
Rochester Institute of Technology
RIT Scholar Works

Presentations and other scholarship

1994

Partitioning of image processing tasks on
heterogeneous computer systems
M. Ashraf Iqbal

Saeed Iqbal

Muhammad Shaaban

Follow this and additional works at: http://scholarworks.rit.edu/other

This Conference Proceeding is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Presentations and
other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Iqbal, M. Ashraf; Iqbal, Saeed; and Shaaban, Muhammad, "Partitioning of image processing tasks on heterogeneous computer
systems" (1994). Accessed from
http://scholarworks.rit.edu/other/329

http://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.rit.edu/other/329?utm_source=scholarworks.rit.edu%2Fother%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu


Partitioning of Image Processing Tasks on Heterogeneous Computer 
Systems 

M. Ashraf Iqbal*, Saeed Iqbal 
Department of Electrical Engineering 

University of Engineering & Technology, 

Muhammad E. Shaaban 
Department of Electrical Engineering-Systems 

University of Sout hern California, 
Lahore, Pakistan Los Angeles 

Abstract to an essentially unending series of images. By parti- 
tioning the application task into different machines that 

Many computer vision tasks can be decomposed into a communicate via high speed links, each step or stage of 
set of subtasks which are by their nature heterogeneous. pipeline processing can be executed simultaneously on 
BY partitioning such task onto different machines that the machine to which it is best suited. The maximum 
communicate via high speed links, each level or stage of rate of processing is now determined by the processor 
processing can be executed simultaneously on the ma- that takes the longest amount of time to perform the 
chine to which it is best suited. A fundamental problem application task, known as the boitleneck processor [l]. 

ofo~timally partitioning an application program across fashion, and a heterog+ 
the In this paper we address the problem neous computer system consisting of different machines, 
of partitioning a chain or a tree structured parallel or find the assignment of to processors that min- 

with heterogeneous computing, however, is the difficulty The following problem then emerg-. Given a & of 
subtasks connected in 

Pipelined Program Over a '"0 P r o c ~ o r  heterogeneous imizes the load on the most heavily loaded processor. If 
system and show that it is porssible to approximately the number of processors are only two and the program 
SO1ve this Problem. The is serial , this problem can be solved efficiently using the 
paper, is based On furry  PorYnomiar lime aPPmrima- network flow approach pioneered by Stone [12]. If the 

Presented in this 

program is serial and the interconnection structure of lion scheme. 

the modules is tree-like, it is possible to solve it for any 1 Introduction number of processors using a shortest tree algorithm [2]. 

vision processing is classified into a number of cat+ If the modules are executable in parallel, it is very dif- 

dous amount of parallelism, and the levels riety of criteria for optimality. This is because the prob- 
lem is computationally equivalent to one or the other of can operate in parallel [8]. It has been observed that 

machines in the SIMD are well suited for early the notorious NP-complete graph partitioning or mul- 

cessing [8, 15~. High level vision tasks such as image most of the work in this field focused on heuristic tech- 
understanding, recognition, and symbolic processing ex- niques L3, 131* It has been shown by that 
hibit coarse-grain or medium-grain MIMD type charac- a chain structured parallel or pipelined program can be 

Nicol [ll] and Iqbal [4] have improved the complexity capabilities of a heterogeneous environment, higher lev- 
els of performance can be attained than is possible by of earlier algorithms for partitioning chain structured 

problems with restrictions on the type of mappings and/ using any single type of parallel machine. 
tasks, such as image under- or on the weights assigned to different modules. Iqbal 

etc., can be expressed as pipelined algorithms [91. A in heterogeneous environments. All these researchers 
requirement in such a system is to apply re- worked under the constraint that each processor has a 

In this paper we address the problem of partitioning a 
chain or a tree structured parallel or pipelined program 
Over a two processor heterogeneous system and show 
that it is possible to approximately solve this problem. 

gories 01 levels, d l  of these levels can utilize a tremen- ficult to find efficiently the Optima' given a va- 

processing of raw imag&often termed as low level pro- tiprocessor problems L1l' This why 

teristia. Thus by exploiting the different features and partitioned optimally Over a chain or ring Of processors* 

Many computer 
standing, pattern recognition, dynamic Scene analysis, ['I has a number Of partitioning problems 

peatedly a fixed sequence of operations (or transforms) contiguous Of Program to it* 

*Part Of this was conducted the author was a 
Fulbright Scholar at the Department of Electrical Engineering- 
System, University of Southern California, Angeles, fro,,, 
Sept. 1992 to June 1993. 
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The algorithm, presented in this paper, is based on a 
fully polynomial time approximation scheme, both in the 
size of the problem and in i, where E is the relative error 
bound for the approximate scheme. 

We start the paper by discussing in Section 2 the 
Heterogeneous Computing (HC) Paradigm. Section 3 
addresses the problem of finding the near optimal parti- 
tion of a chain-structured parallel or pipelined program 
over a two processor system. Our solution technique 
involves creating a doubly weighted assignment graph. 

We address the problem of partitioning a tree struc- 
tured parallel or pipelined program in Section 4. We 
conclude this paper with a discussion in Section 5.  

2 Heterogeneous Computing for 
Vision 

Many scientific and engineering applications have di- 
verse computational requirements. Thus any one sin- 
gle type of machine may perform poorly on such ap- 
plications. For an application consisting of subtasks of 
various computational requirements, a suite of hetero- 
geneous machines is likely to provide superior perfor- 
mance. Heterogeneous Computing(HC) has been re- 
cently proposed as a novel paradigm to exploit the ex- 
isting hardware and advances in networking to lead to 
feasible solutions to complex problems [8]. 

2.1 The Heterogeneous Computing 

HC is a computing paradigm in which an application 
is run in an environment that incorporates several au- 
tonomous high performance parallel machines. These 
machines, providing different types of parallelism, are 
capable of communicating over a high-speed intelligent 
interconnection network to cooperate in an application 
by representing the solution as a set of tasks to be exe- 
cuted. 

Partitioning problems for two processor heteroge- 
neous systems have recently become a focus of inter- 
est. The Minnesota Supercomputer Center(MSC) [14], 
and The Distributed High Speed Computing (DHSC) 
environment at the Pittsburg Supercomputing Center 
[lo], are two examples of research sites working in a two 
processor heterogeneous environment. 

Paradigm 

2.2 The Mapping Problem 
Algorithms used for symbolic computing tasks in image 
understanding applications exhibit different computa- 
tion characteristics and processing requirements. Al- 
gorithms developed by the vision community have ad- 

dressed each step of an integrated vision system sepa- 
rately and hence the conversion overheads involved in 
switching from one level to another level have not been 
understood. Data decomposition and conversion over- 
heads involved in communicating among such machines 
adds further delays. Such a scenario, if not carefully an- 
alyzed, can drastically degrade the overall performance 
of the system. In order to  optimally partition and map 
tasks in an integrated vision system over processors of 
a heterogeneous computer system we should take care 
of the following: The heterogeneous nature of each sub- 
task, the type of machines available in the heteroge 
neous environment, and data decomposition and conver- 
sion overheads involving communicating subtasks which 
reside on different types of machines. 

3 Part it ioning Chain 
Structured Problems 

We discuss here a simple algorithm for finding an opti- 
mal partitioning of a chain structured parallel program, 
belonging to an integrated vision system, over a dual- 
processor heterogeneous system. A chain structured 
program is made up of m modules numbered t1 ... tm, 
and has an intercommunication pattern such that mod- 
ule t ;  is connected only to modules t i + l  and ti-1. The 
optimal assignment of subchains to the two processors 
is influenced by the time of execution of module ti on 
processor z(y) designated by w,;(wy;) time required for 
communication between module t i ,  and ti+l designated 
by ci, provided the two modules are assigned to different 
processors. 

The partitioning problem can be expressed in the fol- 
lowing manner: Given a set of m modules connected in 
a chain like fashion, and a two processor heterogeneous 
system find the assignment of subchains of modules 
to processors that minimizes the maz(W,, WY), where 
Wz(Wy) is the load on processor z(y). Our approach to 
the solution of this problem is to first draw up a doubly 
weighted assignment graph. A path in this graph cor- 
responds to the assignment of subsequences of modules 
to processors. 

3.1 The Doubly Weighted Assignment 
Graph 

In this section we discuss the concept of a doubly 
weighted assignment graph G. There are two weights 
associated with each edge of this graph: A, weight cor- 
responds to additional (or incremental) load assigned 
to the 2 processor, and Ay weight corresponds to addi- 
tional (or incremental) load assigned to the y processor. 

There are two kinds of sum weights associated with 
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Figure 1: A seven-module chain mapped onto a two 
processor heterogeneous system. 

each path P, one is the familiar sum of all A,(ei), the 
other is the sum of all Ay(ei). A path for which the max- 
imum of (E A,(ei), E Ay(ei)) is minimal, corresponds 
to the optimal assignment. 

The Structure of the Assignment Graph 
There are two layers in the graph G, the x layer corre- 
sponds to the x processor, while the y layer corresponds 
to the y processor. The j t h  node in the x(y) layer of 
this graph corresponds to module t j  in the application 
program and is thus represented by t;( ty).  The start 
node is connected to every node in the x layer as well 
as in the y layer except tq(t:). Every node t E ( t Y )  in the 
x(y) layer is connected to each node t i ( t ; )  ?ln ihe  y(x) 
layer provided j < k 5 m. Every node in the x(y) layer 
is connected to the end node. 

The Labelling Technique 
An edge(start,tJ), 1 5 j 5 m, corresponds to a par- 
titioning p in which modules t~ ... tj-1 are assigned to 
processor x, while at least module ti is assigned to pro- 
cessor y. The A, and Ay weights of this edge are given 
below: 

An edge(t;,ti), where j < k 5 m, corresponds to 
a partitioning in which modules tj ... tk-1 are assigned 
to processor y, while at least module t k  is assigned to 
processor x. The A, and Ay weights associated with 
this edge are given below: 

Example 1 

Consider the seven-module chain shown in Fig. 1. 
Assume that w,i = l ,wyi  = 4 if i = 1,4,  and 5, 

W z i  = 4, Wvi = 1 if i = 2,3,6,  and 7, and q=2, where 
1 5 i 5 6. In simple the black modules have an exe- 
cution cost of l(4) on processor x(y), while the white 
modules have execution costs equal to 4( 1) on proces- 
sor z(y), and the communication cost is assumed to be 
uniform equal to 2. The assignment graph correspond- 
ing to the seven-module chain is shown in Fig. 2. The 
partitioning of the chain structured parallel program, 
shown in Fig. 1, is represented by a path (shown in 
bold) between the start node and the end node in the 
assignment graph of Fig. 2. 

.-hF 

Figure 2: The layered graph and several paths between 
the start and the end node for a problem with seven 
modules. 

3.2 The Approximate Assignment 

It has been shown in the last section that the incom- 
ing degree of a node tf in the assignment graph is 2i-2. 
Thus the total number of distinct paths between the 
start node and tf would be precisely equal to 2i-2. Each 
such path corresponds to an assignment in which the 
modules tl  ... ti-1 have already been assigned in some 
fashion while the assignment of the remaining modules, 
ti...tm, is yet to be made. Let < W,(i) ,Wy(i)  > repre- 
sent the ordered pair associated with a path terminating 
at node tf, where W,(i)(Wy(i))  represents the sum of 
all Az(Ay) weights of all the edges in the path between 
the start node and t f .  Thus W,(i)(W,(i)) is in fact the 
load assigned to processor z(y) due to the assignment 
of modules tl ... ti-1 over the two-processor system. It 
is important to note that each path between start node 
and tf may have a distinct ordered pair and thus, in 
general, each node tl can have as many as 2'-' differ- 
ent < W,(i), Wy(i)  > ordered pairs. 

An upper bound on the maximum load, which can 
be assigned to processor x in any assignment, is when 
all modules are processed sequentially on processor x 
assuming that w,i > 0, where 1 5 i 5 m. If this upper 
bound is represented by WT then WT = 

Let us resolve WT to an accuracy of e In other words 
W,(i) is restricted to have only 9 distinct values in 
the range of zero and WT. This operation of restrict- 
ing the number of possible paths between the start 

Scheme 

Wzi .  
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node and any other node in the z or y layer in the 
assignment graph is performed as follows. We look 

in the assignment graph. Out of every incoming path module chain of Fig. 1. PI and P2 are two paths be- 

Example 2 

at a selected node p, where p can be either tf or tf Consider the assignment graphs (Fig* 3, for the seven- 

from the st& node to node p we reject every incoming tween the start and the end nodes in the assignment 
path P2 in comparison with an incoming path Pl pro- graph, and are shown in Fig* 3(bottom) and (top) re- 
vided wZl(j) 5 wz2(i) and wYl(i) s wy2(i), Where spectively. The corresponding partitionings of the chain 
< wZl(j), wyl(j) > (< wZ2(j), wY2(;) >) is the ordered are also shown in Fig. 3. It is important to note that 
pair associated with the incoming path pl(p2) at node the subpath in P1 from the start node to node 3 in the 
p .  Out of all the remaining paths between the start 2 layer is different from the corresponding subpath in 
node and node p for which the actual value of w,(j) p2- The two Paths, however, share a common subpath 
is in between two successive permissible levels, we se- from node 3 in the z layer to the end node. The or- 
lect the one with minimal value of wy(j), and reject all dered Pair < W~(3) i  W Y ( ~ )  > associated with each sub- 
others (see Lemma 1). path is also indicated in Fig. 3. As wz1(3) < W,2(3), 

and w,1(3) < W,2(3), it can be deduced that the load There would be at the most % paths between the 
start node and any node in the layer after the assigned to processor z or y in the entire path (or parti- 

tioning) PI would be less than the corresponding loads application of the procedure Limit. Thus there will be 
a maximum of 2mIW+ distinct paths between the start in path P2. Thus when we look at the two ordered pairs 
node and the end node in the assignment graph. A path associated with the two paths terminating at module 3 
in which maz(w,, wy) is minimal can thus easily be in the z layer, we immediately recognize that one of the 
found in time proportiona~ to 2 m y  , but the total time subpaths, when extended to the end node, would always 

result in a costly assignment (as compared to the other would be limited by the complexity of the procedure 
path), and thus should be rejected immediately. LIMIT which is O ( e )  as just given above. If the 

Suppose there is a third path (P3) between the start relative error bound for the Approximate Scheme is E 
and the end node in the assignment graph of Fig. then the time complexity of our algorithm is bounded 
3, and it also passes through node 3 in the z layer. 

by O b 3 (  + 1). Assume that W,3(3)=6.999, and Wy3(3)=4. Thus 
Lemma 1 W,1(3)=Wz3(3)+0.001, and Wyl(3) < W,3(3). It is 

obvious that if we reject path P3 in comparison with 
Assume that PI and P2 are two paths between the start path pl then the total load assigned to processor 2 
node and the end node in the assignment graph with in pl would be larger than the load assigned to z in 
the following properties: P3 by at most 0.007, while the load assigned to p r e  

ceSSOr y in PI would be less than the corresponding 
load in p3. The above statement will be true provided 

is from the start node to t f ,  and the other is from wzl(i) < - wZ3(i) +0.001, and wYl(i) < wy3(j) for each 
tr to the end node. common node i between path PI and P3 in the assign- 

ment graph. 

or 

Path '1 as as p2 consists Of two subpath% one 

The subpath from the start node to tf in path PI 
is different from the corresponding subpath in path 
p2. Let < WZl(i) ,  Wyl( i )  > represents the ordered 4 
pair associated with the subpath in PI. Similarly 
the subpath in P2 between the start node and tr  is 
represented by < W,2(i), W,2(i) >. 

Partitioning Tree Structured 
Problems 

Our approach to the solution of this problem is very 
similar to the one described in the previous section for 
partitioning chain structured problems. A tree is similar 
to a chain in the sense that by removing a single edge 
it can be divided into two parts. There are, however, 
important differences between the two structures, and 

algorithm. 
We first traverse the given tree and place consecutive 

labels on the nodes of the tree visited according to the 
procedure Label described below. The resulting path 

Paths PI and p2 share a ccm-"n subpath from 
node tr to the end node. 

Under the conditions stated above the load on the bot- 

Pi would always be less than or equal to the correspond- 
ing load in partitioning 4 provided: 

tleneck processor corresponding to path(or Partitioning) these should be kept in mind while designing the new 

wzi(i) I Wz2(i) and Wgl(i)  I Wy2(i) 
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Figure 3: Path PI (bottom) and path P 2  (top) consists 
of two subpaths, one is from the start node to tg ,  and 
the other is from t$ to the end node. 

(of traversal) is treated as a chain of modules which is 
then partitioned by drawing a doubly weighted assign- 
ment graph. In order to partition the tree structured 
parallel program using our previous techniques of par- 
titioning a chain, we introduce the concept of critical 
nodes in the next section. It has been shown that the 
time complexity of the modified partitioning algorithm 
is proportional to 2c--=, cmat is the maximum num- 
ber of critical nodes affecting a node in the assignment 
graph. By using an intelligent scheme for traversing 
(and labelling) the nodes of the tree we limit the value 
of e,,,,= to  log2 m. 

4.1 

The modules of a tree structured problem are labelled 
by the following procedure Label. A tree is divided 
into two parts by cutting an edge(j,k), where nodes j 
and k are adjacent to each other [5, 71. One half of 
the tree, which includes node j, is known as subtreejk, 
while the other half, which includes node k ,  is called 
Subtreekj. The number of nodes in a subtree is de- 
noted by nodes[subtree]. The key idea behind this la- 
belling technique is as follows: The next node to be 
labelled would be a node k adjacent to node j such that 
nodes[subtreekj] is minimal. The label of node k would 
be Last + 1. 

Procedure Label (A tree of m nodes, m > 2) 
begin 

The Labelling of the Tree 

1. Start with any leaf node i ,  and label it with 
1, i.e., Label(i) := 1, Last := 1, j := i. 

2. Find a node k adjacent to node j, which 
is not yet labelled; Label(k) := Last + 1; 
j := k; Last := LabeZ(k). If all the m 
nodes are labelled then return. 

3.  Let d denote the degree of node j ;  
(a) If d = 1 then goto step (5). 
(b) If d = 2 then find a node k adjacent 

to node j, which is not yet labelled. 
(c) If d > 2 then find a node k out of 

all unlabelled nodes adjacent to node 
j such that nodes[subtreekj] is mini- 
mal. 

If you do not find such a node k then goto 
step ( 5 ) .  

4. Label(k) := Last + 1; j := k; Last := 
Label(k); If all the m nodes are labelled 
then return otherwise goto step (3). 

5. Backtrack to node b, where b is the last 
node labelled with degree larger than two; 
j := b; goto step (3). 

end. 
4.2 The Doubfy Weighted Assignment 

There are two layers in the graph G, the x layer corre- 
sponds to the x processor, while the y layer corresponds 
to the y processor. The j t h  node in the x(y )  layer of 
this graph corresponds to module with label j in the 
application program and is thus represented by t ; ( t j ) .  
The start node is connected to every node in the x layer 
as well as in the y layer except t f ( t y ) .  Every node t;(tj”) 
in the z ( y )  layer is connected to each node t i ( t ; )  in the 
y (x )  layer provided j < k 5 m. Every node in the z ( y )  
layer is connected to the end node. A path in this graph 
between the start and the end node corresponds to an 
assignment of subsequences of modules to processors. 

An edge(s tar t , tJ ) ,  1 < j 5 m, corresponds to a par- 
titioningp in which modules with labels l...j- 1, in the 
application program, are assigned to processor 2 ,  while 
at least module j is assigned to processor y. The x and 
y weights of this edge are given below: 

z ( s tar t , t ; )  = Cis,’ wti  + c j ,  and y(s tar t , t ; )  = C j  

An edge( t ; , t i ) ,  where j < k 5 m, corresponds to a 
partitioning in which modules j + l . . .k are assigned to 
processor z or y in the following manner: 

1. For each i ,  where j + 1 5 i 5 k - 1, starting from 
i = j + 1, find an adjacent node which has already 
been assigned to either the z processor or the y 

Graph 
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2. 

processor. If the adjacent node is assigned to x(y) 
processor then module i should also be assigned to 
x(y) processor. 

Find a node adjacent to node k which has already 
been assigned to a processor. Node k is assigned to 
x(y) if the adjacent node is assigned to processor 
Y(X>. 

The x and y weights associated with this edge can then 
be evaluated. 

An edge(t7, end) i.e. an edge between a node t; and 
the end node in the assignment graph corresponds to 
partitioning in which nodes j + l . . .m are assigned to 
processor x or y in the following manner: For each node 
i, where j + 1 5 i 5 m, starting from i = j + 1, find an 
adjacent node which has already been assigned to either 
the x processor or the y processor. If the adjacent node 
is assigned to x(y) processor then node i should also 
be assigned to z(y) processor i.e. the two nodes should 
be assigned to the same processor. The corresponding 
x and y weights associated with this edge can then be 
found out. 

=-4n 

Figure 4: An eight-module tree mapped onto a two pro- 
cessor heterogeneous system. 

Example 3 

Consider the tree structured parallel program shown in 
Fig. 4. Assume that the black modules have an exe- 
cution cost of l(4) on processor x(y), while the white 
modules have execution costs equal to 4( 1) on processor 
z(y), and the communication cost is assumed to be uni- 
form equal to 2. The tree is labelled using the labelling 
technique described in the previous section. Note that 
once the tree is labelled it can be treated as a chain 
structure with certain special or critical nodes, defined 
in the next section. The assignment graph correspond- 
ing to the eight-module tree is shown in Fig. 4(bottom). 

Figure 5: An eight-module tree is partitioned onto a 
two processor heterogeneous system. Partitionings PI , 
P2, and the corresponding paths in the doubly weighted 
assignment graph are also shown. 

4.3 The Notion of Critical Nodes 

In the doubly weighted assignment graph designed for 
a chain structured parallel program we have noted that 
the load on the bottleneck processor corresponding to 
path PI would always be less than or equal to the cor- 
responding load in partitioning Pz provided Wzl(i)  < 
Wz2(i) and Wyl(i)  5 Wy2(i), where partitionings (or 
paths) PI and Pz are defined in Lemma 1. This use- 
ful property was exploited to restrict the total number 
of distinct paths between the start node and any node 
t f ( t i ) ,  thereby drastically reducing the size of our search 
space. Thus it became possible for us to efficiently find 
an approximate partition of the chain structured par- 
allel or pipelined program with the guarantee that the 
maximum percentage error in the load assigned to the 
bottleneck processor is within a fixed bound. The above 
mentioned property for a chain structured program, as 
described in Lemma 1, does not hold as such in the 
doubly weighted assignment graph designed for a tree 
structured parallel program. Consider, for example, the 
tree structured parallel program shown in Fig. 5 .  Par- 
titionings PI, P2, and the corresponding paths in the 
doubly weighted assignment graph are also shown in 
the figure. Note that the subpath in Pll shown in bold, 
from the start node to node 5 in the x layer is different 
from the corresponding subpath in Pz. The two paths, 
however, share a common subpath from node 5 in the 
x layer to the end node. 

It is important to appreciate here that the load as- 
signed to processor x or y in the entire path (or par- 
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titioning) PI would not be less than the correspond- 
ing loads in path P 2  even if Wz1(5) < Wz2(5), and 
Wy1(5) < wy2(5). This is because node 3 in the tree 
structured parallel program is assigned to processor y 
in partitioning PI while it is assigned to processor z in 
partitioning Pz.  This node is critical for node 5 because 
it decides the future of the nodes with labels 6,7, and 8, 
which are yet unassigned. It is important to note that 
these nodes (with labels 6, 7, and 8) are assigned to 
processor y in PI, while they are assigned to processor 
x in P2 in spite of the fact that both paths PI and P2 
share a common subpath from node 5 in the z layer to 
the end node. 

If, however, node 3 in the tree is assigned to the same 
processor in both partitionings PI and P 2  then the load 
assigned to the bottleneck processor corresponding to 
PI would always be less than or equal to the corre- 
sponding load in P 2  provided W21(5) 5 Wz2(5) and 
wy1(5) 5 Wy2(5). This extra constraint requires us to 
modify Lemma 1 and we do so by presenting the con- 
cept of critical nodes. Note that node 3 was a critical 
node for node 5 of the tree structured parallel program 
as shown in Fig. 5. 

Now consider the tree structured program, same as 
shown in Fig. 5, with two different partitionings P3 and 
P4 as shown in Fig. 6. The corresponding paths in 
the doubly weighted assignment graph are also shown 
in the bottom of the figure. It is important to appre- 
ciate here that the load assigned to processor x or y in 
the entire path (or partitioning) P3 would be less than 
the corresponding loads in path P 4  if Wz3(7) < Wz4(7), 
and Wy3(7) < Wy4(7). This is because there is no crit- 
ical node for node 7 in the doubly weighted assignment 
graph and consequently Lemma 1 holds for such a node. 

Once a tree is labelled using the labelling procedure 
described before, the critical nodes, and the nodes af- 
fected by these critical nodes, are determined using the 
following simple procedure described in Lemma 2. 

Lemma 2 

Figure 6: The eight-module tree, as shown in Fig. 5, is 
partitioned onto a two processor heterogeneous system. 
Partitionings P3, P4, and the corresponding paths in 
the doubly weighted assignment graph are also shown. 

The Approximate Assignment Scheme 
An upper bound on the maximum load, which can be 
assigned to processor z in any assignment, is when all 
modules are processed sequentially on processor z as- 
suming that wzi > 0, where 1 < i < m. If this upper 
bound is represented by WT then WT = ELl wzj 

Let us resolve WT to an accuracy of e i.e. two suc- 
cessive permissible levels for the load on processor z are 
separated by e. In other words Wz(i) is restricted to 
have only distinct values in the range of zero and 
WT. The approximate partitioning of the tree struc- 
tured parallel program can now be found us as follows: 

1. Label the tree structured parallel program using 
the procedure described earlier in this section. 

2. For each node i ,  1 5 i 5 m, find if it is affected by 
any critical nodes(s). 

1. For each node (or module), labelled as i, with de- 
gree 3 or more in the tree, find a node adjacent to 
i with a label j such that j is maximal. 

3. Look at each incoming path from the start node 
to node p where p can be either tf or tf in the 
assignment graph. Select those paths or in which 
all critical nodes, influencing node i ,  are assigned to 
processor z or U, and node i of the tree structured 
program is assigned to processor z or y in a similar 
manner. 

2. Node i is a critical node affecting only those nodes 
which are not adjacent to node i and have labels 
from i + 2 to j - 1. 

Lemma 3 
Out of all paths between the start node and node p 

for which the actual value of Wz(i) is in between two 
successive permissible levels, select the one with mini- 
mal value of Wy(i), and reject all others. This restricts 

If a tree is labelled using the labelling procedure, de- 
scribed earlier in this section, then the maximum num- 
ber of critical nodes affecting any node in the tree would 
be at the most equal to logm. 
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the number of ordered pairs associated with each node 
tf (or tY> to o("? ). 

There will be a maximumof O(m2+) distinct paths 
between the start node and the end node in the assign- 
ment graph. A path in which mat(W., W,) is mini- 
mal can thus easily be found in time proportional to 

ence between the load on the bottleneck processor in the 
approximate assignment and the one in the optimal as- 
signment is at the most equal to me. If the relative error 
bound for the Approximate Scheme is E then the time 
complexity of our algorithm is bounded by O(m4( F)). 

O ( y ) ,  mawT with a guarantee that the maximum differ- 

5 Conclusions 
In this paper we have described an efficient algorithm 
which can partition a chain or a tree structured applicac 
tion program consisting of several heterogeneous mod- 
ules onto a two processor system. Our approach takes 
into account the heterogeneous nature of each module as 
well as the conversion overheads involved when modules 
residing on different types of machines communicate 
with each other. 5diverse modules onto a dual processor 
heterogeneous system. Heterogeneous sites consisting of 
two processor systems can directly benefit from this re- 
search, and can use our cmssouer strategy which allows 
application programs to be optimally partitioned and 
run simultaneously on more than one supercomputer at 
a time. It is possible to extend this approach to a three 
or four processor heterogeneous computer systems, and 
currently we are working to apply similar techniques to 
related problems with less restricted structures. 
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