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Abstract— The privacy protection of the biometric data is an
important research topic, especially in the case of distributed
biometric systems. In this scenario, it is very important to
guarantee that biometric data cannot be steeled by anyone, and
that the biometric clients are unable to gather any information
different from the single user verification/identification. In a
biometric system with high level of privacy compliance, also
the server that processes the biometric matching should not
learn anything on the database and it should be impossible for
the server to exploit the resulting matching values in order to
extract any knowledge about the user presence or behavior.

Within this conceptual framework, in this paper we propose
a novel complete demonstrator based on a distributed biometric
system that is capable to protect the privacy of the individuals
by exploiting cryptosystems. The implemented system computes
the matching task in the encrypted domain by exploiting homo-
morphic encryption and using Fingercode templates. The paper
describes the design methodology of the demonstrator and the
obtained results. The demonstrator has been fully implemented
and tested in real applicative conditions. Experimental results
show that this method is feasible in the cases where the privacy
of the data is more important than the accuracy of the system
and the obtained computational time is satisfactory.

I. INTRODUCTION

Biometric traits are more and more exploited for authenti-

cation and identification tasks in a multitude of applications

ranging from institutional, governance, police and com-

mercial systems. The use of biometric technologies within

such applications requires the protection of the biometrics

templates and the protection of the user privacy, as well [1].

In order to guarantee the user privacy, it is of paramount
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importance that the collected biometric information should

not be used for any other activities than the ones expressly

declared, and, at the same time, that the biometric system

is capable to protect and avoid any misuse of the biometric

information in [2].

The privacy protection of the biometric data is even much

more critical in the case of distributed biometric systems

since the biometric data are transmitted through a network

infrastructure and hence it is greatly reduced the direct user

control about her/his biometric information. In a distributed

biometric system with an high level of privacy compliance,

also the server that processes the biometric matching should

not learn anything on the database and it should be impos-

sible for the server to exploit the resulting matching values

in order to extract any knowledge about the user presence or

behavior.

In this paper, we refer to the general application where

a biometric client checks if the “fresh” captured fingerprint

belongs to the database of authorized entities managed by

a biometric server. In order to preserve the users privacy,

we require that the biometric client trusts the server to

correctly perform the matching algorithm for the fingerprint

recognition and it also should not learn anything about the

fingerprint templates stored in the server with the exception

of the resulting matching process. On the biometric server

side, we want to guarantee that it is not possible to get any

information about the requested biometry and even also the

resulting matching value. This working hypothesis is very

important since it allows to avoid any tracking and logging

activity of the user presence and behavior on the server side.

Within this conceptual framework, in this paper we pro-

pose a novel complete demonstrator and the related design

methodology. This demonstrator is capable to deal with

distributed biometric systems protecting the privacy of the

individuals by exploiting cryptosystems. The implemented

system computes the matching task in the encrypted domain

by exploiting homomorphic encryption and using the finger-

print templates proposed by A. K. Jain called Fingercode

[3]. In particular, in this paper we propose the design of

all the step required to implement the demonstrator while a

complete discussion about the cryptographic aspects of the

adopted protocol is available in [4].

In the proposed demonstrator, the biometric client captures

the user fingerprint trait and it processes the obtained sample

in order to produce the related Fingercode template (Fig. 1).
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Fig. 1. Scheme of the proposed demonstrator.

The underling cryptographic protocol accepts in input only

integer values, hence a data sampling operation is needed

in order to suitably convert the floating point elements of

the Fingercode template in integer values. The quantization

step of the Fingercode template is critical since it effects the

final accuracy of the overall system and the final requested

bandwidth. A discussion of the design of the quantization

step is given in the following sections.

In the proposed demonstrator, the fresh biometric template

is sent to the biometric server in the encrypted format and

the server returns the identity information in the encrypted

format as well (or just a boolean outcome for the authenti-

cation request). Hence, on the server side (the right subplot

in Figure 1), it is not possible to extract or determine any

personal information on the biometric data of the users

during all the phases of the verification / identification

procedures. Further details on the encryption methods used

in the demonstrator will be given in the related section of

the paper.

The contribute of the paper is twofold. At the best of

our knowledge, no such complete demonstrator has been

proposed yet in the literature. Moreover, the paper presents a

complete discussion of the design methodology dealing with

all theoretical and implementation aspects of demonstrator

with specific reference to the effects of Fingercode quanti-

zation on the template size, final accuracy and bandwidth

of the system. Experimental results show that the proposed

method is feasible in the cases where the privacy of the

data is more important than the accuracy of the system.

Obtained performance in terms of accuracy, efficiency and

used bandwidth are satisfactory.

The paper is structured as follows. In the next section, the

state of the art of the privacy protection of the biometric data

is resumed. Section III presents the proposed demonstrator

and the related design methodology, then in Section IV

we discuss the implementation and the demonstrator, its

accuracy and performance evaluation in different applicative

conditions, and the obtained results.

II. PREVIOUS WORK

The objective of the most of the systems for the privacy

protection of the biometric data in the literature is to modify

the stored biometric templates for denying the access to these

data to unauthorized persons. These methods can be divided

in four different categories.

• Biohashing: the biometric features are transformed

using a function defined by a user-specific key or

password. Usually this transformation is invertible. The

system proposed in [5] is based on the face, but similar

techniques can be applied to different biometric traits

(e.g. iris and fingerprint [6]).

• Noninvertible transform: the biometric template is se-

cured by applying a noninvertible transformation func-

tion to it. There are methods based on different biomet-

ric traits. For example, in [7] it is used the fingerprint,

and in [8] the iris. The main problem is that it is

necessary to study the tradeoff between discriminability

and noninvertibility of the transformation function. In

[9] is presented a study on the measurement of the

noninvertibility of methods based on the fingerprint.

• Key-binding biometric cryptosystem: the template is

secured by applying cryptographic algorithms. Usually,

the system must compute a transformation of the en-

crypted templates in the plain domain. This task is

usually time expansive. Examples of methods used by

this approach are the fuzzy commitment scheme [10]

and the fuzzy vault [11].

• Key generating biometric cryptosystem: these meth-

ods compute the cryptographic key directly from the

biometric data (e.g. [12]). The main problem is that it is

difficult to generate keys with high stability and entropy.

This approach can also be useful in other applications

(e.g. in [13]).

Furthermore, there are methods applicable to multi-

biometric system (e.g. in [14]). Unfortunately, in the most

of the cases, the obtained accuracy is decreased by the

transformation method.

In the literature, there are other methods for the protection

of the privacy of the template Fingercode. For example, in

[15] a method based on fuzzy vault is used and in [16] a

biohashing transformation is applied. Our method encrypts

the data with robust algorithms and the encryption does not

impact to the accuracy because we use an homomorphic

cryptosystem.

A similar approach to the privacy preserving authenti-

cation through biometric measures but applied to the face

recognition is used in [17], [18]: the former makes use of

homomorphic encryption, as in the present work, but presents

a rounds complexity that is logarithmic in the number of

the verified features and a huge bandwidth requirement; the

latter is more efficient and bandwidth saving (with constant

round complexity) and exploits the use of both homomorphic

encryption and Garbled Circuits [19].

There are also systems that can compute the Hamming

distance between biometric templates (e.g. Iriscode [20]) that



are use homomorphic encryption methods. For example, the

system in [21] is based on the Blum-Goldwasser cryptosys-

tem, the system in [22] on the Goldwasser-Micali scheme,

the system in [23] on the method on homomorphic properties

of Goldwasser-Micali and Paillier cryptosystems, the system

in [24] on the ElGamal scheme and Garbled Circuits.

There are also systems that secure the data by distributing

the tasks of classifiers based on computational intelligence

techniques in the server and client side. In [25], [26] a

method based on Support Vector Machines (SVM) is used.

The main drawback of this system is that requires a prelim-

inary training phase.

III. THE DESIGN OF THE DEMONSTRATOR

The proposed approach can be applied in distributed

biometric systems in verification/identification tasks. With-

out any lack of generality, in the following we present

the implementation of the method for the identification

procedure. On the client side (left subplot, Figure 1), the

biometric sample is captured and then computed in order

to obtain the related Fingercode template [3] (Template

Creation step). Then, the floating point elements of the

Fingercode template are sampled and converted to integers

in order to allow the adoption of the following encryption

method (Template Quantization step). The important effects

on the final accuracy and bandwidth of this step will be

further discussed in the following subsections. The reduced

template is now encrypted using the public-key of the client

and the biometric matching is processed on the server side

(right subplot, Figure 1) by an homomorphic cryptosystems

(Encrypted Matching step). The matching algorithms do not

transform the data in the plain domain. All computation

steps of the matching method (evaluation of the matching

value, thresholding and extraction of the best candidates) are

processed directly in the encrypted domain. Let us now detail

all the design steps of the proposed demonstrator.

A. Template Creation

The computation of the biometric template in the plain

domain is based on a method that uses the Fingercode

template. This method starts with the estimation of the

reference point that we implemented with the following

steps:

• Definition of the ROI as a ring with fixed size (height

H).

• The ROI is partitioned in NR rings and NA arcs,

obtaining NS = NR ×NA sectors Si.

• A bank of NF Gabor filters with different directions

is applied to the image obtaining NF filtered images

Fiθ (x, y). A symmetric Gabor filter has the following

general form in the spatial domain:

G (x, y; f, θ) = exp

{

−
1

2

[

x′2

σ2

x′

+
y′2
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y′

]}

cos (2πfx′) ,

(1)

x′ = x sin θ + y cos θ, (2)

y′ = x cos θ − y sin θ, (3)
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Fig. 2. Scheme of the biometric recognition method based on the template
Fingercode.

where f is the frequency of the sinusoidal plane wave

along the direction θ from the x-axis, and σx′ and σy′

are the space constants of the Gaussian envelope along

x′ and y′ axes, respectively.

• The Average Absolute Deviation (AAD) from the mean

of gray values in individual sectors in filtered images

is computed to define the feature vector that represent

the biometric template. The value Viθ of the template

related to each sector of each filtered image is computed

as:

Viθ = (1/ni)

(

ni
∑

1

|Fiθ (x, y)− Fiθ|

)

(4)

where ni is the number of pixels in Si and Piθ is the

mean of pixel values Piθ of Fiθ (x, y) in sector Si.

The obtained feature vector is composed by NV = NS ×
NF values (for example in [3], NV ranges from 640 to 896

according to the used fingerprint dataset). This method is not

rotational invariant. For this reason, during the enroll phase,

Nθ templates related to different rotations of the original

image are computed. The match-score from two templates

consists in the minimum Euclidean distance between the Nθ

enrolled templates and the live template. We used Nθ =
9, rotating the sample in a range from -45◦ to 45◦ with a

constant step equal to 11.25◦. This step reduces the problem

related to the bad placement of the finger on the sensor. Fig. 2

shows the schema of the Fingercode method.

It is well known in the literature that the estimation of

the reference point for the Fingercode template is a critical

task with respect to the final accuracy of the system (an

incorrect estimation of this point implies a different ROI

evaluation, causing an increasing of the identification errors).

We manually selected the reference point for each image in

order to create a supervised points dataset as reference, then

we applied different methods present in the literature in order

to study this effect and to reduce its impact. First of all, we

tested the identification of the reference point by selecting

the candidate points in the image with the highest Poincare

index [27], then we tested the a different method creating a

single Fingercode template for each candidate point. In any

case, if a fingerprint image does not present any singular

point, we consider the point with the maximum Poincare



index as the reference point. Since a complete discussion of

the effect of the reference point on the accuracy is outside

the scope of the paper, in the following we refer to the first

presented method.

B. Template Quantization

In order to limit the complexity of Fingercode matching

in the encrypted domain, we investigated the possibility of

reducing the number of features of the fingercode templates

and the number of bits used for the physical representation

of each value of the template. The effects of the reduction of

the number of features have been studied by appropriately

decimating the tesselation of the region of interest. We

tested different configurations of the algorithm: H , NR, NA,

NF . We preferred to use a fixed reduction strategy, instead

of methods that minimize the correlation among different

features, like principal component analysis, since the latter

should be optimized for each database and their application

in the encrypted domain would not be convenient. The

effects of quantization have been studied by converting each

value of the template into an integer number representable

with b bits, according to a uniform quantization criterion.

The performances of the different configurations have been

compared by evaluating the empirical distribution of the

distances of genuines and impostors after feature reduction

and quantization, from which we can compute receiver

operating characteristic (ROC) curves and equal error rate

(EER).

C. The Encryption Method

Our cryptographic protocol strongly relies on the notion of

(additively) homomorphic encryption. A public-key encryp-

tion scheme is said to be additively homomorphic if, given

the encryptions of two message a and b, the ciphertext of

a+b can be easily computed (for example, by multiplication)

from the two original cyphertexts without the knowledge of

the secret key.

Our solution makes use of two specific encryption

schemes: the Paillier’s encryption scheme [28] and a known-

variant of the ElGamal encryption scheme [29] but ported on

Elliptic Curves. The latter scheme is wisely used in order to

save further bandwidth.

D. The Matching Method in the Encrypted Domain

The protocol may be subdivided in three main steps to

be accomplished by the two parties (the client with the

biometric measure to authenticate and the server with an in-

clear database with all the features of the enrolled persons):

• vector extraction: on a first stage the target biometry

(i.e. the information acquired by the biometric device)

is “converted” by the client, using the methodologies

shown in this work, in a quantized characteristic feature

vector; this preliminary work is performed in clear and

only the resulting feature vector is encrypted and sent

to the server;

• distances computation: the distances (more specifically

the square of the Euclidean distance) between the target

vector and the vectors in the database are computed

in the ciphertext domain: this is done by the server

exploiting the homomorphic properties of the adopted

cryptosystems. The outcome of this phase consists of

the encryption of the required distances that still remain

unknown to the server. Differently from the original

Fingercode matching method, we decided to compute

the squared distance from two templates for reducing

the computational complexity.

• selection of the matching identities: in this final step

the server interacts with the client in order to select, in

the ciphertext domain, the enrolled identities with the

related distances that are below a known threshold. This

is accomplished through several internal sub-protocols

nevertheless keeping a constant round complexity. The

final outcome is kept secret to the server and is only

revealed to the client: it can consist of more than

one identity (if this is the case) where the previous

works [17], [18] just report the identity with the min-

imum distance. A simple variant allows the use of a

boolean outcome: authenticated/rejected.

Such solution has been formally proven to be secure

against an honest-but-curious adversary, where we assume

that he follows the protocol but may try to learn additional

information from the protocol trace beyond what can be

derived from the inputs and outputs of the algorithm when

used as a black-box. The final protocol has a constant round

complexity and a bandwidth usage that is better than the

works [17], [18] (when applied to the fingercode template).

More details on the protocol and on the performance com-

parison are available in [4]).

E. Individual Threshold

In many biometric systems, the use of individual threshold

values can produce a better final accuracy than a single

threshold value used for all enrolled individuals. This is

related to the fact that different training levels of the users

and skin conditions can be present in the dataset. Considering

a dataset D composed by N samples of M individuals, for

each individual i is assigned a different threshold value ti
that is used in the identity verification step of the biometric

recognition process. For each individual i, the distributions of

False Match (FMi) and False Non Match (FNMi) are com-

puted (with the corresponding individual EERi) considering

only the set of user templates Xi as the genuine template

set. All other samples of the dataset are considered as the

set of the impostor Ii = D ⊃ Xi. In our experiment, we set

the value ti as the threshold corresponding to the individual

Equal Error Rate (EERi). Differently, it is possible to set the

individual threshold value as the threshold that corresponds

to the Zero FMR or Zero FNMR. This important method can

be applied to the proposed demonstrator. The results of the

described methods are reported in Section IV.
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Fig. 3. Examples of test images.

IV. IMPLEMENTATION OF THE DEMONSTRATOR AND

EXPERIMENTAL RESULTS

We tested the proposed demonstrator by using a well

known public fingerprint dataset composed by 408 grayscale

fingerprint images acquired by a CrossMatch Verifier 300

sensor [30] [31]. The dataset contains 8 images for each in-

dividual with a resolution equal to 500 dpi and the dimension

of 512× 480 pixel. Figure 3 shows two examples of images

of the test database.

The application of the Individual Threshold method cited

in Section III-E is shown in Fig. 4 where different figures

of merits are reported with NV = 640. The overall accuracy

has been enhanced by reducing the initial EER (equals to

0.065) of a factor close to 0.5. In particular, we obtained a

ZeroFM rate with FMR=0.1653 and a ZeroFNM rate with

FMR=0.0512. This method can typically produce relevant

enhancement in overall accuracy when the samples belonging

to Dataset have not the same quality level. This is the case

of the proposed test dataset.
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Fig. 4. Results obtained by computing method of Individual Threshold.

As a second step, in order to test the effect of the number

of features in the Fingercode template we generated a total

of eight different configurations, corresponding to eight sets

of Fingercode vectors with length ranging from 640 features

(the original configuration) to 8 features. The parameters of

TABLE I

TESTED CONFIGURATIONS FOR FEATURE SIZE REDUCTION.

Configuration NV NF NR H (pixel) NA

A 640 8 5 20 16
B 384 8 4 25 12
C 192 8 3 20 8
D 96 4 3 33 8
E 48 4 3 33 4
F 32 4 2 50 4
G 16 4 2 50 2
H 8 2 2 50 2
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the reduced tesselations for each configuration are detailed

in Table I.

For investigating the effects of the Template Quantization,

each configuration has been normalized and quantized using

a different number of bits, ranging from eight bits to a

single bit, producing a total of 5 × 8 = 40 quantized

configurations. The behavior of the EER for the testing

dataset is shown in Fig.5. From the above figure, it is evident

that the performance of the system is practically unaffected

by feature size reduction when the number of features is

above 96 and the number of bit is above 2. This suggested

to consider for further testing only the configurations C and

D, both quantized with 4 and 2 bits.

To evaluate the performances in bandwidth and computa-

tional complexity we implemented a client-server prototype

version of our construction written in C++, using the GMP

Library (version 5.0.1) and the PBC Library (version 0.5.8).

The experimental results were run on 2.4 GHz with 4 GB of

RAM PCs. The experimental results show that the proposed

method based on Fingercode templates and homomorphic

cryptosystem is feasible in the cases when the privacy of the

data is more important than the accuracy of the system, and

the obtained performances on accuracy measured as EER

are comparable to the original method. Table II shows the

obtained accuracy, the computational time and the bandwidth

required by the configurations C and D described in Table I,

each quantized with 2 and 4 bits.

We estimated the time required for the identification in the

encrypted domain using a dataset composed by 100 enrolled

individuals using a 80 bits security key. Table III reports

the obtained results. The time complexity of the underling



TABLE II

PERFORMANCE OF THE PROPOSED METHOD WITH A DATABASE OF 408 ENTRIES (3672 FEATURE VECTORS).

Parameters

Configuration Quantization Security EER Bandwidth (bit)

80 6568792
C 2 112 0.0758 10824021

128 14374232

80 7802584
C 4 112 0.0732 12527832

128 16313048

80 6902008
D 2 112 0.0715 11299320

128 14932856

80 8135800
D 4 112 0.0673 13003128

128 16871672

TABLE III

REQUIRED TIME FOR THE IDENTIFICATION IN THE ENCRYPTED DOMAIN

USING A DATASET COMPOSED BY 100 ENROLLED ENTRIES USING A 80

BITS SECURITY KEY.

Configuration Quantization Time (s)

C 2 44.43
4 53.66

D 2 37.43
4 45.58

protocol is linear in the number of enrolled identities.

As shown in Table II and Table III different performances

can be obtained varying the number of features of the tem-

plate and the number of bits used for representing each value.

On the other hand, the best computational performances can

be obtained with a small number of features and bits.

Fig. 6 plots the ROC curves of the configurations that

we consider as a good trade off. The performance of the

different configurations are very close each other, the effects

of both feature reduction and quantization being very limited

on the accuracy of the system. It is worth noting that the

original configuration, i.e., 640 features with floating point

implementation, reported an EER of 0.065333 on the testing

dataset, which is comparable with the performance of the

tested configurations.

The obtained final results of the system (in term of ERR

and ROC curves) show the proposed method is only slightly

worse than the results of the original Fingercode technique

applied on the same dataset, and that the privacy protection

implementation we proposed can be feasible in the cases

when the privacy of the data is more important than the

accuracy of the system. Unfortunately, the simplicity of the

matching function used in the Fingercode is suitable for

the processing in the encrypted domain, but it limits the

final accuracy of the system. In fact, much more accurate

methods capable to work with the same fingerprint dataset

are available in the literature, but their complexity excludes

the adoption in the proposed framework implemented in the

demonstrator.
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V. CONCLUSION

The paper presented the design of a demonstrator of an

approach to protect the privacy of the biometric data in

distributed biometric systems based on fingerprints. In the

proposed approach, on the client side, the biometric data

are captured and then an encrypted representation of the

template Fingercode is computed. We reduced the data con-

tained in the template for obtaining a smaller representation

of the encrypted template that should be shared with the

server. The encryption matching algorithm is based on the

homomorphic cryptosystems. The experimental results show

that the proposed approach has an equivalent accuracy with

respect the original Fingercode method. Improvements of

the security model will be considered in the future work by

applying encryption methods also on the biometric templates

stored in the database. This new security model is stronger

than the model proposed in this paper but it is also more

difficult to realize. The obtained computational time permits

the use of the proposed system in real applications. The main

drawback of this approach consists in the low accuracy of



the recognition method based on the Fingercode template

that permit the use of this system only in a limited subset

of security applications with respect to the state-of-the-art

methods based on minutiae.
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