacrifices the fidelity of full-system

emulation. This problem is critical as parallelism is crucial to exhibit bugs when running parallel workloads or debug-

ging system software, which are especially important due to the pervasive existence of parallelism and the difficulty

in writing correct parallel code.

RACE

counter++; counter++;

Load REG<-MEM

REG++

Store MEM<-REG

Load REG<-MEM

REG++

Store MEM<-REG

PROCESSOR 1 PROCESSOR 2

Figure 2: Bad Counter: the result will be incorrect as INC will not be executed atomically.

Figure 2 shows the restricted parallelism problem using a simple parallel counter program. The program increases

the counter using two parallel threads, with each thread increase it 500 times. The expected output should be 1000 but

it fails on a multicore system due to the data race between two threads. Unfortunately, this program usually behaves

correctly on full-system emulators that sequentially emulate multicore. This is because the scheduling among cores

only happens at a coarse-grained granularity (e.g., basic block) for the sake of performance, which naturally renders

the increment atomic, resulting in no data race. In this example, a much subtler problem occurs on a CISC machine

where the increment is translated to a single INC instruction without lock prefix. In such a case, the data race can only

appear at microinstruction level, hence even scheduling at instruction granularity can hardly expose the data race bug.

Unfortunately, building a parallel full-system emulator is usually resource-intensive and requires years to be ma-

ture. Full-system emulators, unlike user-mode emulators, need to model the system aspects of a computing platform,

including system-ISA, address translation, privilege levels, interrupts and a set of devices. Further, building a portable

emulator is even harder because of the dramatic differences of both the user-ISA and system-ISA between different

FDUPPITR-2010-001 2



architectures. For example, QEMU becomes mature and widely adopted after years of active development and is

currently still in active evolvement.

To address the difficulty of building a portable parallel emulator, this paper presents COREMU, a parallel emulation

framework for CMP systems that decouples the complexity of supporting parallel emulation from maturing a sequen-

tial emulator. The key observation is that CPU cores and devices in current (and likely future) multiprocessors and

multicore are loosely-coupled and these cores and devices communicate through well-defined interfaces. Based on

this observation, COREMU emulates multiple cores by creating multiple instances of existing sequential emulators,

and uses a thin library layer to handle the inter-core and device communication and synchronization, to maintain a

consistent view of system resources.

To ensure correctness and provide scalable performance, COREMU also incorporates several techniques to enable

efficient parallel emulation. First, efficient and portable core-to-core synchronization is achieved through lightweight

memory transactions, with the only assumption that the host architecture supports compare and swap (CAS) primi-

tives 3, and allows the reuse of existing code generation for sequential emulation. Second, COREMU is built with a

workload-aware feedback-directed scheduling that avoids situations such as lock-holder preemption and allows bal-

anced scheduling of emulated cores. Third, to improve the scalability of code cache management, COREMU uses

a private code cache scheme and addresses the issues with excessive inter-core cache eviction through lazy cache

invalidation. Finally, efficient core-to-core communication is implemented through non-blocking data structures and

real-time signals with adaptive signal control.

To make COREMU useful in practice, we also provide some preliminary tools and APIs to enable programmers to

diagnose performance bottlenecks and bugs of both OS kernels and applications. First, COREMU provides a set of

APIs including dynamically instrumenting programs and watching the accesses to user-specified addresses. Second,

programmers could also use COREMU to collect memory traces of a program, which could be fed into a cache

simulator (e.g., GEMS [18]) to study the cache behavior of a program.

We have built a working prototype that fully supports the x64 and ARM platform, in the form of a thin library com-

posed of 2700 LOCs, based on QEMU, with only about 2500 LOCs changes to QEMU. COREMU can emulate up

to 255 cores of x64 architecture and 4 cores of ARM platform 4, running the entire software stack with practical per-

formance. Compared to QEMU, the uniprocessor emulation overhead measured by SPECINT-2000 shows negligible

performance penalty (within 1%) incurred by the parallel emulation. Application benchmarks show that COREMU

scales much better than QEMU: it achieves more than 20X speedup when emulating 16 cores and contemporary

workloads (such as MapReduce, PARSEC, dbench and Kernel Build) with large working sets can finish execution on

COREMU within expected time (at most around 3.0 hours) and with reasonable performance, while QEMU either

fails to boot or times out when only emulating 32 cores. The performance benefit is due to the fact that COREMU can

leverage multiple available caches on multicore system and increased parallelism.

To demonstrate the usefulness of COREMU, we also use COREMU to debug several existing bugs in both Linux

kernel and user applications. Our study shows that COREMU can provide precise evidences to uncover these bugs.

Cache simulation results using the typical matrix multiply show that COREMU can also accurately collect the cache

behavior of a program.

In summary, this paper makes the following contributions:

1. A case for parallelizing full system emulators by reusing existing mature sequential emulator, which decouples

the complexity of supporting parallel emulation from constructing and optimizing a sequential emulator.

2. A set of techniques to scale COREMU: lightweight memory transactions to achieve efficient synchronization

among cores, feedback-directed scheduling, private code cache with lazy cache invalidation and adaptive signal

control for scalable communication.

3. Implementation, evaluation and case studies of COREMU, which demonstrate the performance scalability and

usefulness of COREMU.

The rest of the paper is organized as follows: Section 2 provides background information on full-system emulation

and relates COREMU to previous approaches. Section 3 and 4 presents the design and implementation of COREMU.

Next, Section 5 evaluates COREMU using various benchmarks. Section 6 demonstrates the usefulness of COREMU

using several case studies. Finally, section 7 discusses future work and concludes.

3Other primitives such as ll/sc are similar to CAS.
4The Cortex-A9 MPCore supports a maximum of 4 cores
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2 Background and Related Work

2.1 Full-System Emulation with Binary Translation

Binary translation: The main loop of QEMU translates and executes the emulated code based on basic blocks. Each

block has one entry and one exit point and is sequentially executed. QEMU first translates the target machine code

into common intermediate code, which is recognized by its Tiny Code Generator (TCG).

# cpu_A0=&env‐>esp

INDEX_op_ld_i32          cpu_A0, env, offset(esp)

# cpu_T[0]=imm32

INDEX_op_movi_i32     cpu_T[0], imm32

# (cpu_A0)=cpu_T[0]

INDEX_op_qemu_st32 cpu_T[0], cpu_A0

// Move a constant to stack

mov $0x80494e4, (%esp)

Original Inst.

Translated Inst.
Translation

Figure 3: An example binary translation of a mov instruction in QEMU.

Figure 3 shows the generated operation code of each micro operation, along with its required parameters,

when translating a mov instruction. The first item of each line represents the operation code which is stored in

gen_opc_ptr buffer. Other items give the parameters which are stored in gen_opparam_ptr buffer. The com-

ment before each line shows the semantics of the line. Here, cpu_A0 and cpu_T[0] are temporary registers allocated

through TCG. The imm32 is $0x8049424 in this case, and QEMU gets the immediate when disassembling the binary

code. After register allocation and machine code generation, the intermediate code will finally be emitted as binary

code.

Multiprocessor emulation: QEMU emulates multiprocessor in a round-robin fashion: each emulated core has a

time slice to execute, and yields the physical CPU to the next emulated core if the time slice has exhausted. While sim-

ple, such a sequential emulation scheme avoids two important problems in multiprocessor execution. First, sequential

emulation guarantees sequential consistency, as all events in the system forms a sequential total order. Thus, there is

no need to emulate read/write barrier or fence instructions for ensuring memory consistency. Second, there is no need

to emulate atomic instructions, as the sequential emulation naturally guarantees atomic execution of each instruction.

Full-system emulation support: Device emulation is done by providing port and memory mapped I/O callback

functions. QEMU implements asynchronous I/O access, such as DMA access, through signal mechanism and pipe.

Interrupts are handled by setting vector bits in emulated interrupt controller. Before searching and executing trans-

lation blocks, QEMU reads interrupt request from interrupt controller. If interrupt presents, QEMU then emulates

the interrupt handling procedure. This typically includes changing privilege level and pointing the emulated program

counter to the entry of interrupt handler.

To support full-system emulation, QEMU implements a soft-MMU that translates the target virtual address to host

virtual address. QEMU uses a soft-TLB to speedup target address translation. Soft-TLB caches address results in the

same way as the hardware TLB. QEMU places look-up code before the code calling the soft-MMU callback.

Translation cache management: QEMU uses a single process to do system emulation and uses a single global

translation cache. The central data structure used to manage translated code is TranslationBlock, which contains

a pointer to the start of a translated block in cache. Given an emulated program counter (target virtual address),

QEMU first hashes this virtual tag to search the translation block corresponding to this virtual address. On failure,

QEMU translates this virtual address into physical address using soft-MMU, and hashes the physical tag to find proper

translation block.

Physical memory containing code is protected by QEMU to maintain code consistency. Specifically, the soft-TLB

entries that point to code pages are marked as clean so that write to the page traps to a callback function to invalidate

corresponding translation block. The invalidation is done by deleting the translation block from virtual and physical

tag hash table.

FDUPPITR-2010-001 4



2.2 Related Work

2.2.1 Full-system Emulation

The most related work with COREMU is Parallel Embra [15], which extends the original Embra emulator [30].

However, it was designed to support the SGI Origin 2000 with MIPS R10000 processors, which are out-of-date (15

years ago) and not commercially available now. Compared to Parallel Embra, COREMU runs current prevalent Chip-

multiprocessors (e.g., x64) and supports emulation of multiple contemporary processors (e.g., x64 and ARM). To

decouple the complexity of parallelism from binary translation, it adopts a layered structure and is likely to be easily

re-targeted to new host-target architecture pairs. Further, COREMU uses a general and unified approach to handling

atomic instruction emulation for weaker consistency adopts in modern processors such as x64 and ARM, while Parallel

Embra only emulates MIPS processor with a sequential consistency model. Finally, COREMU introduces several new

techniques absent in Parallel Embra that makes it able to run contemporary workloads with still practical performance.

QEMU/KVM [2] is an accelerator that uses a virtualization layer to accelerate emulation on the same-ISA plat-

form. However, the use of system virtualization loses both portability (e.g., only x86 to x86) and flexibility (e.g., no

instrumentation support), requires hardware support for virtualization.

Sulima [21] and Parallel Mambo [27] (which extends Mambo [7] for PowerPC) propose two parallel full system

simulators. COREMU adopts a different, core-per-thread, organizing strategy and reuses mature sequential emulator

for extensible cross-platform emulation. There are several user-level parallel emulators developed (for example, [34,

20]). Similar to COREMU, Graphite [20] provides user-level parallel functional simulation also using a multicore-on-

multicore model. Instead of emulating only user-level applications, COREMU focuses on full-system emulation that

can run the entire software stack.

2.2.2 Simulation

There has been much research work devoted to fast and faithful simulation of multiprocessors. Broadly speaking, these

work can be categorized to software approaches and hardware-assisted simulations. We discuss their relationships with

COREMU in turn.

Software Approaches PTLsim [33] simulates x64 processor using a Virtual Machine Monitor (VMM). By contrast,

COREMU supports cross-platform emulation, and uses binary translation for emulation, which provides flexibility

such as instrumentation capability and statistics generation.

Most of the software approaches exploit tradeoff between speed and detail to achieve significant speedup, for exam-

ple, Statistical simulation [29], DiST [31], AMD SimNow [4] and GEMS [18]. Compared to these systems, COREMU

introduces non-determinism and leverages the true parallelism in the underlying processors to accelerate parallel full-

system emulation.

Hardware-assisted Simulation The RAMP project from Berkeley investigates the use of FPGA to accelerate sim-

ulation of the CMP architecture. Specially, the RAMP Blue [28] models the future architectural features such as

message-switching and transactional memory.

ProtoFlex [10, 9] is a hybrid functional emulator that uses FPGAs to accelerate performance-critical parts in emu-

lation. The proposed technique, called transplanting, dynamically selects hot-traces to be emulated in FPGAs, while

leaving uncommon traces being emulated in CPUs.

Recently, Chung et al. [11] proposed an approach to solve the emulation of atomic instruction using hardware

support for transactional memory. In contrast, COREMU uses a more lightweight solution that only requires compare-

and-swap support of the underlying processors, which is readily available on commodity processors.

Compared to these approaches, COREMU exploits abundant multicore resources for full-system emulation, which

achieves reasonable performance without special hardware, which is easy to deploy and use.

3 The COREMU Parallel Full-system Emulator

This section identifies the challenges in building a scalable parallel full-system emulator, shows the overall architecture

of COREMU and presents the solutions to address the identified challenges.

3.1 Challenges in Building a Scalable Parallel Emulator

Compared to building a sequential emulator, there are still several challenges to design and implement a scalable

parallel emulator, due to the inherent differences during execution (i.e., time slicing vs. true parallelism). Here, we

identify the key issues in building such an emulator for contemporary CMP architecture:

FDUPPITR-2010-001 5



• Atomic Instructions: Unlike sequential emulators that inherently handles atomic instructions by scheduling at

the basic-block level, a parallel emulator needs to efficiently emulate synchronization primitives to coordinate

concurrent accesses to the emulated shared memory from each emulated core.

• Scheduling Support: To emulate a large number of cores with practical performance, it is critical to understand

the workload behavior to schedule the emulated cores, as situations such as lock-holder preemption [26] can

easily consume the available limited CPUs, resulting in extremely bad performance.

• Scalable Code Cache Management: There could be intensive contentions if adopting a shared code cache as that

in sequential emulator when emulating a large number of virtual cores. Thus, an efficient code cache scheme is

critical for the performance of parallel emulator.

• Scalable Communications: When emulating CPU cores in the scale of hundreds and even thousands, there could

be easily excessive core-to-core and core-to-device messages, due to device interrupts (e.g., DMA, timer inter-

rupts) and interprocessor interrupts (such as remote TLB shootdowns). Hence, it is likely that an emulated core

could be frequently disturbed for processing messages, limiting its performance.

3.2 Overall Architecture

COREMU is designed based on the observation that cores in modern multicore or multiprocessor machines are loosely

coupled and communicated with well-defined interfaces. For example, each core has its own register file, control logic

and separate cache. They independently execute the instruction stream assigned to it and the communication channels

between cores are well defined, such as Inter Processor Interrupt (IPI). Such an organization allows the separation

of building fine-tuned sequential emulators from efficiently parallelizing it, thus decreases the complexity of building

a parallel full-system emulator. It could be much easier to adapt the emulator to different host/emulated architecture

pairs to make such an emulator portable.

Target Machine

VCPUVCPU VCPU VCPU

Thin Library

Host Machine

Qemu

HW

IPI

TB

Qemu

BT

Synchronize

Figure 4: Overall architecture of COREMU, which uses a two-layer parallel emulation organization. COREMU library

acts as the bonding agents between different emulated components.

Figure 4 depicts the architecture of COREMU. Overall, COREMU is a multithreaded program running on the

hosted operating systems, emulating a cache-coherent shared memory multiprocessor to run operating systems and

the applications. Each sequential emulator is essentially a threaded binary translator with its own translation cache

holding already translated blocks (TBs). All devices are emulated using a separate thread. There is a thin library layer

handles communications and synchronizations between each emulated cores and devices through intercepting callouts.

The library also maintains the coherence between each translation cache by coordinating the invalidation requests.

Memory Consistency: Parallel emulation of multicore poses a problem that sequential emulation does not have –

memory consistency problem. Sequential emulation guarantees sequential consistency as all the events in the system

forms a total order. However, with parallel emulation, the order of events happened in system depends on the consis-

tency model of the underlying processors. In current COREMU, the host processor supports the same or a stronger

consistency model, such as emulating an ARM processor with relaxed consistency on an x86 system with processor

consistency [3]. In this case, the emulated ARM program has already been correctly synchronized on a machine with

stronger consistency guarantee. Hence, COREMU only needs to correctly emulate the synchronization (read/write

barrier, fence) instructions, which is straightforward. If the host processor supports a weaker consistency model than

the emulated processor, such emulating an x86 processor on an ARM processor, COREMU now needs to insert fence

in each memory operation to ensure correctness.

FDUPPITR-2010-001 6



Atomic Instructions Lightweight Memory Transactions

Scheduling Feedback-Directed Scheduling

Code Cache Private Cache w/ Lazy Inval.

Communication Adaptive Signal Control

Table 1: Methodologies in COREMU.

In additional to memory consistency, table 1 summarizes the underlying techniques in COREMU to enable a scal-

able parallel emulation of a large number of cores with practical performance, which will be presented in detail in the

following sections.

3.2.1 Synchronization with Lightweight Memory Transactions

The fact that all emulated cores share the global, cache-coherent memory poses a challenge to scalable parallel emu-

lation. Specifically, microprocessor exports a set of atomic instructions that are guaranteed to be executed atomically,

which are usually used to implement synchronization primitives. An efficient emulation of atomic instructions is crit-

ical to parallel emulation: (1) the emulation of atomic instruction should be fast and correct. (2) the emulation should

be portable across a variety of architectures.

An intuitive solution is to perform an identical translation that maps the emulated atomic instruction to one on the

host architecture, which is used in Parallel Embra [15]. This solution is fast and correct, but not portable, due to the

idiosyncratic nature of different ISAs. For example, the ARM processor has only 2 atomic instructions, while x86 has

around 20, which indicates that it is not always feasible for such direct mapping. Besides, an atomic instruction in an

emulated x86 core is usually decomposed into several non-atomic micro-operations on the host architecture.

Another intuitive solution is to use lock to synchronize all parallel accesses, by associating each memory region

a lock to serialize accesses to this region (in our initial implementation, each 64-byte region has a lock). Such a

solution avoids a global lock so that parallel accesses to different memory regions are allowed. Unfortunately, while

this solution seems plausible, it has correctness issues.

spin_unlock:

*addr = 0;

spin_lock:

xchg addr, r10;

Race here causes 

deadlock !

Processor 1 Processor 2

Figure 5: Weak atomicity problem due to partial locking.

For example, consider the deadlock illustrated in Figure 5. This example implements an efficient spin_lock and

spin_unlock operations on Intel/AMD x64 machines. The spin_unlock operation simply stores a 0 into a lock. The

spin_lock exchanges a 1 into the lock using atomic xchg, and checks whether the original value is 0. QEMU translates

xchg by first reading out the two values into temporaries, and then storing them back with swapped order. If we

partially protect the exchange with a lock, the store operation in spin_unlock can still happen during xchg, causing a

deadlock afterwards.

Hence, to ensure strong atomicity, one must passively protect all atomic instructions using lock. However, this

solution incurs significant performance overhead as every memory access needs to acquire and release the lock. To

illustrate the overhead, we start two parallel threads to atomically update a shared counter one million times. The lock-

based emulation only uses lock to only partially protect the emulated INC. From our evaluation results COREMU

emulation is 8X faster (6.82s vs. 47.69s) than a lock-based solution.

FDUPPITR-2010-001 7



REDO:

Load: old = [Addr]

Inc: new = old + 1

CAS (Addr, old, new)

IF(success)

goto next instr;

ELSE

goto REDO;

Load: Reg = [Addr]

Inc: Reg = Reg + 1

Store: [Addr] = Reg

Sequential

emulation

LOCK: INC [ADDR]

Parallel

emulation

Figure 6: Example translation of an atomic INC

COREMU solves the multiprocessor synchronization problem with lightweight memory transactions based on the

well-known Multi-Word Compare and Swap (CASN) algorithm [13]. COREMU supports this operation with the

only assumption that the underlying architecture supports CAS like synchronization primitives, which holds for most

modern architectures. Figure 6 shows an example translation of INC instruction where host and target system uses

the same word size.

Generally, the working flow is as follows: (1) Calculate the result into tmp. (2) Use CAS to store tmp into desti-

nation. (3) Proceed to the next instruction on success, or re-execute this instruction. Overall, our solution guarantees

efficient atomic instruction emulation and allows reuse of most sequential code generation. Further, our memory trans-

actions are much more succinct compared to general transactional memory due to the simple and clean semantics of

instructions. These instructions only update a single memory location and the memory state only has one transition,

hence very few states is needed to record during such transactions.

3.2.2 Feedback-Directed Scheduling

COREMU creates one thread for each emulated core or device. There might be more threads than physical cores when

emulating large-scale many cores. Hence scheduling of threads is critical to ensure practical performance when so

many threads present in the system. To address the above problem, we propose a flexible feedback-directed schedul-

ing mechanism to provide good scalability and reasonable fidelity for parallel emulation. The scheduling algorithm

aims at utilizing the workload information in the emulated environments at the binary translation layer and uses such

information as feedback to direct the scheduling of the virtual cores among physical cores:

Lock-holder Preemption: Lock holder preemption is one of the limiting factor for performance scalability and

fidelity for parallel emulator emulating large scale many-core emulation. The guest parallel workloads (including

the operating system kernel) usually use spin-locks as a means to guarantee exclusive access to shared data. Such

spin-locks are, by design, only held for a short period of time and will be unlikely preempted until the lock is released.

However, when running a commodity operating system on a parallel emulator, the emulated environment may

violate such premise of using spin-locks. The emulated virtual core can be preempted even it is executing critical code

protected by a spin-lock, as shown in the top half of Figure 7 Such lock holder preemption could result in a significant

increase of the lock holding time. For workloads running on large-scale emulated cores, such a situation would be

common and cause the serious performance degradation and poor fidelity.

Avoiding lock holder preemption can be achieved by either modifying (e.g., compiler instrumentation) the guest

operating systems or workloads to give hints to the emulator (intrusive), or having the emulation layer to detect when

the guest operating systems is not holding a lock (non-intrusive). To retain transparency, COREMU currently uses the

latter approach to detect the spin-locks.

Based on the observation that spin-lock usually uses a pause instruction after the lock prefix instruction, we can

pre-translate more translation blocks when we find a lock prefix instruction has been translated. When COREMU

detects a spin-lock, it tags the corresponding TBs. Afterwards, COREMU can detect if a virtual core has acquired a

spin-lock successfully. To avoid lock holder preemption, COREMU feeds such hints to the underlying scheduler to

avoid preemption when a virtual core is still executing a critical section. After lock is released, COREMU also gives

such a hint to the scheduler and the scheduler will decide if re-preempting the virtual cores. Finally, COREMU can

also detect if a core is waiting on a lock. If so, it provides such a hint to the scheduler and yields the virtual core until

the lock release action is detected, as shown in the bottom half of Figure 7.
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Figure 7: The problem of lock-holder preemption (top half) and the solution in COREMU to remedy the problem

(bottom half).

Workload-aware Core Migration: The sequential emulator is enhanced to provide the scheduler in COREMU

with the workload Information, including the load of the emulated cores, TLB misses, and frequently retried trans-

actions. Based on this information, emulated cores are migrated or the priority of the threads emulating cores or

devices is changed. For example, if an emulated core idles over a specific number of times, COREMU will put the

corresponding thread into a yield state. For an emulated core running a CPU-intensive task, COREMU will detect the

load according to the executed instructions per second and increase the priority of the corresponding thread. For an

emulated device, COREMU detects the load according to the number of pending requests by adjusting the priority if

necessary. Further, if two emulated cores are contending for a lock, COREMU detects such situation by counting the

retried number of transactions and the corresponding memory locations. COREMU will yield some contending cores

to mitigate contentions. Finally, when an emulated core or device sends interrupts to another core or device, it first

inspects whether there is a number of pending interrupts or if the receiving thread has not processed interrupt for a

long time. In such situation, COREMU will increase the priority of the thread.

3.2.3 Thread-Private Cache with Lazy Invalidation

Like other translators, COREMU uses translation cache that caches translated code to improve emulation performance.

For a parallel emulator that emulates a number of cores, as each core will access the translation cache, an efficient

scheme is vitally important for the performance and scalability.

Basically, there are two design choices: thread-shared cache and thread-private cache. For thread-shared cache, all

emulated cores share a single global cache and each piece of code has only one copy in the cache, which is efficient

in memory space usage, yet would cause heavy contention on the cache when emulating relatively large cores. For

thread-private cache, where each emulated core has its own translation cache, which would result in less contention,

yet requires more memory spaces and excessive inter-core communications to maintain cache consistency.

To avoid possible contentions, COREMU uses a thread-private cache scheme because it naturally fits into

COREMU’s decoupling model, where each core thread independently caches executed code. However, this design

leads to the code eviction problem, where a write to a code page must synchronize with other emulated cores to in-

validate all possible cached translation. A typical case for such invalidation event corresponds to self-modifying code.

However, in full system emulation, this happens more frequently when a previous code page is reused as a data page.
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For example, after a multi-threaded application exits and its memory pages have been reclaimed by the OS, these pages

could be used for holding program data. Unfortunately, these pages might still in translation cache and other emulated

cores are not aware of the status changes of these pages. Consequently, COREMU needs to issue code eviction events

to other emulated cores to invalidate the code cache. According to our experience, there are typically hundreds of

thousands of such events when booting Linux with 4 emulated cores. Furthermore, this number grows rapidly with

the increase of emulated cores, which dramatically limits the system scalability.

COREMU uses a technique called lazy invalidation to address the scalability problem caused by excessive code

evictions. Our key observation is: the invalidated code pages are rarely re-executed later. Hence, the invalidation

could be postponed until the re-execution of stale cached-code (if such code is really self-modifying code or the page

will again be used as code page). Specifically, on a code page write, all cached translation blocks are updated to

return a value, which indicates that code eviction is needed. If re-executed, COREMU removes the cached block from

thread-private translation cache, re-translates and executes it. Lazy invalidation ensures the common case is fast, as

the real re-execution of stale code cache implies self-modifying code or reused code, which is rare in practice.

Finally, to implement code page protection similar to QEMU, COREMU uses CAS to implement code page protec-

tion. Specifically, the core that maps the code should atomically replace the soft-TLB entries of other cores to protect

the page so that any write afterwards traps into the lazy invalidation callback.

3.2.4 Communication with Adaptive Signal Control

In a sequential emulator that multiplexes each core and device in a single core, core-to-core and core-to-device com-

munication is easy as it can handle many asynchronous events in a synchronous way. For example, to emulate the

broadcasting of an IPI (Interprocessor Interrupt), it simply sets the interrupt vector for each of the emulated cores.

However, for a parallel emulator, such direct modification indicates concurrent or even parallel modifications to in-

ternal state of an emulated component. Using locks to provide safe concurrent modification is complicated and time-

consuming. Further, it violates the design goal to decouple parallel emulation complexity from optimizing sequential

ones.

Asynchronous communication in COREMU is handled using Real Time Signal (RT-Signal) [1] and non-blocking

data structures. RT-Signal is used as communication primitive for its two useful properties. First, the delivering order

is guaranteed to be FIFO, which ensures the fairness of handling the events. Second, the signals with the same type

are buffered rather than ignored, thus all asynchronous events will not be lost. To handle asynchronous events from

hardware and other cores, each core maintains a non-blocking FIFO queue to hold all these events.

However, naively sending all interrupts using RT-signals would result in excessive signals and cause significant

overhead due to the high cost of trapping into and returning from signal handlers. Further, it limits system scalability

as the number of interrupts increases rapidly with the increase of cores. Given the high costs of signals, such an

excessive number of signals significantly limit the performance and scalability. For example, our tests indicates that

a WordCount application running on 8 emulated cores with 8 physical cores is even a bit slower than on 4 emulated

cores on 4 physical cores (5.78s vs. 5.14s).

To solve this problem, COREMU uses a technique called adaptive signal control to reduce the signal-handling

overhead by controlling the rate of signal sending. Specifically, COREMU only uses RT-signal to notify the target

processor when there are the number of pending interrupts exceeds a threshold. The threshold is dynamically adjusted

in the signal handler according to the frequency of received signals. Otherwise, each emulated core polls for pending

interrupts.

3.3 Debugging and Diagnosis Support

COREMU is also built with some preliminary mechanisms to assist programmers to debug and diagnose the bugs and

performance problems of parallel systems and applications:

Watchpoints: To assist programmers to find memory-related bugs effectively, COREMU is integrated with a smart

watchpoint mechanism that can constantly monitor the accesses to a range of not only virtual addresses but also

physical addresses. Programmers can also associate a callback function which will be triggered when a specific type

of accesses to that watched address occur. A set of utility function is also provided to be invoked by the callback

function, including dumping the callstack, showing the execution context, showing the content of the stack, which

helps programmers to understand the execution context. Programmers could control the execution of the monitoring

by specifying the condition that trigger the monitoring, which could save the associated overhead.

Cache Simulation: Cache behavior is critical to program performance. Instead of writing a cache simulator to

COREMU, we instead reuse a state-of-the-art cache simulator (i.e., GEMS [18]) by collecting memory traces using
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COREMU and feeding the traces to GEMS. This help programmers to qualitatively (though not quantitatively) identify

the performance problems of some applications and system software.

4 Implementation

COREMU is implemented on x64 processors and currently uses QEMU as the sequential emulator, in the form of a

multithreaded application scheduled by the host operating systems. It supports the full system emulation of x64 and

ARM processors. The COREMU library only requires around 2700 lines of C code, including the thin synchronization

and communication layer and some well-known non-blocking data structures such as Michael and Scott’s non-blocking

FIFO queue [19].

Portability of COREMU: a Case Study using ARM Given the fully-fledged support for x64 platform, we found

it quite easy to port it to other platforms. We chose ARM MPCore as the porting target given the popularity of ARM

platform on mobile systems, as well as the readily support of sequential emulation of multiprocessors in QEMU. Two

of our developers who are quite familiar with COREMU but are completely new to ARM platform, spend four days to

port COREMU for ARM, adding only 150 LOCs.

Parallel Emulator Construction To construct a full-system emulator, we reuse all the high-level abstractions in

QEMU, such as devices, processors and interrupt controllers. As we model each processor as a single thread, per-core

objects need to be marked with __thread specifier. The marking is usually quite straightforward since emulated

processor objects are well defined.

The communication interfaces need slight adjustment which typically does not require deep understanding of the

internal logic of QEMU. For example, we need to use COREMU interfaces to send I/O requests or interprocessor

interrupts, and these interfaces are usually just wrapper functions for original QEMU interfaces. For device emulation,

COREMU provides debug mode device emulation in case the driver is incorrect. Each emulated device has a lock and

the lock is acquired at the entry of its I/O hook functions.

Atomic instruction emulation needs to be adjusted to be aware of their atomicity. This requires inserting calls to

COREMU library to use memory transactions. Fortunately, most of the code can still be reused. For example, we can

completely reuse all the code in QEMU that generates the decomposed micro operations.

COREMU modifies the translated code invalidation callback. Every cached block to invalidate is rewritten to

just return a value, which indicates if code eviction is needed. Note that, while COREMU needs translated code

modification, there is no need to modify the complicated internal state of the emulated core, such as translation block

unlink or hash map invalidation. However, this requires a core to see the translation blocks produced by other cores.

To do this, COREMU maintains a data structure which records, across all cores, all translation blocks on a code page.

Further, each translation block is provided with a lock and a flag to indicate whether the block has already been evicted.

Upon getting the lock, COREMU checks the flag to see whether the rewritten has been done, hence avoids rewriting

the code twice.

When emulating a large number of cores, the excessive time interrupts could easily exhaust most of the CPU cycles

and starve the user programs. Hence, COREMU adaptively adjusts the rate of delivering time interrupt by emulating

an time device (e.g., programmable interval time, PIT) according to the proportion of the number of emulated cores

with the physical cores.

We finally modify about 2500 lines of code in QEMU to build a full system parallel emulator. Most of the changes

are straightforward. For simplicity and clarity, we duplicate some pieces of code, which increases the lines of modifi-

cation. We believe such effort is not much, and domain experts can conduct such changes more quickly.

5 Evaluation

This section evaluates COREMU by comparing it with QEMU when emulating x64 and ARM MPCore using various

contemporary benchmarks that either require a relatively large input size and working set or execute relatively long

execution time.

5.1 Experimental Setup

All performance evaluation is performed on a 4 Quad-core (1.6 GHZ) Intel x64 system running Debian-Linux with

kernel version 2.6.26-2. The guest OS is also a Debian-Linux with kernel version 2.6.33-1 since the kernel version

2.6.26-2 cannot boot when emulated core exceeds 64. The host machine has 32GB memory and the guest is configured

with 8 GB memory. We use several different types of applications to study their performance with regard to QEMU

and COREMU: (1) SPECINT-2000 [14], a CPU-intensive benchmark; (2) the Canneal benchmark from PARSEC
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benchmark suite [5] using native input set, whose working set is around 2 GB. (3) WordCount benchmark included

in Phoenix MapReduce testsuite for multicore, using a 100 MB word file. (4) dbench [25], a file system benchmark.

(5) Parallel kernel build, which builds a compacted Linux kernel by specifying the currency level as the number of

(emulated) cores.

We ported two MapReduce applications in the Phoenix testsuite to ARM platform to study the performance and

scalability of emulated ARM MPCore: Matrix Multiply that multiply two 800 * 800 matrices; WordCount with a 10

MB file. The version of Linux used for emulated ARM is 2.6.28.

QEMU and the one used in COREMU are obtained from its GIT repository on May, 4, 2010. COREMU and

QEMU are configured with the same options. All these applications are compiled using gcc-4.3.2. As typical timing

mechanism in emulated environments could be inaccurate on a large number of emulated cores, we use rdtsc instruc-

tion in such cases instead, since such an instruction will read the timestamp registers in the host platform directly in

COREMU. For all the tests, we run the test program 5 times to get the average. In many cases, QEMU times out so

we omit the results of QEMU.

5.2 Performance of Emulated x64

5.2.1 Uniprocessor Emulation Overhead

Figure 8 depicts the hardware relative performance overhead with 8 applications in SPECINT-2000 benchmark suite.

Hardware relative performance overhead is defined as the ratio of emulator execution time to native execution time.

As shown in the figure, COREMU incurs negligible performance overhead compared to QEMU, within 1% for all of

these benchmarks. Compared to native execution, COREMU is 11X slower on average. The single core emulation

overhead mainly comes from the communication among different components and the use of transactions to synchro-

nize multiple cores. However, as the proportion of communications as well as memory transactions is relatively small

in single-threaded application, the incurred performance overhead is negligible.
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Figure 8: Uniprocessor emulation overhead with SPECINT-2000: the execution time is normalized to native execution

time.

5.2.2 Performance and Scalability of Emulated x64

WordCount: Data-parallel applications The WordCount (wc) benchmark tries to demonstrate that COREMU can

also run data-parallel applications with good performance. Figure 9 shows the results for running wc on 1, 2, 4, 8, 16,

32, 64, 128 and 255 emulated cores as well as the native performance. The uniprocessor performance of COREMU

is rather similar with QEMU. However, with the increasing number of cores, COREMU shows good scalability and

outperforms QEMU dramatically, with a speedup of more than 67X when emulating 16 cores. The execution time of

wc on COREMU increases when the number of emulated cores exceeds 16 due to required context switch, yet still

within a reasonable scope (299s for 255 cores).

There are two reasons for the much better performance and scalability of COREMU. First, when emulating larger

number of multiprocessors, there are a lot of synchronizations between threads, and threads frequently fall into spin-

wait state. Sequential emulation can only exhaust the time slice of spin-wait. In COREMU, the feedback-directed

scheduling can handle this case by detecting lock situation in emulated cores and yielding the control to another

thread. Actually, during our process of development and optimization, COREMU can only emulate 32 cores without

the feedback-directed scheduling optimization. Second. wc involves a huge number of memory accesses. Compared

to sequential emulation in QEMU, the total amount of cache grows with the number of cores, resulting in much better

data locality. The synchronization and data locality are also the main reasons that the execution time of wc increases

when the number of emulated cores exceeds the physical cores.
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Figure 9: Performance and scalability of the WordCount benchmark with 100 MB input.

Canneal: the case of handling large working set To demonstrate that COREMU can handle a large working

set, we compared the performance and scalability of the Canneal benchmark from the PARSEC benchmark suites.

Figure 10 depicts performance and scalability of Canneal: COREMU scales significantly better than QEMU when

emulating multiple cores. QEMU times out for 3-hour when emulating more than 16 cores due to cache thrashing.

When emulating 16 cores, COREMU already has a speedup of 20X (3258.68s vs. 155.98s). While for COREMU, it

scales rather well when the number of emulated cores increases from 1 (1871.64s) to 16 (155.98s), but the performance

decreases gradually afterwards (from 212.6s in 32 cores to 879.28s in 255 cores). The relative slowdown to native

execution is relatively small, ranging from 4.7X in 1 core to 4.2X in 16 cores. This is because Canneal spends most of

its time in user mode and rarely requires task management and context switches.
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Figure 10: Performance and Scalability with Canneal benchmark from PARSEC testsuite.

dbench: Evaluating file system and I/O Performance We use dbench to evaluate file system and I/O performance

and scalability of COREMU. Figure 11 compares the I/O throughput of QEMU with COREMU, as well as the perfor-

mance on native Linux. The single core performance is comparable than QEMU, while COREMU scales better when

emulating multiple cores. The throughput of QEMU degrades dramatically with the increasing number of emulated

cores. It is interesting that there are severe contentions on Linux when running dbench, resulting in bad performance

scalability on 16 cores (1056.38 MB/s on 16 cores vs. 1192.96 MB/s on 8 cores). In COREMU, as the binary trans-

lation layer relaxes the contentions on locks, the scalability is still good before 16 cores (74.46 MB/s on 8 cores vs.

154.39 MB/s on 16 cores) . For QEMU, due to restricted parallelism and poor cache locality, dbench on QEMU scales

extremely bad, with its throughput on 16 emulated cores only 0.66 MB/s.

Parallel kernel build: evaluating complex workload Building a Linux Kernel is a relatively complex workload

as it involves creating a number of parallel processes to compile the source file. Figure 12 shows the performance

and scalability of COREMU and Linux when building a compact Linux kernel. As QEMU times out for all cases and

COREMU times out when emulating 1 core, we omit the results here. As the results in other benchmarks, COREMU

also shows good scalability when the number of emulated cores is less than the number of physical cores, with a

relative slowdown to native platform of around 32X on 16 cores. The execution time also increases when the number

of emulated cores exceeds 16, resulting in 2,046 second to finish the kernel build on 255 emulated cores. This is
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Figure 11: I/O performance results with dbench.

expected, as the number of concurrent tasks dramatically increases in such case, resulting in both excessive context

switch overhead and poor data locality.
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Figure 12: Performance and Scalability of the parallel kernel build benchmark.

5.3 Performance of Emulated ARM

We use two applications, Matrix Multiply and WordCount to study the performance and scalability of emulated 1, 2,

3 and 4 ARM cores. Figure 13 shows the performance of the two applications running on QEMU and COREMU. As

we currently do not have an ARM MPCore machine in handle, we omit the native data here. Like the performance

trend of emulating x64, COREMU has similar performance with QEMU when emulating uniprocessor, but has better

performance and scalability when emulating 2 to 4 cores, with the corresponding speedup of 1.67X (11.3s vs. 18.9s),

2.56X (7.2 vs. 16.25s) and 2.5X (6.1s vs. 15.5s) for WordCount and 1.96X (46s vs. 90.5s), 2.9X (30.96s vs. 90.85s)

and 4.3X (22.9s vs. 91.17s ) for Matrix Multiply accordingly.

6 Case Studies of COREMU

To demonstrate the effectiveness of COREMU, we make several case studies by using COREMU to diagnose and

debug the performance problems and (concurrency) bugs in both OS kernel and user applications.

Cache Simulation: We use the matrix multiply (mm) application from the Phoenix MapReduce framework [23],

which is a parallel version of matrix multiply written using the MapReduce programming model. By collecting the

memory traces using COREMU and replaying them in GEMS, we found that even when using 4 cores, the default

version in COREMU incurs more than 26% L1 cache miss rate with the input size to be 500 X 500. By transposing the

input matrices before executing the MapReduce tasks, we observe that the L1 cache miss rate degrades to only 5%,

leading to a performance speedup of more than 2X.

Debugging using Watchpoints: We use one kernel bug and one user bug to demonstrate how COREMU could be

used for debugging. The kernel bug is a NULL pointer dereference bug caused by incorrect concurrent updates to the
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inode->i_pipe variable in Linux kernel version 2.6.21 5. After one thread has freed inode->i_pipe and set it to NULL,

another thread tries to deference it. To detect such a bug, we insert a watchpoint on updates to that variable and log

accesses that write a NULL to that variable. Using COREMU, we quickly locate the function and execution context

modifying nullify that variable.

The user-level bug is from pbzip2 6, which is an order violation concurrency bug. There are still accesses to the

fifo->mut variable from the consumer threads after the variable has been freed by the main thread, which causes a

segmentation fault. With COREMU, we diagnose the root cause of this bug similarly by inserting a watchpoint on

fifo->mut and logging the accesses.

7 Conclusion and Future Work

We have presented the open-source COREMU, a scalable and portable full-system emulator for CMP systems.

COREMU clusters multiple mature sequential emulators using a thin library layer, hence decouples the complex-

ity of supporting parallel emulation from building an optimizing single-core emulator. Experimental results show

that COREMU has negligible uniprocessor performance overhead and scales much better than sequential emulator,

and is orders of magnitude faster. From our experiences of building COREMU, we found that efficient emulation of

synchronization primitives, efficient scheduling, scalable code cache management and efficient communication mech-

anism are the key to the performance and scalability of a parallel full-system emulator. We hope that our experiences

could be useful for others building similar systems.

We plan to extend our work in several directions in future. First, while currently COREMU trade the determinism

for performance by parallelizing the emulator, determinism is extremely useful to replay uncovered bugs. Hence, we

plan to add record and replay support in COREMU, to support the execution replay of the full emulated multiproces-

sors [12]. Second, though there is no fundamental limitation to support other Host/Emulated processors pairs, we

currently only tried a few. We are now trying to add more processors pairs to make it more portable. Finally, we are

also providing more debugging and instrumentation support in COREMU to enable a more wide range of usages in

performance debugging and diagnosis.
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