
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005
671

LETTER

An Efficient Method for Dynamic Shadow Texture Generation

Kyoung-Su OH†a) and Byeong-Seok SHIN††, Nonmembers

SUMMARY We propose a novel shadow texture generation method
with linear processing time using a shadow depth buffer (SZ-Buffer). We
also present a method that achieves further speedup using temporal coher-
ence. If the transition between dynamic and static state is not frequent,
depth values of static objects does not vary significantly. So we can reuse
the depth value for static objects and render only dynamic objects.
key words: shadow, shadow texture, depth buffer, temporal coherence

1. Introduction

Shadows enhance reality and provide good clues to spatial
relationships between objects. Much work has been done
on real-time shadow generation. However, only a few 3D
graphics systems can produce shadows in real time.

Shadow texturing is one popular method for real-time
shadow generation. A shadow texture is a projected image
with the position of the light source as its center of projec-
tion. The shadow texture of an object represents the shad-
ows cast on it. Each pixel value represents the presence of
interfering objects between the object and the light source:
if there are objects between the pixel and the light source,
the pixel color is black, otherwise it is white. This is use-
ful for shadow representation. However, shadow generation
time is proportional to the square of the number of objects
in the scene, because this method for generating an object’s
shadow texture renders all objects between the object and
the light source.

Nguyen explained how to generate shadow textures us-
ing graphics hardware when the shadow caster and receivers
are identified [1]. Herf presented a method for soft shadow
generation when the number of shadow receivers is small.
Soler and Sillion used the Fast Fourier Transform (FFT)
and its inverse to produce soft shadow textures [3]. Previ-
ous methods have not been adequate for rendering complex
scenes because they quickly slow down as the scene com-
plexity increases. This is because they require rendering of
all shadow casters between a shadow receiver and the light
source [2].

We present a novel method that has linear processing
time using a shadow depth buffer (SZ-buffer). We can gener-
ate shadow textures by rendering only the shadow receiver.

Manuscript received September 3, 2004.
†The author is with the School of Media, College of Informa-

tion Science, Soongsil University, Korea.
††The author is with the School of Computer Science & Engi-

neering, College of Engineering, Inha University, Korea.
a) E-mail: oks@ssu.ac.kr

DOI: 10.1093/ietisy/e88–d.3.671

Each pixel of the SZ-buffer contains the distance from the
light source of the surface closest to the light source along
the corresponding ray. Pixels on the surface being rendered
that are farther from the light source than the SZ-buffer dis-
tance are therefore changed from a light color to the shadow
color.

We can also exploit temporal coherence in shadow tex-
ture generation. There were many researches to exploit tem-
poral coherence in visibility computation under fixed view-
ing conditions [4]–[8]. We can exploit temporal coherence
in shadow texture generation with a fixed light source. If we
render objects from a light source position, the depth values
of static objects can be reused without rendering the objects.
We can find those values efficiently and render only the dy-
namic objects. As a result, the time complexity of our algo-
rithm is asymptotically O(Ndyn), where Ndyn is the number
of dynamic objects in the scene.

In Sects. 2 and 3, we explain how to generate shadow
textures and how to improve processing speed using tempo-
ral coherence. Experimental results are shown in Sect. 4.

2. Shadow Texture Generation Using the SZ-Buffer

Previous shadow texture generation methods produce
shadow texture for an object (shadow receiver) by render-
ing all the other objects (shadow casters) between the re-
ceiver and the light source (Fig. 1 (b)). We use an SZ-buffer
to generate a shadow texture for an object. To create this
data structure, we render all objects from the light source
position. After setting the viewpoint as the light source po-

(a) (b)

Fig. 1 Previous shadow texture generation method: (a) light source and
objects in the scene. (b) To generate the shadow texture for A, render all
objects between the light source and A (B and C) with shadow color.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



672
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005

sition, we render all objects using a depth buffer algorithm
and save the depth values in the SZ-buffer. As a result, each
pixel of the SZ-buffer contains the distance from the light
source to the closest object seen through it (Fig. 2 (a)).

We can generate shadow textures using the SZ-buffer
by applying the depth buffer algorithm once again, setting
the viewpoint as the light source position and copying the
contents of the SZ-buffer to the depth buffer. For each object,
we set its shadow texture as the render target, and fill the
color buffer (render target) with the shadow color, normally
black (Fig. 2 (b)). Then we render the object as a light color
using the depth buffer algorithm. Because the SZ-buffer con-
tains the distances to the nearest objects, the colors of pixels
closer to the light source are changed from the shadow color
to light colors (Fig. 2 (e)).

(a) (b)

(c) (d)

(e)

Fig. 2 Shadow texture generation using the SZ-buffer: (a) Contents of
the SZ-buffer: a length of ray means the depth value. (b) Fill shadow texture
with shadow color (normally black). (c) Render shadow receiver (object A)
to find its shadow texture. (d) Shadows generated by the shadow texture.
(e) Result of rendering all objects with the shadow texture.

3. Further Speedup Using Temporal Coherence

In most applications, light sources and objects are static in
most frames. We use this coherence to speed up shadow
texture generation.

3.1 Acceleration of SZ-buffer Generation

Each object in an animation sequence has one of two states,
static or dynamic. If the transitions between the two states
are infrequent, the depth values of currently static objects
are similar to those of the static objects in the previous
frame. When we have the depth values of static objects,
we can complete rendering of the current frame by render-
ing only dynamic objects. In a previous paper, we proposed
an efficient visibility method (called mobility culling) [4],
which enhances the conventional Z-buffer algorithm by ef-
ficiently calculating the depth values of static objects for a
fixed viewing condition. We can apply the method to gener-
ating the SZ-buffer when the light source is fixed.

Assume that all objects are classified into four states,
SD (static-dynamic), DS (dynamic-static), SS (static-static),
and DD (dynamic-dynamic) according to their mobility in-
formation. For example, objects that are static in the pre-
vious frame and dynamic in the current frame are catego-
rized into the set SD. Figure 3 shows an example of classi-
fication of target objects. We use a static depth buffer that
holds depth values for currently static objects and a render-
ing depth buffer to store depth values for all the objects in
the current frame.

The SZ-buffer generation procedure using temporal co-
herence consists of the following three stages: (1) obtain
depth values of currently static objects from the static depth
buffer, (2) store the depth values of the static objects in the
rendering depth buffer, and (3) render currently dynamic ob-
jects using the depth buffer algorithm.

Figure 4 shows how the content of the rendering depth
buffer and the static depth buffer changes while applying our
method.

The first step of the algorithm has the following four
substeps: (1-1) Erase the extents of currently dynamic and
previously dynamic objects (erase DD objects); (1-2) Erase
the extents of currently dynamic and previously static ob-

Fig. 3 Examples of objects classified into four categories according to
their mobility in the last two frames.



LETTER
673

jects (erase DS objects); (1-3) Render currently static and
previously static objects (draw SS objects); and (1-4) Ren-
der currently static and previously dynamic objects (draw
SD objects).

Figure 5 shows the result of each of these substeps. Be-
fore we start our algorithm, the depth buffer contains depth
values from the previous frame. The first and second sub-
steps erase dynamic objects, and the third and fourth sub-
steps render static objects that are overwritten while erasing
the currently dynamic objects.

In the first substep, copying from the static depth buffer
erases objects that were dynamic in the last two frames.
In the second substep, filling with the background depth
value erases objects that are currently dynamic and previ-
ously static. In the third substep, currently and previously
static objects are rendered. These objects were not erased in
the second substep, so only those objects that overlap with
one or more of the currently dynamic and previously static
objects are rendered. In the fourth substep, currently static
and previously dynamic objects that overlap with currently
dynamic objects are rendered.

3.2 Shadow Texture Generation

When the light source is fixed, only dynamic objects and
the objects overlapping with the dynamic objects require up-
dates of shadow textures. If an object moves in the current
frame, its shadow texture must be regenerated. If an ob-
ject overlaps with one or more extents of moving objects, its
shadow texture must also be generated. Most objects are not
in these two cases and do not require shadow texture update.
Currently dynamic objects and the objects overlapping with
dynamic objects were identified while constructing the SZ-

(a) (b) (c) (d)

Fig. 4 Contents of the rendering depth buffer and the static depth buffer
in each step of our algorithm. (a) Initial state. (b) After computing the
depth values of static objects. (c) Copy to static depth buffer. (d) Render
dynamic objects.

(a) (b) (c) (d) (e)

Fig. 5 Content of the rendering depth buffer (top row) and the static
depth buffer (bottom row) after each sub-step of the first step. (a) Before
starting. (b) Erase currently and previously dynamic objects. (c) Erase cur-
rently dynamic and previously static objects. (d) Render currently and pre-
viously static objects. (e) Render currently static and previously dynamic
objects.

buffer. We generate shadow texture for these objects with
the SZ-buffer using the algorithm explained in Sect. 2. Since
we consider only part of entire objects, texture generation
time can be reduced.

4. Implementation and Experimental Results

We implemented the previous shadow texturing method and
ours using Direct3D on a PC equipped with a 2.66 GHz
Pentium 4 CPU, 1 GB RAM and an ATI Radeon 9800 XT
graphics card. We generated sphere models in random po-
sitions and assigned them random movements. Each sphere
model has 2,037 vertices and screen resolution is 800 by
600 pixel. Figure 6 shows some images in an animation se-
quence produced by our method.

We measured rendering times of the previous method
and our method without using temporal coherence. Figure 7
compares rendering times for our method with those for the
previous method. As the graphs show, rendering time with

(a) (b)

Fig. 6 Some sampling images for different models: (a) 100 spheres. (b)
300 spheres.

Fig. 7 A comparison of rendering times with the previous method (top)
and our method (bottom).



674
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.3 MARCH 2005

Fig. 8 A comparison of rendering times when exploiting temporal co-
herence and when not using coherence, according to the percentage of dy-
namic objects.

the previous method is O(N2), while rendering time with our
method is O(N).

To show the effect of exploitation of temporal coher-
ence, we measured the rendering times of the two methods
while varying the percentage of dynamic objects. As the
fraction of dynamic objects becomes smaller, speedup from
temporal coherence increases, as shown in Fig. 8. If the frac-
tion of dynamic objects is 10%, the speedup is 23.4%. This
is based on the total rendering time. The speedup of shadow
texture generation time is much greater.

5. Conclusion

In this paper we have proposed a constant-time shadow tex-

ture generation algorithm. In addition, we have presented
an enhanced method that does not generate shadow textures
for static objects. Experimental results show that the perfor-
mance of our method is linearly proportional to the number
of shadow receivers that require shadow texture generation.
Our method is an order of magnitude faster than the previous
method and the speedup is greater if the fraction of dynamic
objects is small.

Acknowledgments

This work was supported by the Soongsil University Re-
search Fund.

References

[1] H.H. Nguyen, “Casting shadows on volumes,” Game Developer,
vol.6, no.3, pp.44–53, March 1999.

[2] M. Herf, “Efficient generation of soft shadow textures,” CMU-CS-97-
138, CS Dept, Carnegie Mellon U., May 1997.

[3] C. Soler and F. Sillion, “Fast calculation of soft shadow textures using
convolution,” Proc. SIGGRAPH98, pp.321–332, July 1998.

[4] K.S. Oh, B.S. Shin, and Y.G. Shin, “Mobility culling: An efficient ren-
dering algorithm using temporal coherence,” J. Vis. Comput. Anim.,
vol.12, no.3, pp.159–166. Sept. 2001.

[5] G. Scaufer, “Exploiting frame to frame coherence in a virtual real-
ity system,” Proc. Virtual Reality Annual International Symposium,
pp.95–102, Santa Clara, March 1996.

[6] J. Chapman, T.W. Calvert, and J. Dill, “Spatial–temporal coherence
in ray tracing,” Proc. Graphics Interface., pp.196–204, Helifax, May
1990.

[7] S. Badt, Jr., “Two algorithms for taking advantage of temporal co-
herence in ray tracing,” Vis. Comput., vol.4, no.3, pp.123–132, Sept.
1988.

[8] D. Jevans, “Object space temporal coherence for ray tracing,” Proc.
Graphics Interface, pp.176–183, Vancouver, May 1992.


