
Rochester Institute of Technology
RIT Scholar Works

Presentations and other scholarship

1994

Partitioning of image processing tasks on
heterogeneous computer systems
M. Ashraf Iqbal

Saeed Iqbal

Muhammad Shaaban

Follow this and additional works at: http://scholarworks.rit.edu/other

This Conference Proceeding is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Presentations and
other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Iqbal, M. Ashraf; Iqbal, Saeed; and Shaaban, Muhammad, "Partitioning of image processing tasks on heterogeneous computer
systems" (1994). Accessed from
http://scholarworks.rit.edu/other/329

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other/329?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Partitioning of Image Processing Tasks on Heterogeneous Computer
Systems

M. Ashraf Iqbal*, Saeed Iqbal
Department of Electrical Engineering

University of Engineering & Technology,

Muhammad E. Shaaban
Department of Electrical Engineering-Systems

University of Sout hern California,
Lahore, Pakistan Los Angeles

Abstract to an essentially unending series of images. By parti-
tioning the application task into different machines that

Many computer vision tasks can be decomposed into a communicate via high speed links, each step or stage of
set of subtasks which are by their nature heterogeneous. pipeline processing can be executed simultaneously on
BY partitioning such task onto different machines that the machine to which it is best suited. The maximum
communicate via high speed links, each level or stage of rate of processing is now determined by the processor
processing can be executed simultaneously on the ma- that takes the longest amount of time to perform the
chine to which it is best suited. A fundamental problem application task, known as the boitleneck processor [l].

ofo~timally partitioning an application program across fashion, and a heterog+
the In this paper we address the problem neous computer system consisting of different machines,
of partitioning a chain or a tree structured parallel or find the assignment of to processors that min-

with heterogeneous computing, however, is the difficulty The following problem then emerg-. Given a & of
subtasks connected in

Pipelined Program Over a '"0 P r o c ~ o r heterogeneous imizes the load on the most heavily loaded processor. If
system and show that it is porssible to approximately the number of processors are only two and the program
SO1ve this Problem. The is serial , this problem can be solved efficiently using the
paper, is based On furry PorYnomiar lime aPPmrima- network flow approach pioneered by Stone [12]. If the

Presented in this

program is serial and the interconnection structure of lion scheme.

the modules is tree-like, it is possible to solve it for any 1 Introduction number of processors using a shortest tree algorithm [2].

vision processing is classified into a number of cat+ If the modules are executable in parallel, it is very dif-

dous amount of parallelism, and the levels riety of criteria for optimality. This is because the prob-
lem is computationally equivalent to one or the other of can operate in parallel [8]. It has been observed that

machines in the SIMD are well suited for early the notorious NP-complete graph partitioning or mul-

cessing [8, 15~. High level vision tasks such as image most of the work in this field focused on heuristic tech-
understanding, recognition, and symbolic processing ex- niques L3, 131* It has been shown by that
hibit coarse-grain or medium-grain MIMD type charac- a chain structured parallel or pipelined program can be

Nicol [ll] and Iqbal [4] have improved the complexity capabilities of a heterogeneous environment, higher lev-
els of performance can be attained than is possible by of earlier algorithms for partitioning chain structured

problems with restrictions on the type of mappings and/ using any single type of parallel machine.
tasks, such as image under- or on the weights assigned to different modules. Iqbal

etc., can be expressed as pipelined algorithms [91. A in heterogeneous environments. All these researchers
requirement in such a system is to apply re- worked under the constraint that each processor has a

In this paper we address the problem of partitioning a
chain or a tree structured parallel or pipelined program
Over a two processor heterogeneous system and show
that it is possible to approximately solve this problem.

gories 01 levels, d l of these levels can utilize a tremen- ficult to find efficiently the Optima' given a va-

processing of raw imag&often termed as low level pro- tiprocessor problems L1l' This why

teristia. Thus by exploiting the different features and partitioned optimally Over a chain or ring Of processors*

Many computer
standing, pattern recognition, dynamic Scene analysis, ['I has a number Of partitioning problems

peatedly a fixed sequence of operations (or transforms) contiguous Of Program to it*

*Part Of this was conducted the author was a
Fulbright Scholar at the Department of Electrical Engineering-
System, University of Southern California, Angeles, fro,,,
Sept. 1992 to June 1993.

43
0-8186-5592-5/94 $3.00 0 1994 IEEE

The algorithm, presented in this paper, is based on a
fully polynomial time approximation scheme, both in the
size of the problem and in i, where E is the relative error
bound for the approximate scheme.

We start the paper by discussing in Section 2 the
Heterogeneous Computing (HC) Paradigm. Section 3
addresses the problem of finding the near optimal parti-
tion of a chain-structured parallel or pipelined program
over a two processor system. Our solution technique
involves creating a doubly weighted assignment graph.

We address the problem of partitioning a tree struc-
tured parallel or pipelined program in Section 4. We
conclude this paper with a discussion in Section 5.

2 Heterogeneous Computing for
Vision

Many scientific and engineering applications have di-
verse computational requirements. Thus any one sin-
gle type of machine may perform poorly on such ap-
plications. For an application consisting of subtasks of
various computational requirements, a suite of hetero-
geneous machines is likely to provide superior perfor-
mance. Heterogeneous Computing(HC) has been re-
cently proposed as a novel paradigm to exploit the ex-
isting hardware and advances in networking to lead to
feasible solutions to complex problems [8].

2.1 The Heterogeneous Computing

HC is a computing paradigm in which an application
is run in an environment that incorporates several au-
tonomous high performance parallel machines. These
machines, providing different types of parallelism, are
capable of communicating over a high-speed intelligent
interconnection network to cooperate in an application
by representing the solution as a set of tasks to be exe-
cuted.

Partitioning problems for two processor heteroge-
neous systems have recently become a focus of inter-
est. The Minnesota Supercomputer Center(MSC) [14],
and The Distributed High Speed Computing (DHSC)
environment at the Pittsburg Supercomputing Center
[lo], are two examples of research sites working in a two
processor heterogeneous environment.

Paradigm

2.2 The Mapping Problem
Algorithms used for symbolic computing tasks in image
understanding applications exhibit different computa-
tion characteristics and processing requirements. Al-
gorithms developed by the vision community have ad-

dressed each step of an integrated vision system sepa-
rately and hence the conversion overheads involved in
switching from one level to another level have not been
understood. Data decomposition and conversion over-
heads involved in communicating among such machines
adds further delays. Such a scenario, if not carefully an-
alyzed, can drastically degrade the overall performance
of the system. In order to optimally partition and map
tasks in an integrated vision system over processors of
a heterogeneous computer system we should take care
of the following: The heterogeneous nature of each sub-
task, the type of machines available in the heteroge
neous environment, and data decomposition and conver-
sion overheads involving communicating subtasks which
reside on different types of machines.

3 Part it ioning Chain
Structured Problems

We discuss here a simple algorithm for finding an opti-
mal partitioning of a chain structured parallel program,
belonging to an integrated vision system, over a dual-
processor heterogeneous system. A chain structured
program is made up of m modules numbered t1 ... tm,
and has an intercommunication pattern such that mod-
ule t ; is connected only to modules t i + l and ti-1. The
optimal assignment of subchains to the two processors
is influenced by the time of execution of module ti on
processor z(y) designated by w,;(wy;) time required for
communication between module t i , and ti+l designated
by ci, provided the two modules are assigned to different
processors.

The partitioning problem can be expressed in the fol-
lowing manner: Given a set of m modules connected in
a chain like fashion, and a two processor heterogeneous
system find the assignment of subchains of modules
to processors that minimizes the maz(W,, WY), where
Wz(Wy) is the load on processor z(y). Our approach to
the solution of this problem is to first draw up a doubly
weighted assignment graph. A path in this graph cor-
responds to the assignment of subsequences of modules
to processors.

3.1 The Doubly Weighted Assignment
Graph

In this section we discuss the concept of a doubly
weighted assignment graph G. There are two weights
associated with each edge of this graph: A, weight cor-
responds to additional (or incremental) load assigned
to the 2 processor, and Ay weight corresponds to addi-
tional (or incremental) load assigned to the y processor.

There are two kinds of sum weights associated with

44

Figure 1: A seven-module chain mapped onto a two
processor heterogeneous system.

each path P, one is the familiar sum of all A,(ei), the
other is the sum of all Ay(ei). A path for which the max-
imum of (E A,(ei), E Ay(ei)) is minimal, corresponds
to the optimal assignment.

The Structure of the Assignment Graph
There are two layers in the graph G, the x layer corre-
sponds to the x processor, while the y layer corresponds
to the y processor. The j t h node in the x(y) layer of
this graph corresponds to module t j in the application
program and is thus represented by t;(ty). The start
node is connected to every node in the x layer as well
as in the y layer except tq(t:). Every node t E (t Y) in the
x(y) layer is connected to each node t i (t ;) ?ln ihe y(x)
layer provided j < k 5 m. Every node in the x(y) layer
is connected to the end node.

The Labelling Technique
An edge(start,tJ), 1 5 j 5 m, corresponds to a par-
titioning p in which modules t~ ... tj-1 are assigned to
processor x, while at least module ti is assigned to pro-
cessor y. The A, and Ay weights of this edge are given
below:

An edge(t;,ti), where j < k 5 m, corresponds to
a partitioning in which modules tj ... tk-1 are assigned
to processor y, while at least module t k is assigned to
processor x. The A, and Ay weights associated with
this edge are given below:

Example 1

Consider the seven-module chain shown in Fig. 1.
Assume that w,i = l ,wyi = 4 if i = 1,4, and 5,

W z i = 4, Wvi = 1 if i = 2,3,6, and 7, and q=2, where
1 5 i 5 6. In simple the black modules have an exe-
cution cost of l(4) on processor x(y), while the white
modules have execution costs equal to 4(1) on proces-
sor z(y), and the communication cost is assumed to be
uniform equal to 2. The assignment graph correspond-
ing to the seven-module chain is shown in Fig. 2. The
partitioning of the chain structured parallel program,
shown in Fig. 1, is represented by a path (shown in
bold) between the start node and the end node in the
assignment graph of Fig. 2.

.-hF

Figure 2: The layered graph and several paths between
the start and the end node for a problem with seven
modules.

3.2 The Approximate Assignment

It has been shown in the last section that the incom-
ing degree of a node tf in the assignment graph is 2i-2.
Thus the total number of distinct paths between the
start node and tf would be precisely equal to 2i-2. Each
such path corresponds to an assignment in which the
modules tl ... ti-1 have already been assigned in some
fashion while the assignment of the remaining modules,
ti...tm, is yet to be made. Let < W,(i) ,Wy(i) > repre-
sent the ordered pair associated with a path terminating
at node tf, where W,(i)(Wy(i)) represents the sum of
all Az(Ay) weights of all the edges in the path between
the start node and t f . Thus W,(i)(W,(i)) is in fact the
load assigned to processor z(y) due to the assignment
of modules tl ... ti-1 over the two-processor system. It
is important to note that each path between start node
and tf may have a distinct ordered pair and thus, in
general, each node tl can have as many as 2'-' differ-
ent < W,(i), Wy(i) > ordered pairs.

An upper bound on the maximum load, which can
be assigned to processor x in any assignment, is when
all modules are processed sequentially on processor x
assuming that w,i > 0, where 1 5 i 5 m. If this upper
bound is represented by WT then WT =

Let us resolve WT to an accuracy of e In other words
W,(i) is restricted to have only 9 distinct values in
the range of zero and WT. This operation of restrict-
ing the number of possible paths between the start

Scheme

Wzi .

45

node and any other node in the z or y layer in the
assignment graph is performed as follows. We look

in the assignment graph. Out of every incoming path module chain of Fig. 1. PI and P2 are two paths be-

Example 2

at a selected node p, where p can be either tf or tf Consider the assignment graphs (Fig* 3, for the seven-

from the st& node to node p we reject every incoming tween the start and the end nodes in the assignment
path P2 in comparison with an incoming path Pl pro- graph, and are shown in Fig* 3(bottom) and (top) re-
vided wZl(j) 5 wz2(i) and wYl(i) s wy2(i), Where spectively. The corresponding partitionings of the chain
< wZl(j), wyl(j) > (< wZ2(j), wY2(;) >) is the ordered are also shown in Fig. 3. It is important to note that
pair associated with the incoming path pl(p2) at node the subpath in P1 from the start node to node 3 in the
p . Out of all the remaining paths between the start 2 layer is different from the corresponding subpath in
node and node p for which the actual value of w,(j) p2- The two Paths, however, share a common subpath
is in between two successive permissible levels, we se- from node 3 in the z layer to the end node. The or-
lect the one with minimal value of wy(j), and reject all dered Pair < W~(3) i W Y (~) > associated with each sub-
others (see Lemma 1). path is also indicated in Fig. 3. As wz1(3) < W,2(3),

and w,1(3) < W,2(3), it can be deduced that the load There would be at the most % paths between the
start node and any node in the layer after the assigned to processor z or y in the entire path (or parti-

tioning) PI would be less than the corresponding loads application of the procedure Limit. Thus there will be
a maximum of 2mIW+ distinct paths between the start in path P2. Thus when we look at the two ordered pairs
node and the end node in the assignment graph. A path associated with the two paths terminating at module 3
in which maz(w,, wy) is minimal can thus easily be in the z layer, we immediately recognize that one of the
found in time proportiona~ to 2 m y , but the total time subpaths, when extended to the end node, would always

result in a costly assignment (as compared to the other would be limited by the complexity of the procedure
path), and thus should be rejected immediately. LIMIT which is O (e) as just given above. If the

Suppose there is a third path (P3) between the start relative error bound for the Approximate Scheme is E
and the end node in the assignment graph of Fig. then the time complexity of our algorithm is bounded
3, and it also passes through node 3 in the z layer.

by O b 3 (+ 1). Assume that W,3(3)=6.999, and Wy3(3)=4. Thus
Lemma 1 W,1(3)=Wz3(3)+0.001, and Wyl(3) < W,3(3). It is

obvious that if we reject path P3 in comparison with
Assume that PI and P2 are two paths between the start path pl then the total load assigned to processor 2
node and the end node in the assignment graph with in pl would be larger than the load assigned to z in
the following properties: P3 by at most 0.007, while the load assigned to p r e

ceSSOr y in PI would be less than the corresponding
load in p3. The above statement will be true provided

is from the start node to t f , and the other is from wzl(i) < - wZ3(i) +0.001, and wYl(i) < wy3(j) for each
tr to the end node. common node i between path PI and P3 in the assign-

ment graph.

or

Path '1 as as p2 consists Of two subpath% one

The subpath from the start node to tf in path PI
is different from the corresponding subpath in path
p2. Let < WZl(i) , Wyl(i) > represents the ordered 4
pair associated with the subpath in PI. Similarly
the subpath in P2 between the start node and tr is
represented by < W,2(i), W,2(i) >.

Partitioning Tree Structured
Problems

Our approach to the solution of this problem is very
similar to the one described in the previous section for
partitioning chain structured problems. A tree is similar
to a chain in the sense that by removing a single edge
it can be divided into two parts. There are, however,
important differences between the two structures, and

algorithm.
We first traverse the given tree and place consecutive

labels on the nodes of the tree visited according to the
procedure Label described below. The resulting path

Paths PI and p2 share a ccm-"n subpath from
node tr to the end node.

Under the conditions stated above the load on the bot-

Pi would always be less than or equal to the correspond-
ing load in partitioning 4 provided:

tleneck processor corresponding to path(or Partitioning) these should be kept in mind while designing the new

wzi(i) I Wz2(i) and Wgl(i) I Wy2(i)

46

Figure 3: Path PI (bottom) and path P 2 (top) consists
of two subpaths, one is from the start node to tg , and
the other is from t$ to the end node.

(of traversal) is treated as a chain of modules which is
then partitioned by drawing a doubly weighted assign-
ment graph. In order to partition the tree structured
parallel program using our previous techniques of par-
titioning a chain, we introduce the concept of critical
nodes in the next section. It has been shown that the
time complexity of the modified partitioning algorithm
is proportional to 2c--=, cmat is the maximum num-
ber of critical nodes affecting a node in the assignment
graph. By using an intelligent scheme for traversing
(and labelling) the nodes of the tree we limit the value
of e,,,,= to log2 m.

4.1

The modules of a tree structured problem are labelled
by the following procedure Label. A tree is divided
into two parts by cutting an edge(j,k), where nodes j
and k are adjacent to each other [5, 71. One half of
the tree, which includes node j, is known as subtreejk,
while the other half, which includes node k , is called
Subtreekj. The number of nodes in a subtree is de-
noted by nodes[subtree]. The key idea behind this la-
belling technique is as follows: The next node to be
labelled would be a node k adjacent to node j such that
nodes[subtreekj] is minimal. The label of node k would
be Last + 1.

Procedure Label (A tree of m nodes, m > 2)
begin

The Labelling of the Tree

1. Start with any leaf node i , and label it with
1, i.e., Label(i) := 1, Last := 1, j := i.

2. Find a node k adjacent to node j, which
is not yet labelled; Label(k) := Last + 1;
j := k; Last := LabeZ(k). If all the m
nodes are labelled then return.

3. Let d denote the degree of node j ;
(a) If d = 1 then goto step (5).
(b) If d = 2 then find a node k adjacent

to node j, which is not yet labelled.
(c) If d > 2 then find a node k out of

all unlabelled nodes adjacent to node
j such that nodes[subtreekj] is mini-
mal.

If you do not find such a node k then goto
step (5) .

4. Label(k) := Last + 1; j := k; Last :=
Label(k); If all the m nodes are labelled
then return otherwise goto step (3).

5. Backtrack to node b, where b is the last
node labelled with degree larger than two;
j := b; goto step (3).

end.
4.2 The Doubfy Weighted Assignment

There are two layers in the graph G, the x layer corre-
sponds to the x processor, while the y layer corresponds
to the y processor. The j t h node in the x(y) layer of
this graph corresponds to module with label j in the
application program and is thus represented by t ; (t j) .
The start node is connected to every node in the x layer
as well as in the y layer except t f (t y) . Every node t;(tj”)
in the z (y) layer is connected to each node t i (t ;) in the
y (x) layer provided j < k 5 m. Every node in the z (y)
layer is connected to the end node. A path in this graph
between the start and the end node corresponds to an
assignment of subsequences of modules to processors.

An edge(s tar t , tJ) , 1 < j 5 m, corresponds to a par-
titioningp in which modules with labels l...j- 1, in the
application program, are assigned to processor 2 , while
at least module j is assigned to processor y. The x and
y weights of this edge are given below:

z (s tar t , t ;) = Cis,’ wti + c j , and y(s tar t , t ;) = C j

An edge(t ; , t i) , where j < k 5 m, corresponds to a
partitioning in which modules j + l . . .k are assigned to
processor z or y in the following manner:

1. For each i , where j + 1 5 i 5 k - 1, starting from
i = j + 1, find an adjacent node which has already
been assigned to either the z processor or the y

Graph

47

2.

processor. If the adjacent node is assigned to x(y)
processor then module i should also be assigned to
x(y) processor.

Find a node adjacent to node k which has already
been assigned to a processor. Node k is assigned to
x(y) if the adjacent node is assigned to processor
Y(X>.

The x and y weights associated with this edge can then
be evaluated.

An edge(t7, end) i.e. an edge between a node t; and
the end node in the assignment graph corresponds to
partitioning in which nodes j + l . . .m are assigned to
processor x or y in the following manner: For each node
i, where j + 1 5 i 5 m, starting from i = j + 1, find an
adjacent node which has already been assigned to either
the x processor or the y processor. If the adjacent node
is assigned to x(y) processor then node i should also
be assigned to z(y) processor i.e. the two nodes should
be assigned to the same processor. The corresponding
x and y weights associated with this edge can then be
found out.

=-4n

Figure 4: An eight-module tree mapped onto a two pro-
cessor heterogeneous system.

Example 3

Consider the tree structured parallel program shown in
Fig. 4. Assume that the black modules have an exe-
cution cost of l(4) on processor x(y), while the white
modules have execution costs equal to 4(1) on processor
z(y), and the communication cost is assumed to be uni-
form equal to 2. The tree is labelled using the labelling
technique described in the previous section. Note that
once the tree is labelled it can be treated as a chain
structure with certain special or critical nodes, defined
in the next section. The assignment graph correspond-
ing to the eight-module tree is shown in Fig. 4(bottom).

Figure 5: An eight-module tree is partitioned onto a
two processor heterogeneous system. Partitionings PI ,
P2, and the corresponding paths in the doubly weighted
assignment graph are also shown.

4.3 The Notion of Critical Nodes

In the doubly weighted assignment graph designed for
a chain structured parallel program we have noted that
the load on the bottleneck processor corresponding to
path PI would always be less than or equal to the cor-
responding load in partitioning Pz provided Wzl(i) <
Wz2(i) and Wyl(i) 5 Wy2(i), where partitionings (or
paths) PI and Pz are defined in Lemma 1. This use-
ful property was exploited to restrict the total number
of distinct paths between the start node and any node
t f (t i) , thereby drastically reducing the size of our search
space. Thus it became possible for us to efficiently find
an approximate partition of the chain structured par-
allel or pipelined program with the guarantee that the
maximum percentage error in the load assigned to the
bottleneck processor is within a fixed bound. The above
mentioned property for a chain structured program, as
described in Lemma 1, does not hold as such in the
doubly weighted assignment graph designed for a tree
structured parallel program. Consider, for example, the
tree structured parallel program shown in Fig. 5 . Par-
titionings PI, P2, and the corresponding paths in the
doubly weighted assignment graph are also shown in
the figure. Note that the subpath in Pll shown in bold,
from the start node to node 5 in the x layer is different
from the corresponding subpath in Pz. The two paths,
however, share a common subpath from node 5 in the
x layer to the end node.

It is important to appreciate here that the load as-
signed to processor x or y in the entire path (or par-

48

titioning) PI would not be less than the correspond-
ing loads in path P 2 even if Wz1(5) < Wz2(5), and
Wy1(5) < wy2(5). This is because node 3 in the tree
structured parallel program is assigned to processor y
in partitioning PI while it is assigned to processor z in
partitioning Pz. This node is critical for node 5 because
it decides the future of the nodes with labels 6,7, and 8,
which are yet unassigned. It is important to note that
these nodes (with labels 6, 7, and 8) are assigned to
processor y in PI, while they are assigned to processor
x in P2 in spite of the fact that both paths PI and P2
share a common subpath from node 5 in the z layer to
the end node.

If, however, node 3 in the tree is assigned to the same
processor in both partitionings PI and P 2 then the load
assigned to the bottleneck processor corresponding to
PI would always be less than or equal to the corre-
sponding load in P 2 provided W21(5) 5 Wz2(5) and
wy1(5) 5 Wy2(5). This extra constraint requires us to
modify Lemma 1 and we do so by presenting the con-
cept of critical nodes. Note that node 3 was a critical
node for node 5 of the tree structured parallel program
as shown in Fig. 5.

Now consider the tree structured program, same as
shown in Fig. 5, with two different partitionings P3 and
P4 as shown in Fig. 6. The corresponding paths in
the doubly weighted assignment graph are also shown
in the bottom of the figure. It is important to appre-
ciate here that the load assigned to processor x or y in
the entire path (or partitioning) P3 would be less than
the corresponding loads in path P 4 if Wz3(7) < Wz4(7),
and Wy3(7) < Wy4(7). This is because there is no crit-
ical node for node 7 in the doubly weighted assignment
graph and consequently Lemma 1 holds for such a node.

Once a tree is labelled using the labelling procedure
described before, the critical nodes, and the nodes af-
fected by these critical nodes, are determined using the
following simple procedure described in Lemma 2.

Lemma 2

Figure 6: The eight-module tree, as shown in Fig. 5, is
partitioned onto a two processor heterogeneous system.
Partitionings P3, P4, and the corresponding paths in
the doubly weighted assignment graph are also shown.

The Approximate Assignment Scheme
An upper bound on the maximum load, which can be
assigned to processor z in any assignment, is when all
modules are processed sequentially on processor z as-
suming that wzi > 0, where 1 < i < m. If this upper
bound is represented by WT then WT = ELl wzj

Let us resolve WT to an accuracy of e i.e. two suc-
cessive permissible levels for the load on processor z are
separated by e. In other words Wz(i) is restricted to
have only distinct values in the range of zero and
WT. The approximate partitioning of the tree struc-
tured parallel program can now be found us as follows:

1. Label the tree structured parallel program using
the procedure described earlier in this section.

2. For each node i , 1 5 i 5 m, find if it is affected by
any critical nodes(s).

1. For each node (or module), labelled as i, with de-
gree 3 or more in the tree, find a node adjacent to
i with a label j such that j is maximal.

3. Look at each incoming path from the start node
to node p where p can be either tf or tf in the
assignment graph. Select those paths or in which
all critical nodes, influencing node i , are assigned to
processor z or U, and node i of the tree structured
program is assigned to processor z or y in a similar
manner.

2. Node i is a critical node affecting only those nodes
which are not adjacent to node i and have labels
from i + 2 to j - 1.

Lemma 3
Out of all paths between the start node and node p

for which the actual value of Wz(i) is in between two
successive permissible levels, select the one with mini-
mal value of Wy(i), and reject all others. This restricts

If a tree is labelled using the labelling procedure, de-
scribed earlier in this section, then the maximum num-
ber of critical nodes affecting any node in the tree would
be at the most equal to logm.

49

the number of ordered pairs associated with each node
tf (or tY> to o("?).

There will be a maximumof O(m2+) distinct paths
between the start node and the end node in the assign-
ment graph. A path in which mat(W., W,) is mini-
mal can thus easily be found in time proportional to

ence between the load on the bottleneck processor in the
approximate assignment and the one in the optimal as-
signment is at the most equal to me. If the relative error
bound for the Approximate Scheme is E then the time
complexity of our algorithm is bounded by O(m4(F)).

O (y) , mawT with a guarantee that the maximum differ-

5 Conclusions
In this paper we have described an efficient algorithm
which can partition a chain or a tree structured applicac
tion program consisting of several heterogeneous mod-
ules onto a two processor system. Our approach takes
into account the heterogeneous nature of each module as
well as the conversion overheads involved when modules
residing on different types of machines communicate
with each other. 5diverse modules onto a dual processor
heterogeneous system. Heterogeneous sites consisting of
two processor systems can directly benefit from this re-
search, and can use our cmssouer strategy which allows
application programs to be optimally partitioned and
run simultaneously on more than one supercomputer at
a time. It is possible to extend this approach to a three
or four processor heterogeneous computer systems, and
currently we are working to apply similar techniques to
related problems with less restricted structures.

Acknowledgment

This work was partially funded by the University
Grants Commission, Pakistan. We acknowledge the
motivation and encouragement provided by Viktor
Prasanna, Mary Eshaghian, Ikram-ul-Haq Dar, Abdul
Hameed, and Syed Nazeer.

References
S. Bokhari. Partitioning problem in parallel,
pipelined, and distributed computing. IEEE l h n s .
on Computer, pages 48-57, January 1988.

S.H. Bokhari. Dual processor scheduling with dy-
namic reassignments. IEEE Trans. Software Eng.,
SE5, July 1979.

C. Castro and S. Yalamanchili. Partitioning algo-
rithms for a class of application specific multipre

50

ceSSOr architectures. In Proc. IPPS Workshop on
Heterogeneous Processing, April 1993.

[4] M. Ashraf Iqbal. Efficient algorithms for partition-

[5] M. Ashraf Iqbal. Mapping and Assignment Prob-
lems in Multiple Computer Systems. PhD thesis,
Engineering University, Lahore, Pakistan, 1991.
Dept. of Electrical Eng.

ing problems. In ICPP, 1991.

(61 M. Ashraf Iqbal. Partitioning problems for hetroge-
neous computer systems. In Proc. IPPS Workshop
on Heterogeneous Processing, April 1993.

[7] M.Ashraf Iqbal. Partitioning a tree structured
problem on a heterogeneous computer system.
Technical report, Dept. of Electrical Eng., Engi-
neering University, Lahore, Pakistan, 1993.

[8] A. Khokhar, V.K. Prasanna, M. Shaaban, and
C. Wang. Heterogeneous supercomputing: Prob-
lems and issues. In Proc. Workshop on Heteroge-
neous Processing, March 1992.

[9] V.K. Prasanna Kumar, editor. Parallel Archi-
tectures and Algorithms for Image Understanding.
Academic Press, 1991.

[lo] J . Mahdavi, G. Huntoon, and M. Mathis. Devel-
opement of a HIPPI-based distributed supercom-
puting environment at the Pittsburgh supercom-
puting center. In Proc. Workshop on Heterogeneous
Processing, pages 93-96, Mar. 1992.

[ll] D. Nicol and D. O'Hallaron. Improved algorithms
for mapping pipelined and parallel computations.
IEEE Trans., Computers, 40(3).

[12] H. Stone. Multiprocessor scheduling with the aid of
network flow algorithms. IEEE >anS. on Software
Eng., SE3:85-93, January 1977.

[13] L. Tao, B. Narahari, and C. Zhao. Heuristics
for mapping parallel computaions to heterogeneous
parallel architechtures. In Proc. IPPS Workshop on
Heterogeneous Processing, April 1993.

[14] R. Vetter, D. Du, and A. Klietz. Network super-
computing: Experiment with a CRAY-2 to CM-2
HIPPI connection. In Proc. Workshop on Hetero-
geneous Processing, pages 87-92, Mar. 1992.

[15] C. Weems. Image understanding: A driving appli-
cation for research in heterogeneous parallel pro-
cessing. In Proc. IPPS Workshop on Heterogeneous
Processing, April 1993.

	Rochester Institute of Technology
	RIT Scholar Works
	1994

	Partitioning of image processing tasks on heterogeneous computer systems
	M. Ashraf Iqbal
	Saeed Iqbal
	Muhammad Shaaban
	Recommended Citation

	Partitioning of image processing tasks on heterogeneous computer systems - Heterogeneous Computing Workshop, 1994., Proceedings

