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Abstract 
We start by reviewing several logging tools.  We then report improvements to a 

keystroke logger we have developed for the Mac and PC, Recording User Input (RUI).  

These improvements include changes to its interface, increased accuracy, and extensions 

to its logging ability. RUI runs in the background recording user behavior with 

timestamps and mouse location data across all applications—thus avoiding problems 

associated with video logs and instrumenting individual applications.  We provide a 

summary and comparison of tests for loggers and and present procedures for validating 

logger timing that quantifies timing accuracy using an external clock.  We demonstrate 

these tests on RUI and three other applications (Morae, Camtasia, and AppMonitor).  We 

conclude by providing some general specifications and considerations for creating, 

testing, evaluating, and using keystroke and mouse loggers with respect to different 

experimental questions and tasks.   
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1. Introduction  
Obtaining and validating accurate timing for computer users has arguably become more 

difficult over time as operating systems have become more complex (Myors, 1999; De 

Clercq, Crombez, Buysse, & Roeyers, 2003).  Naturalistic studies of computer use and 

human-computer interaction (HCI) studies, nevertheless, require accurate logging of 

keystrokes and mouse movements (Ritter, Kim, Morgan, & Carlson, 2013).  

Consequently, there is a wide variety of testing environments but few general logging 

tools.   
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In this report, we start by reviewing several logging tools.  We then report 

improvements to a keystroke logger we have developed, RUI.  These improvements 

include changes to its interface, increased accuracy, and extensions to its logging ability. 

We provide a summary and comparison of tests for loggers and new procedures for 

validating logger’s timing that quantifies timing accuracy using an external clock. We 

demonstrate these tests on RUI and three other applications (Morae, Camtasia, and 

AppMonitor). We then examine these applications with respect to these tests.  We 

provide some general specifications and some considerations for creating, testing, 

evaluating, and using keystroke and mouse loggers with respect to different experimental 

questions and tasks.  

2. Review of keystroke loggers 
Researchers recording behavior on computer interfaces for later analysis (e.g., Patton & 

Gray, 2010) confront several challenges.  Existing solutions are either not general or 

limited in some way.  For example, video recording methods will provide a record of 

working with nearly any interface, but they are cumbersome to use and their sampling 

rates (typically 24 times per second) are insufficient for measuring many of the smaller 

effects required by HCI’s and psychology’s paradigms, as noted by Plant, Hammond, and 

Whitehouse (2002), Plant, Hammond, and Turner (2004), and Alexander, Cockburn, and 

Lobb (2008)1. In addition, as Alexander et al. (2008) point out, video logs are vulnerable 

to interpretation errors when analyzing complex sequences or logic events (such as menu 

selection) because they depend upon the analyst’s contextual knowledge.  

                                                             
1 Video sampling rates constrain not only the ability to log user activity but also to validate it. 
Audio tests (with a sampling rate of approximately 8,000 samples/s as compared to a sampling 
rate of 24 samples/s for video) provide a powerful alternative.   
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When possible, direct instrumentation of the interface or task is quite useful because 

it allows analysts to specify and record the data necessary for their research in vivo.  

Many commercial applications, however, are designed to resist instrumentation for 

proprietary reasons.  

Recording behavior with timing information directly from a keyboard or keypad 

using hardware dongles is another way forward (e.g., St. Amant, Horton, & Ritter, 2007). 

Dongles such as KeyDemon USB and KeyDemon PS2 2  are available to record 

keystrokes, but timing information at the millisecond level is just now being introduced 

in these commercially available solutions. Hardware approaches are typically very 

accurate; however, collecting data from these sources does pose some challenges, 

particularly for naturalistic or large geographically distributed HCI studies.   

Where indirect instrumentation is possible, such as modifying a library that is used 

by many applications, it provides a useful and flexible solution.  AppMonitor (Alexander, 

et al., 2008) provides yet another alternative, a light-weight client-side logger for 

Windows machines.  AppMonitor records not only low-level actions but also the 

interface semantics of actions where these are defined.  Like Alexander et al., we 

advocate the use of client-side loggers to capture user behavior not only because, as they 

have persuasively shown, such loggers can effectively capture interface related semantic 

content, but also because their relatively small footprint makes them resistant to rate 

errors and time stealing.   

                                                             
2 These and other examples of hardware solutions can be found at www.keelog.com, while more 
current examples can be found by searching the Internet.  
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We note several software loggers in addition to RUI3 , including AppMonitor, 

Camtasia4, Inputlog5, Morae, MouseTracker6, and DirectRT7.  While these are all 

software solutions, it is useful to distinguish between task-oriented collection tools and 

stimulus presentation tools.  The first category is primarily suited for data exploration and 

testing in naturalistic settings; the second for experiment development and hypothesis 

testing in lab settings.  What primarily distinguishes these two groups is the degree of 

experimental control allowed by the tool upon the user environment.  

The first group (e.g., RUI, AppMonitor, Camtasia, and Inputlog) provide little or no 

experimental control.  RUI, AppMonitor, and Camtasia require initialization, while 

Inputlog requires users to select their recording preferences and identify the testing 

session.  These tools are best suited for generally unstructured task environments, where 

investigators are primarily interested in identifying key features of the task or activity as 

users, computer user models, or robots experience it.  In these instances, investigators 

may not yet have a strong theory regarding the behaviors in question but rather are 

performing exploratory analysis.  Loggers, such as Morae, represent an intermediary 

position, as they do not structure the user’s task environment but do depend on external 

recording equipment in a HCI lab setting.   

                                                             
3 Since starting this project we have also found out about Fastlog by De Clercq 
(users.ugent.be/~adeclerc/fastlog) and Inquisit by Millisecond software (www.millisecond.com).  
Interested readers may wish to examine them as well.   
4Camtasia and Morae are available at www.techsmith.com/morae.asp and 
www.techsmith.com/camtasia.asp. 
5 Inputlog is primarily used in writing research (e.g., Latif, 2008; Sullivan & Lindgren, 2006; Van 
Waes, Leijten, Wengelin, & Lindgren, 2011), and is available at www.inputlog.net/.   
6 MouseTracker (Freeman & Ambady, 2010) supports the spatial analysis, raw time analysis, and 
distributional analysis of mouse movements (but not keystrokes), and is available at 
mousetracker.jbfreeman.net.   
7 DirectRT is an experimental suite designed to help design and run cognitive and perceptual 
experiments, and is available at www.empirisoft.com/directrt.aspx.  
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The second group (e.g., MouseTracker, DirectRT, ePrime and perhaps Inquisit) allow 

experimenters to both structure and record activity using both stimulus presentations and 

analysis tools, providing them a high degree of experimental control.  They, however, 

require experimenters to specify where and when the experimental stimuli occur, making 

them excellent for psychological studies of low-level stimuli but unsuitable for many 

naturalistic HCI or human-robot interaction (HRI) experiments.   

We, here, are primarily concerned with task-oriented HCI and HRI tools and their 

validation.  We thus limit our focus to two RUI platforms (Mac RUI and PC RUI), Morae, 

Camtasia, and AppMonitor, as these have all been used in HCI or HRI experiments.  We 

first introduce Mac RUI and PC RUI as examples of a HCI/HRI logger. We then describe 

a comparative study of these loggers using five tests. We next discuss this study and our 

tests before addressing validation challenges and related risks associated with HCI and 

HRI loggers more generally.  We conclude by providing a general specification for HCI 

and HRI loggers that arises from our experiences running HCI and HRI studies and 

designing HCI/HRI tools. 

Before describing RUI or our tests in detail, a general introduction of our tested 

applications is in order.  We begin with RUI.  Recording User Input (RUI) is a pair of 

keystroke loggers that captures user behavior for the Mac and PC operating systems 

(Kukreja, Stevenson, & Ritter, 2007).  We also examine two TechSmith applications, 

Morae, a usability testing package, and Camtasia, a recording and presentation tool.  

Though Camtasia is primarily used to record on-screen activity for making presentations 

and tutorials, its prevalence and accessibility have made it a popular alternative for 

recording user behavior.  Finally, AppMonitor is a HCI logger, specializing in the capture 
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of semantic content by recording the movement between and manipulation of foreground 

and background applications. 

3. RUI: Recording User Input 
In their initial work on RUI, Kukreja et al. (2007) provided a general keystroke logger 

that worked on two major operating systems, Mac OS X (Mac RUI 1.0) and Windows 

(PC RUI 1.0).  We briefly describe these versions, revisions, and some studies using 

them.   

3.1  Mac RUI 2.0 
Mac RUI 2.0 (January 2012) is a keystroke and mouse action logger implemented in the 

Carbon framework for Mac OS X.  Users can record keystrokes, mouse clicks, and 

mouse movements, or any combination thereof.  Logs, as noted in Table 1, include a 

header and a timestamp since log start, action, and argument (such as keys pressed or 

move locations) for keystrokes, mouse clicks, and mouse movements in a tab delimited 

file.  In Table 1, the user moves the mouse, clicks, and then types, “Hello”.   

Table 1.  An example log file from Mac RUI 2.0. 
 

Subject ID: C:\Documents and Settings\Desktop\Test 3.txt 
File Created: 11/25/2009 03:56:00 PM 

Elapsed [s] Action X Y 
0 Moved 275 605 

7.322 Moved 276 605 
7.486 Moved 278 605 
7.655 Pressed Left  
7.827 Released Left  
8.486 KEY SHIFT + h  
8.661 KEY E  
8.994 KEY L  
9.159 KEY L  
9.319 KEY O  

12.662 Moved 715 782 
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3.2  PC RUI 2.04 
Written in the .Net framework using C#, the latest version of RUI for the PC platform, 

2.04 (April 2012), records events more accurately than its predecessor (Kukreja, 

Stevenson, & Ritter, 2007) by generating a filewriting object from a list at the end of each 

recorded session and thus enabling it to smoothly capture events by generating a 

filewriting object to smoothly capture events across all Windows application at the end of 

each recorded session..  PC RUI 2.04 supports both HH:MM:SS and decimal time 

logging; it also collects summary statistics from the log file regarding keystrokes, mouse 

clicks, distances moved, and times8.  We provide a very short example log in Table 2.   

We also expanded the PC platform’s logging capabilities by providing new runtime 

features such as the ability to note task changes using a task hierarchy, and the option to 

perform the NASA Task Load Index (TLX) test.  The NASA TLX (Hart & Staveland, 

1988) is a commonly used measure of workload.  The workload factors assessed are:  

mental, physical, and temporal demands; performance; effort; and frustration.  A user 

completes a ratings assessment for each task, as well as weighting each factor.  Taking 

ratings with RUI provides a convenient way to record workload and ties these measures 

to keystroke and mouse click times by putting them in the log. The code to take the TLX 

measures adds about 80 KB to RUI’s footprint.   

                                                             
8 Distance is the movement by the mouse pointer in pixels, while the time is elapsed time from 
the initialization of the logger in seconds, unless otherwise specified by the user.  
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Table 2.  An example log file from PC RUI 2.04. 
 

Subject ID: C:\Documents and Settings\Desktop\Test 4.txt 
File Created: 10/26/2011   6:00:01 PM   
Version: 2.04   
Released: 07/20/2011   
    
Elapsed Time [s]: Action X Y 
0.390 Moved 1279 504 
0.406 Moved 1278 504 
1.468 Pressed Left   
1.703 Key  LShiftKey 
1.828 Key H Shift 
1.921 Key E  
2.031 Key L  
2.125 Key L  
2.296 Key O  
2.421 Key OemPeriod  
2.515 Pressed Right   
2.640 Key D1  

 

3.3 Previous uses of RUI 
RUI’s multiple platforms and timing resolution have proved a useful tool for a range of 

HCI and human-robot interaction (HRI) studies.  Since its release, RUI has been used by 

us and others in HCI and cognition studies.  Ritter, Kukreja, and St. Amant (2007) used 

PC RUI to log human and agent data for simple robot teleoperation tasks.  Their work 

developed theories of HRI design and implementation, tested an ACT-R cognitive model, 

and demonstrated that a low-level cognitive user model could interact directly with an 

HRI interface to provide behavior predictions.  These log files provided timestamps for 

mouse movements and keystrokes that were then compared to model predictions.  

Friedrich (2008) used Mac RUI to examine problem-solving strategies, while Kim (Kim, 

Koubek, & Ritter, 2007) and Paik (2009) used Mac RUI to study learning and retention. 

From this work, Kim developed cognitive task models that predict comparative retention 

rates of participants performing procedural tasks using keystroke commands versus using 

a GUI.  In both cases, mouse movements and keystrokes were used to infer process 

within a task, with the total task time being derived from the logs.  
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Hurst, Mankoff, Dey, and Hudson (2007) used RUI to implement a pseudo-haptic 

technique for improving user interfaces for physically challenged populations.  This tool 

uses RUI to capture where users click on the screen (using the (x,y) locations recorded in 

the log) to make the target areas bigger and more predictable.  In an unpublished study, 

another group has used PC RUI 2.04 to record users and identify them for a cybersecurity 

application.  Here, the relative timing between keystrokes was used. Drawing upon these 

and other experiences with RUI, we have revised both existing RUI versions, including 

versions that anonymize personal information while retaining data that ASCI keys were 

pressed.  

4. Tests and standards for HCI and HRI keystroke loggers 
We now discuss a comparative study of RUI’s two platforms, two commercial keystroke 

loggers (Morae and Camtasia), and AppMonitor (Alexander et al., 2008). Table 3 

summarizes the tests and standards applied to each application. The table organizes the 

rest of this section, because in each subsection we describe the rational of each test or 

standard, the method used, and the test results for each application.   

This table generalizes the tests we used to develop RUI (Kukreja, Stevenson, & Ritter, 

2006), as well as introducing tests used in the development of later versions of RUI and 

other loggers. Table 3 begins to note important characteristics for these instruments—that 

they are reliable and robust against external disturbances (although defining all 

disturbances is difficult) and load requirements, have (where necessary) small or well-

understood biases, possess adequate precision to see effects of interest, and lead to 

replicable and thus relatable results.  This list is not exhaustive, in that as a logger is used 
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in new ways further criteria and further artifacts are often identified.  The list should be 

useful already, in that it provides a means of differentiating loggers.   

Table 3. Tests and standards for HCI and HRI keystroke loggers. 

1.  No zero interkeystroke timings. 

2.  A gamma distribution of interkeystroke times. 

3.  A narrow distribution of mouse position logging times for fixed logging times that is 

comparable to the requested sample rate. 

4.  Comparison of logs with an external clock.  

5.  Low temporal drift over multiple days. 

4.1 No zero interkeystroke timings 
Except for a few unique and identifiable key combinations (e.g., CTRL, ALT, DEL), few 

or no zero interkeystroke time events should be present in the test data.  A 0 ms 

interkeystroke timing event arises when two keystrokes have been logged 

simultaneously, indicating that either a batching error has occurred (two keypresses 

processed at the same time that were not pressed at the same time) or that the user has, in 

fact, pressed two keys essentially simultaneously. In previous validation studies (e.g., 

Ritter & Wood, 2002), loggers under a high enough load often failed this test when ran 

on multi-user systems. The analyst can differentiate between these two cases by 

examining the logs.  The first case, the presence of batching errors, constitutes a 

fundamental but frequently correctable development error.   

We have found 0 ms timings for mouse movement events.  In these instances, the 

mouse appears to send two locations in the same sample period. This appears to be due to 
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the mouse hardware sending two locations, in order, within its same cycle period.  To test 

this, we examined naturally generated logs, discussed in the proceeding section.   

Method 

Materials and Participants.  The participants (n=6) for this test and the other tests 

were from a sample of convenience (colleagues not affiliated with the project).  We 

recorded keystrokes and mouse clicks using a MacBook Pro 3.1 running Mac OS X v. 

10.4.11 to test Mac RUI 1.0; and a Windows PC on a Dell Intel® Core™ 2 CPU to test 

PC RUI 2.04, Morae 3.0, Camtasia Studio 6, AppMonitor 1.2.1. We performed all 

keystroke and mouse trials reported here using a Logitech USB keyboard9 and Logitech 

laser mouse respectively.  We did, however, use the keyboards and mice accompanying 

each system during the pilot testing of the external clock test to confirm that the audio 

waveforms of keystrokes and mice do not vary significantly with respect to the physical 

hardware employed for the test.  In later tests, we note changes to this basic setup and any 

additional apparatus if used.   

Procedure. The participants were logged over three 30-minute trials over the course of 

two days for Mac RUI, PC RUI, Morae, and AppMonitor.  In each trial, we used 

unordered combinations of the ASCII (a-zA-Z1-0, symbols) keys, modifier keys, mouse 

clicks, and mouse movements.  We were unable to perform the test for Camtasia because 

it records events into a WAV movie file; we could only compare automatically generated 

sounds for each keystroke or mouse click with physical mouse clicks or keystrokes we 

recorded for the external clock test.  

                                                             
9 The USB polling rate is 125 Hz, introducing an average delay of 4 ms between the execution of 
a keystroke and its acknowledgement by the OS.   
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Results 

For Mac RUI, PC RUI, Morae, and AppMonitor, we found no 0 ms interkeystroke timing 

events for samples of approximately 10,000 events for each—the recording of mouse 

movements caused the sample totals to differ slightly. Our test of Camtasia was 

inconclusive. While we found that each audio representation corresponded with a 

physical sound (120 keystrokes), the log lacked the granularity necessary to detect 

batching errors.   

4.2 A gamma distribution of interkeystroke times 
Reaction times typically follow distributions with a single long right tail because 

reactions times can never fall below 0.  Consequently, distributions such as a gamma 

distribution (Luce, 1986; Patton & Gray, 2010; Van Zandt, 1995; Van Zandt & Ratcliff, 

1995), a log-normal (Braun, Rousson, Simpson, & Prokop, 2003), or an ex-Gaussian 

(Van Zandt, 2002) generally characterize test data.  The absence of such a distribution 

suggests that either the data is not reaction time data or that the logger is not recording 

correctly.  

Method 

We analyzed the data we tested for zero interkeystroke timing events to determine the 

distribution of interkeystroke times.   

Results 

The keystroke times for Mac RUI and PC RUI when fitted to a gamma distribution 

exhibited r2 values of .977 and .963 respectively. Fig. 1 shows the distribution and fit for 

PC RUI.  We, however, could not perform this test on AppMonitor, Camtasia, or Morae.  

For AppMonitor, we could not replicate a 30 min. typing trial because AppMonitor only 
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records timestamps for two ASCII keys, the Enter key and spacebar.  As in the previous 

test, Camtasia’s dependence on WAV files made this test impossible. As for Morae, its 

exported logs only provide timestamps in seconds, making the test meaningless10.   

  
Fig. 1.  Reaction time data:  PC RUI 2.04.    4.3 A narrow distribution of mouse 

position logging times for fixed logging times 
Whereas mouse clicks and keystrokes have a definitive stopping and starting point, 

mouse movements are a relatively fluid activity.  Defining a meaningful mouse move is a 

difficult heuristic that most designers of logging software avoid.  Instead, designers 

frequently choose to log changes in the mouse’s position, and thus are obliged to rely 

upon the default refresh rate of an event listener (RUI is in this group).  Logging so many 

events can contribute to memory delays that in turn generate statistical outliers in the 

timing data. 

If a logger is recording mouse movements properly, the positions will be logged at a 

consistent interval (Dasarathy, 1985).  This interval represents the update rate of the 

logger’s mouse event listener.  Loggers frequently use separate event listeners for 
                                                             
10 Using Morae Manger’s “Search Results” window and Audacity, you can generate by hand a log 
with ms timing.  We did this for the external clock test; however, this method is prohibitive for 
tests consisting of more than a couple hundred events.   
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recording keystrokes and mouse activity.  In either case, the update rates generally range 

between 15 and 20 ms.  An application’s update rate establishes the limit of its accuracy.  

Thus, by examining the distribution of mouse movements throughout a trial’s time 

course, one can determine the range of this interval, and thus have a general sense of an 

application’s accuracy in this regard.  If the logger uses mouse events (as opposed to 

polling), then this test determines if the times are reasonable (intervals between 15 and 20 

ms) and that there are no artifacts present in the timing data.   

Method 

To verify the distribution of mouse position logging times, we conducted three 3 min. 

sessions.  We, however, could only obtain mouse move events for Mac RUI 1.0 (6,522 

events), PC RUI 2.04 (11,336 events), and AppMonitor (12,296 events)—the number of 

events varied because each session was a free movement or scrolling test.   

Testing AppMonitor required us to scroll the mouse continuously during the course of 

the trial because AppMonitor only records timestamps for mouse move events associated 

with scrolling. Thus, while we expect that AppMonitor is accurate, our claims regarding 

AppMonitor are weaker because of the limited nature of the test. We were not able to 

analyze Morae or Camtasia in this way. While Morae supports the video playback of 

mouse moves, it does not log mouse move events in either its “Search Results” window 

or in its exportable logs.  Camtasia does not log mouse moves.  A mouse could start and 

stop, creating long gaps between mouse location recordings.  So, in our tests, we 

discarded events that had a gap between moves of over 20 ms.   

We based our choice of 20 ms on an analysis of mouse move distribution times across 

multiple trials.  These distributions were consistent across trials and platforms. Fig. 2 
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shows a time interval for one such trial. In Fig. 2, the first distribution of times between 

mouse locations has a break point at 20 ms, very close to the expected sampling rate of 

18 ms.  There are very few moves above 20 ms.  A single pixel movement generates a 

mouse event, so above 20 ms per pixel the mouse is moving less than 50 pixels per 

second, or about 0.5 inches per second.  These cases, however, are not stressing the 

logger to pick up times. This number could be adjusted; the histogram shows that the 

slower moves, unless there were many of them, would not change the logging rate and 

would, most likely, be indistinguishable from times between moves.  

 
Fig. 2.  Log histogram of times between mouse locations from Mac RUI 1.0 for 5.5 min 
of moves (N=6,514 data points). Note that the bins are non-linear to make the plot more 

readable.   

Results 

After adjusting the data as noted above, the remaining moves for Mac RUI (5,486 

events), PC RUI (9,740 events), and AppMonitor (12,290 events) exhibited modal values 

of 16 ms for Mac RUI and AppMonitor and 17 ms for PC RUI between logging events.  
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Thus, the mouse logging behavior was not perfect, but does appear to neither over nor 

under sample the mouse move locations.   

4.4 Comparing the keystroke logger’s time with an external clock  
Recording timestamps within multitasking operating systems introduces complications.  

Routine synchronization via NTP servers does nothing to correct low-level, short-term 

time stealing (variance in timestamps due to logging processes not getting their allotment 

of time, MacInnes & Taylor, 2001) or its effects (i.e., rate errors).  While built-in time 

synchronization programs such as those found in Mac OS 8.5.1 and later, the prevalence 

of synchronization and calculation software, and the growing use of special purpose 

Window classes has generally made computer clocks more reliable, there remains a need 

for tests that are not only resistant to but also capable of detecting time stealing.  We now 

describe one such test and its limitations. (De Clercq et al., 2003, used a more direct, but 

less available, hardware-based solution to perform a test like this.)   

Camera-based tests:  Method 

We used basically the same approach with only changes to the apparatus and procedure.  

Apparatus.  For the external validation, we used a Robic SC-505 5-Lap Memory 

Stopwatch (accurate to a 1 ms/day) and a Canon DVD Camcorder DC220.  For the 

analysis, we used Ace DVD Audio Extractor®11 and Audacity®12.  

Procedure.  Keystroke and mouse click samples were collected from each application 

(Mac RUI 1.0, PC RUI 2.04, Morae 3.0, Camtasia Studio 6, and AppMonitor 1.2.1) while 

                                                             
11 
www.freedownloadscenter.com/Multimedia_and_Graphics/Misc__Sound_Tools/Ace_DVD_Audi
o_Extractor.html 
12 Audacity 1.2.6, audacity.sourceforge.net 



 18 

being recorded on the camcorder using its internal microphone.  For each application, we 

compared the audio waveform of the physical action (e.g., key pressing, mouse clicking, 

or stylus tapping) to the logger’s output.  During each trial, the participant waited 

approximately two seconds between each event (keystroke or mouse click depending on 

the test) and after every ten events, moved the mouse to delineate between sequences of 

events13.   

We controlled for the bias introduced by sound propagation by keeping the distance 

between the camera’s microphone and the keyboard or mouse less than 6’’ at any point 

during the trial, meaning that the maximum degree of bias introduced by sound 

propagation across this distance was approximately a fixed 4 ms14 (in most cases far 

less).  An offset of 4 ms is within the variation of ± 20 ms found with this method.  To 

reduce the effects of ambient noise, all trials occurred in a quiet room.   

Determining the external clock’s rate of drift. For our time trials, we used a camera 

capable of writing to DVDs as our external clock.  To validate the camera, we performed 

two tests.  We ran five trials where we recorded the National Institute of Standards and 

Technology’s (www.time.gov/timezone.cgi?Eastern/d/-5/java) atomic clock for 35 

minutes, the duration of the camera’s DVDs.  From these trials, we derived an average 

drift of 1 second per 804 s (the camera lags NIST).  We further substantiated this finding 

by recording a high performance stopwatch for five trials and comparing the results of 

these trials with those of the earlier NIST trials.  We found that the results were 
                                                             
13 The spacing between keystrokes and mouse clicks ensured a clean audio waveform while the 
mouse movement between sequences allowed visually confirming starting and stopping points.  
In addition, these periods of mouse movement allowed observing if any logging errors occurred 
when shifting between event types. 
14 At 20 °C, sound travels 343 m/s.  Therefore, at a distance of 1.37 m (approximately 4.49 ft), 
there will be a delay of approximately 4 ms.   
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consistent.  Though this difference indicates a small drift in the camera’s time, we were 

able to adjust all the subsequent data to account for this effect.  Furthermore, the 

significance of the camera drift is mitigated by the fact that we are primarily interested in 

the range of the variation of the trial data with respect to an external clock rather than 

their absolute values. 

Analysis. We extracted audio files from the DVD recordings using the Ace DVD 

Audio Extractor 1.1.215.  We then used Audacity® (1.2.6, audacity.sourceforge.net), an 

open source audio editor and recorder, to display the recording’s audio waveform. Fig. 3 

is an example of a keystroke waveform.  

 
Fig. 3.  Keystrokes in Audacity waveform.  Time (x-axis) is in s and  

volume (y-axis) is in dB. 

We verified that each wave was in fact a keystroke or mouse click by using 

Audacity®’s playback function16.  Once verified, we determined the time of each 

keystroke or mouse click by recording the time of each wave’s crest17.  

                                                             
15www.freedownloadscenter.com/Multimedia_and_Graphics/Misc__Sound_Tools/Ace_DVD_Aud
io_Extractor.html 
16 In longer samples, visual confirmation was necessary.  Visual checks are also useful when 
differentiating the sample’s starting point from the application’s activation sequence. 
17 There are multiple wave crests; the maximum of the first burst is used as the time.  Fig. 4 has 
this indicated in Audacity at 2.822 s.  We found this pattern to be consistent across varying 
keyboard and mouse types.  Mouse clicks present a more pronounced but similar pattern.  In all 
cases, the maximum of waveform has a maximum duration of 3 ms.   
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Limitations of a camera-based test. Though we have attempted to create a test based 

on an external clock, we have had to suffice ourselves with comparing application logs 

with extracted audio files from video recordings. The limitations imposed by this 

approach permit us to validate an application’s accuracy only down to the 20 ms level 

after adjusting for the biases introduced by the camera’s rate of drift, the distance 

between the camera and the keyboard or mouse, and the polling rate delay.  Furthermore, 

we found that interpreting the data required us to create rather syncopated samples, 

approximately one to two seconds between each keystroke or mouse click. Though we 

have done trials with higher frequency inputs, we found that the sound waveform in these 

trials was too complex to interpret.  Finally, this method allows us to validate individual 

keystrokes or mouse clicks, not specific mouse movements. Verification of mouse 

movements is impossible using this method because the analyst must align the sound of 

the keystroke or mouse click from the waveform with the tested application’s log file—

mouse moves do not make sounds.  It does, however, provide a test that is not a binary 

pass/fail, but rather provides a measure of accuracy. 

Camera-based tests:  Results 

Alignment of log files and the external clock.  Fig. 4 shows an example of the time 

course of the alignment of the external clock times (x-axis) and the RUI times (y-axis) for 

20 keystrokes and mouse movements for Mac RUI 1.0. 
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Fig. 4.  Extracted external clock times vs. Mac RUI 1.0’s recorded times for keystrokes. 

Mac RUI results. The correspondence in Fig. 4 is a straight line, indicating a one-

to-one correspondence between the times recorded by the external clock and those logged 

by RUI18.  Fig. 5 shows the relative time differences (differences in the recorded offsets) 

over the course of 19 keystrokes, or approximately 1 min of activity.  After comparing 

the times generated by the external clock to the RUI times, we found that the difference 

values vary from -27 to +15 ms over the course of the trial.  Most measures are within 

± 20 ms, and all are within ± 30 ms.  Thus, these results indicate that timing of Mac RUI 

is not guaranteed at the 1 ms level, as previously claimed (Kukreja et al., 2007), but 30 

ms would be a more appropriate accuracy.  This result, nevertheless, suggests that this 

approach’s can provide more tests to 10 ms or perhaps 5 ms resolution—as we performed 

these analyses we found that it was difficult to know the start of the keystroke time within 

3 ms because of the shape of the waveform.   

                                                             
18 Mac RUI records both upstrokes and downstrokes while the other applications do not.  In other 
applications, we analyzed the downstroke of each keystroke. 
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Fig. 5.  Observed differences between RUI (Mac RUI 1.0) and the external clock. 

Fig. 6 shows the differences for the 20 mouse clicks (39 data points)19 taken from 

Mac RUI 1.0. We generally find that the degree of variation for these trials is less than 

for the typing trials, perhaps partly because mouse clicks possess a crisper audio 

signature, making the data interpretation easier.  These measures show that the external 

clock generated times and RUI times appear to differ by -8 to +3 ms over the course of 

the trial.  Most measures are within ± 10 ms, and all are within 11 ms.  As in typing trials, 

the limitations of this approach prohibit us from certifying Mac RUI 1.0’s mouse click 

data at the 1 ms level, but 20 ms accuracy may be appropriate.  The degree of variation 

for these trials is less than for the typing trials, perhaps partly because mouse clicks 

possess a crisper audio signature, making the data interpretation easier. 

                                                             
19 Mac RUI records both up and downstrokes, thus the 40 data points.  We used the first event to 
synchronize the two times.  Consequently, this data point does not appear in Fig. 6. 
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Fig. 6.  Observed differences with the external clock for mouse clicks (Mac RUI 1.0). 

PC RUI 2.04 results.  Fig. 7 shows the differences between PC RUI 2.04 and the 

external clock for 20 keystrokes.  These measures show that the external clock times and 

RUI times appear to differ by a range of -21 to +7 ms. Again, most points are within ± 20 

ms.  Nevertheless, based on this validation approach, we cannot guarantee RUI’s timing 

at the 1 ms level, but suggest a rating of ±30 ms for keystrokes.   

 
Fig. 7.  Observed differences between keystrokes (PC RUI 2.04) and the external clock. 



 24 

Fig. 8 shows the differences between PC RUI 2.0 4 and the external clock for 20 

mouse clicks.  These measures show that the external clock times and the RUI times 

appear to differ by -12 to +3 ms over the course of the trial.  Most measures are within 

± 10 ms, and all are within 12 ms.  Thus, we suggest PC RUI is accurate to ± 20 ms for 

mouse moves.  

 
Fig. 8.  Observed differences for mouse clicks (PC RUI 2.04). 

Morae 3.0 results.  Fig. 9 shows that the difference between the external clock and 

the times found in Morae Manager’s Search Results window—these times provide more 

precision than Morae’s default logs but are not exportable and cannot be cut and pasted.  

For both keystrokes and mouse clicks, Morae’s exported logs use HH:MM:SS.S format 

that truncates the logged times to a tenth of a second.  When using these logs, we could 

only obtain Morae’s timing to ± 0.1 s precision. When recording keystrokes using results 

from the Search Results window, the corresponding times varied from -52 to +22 ms. 

The alignment between times derived from the external clock and Morae’s logged times 

showed no noticeable drift or noise.  These findings suggest that Morae is accurate to 100 

ms (perhaps 60 ms), making it sufficient for most HCI usability studies.   
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Fig. 9.  Observed differences for keystrokes (Morae 3.0). 

Fig. 10 shows the differences between the external clock and log times, recorded by 

hand, from Morae Manager 3.0’s Search Results window, for 20 mouse clicks.  These 

measures show that the external clock times and the Morae times appear to differ by -11 

to +58 ms over the trial’s time course. These findings indicate that Morae’s accuracy 

seems to be consistent across modalities (±60 to 100 ms for keystrokes and mouse clicks 

depending on how conservative you want to be).   

 
Fig. 10.  Observed differences for mouse clicks (Morae 3.0). 
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Camtasia, Studio 6 results. Camtasia does not generate logs; rather it stores 

information in WAV and AVI files.  Because Camtasia does not assume (in its default 

and commonly used setting) a microphone, it inserts a keystroke sound into an audio file 

for each keystroke entered.  In these trials, we generated Camtasia’s recorded times by 

analyzing the WAV file for each trial using Audacity®, as well as Camtasia’s own audio 

analysis tool.  We preformed an audio analysis because like other video logs the sampling 

rate is too low to record user behavior at or below 20 ms. We again found that the 

alignment for both keystrokes and mouse clicks was generally good without any 

noticeable drift or noise. 

Fig. 11 shows the differences between times taken from Camtasia’s audio recording 

and the external clock for 20 keystrokes.  These measures show that the times extracted 

from Camtasia’s WAV file when compared to the external clock, display a linear drift of 

approximately one second per minute, an error of about 1%. Thus, while the 

interkeystroke and mouse click times may be fairly accurate, we found this rate of drift 

held constant for ten trials.  One feature of Camtasia may contribute to this relatively high 

rate of drift.  Camtasia does not record the keystroke sounds but rather generates a very 

clean audio representation when each key is pressed.  This is desirable for creating 

understandable audio tracks for presentations. On the other hand, it may be rounding off 

the sound times for each click by fitting them to the video’s frame rate.  So, one possible 

explanation of this drift is the effect of these accumulated rounding decisions.   
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Fig. 11.  Observed differences for keystrokes (Camtasia, Studio 6). 

Fig. 12 shows the differences between Camtasia and the external clock for the 20 

mouse clicks.  These measures show that the external clock’s times and Camtasia’s times 

for mouse clicks also display a linear drift of approximately one second per minute.  As 

in the case of keystrokes, Camtasia generates an audio representation of each mouse 

click, making mouse click timing susceptible to the same potential problem.  Thus, we 

believe Camtasia is accurate to the nearest second.   

 
Fig. 12.  Observed differences for mouse clicks (Camtasia, Studio 6). 
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AppMonitor 1.2.1 results.  In our tests, we found AppMonitor to be fairly accurate. Each 

data point in Fig. 13 represents one instance of the enter key because AppMonitor only 

provides key names for the enter key and spacebar. Fig. 13 shows the differences 

between AppMonitor and the external clock for 20 keystrokes.  These measures show 

that the external clock times and the AppMonitor times appear to differ by a range of -7 

to +22 ms over the course of the trial. Like RUI, most points are within ± 20 ms of the 

external clock.  

 
Fig. 13. Observed differences for keystrokes (AppMonitor, 1.2.1). 

Fig. 14 shows the differences between AppMonitor and the external clock for 20 

mouse clicks (39 data points).  AppMonitor records both up and downstrokes. These 

measures show that the external clock times and AppMonitor’s times appear to differ by -

9 to +85 ms over the course of the trial.  Most measures are within ± 10 ms.  

Consequently, AppMonitor appears accurate to 100 ms, but it might be better.   
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Fig. 14. Observed differences for mouse clicks (AppMonitor, 1.2.1). 

External clock test summary. The camera-based tests are expensive to perform because 

they have to be performed by hand, but appear to provide a relatively high resolution test 

that can provide time estimates within 3 ms based on sound waveforms.  These tests 

show that all loggers can record a set of timestamps within 3 ms of camera time, but that 

the loggers have between 10 and 80 ms variance in how well they record.   

4.5 Low temporal drift over multiple days 
Keystroke and mouse action loggers should exhibit low temporal drift over multiple days 

when run in isolation.  Assessing an application’s rate of drift over days and weeks, 

however, is surprisingly difficult.  Determining an application’s rate of drift requires 

knowing the external measure’s rate of drift, as described in our discussion of the 

external clock test.  With that knowledge, the analyst can then compare the application’s 

timing with respect to an external clock, and thus determine to what degree this error 

influences the data.   

This relatively straightforward description is complicated when one considers the 

constraints imposed by the external clock. We determined each application’s rate of drift, 
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but it was a rough estimate limited by the recording time (30 min.) of our camera’s 

DVDs. This limitation obliged us to record four 30 min. trials over the course of two days 

for Mac and PC RUI. We could not perform this test on Morae, Camtasia, or 

AppMonitor.  For Morae and Camtasia, generating a (ms) log by hand at these time 

scales is prohibitive.  In the case of AppMonitor, the fact that AppMonitor provides 

timestamps for a limited number of keystroke and mouse movements makes recording 

the breadth of naturalistic activity impossible, severely limiting this test’s external 

validity.   

Apparatus.  We used a Canon DVD Camcorder DC220 to record the NIST atomic 

clock, and a Robic SC-505 5 Lap Memory Stopwatch (accurate to a 1 ms/day) to confirm 

the measurements. 

Procedure.  Over the course of a week we compared the times of Mac RUI and PC 

RUI with the NIST atomic clock times in 30 min. increments.  We isolated these 

applications from NIST clocks for two days, resulting in 4 tests for each application.  In 

each case, we adjusted the results to compensate for the external clock’s offset, and 

confirmed them by using the stopwatch.   

Results.  For Mac and PC RUI, we found no perceptible lag during the 30 min. tests 

over the course of two days.  We expect a drift could emerge for tests over multiple days 

or weeks.  We believe these results have important implications for larger longitudinal 

studies that care about differences of seconds over days (which might be relatively rare), 

particularly as the size of the logger footprint increases to capture semantic data.  On the 

other hand, lag occurring over multiple days is less important for hour-long studies, or 

studies that do not need accuracy within seconds over days or weeks.   
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5. Discussion and Conclusion  
In this paper we have discussed risks to accuracy that confront experimenters and 

designers in capturing and analyzing more complex sets of interaction data.  After briefly 

discussing RUI and its research applications, we described a comparative study of RUI, 

two commercial applications (Morae and Camtasia), and a logger from a university lab 

(AppMonitor).  While we found that we could validate the logger’s timing accuracy, 

including RUI’s timing to ± 30 ms for keystrokes and ± 10 ms mouse moves, we also 

found that validating loggers for mouse moves and tests exceeding 30 min. was difficult.   

We next summarize the results of these tests.  We then examine what these tests 

mean for future loggers by creating a preliminary set of considerations for loggers meant 

to identify and address some of the major risks present in HCI and cognitive psychology 

studies related to keystroke loggers. We conclude with a final thought about future work 

and how these considerations highlight some current limitations of loggers.   

 

5.1  Summary of results 
The results of our tests are summarized in Table 4.  They show measures on a range of 

loggers and that the revised and extended versions of RUI pass a wider range of tests than 

previously reported (Kukreja et al., 2007).  These revised versions of RUI appear to 

record keystrokes and mouse clicks without batching, pass the gamma distribution test, 

accurately record mouse movements, and can accurately record keystrokes and mouse 

clicks with an accuracy of 30 ms, or slightly better in one case (Mac). This accuracy 

enables RUI to support a wide range of HCI and cognitive psychology tasks, but not all 

tasks.  Finally, we did not include the results of test five (determining long-term temporal 
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drift) because we could only test the RUI platforms, and even for these platforms 

additional testing would be necessary to solidify our findings.  We, however, included 

this test because we believe the increased prevalence of online HCI studies warrants 

considering long-term temporal drift and ways of testing it.   

Table 4. Summary of tests across applications. 
 

Tests Mac  
RUI 1.0 

PC 
RUI 2.04 Morae 3.0 Camtasia, 

Studio 6 
AppMonitor 

1.2.1 

1 0 Interkeystroke Timing 
Test Pass Pass Pass Fail1 

Pass 

2 Gamma Distribution 
Test for Keystrokes .977 .963 NA2 NA1 NA5 

3 Mouse Move 
Distribution Test Modal 
Values 

17 ms 16 ms N/A4 N/A4 16 ms 

  4a  Assessing Accuracy 
Using an External Clock 
for Keystrokes (in ms) 

-28 to 15 
(± 30 ms) 

-7 to 21 
(± 30 ms) 

-52 to 23 
(± 60 ms) 

-123 to 1115 
(~ 1 s) 

-7 to +22 
(± 30 ms)  

  4b  Assessing Timing 
Accuracy Using an 
External Clock for 
Mouse Clicks (in ms) 

-8 to 3 
(± 10 ms) 

-12 to 3 
(± 20 ms) 

-12 to 59 
(± 60 ms) 

176 to 1480 
(~ 1 s) 

-9 to +85 
(± 100 ms) 

1 – Camtasia does not provide keystroke logs. 

2 - Morae’s exported logs only provide keystrokes to the nearest tenth of a second.  

3 – AppMonitor does not provide timestamps for ASCII keys, with the exception of the Enter key and spacebar.  

4- Morae and Camtasia do not log mouse moves at (time, x, y). 

5 - Because AppMonitor only provides timestamps for the Enter key and space bar, test samples collected from 

AppMonitor are unlikely to representative, as it is impossible to fully replicate.    

These tests can also be used to test and describe other loggers. Morae and Camtasia, for 

example, can accurately record keystrokes and mouse clicks occurring at time scales 
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equal to or greater than a 100 ms and AppMonitor at lower times for keystrokes. For 

broad HCI studies, however, Morae’s and Camtasia’s degree of accuracy is usually 

sufficient.  Furthermore, Morae’s, Camtasia’s, and AppMonitor’s ability to capture 

semantic data exceeds that of RUI.  

5.2  A preliminary set of considerations for HCI and HRI loggers 
In summary, as social networking applications and portable devices become more 

important, experimenters will increasingly have to utilize concurrent risk driven analyses 

using loggers to study behavior (Pew & Mavor, 2007, pp. 75-90).  Users and developers 

will have to balance the demands for semantic content and accuracy as well.  As 

Alexander et al. (2008) note, light-weight logging will most likely be necessary for 

developing longitudinal studies. However, capturing this data requires applications that 

are user friendly and capable of remote reporting.  This second requirement will require 

researchers to continue to consider, as Alexander et al. (2008) have done, security and 

confidentially of participants in naturalistic studies (e.g., Kim & Ritter, 2007), as well as 

more traditional concerns regarding confounding variables and repeatability.   

AppMonitor provides a powerful lesson regarding the balancing of user confidentiality 

and experimental repeatability. AppMonitor ensures confidentiality largely by limiting its 

scope to foreground and background manipulations, scrolling, and mouse clicks—these 

events are less likely to betray sensitive user information.  Consequently, while 

AppMonitor provides an effective way of capturing semantic content, it does so at the 

cost of excluding useful finer grain data necessary to support a KLM-GOMS analysis 

(Card, Moran, & Newell, 1983) or other reaction time analyses.  We believe that 

providing analysts a range of selectable options of what to log can avoid overloading user 
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logs while also supporting multiple kinds of analysis.  In earlier versions of AppMonitor, 

Alexander et al. (2008) also used this approach.  

We also believe that privacy settings can go a long way towards reconciling the 

tensions between user confidentiality and experimental repeatability. RUI supports both 

annotated and anonymized logs.  Annotated logs record both key times and names; we 

use this mode in lab-based experiments with the explicit consent of our participants.  

Anonymized logs note keystroke times without recording key names; we have used this 

setting in a large-scale naturalistic study (Dancey, Orendovici, Plumb, & Ritter, 

forthcoming). Both settings assign users a subject ID number. 

We suspect that frequent iterations between observational and experimental settings 

will characterize future HCI and cognitive psychology studies, as researchers appraise the 

influence of contextual factors through experiments and validate experimental results 

through subsequent naturalistic studies (Ritter et al., 2013).  We also believe that 

experiments will frequently occur concurrently in interdisciplinary contexts that will 

require loggers to prioritize not only the participant’s user experience but also that of the 

experimenter.   

We begin to address these risks by offering a preliminary set of considerations for 

users and developers of loggers in Table 5.  This set of considerations (that in time might 

turn into a specification) is neither exhaustive nor equally applicable to all applications, 

but the tests we have described and the considerations we have identified through 

developing RUI and looking at similar tools will help researchers better assess and 

mitigate the risks introduced by keystroke and mouse action loggers to HCI and 
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naturalistic studies, either by developing or finding a logger that addresses these risks 

(Ritter et al., 2013).  
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Table 5.  Considerations for HCI and HRI keystroke loggers. 
1.  Be easy to start up, run, and close and save data. 

2.  Provide a choice of default file locations for the logs. 

3.  Indicate that logging is occurring. 

4.  In the log, note the user, the time the log begins, the software and version that generates it, and the 

machine the logs were taken on. 

5.  Record:  

  ASCII keystrokes (a-zA-Z1-0, symbols) 

  Non-ASCII control and navigation keys, such as arrows and page up 

  ASCII and Non-ASCII keys either on the downstroke, upstroke, or both  

  Modifier keys either on the downstroke, upstroke, or both 

  Media buttons and function keys 

  Mouse clicks 

  Mouse moves or position (e.g., every 15 ms or when the mouse provides it) 

  Mouse wheel events 

  Suppress reporting a mouse position if no movement has occurred  

  Events on mouse equivalents, such as touchpads, joysticks, and touch displays 

  Semantic meaning of the keystrokes 

  Task context of the keystrokes   

  Support anonymizing keystrokes 

6.  Event times shown preferably in s and ms, optionally in HH:MM:SS  

7.  Replay logs (but, as Luo & John, 2005, note, subject to inherent difficulties) 

8.  Timing accuracy validated to level needed 

9.  Be stable enough to run for several hours to several months without crashing 

10.  Run on the operating system of interest (Unix, Windows, Apple OS, etc.) 

11.  Be resilient to load on the computer.   
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The list of considerations in Table 5 requires a few clarifying comments.  Point 3 

states that loggers should indicate that logging is occurring.  While we understand the 

value of unobtrusive logging, we believe out of a concern for privacy that by default the 

logger should require the user to initially activate it (Point 1), and that it should indicate 

to the user that it is recording.  In some studies, these precautions may not be necessary; 

however, we believe this requirement is valuable for general use. 

We would also like to push slightly on the concept of ease of use by distinguishing 

between the user’s experience and that of the experimenter.  To be clear, we too believe 

that the user experience should be easy.  On the other hand, it is also important to 

consider the experimenter as a user too in this case.  As the ability to capture semantic 

content increases, experimenters will have to have more sophisticated, easy to use, and 

rapid to deploy ways to record in vivo distinctions in semantic content such as those 

described by Alexander et al. (2008). Experimenters will also need relatively light-weight 

input driven tools such as cognitive load and stress tests for testing experimental designs, 

and some assurance that their experiments will be consistent across operating systems.   

Furthermore, when considering the experiment’s footprint and generalizabilty, point 5 

suggests considering types of key actions entailed by the study.  As Table 5 illustrates, 

loggers differ in even their basic capabilities (e.g., the logging of mouse movements).  

Determining the study’s needs early is important.  For instance, it may not be desirable to 

record all key presses or the exact positions of all mouse movements.  A logger that 

records both up and down key presses or every mouse position can overload the analyst.  

Nevertheless, developers and experimenters do generally need to think more broadly.  
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For example, early versions of RUI did not log enough of the non-ASCII keystrokes, 

omitting some command keys.   

Point 6 suggests recording time in seconds and ms.  While most computers’ clocks 

can provide greater precision, using and validating finer time scales can be problematic.  

Besides the difficulties associated with establishing an external clock with such precision, 

the audio signatures of key and mouse actions pose challenges for interpretation.  Greater 

levels of precision may not just be unnecessary, but can potentially obscure results.  In 

addition, longer studies may require including a date on each timestamp, but in our 

studies dates would be unhelpful and make logs larger and harder to analyze.  Finally, 

while we did not test these tools to see how well timing was maintained as load increased 

on the computer they were running on (point 11), this may stay a problem, and it may 

also become less of a problem as more machines have multiple processors.   

5.3  Limitations of loggers 
There are limitations to loggers and to RUI in particular.  Most of the systems reviewed, 

while they meet most of the criteria listed in Table 5, do not support them all.  Some of 

these discrepancies arise from tradeoffs at the design phase.  Others arise from tools 

created within a context that do not require all the criteria, and then tools are used more 

widely obtaining additional features as designers apply tools to new problems.  It remains 

difficult to record logs in environments not designed to support logging or actively 

designed to discourage logging.  For instance, loggers have trouble recording the target 

size of the objects being clicked, and sometimes even the window or panel containing the 

object.  Some tools can support this, but their support has limitations.  
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At this point, RUI and the other loggers fail to meet the full set of considerations.  In 

particular, RUI’s ability to capture semantic data is limited and some low-level behaviors 

still require interpretation (the effects of auto-repeat, for instance).  Nevertheless, we 

believe this specification (Table 5) and these tests that have driven it are useful for 

researchers interested in using and developing keystroke loggers in HCI and cognitive 

psychology studies (Ritter et al., 2013). 

Users of keystroke logging programs and tools need to remain mindful of how their 

loggers work and what are the potential limitations specific to their tools.  Software-based 

loggers remain easy to use, but can always, of course, run into problems when the 

machine they are running on becomes overloaded and cannot itself process its inputs and 

outputs in a timely manner.   

Finally, these tests are not necessarily complete.  As we have worked with loggers, we 

have continually found ways that they can fail to record accurately.  Further work with 

additional interfaces, systems, and contexts of use will find further constraints that 

loggers should meet.   
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