
Mobile Adaptive Tasks Guided by Resource Contracts

Peter Rigole Yolande Berbers
Tom Holvoet

K.U.Leuven, Department of Computer Science
Celestijnenaan 200A

3001 Leuven, Belgium
{peter.rigole, yolande.berbers, tom.holvoet}@cs.kuleuven.ac.be

ABSTRACT
This paper proposes a way to realize the idea of calm com-
puting by adding a dynamic task model into the pervasive
computing environment. This task model contains informa-
tion about the actions to undertake to help a user realize his
daily tasks. The task model’s mapping onto a deployment
plan guides an internal adaptation mechanism, which helps
applications to evolve without causing user distraction. In
addition, a foraging technique (relocation) is proposed that
allows for expanding an application’s computing space auto-
matically whenever possible. This technique involves exter-
nal adaptation mechanisms. Both adaptation mechanisms
are driven by resource information and resource contracts
that are negotiated between the middleware and the appli-
cation components. This allows the middleware to do the
adaptations automatically, realizing the idea of calm com-
puting.

Categories and Subject Descriptors
D.2.8 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications

General Terms
Design

Keywords
pervasive computing, adaptation, foraging, contracts

1. INTRODUCTION
A pervasive computing system [1] is expected to commit

its computing powers to support the daily tasks of its users.
The intelligence of these systems hereby ensures that user
distraction is reduced to a minimal level. This way, the idea
of The Disappearing Computer or Calm Computing is real-
ized. The reasoning that lies at the basis of this intelligent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
Toronto, Canada
Copyright 2004 ACM 1-58113-951-9 ...$5.00.

behavior processes the bulk of available context information
to undertake appropriate supportive actions. These actions
are performed by applications that are guided by a task
model that reflects the user’s current task. Since pervasive
computing environments are envisioned to be widely sup-
ported by mobile devices held by the user or by small devices
hidden in the fabric of the user’s environment, resources are
relatively small on each computing device. Therefore, dis-
tributed cooperation must be extensively exploited on these
devices. The result should be a rich computing space in
which user task support is provided with the resources that
are needed to survive on.

In the pervasive computing space, Cyber Foraging [2] tech-
niques combined with application adaptation mechanisms
can be used to increase the capabilities of resource-limited
devices. Such techniques allow applications to forage certain
resources from its current environment. Memory, for exam-
ple, could be foraged by instantiating code on a remote de-
vice and thus saving space on the local device. Also, mem-
ory could be released - and thus made available for other
software entities - by removing application parts that are
optional for achieving the current task. A sudden increase
in memory on the other hand, e.g. when the user moves to
a richer environment, expands the computing space which
offers new capabilities to the applications. This expansion
is reflected in the context information that is shared among
the computing entities.

The only way to achieve flexible adaptive task-based ap-
plications and applications that are able to do resource for-
aging is to make applications inherently resource aware by
design. Object- and component-oriented technologies are
the state of the art in general purpose software technolo-
gies. They lack, however, several assets that are required
to live by the pervasive computing paradigm: they are not
easily adaptable and not resource aware.

Developing resource-aware applications involves introduc-
ing knowledge about the application’s resource footprint in
the application itself. However, reasoning about an ap-
plication’s resource footprint during the development pro-
cess seems complex and few design methods support it.
We believe that a contract-oriented approach in a compo-
nent based development methodology can alleviate this bur-
den. Furthermore, a run-time representation, validation and
monitoring of resource contracts, combined with resource in-
formation spread through context, forms a strong basis of
knowledge to guide foraging and adaptation mechanisms.

In the following sections, we first discuss how contracts



can be combined with component technology, followed by an
approach to supports contracts, their validation and moni-
toring at runtime. Thereafter, we describe how task-driven
computing can guide an application’s live-cycle. Adaptation
mechanisms and their use are discussed in the next section
and in conclusion we formulate future work and a vision for
future context driven component applications.

2. RESOURCE-AWARE COMPONENT
TECHNOLOGY

In a world where people are guided by intelligence spread
in ambient computing spaces, software will live its own life
and settle there where it can serve its user and where it
can harvest the resources it needs to survive. For the sake
of self-manageability and for the ease of software develop-
ers, such software will not come in large blocks of code, but
rather in fine-grained cooperative entities. The current state
of the art describes component-based software as a mature
extension of object-oriented software development. Besides
the advantage of the addition of a level of abstraction, im-
provement of code reusability and many other, components
are also very well suited as a delineated entity for perform-
ing code analysis. For example, resource-awareness could be
established per component.

In our view, resource-awareness is realized through a de-
scription of resource properties by means of a resource decla-
ration for each component. These can be found by analyzing
each component’s resource behavior:

Definition 1 (Resource Declaration). A resource
declaration is a parameterized description of a certain
type of resource a software entity requires when it de-
ploys its functionalities.

Developing software using the contract paradigm means
that designers have to think carefully about several func-
tional and non-functional properties during the development
process. It is an essential part of it. The properties of the
resources required by some software entities are outlined in
a resource declaration. Each resource declaration type has
a form that has to be filled in by the designer. This form
may be filled in using static numbers (when the property is
known precisely in advance) or using a parameterized for-
mula. These parameters are filled in at runtime and are
based on initial configuration data of the software entity
involved. It may be obvious that defining a resource decla-
ration involves a thorough knowledge of the internals of the
software entity and often, testing, measuring and statistical
analysis can be required to acquire the data needed in the
declaration.

When resource awareness is coupled to the building block
of a fine-grained application, the resource-aware nature of
the application emerges from its composing components.
The unit of composition becomes the unit for resource de-
scriptions. However, design time resource knowledge must
be reflected in a runtime equivalent for realizing the real pur-
pose of resource awareness: automated application manage-
ment. Resource declarations combined with environmental
resource availability information, which is part of the con-
text information, form a starting point to do resource forag-
ing. In the next section we propose a mechanisms for making
resource commitments effective in a runtime environment.

3. A CONTRACT BASED APPROACH
The purpose of resource declarations is to settle agree-

ments between several software entities about the use of cer-
tain resources. These agreements can be seen as a contract
between software requesting resources (the application) and
the software providing the resources (the middleware). Ap-
plications that live by themselves and manage their com-
ponents (allocating, deallocating and configuring them) at
runtime have to compose resource requests based on the
combined resource declarations of their composing compo-
nents. We define these resource request, which we call re-
source contract proposals, as follows:

Definition 2 (Resource Contract Proposal).
A resource contract proposal contains an agreement
on intended resource use by one or several software
parties.

For example, a bandwidth contract proposal may be re-
lated to a connector connecting two components which re-
quires an agreement based on the bandwidth descriptions of
both components. The information from a set of resource de-
scriptions is combined into a contract proposal. This ”com-
bining” of information is the task of the application core
(e.g. a central application manager component) and must
be done with concrete resource descriptions. So, the param-
eters from parameterized resource descriptions must have a
concrete value (e.g. from the component’s configuration).

As soon as a contract proposal is compiled, it may be
submitted to the middleware where a validation procedure
is initiated. Usually, a set of related contracts is submitted
at once because an application typically manages multiple
component at the time. Rejected contract proposals are
returned to the application core and a cause (e.g. the clause
that caused the rejection) for the rejection is given. This
cause can then be used to compile a new resource contract
proposal and start a renegotiation. The result of a successful
validation is a signed resource contract:

Definition 3 (Signed Resource Contract). A re-
source contract proposal can become a signed resource
contract when the middleware system accepts the con-
tract and signs it. A signed resource contract means
that the parties involved must adhere to the agreements
in the contract and that the middleware system must
provide the resources as described in the contract.

On acceptance, all contracts of a resource contract set be-
come a signed entity in the runtime system. From that mo-
ment on, both the parties involved as the middleware system
have a responsibility in respecting the contract. The mid-
dleware system may use monitoring mechanisms to validate
whether all parties involved in signed contracts are behaving
accordingly. Parties violating contracts can be disciplined in
several ways. Depending on the middleware configuration,
a small violation may be ignored, whereas recurring or more
serious violations may cause the rejection of a signed con-
tract. The middleware may allow the managing application
to start a contract renegotiation. As long as no contract is
signed for the allocation of a certain resource, the software
entities involved have no more rights to allocate that type
of resource.

In our opinion, the symbiosis of components as build-
ing blocks for applications and resource contracts will re-
sult in a software architecture that is extremely suited for



Histo
ry

Agenda

mon

tue

wed

thu

fri

sat

sun

mon

current point in time

Dynamic Task Model

Figure 1: Dynamic task scheduling

enabling flexible pervasive computing solutions. The pres-
ence of context information regarding resource availability
is paramount, since the automated behavior of pervasive ap-
plications will be driven partly by resource contracts.

4. TASK-DRIVEN COMPUTING
Software envisioned by pervasive computing should sup-

port the user and his tasks while avoiding user-device inter-
action as much as possible. This requires the software to be
intelligent in the sense that its proactive behavior tries to
avoid superfluous distraction of the user. And therefore, it
needs detailed knowledge about the goals of the user’s task.

Task models [3] can provide useful information about the
different tasks and the order in which they need to be ex-
ecuted. They are usually represented in a tree structure in
which a task is split up in several subtasks. Traditionally,
task models are defined at design-time to specify the steps
that have to be executed to realize a goal. Such models,
however, do not represent daily real world situations. In
reality, there is no seamless course of events that helps a
user to realize a goal. Many seams are at the origin of the
unpredictable nature of our daily lives. Pervasive systems
should know how to deal with this unpredictable factor.

Dynamic task models could take real world events into ac-
count by interpreting context information. This would allow
for the content of a task to evolve according to the user’s
context. In addition, the task schedule has to be continu-
ously adjusted to reflect the agenda of the user. Figure 1
illustrates this idea. The dynamic taks model is mapped to
the agenda of the user, but this mapping may evolve when-
ever new evolutions in the course of events require it.

As a task model defines ”what should be done” and
”when”, it is a good starting point for composing a deploy-
ment plan. Such plan specifies which software components
have to be loaded and how they should be interconnected.
This plan should follow the evolutions in the schedule of the
task model so that the right software is available at all times.
This schedule should aim at achieving continuity from the
user’s viewpoint, even if task support suddenly fails. Task
centered graceful degradation involves smoothly switching
to another task if the current task can not be continued
(e.g. a required resource drops away, the task lacks certain
input, . . . ).

The deployment plan specifies components that are re-
quired to realize a task and also optional components. These
optional components make the task easier, but the task does
not fail if they are not available. It is up to the middleware
to decide whether to instantiate them or not (e.g. based on
resource availability). An example is a spellchecker helping
a user to write a tekst. Though it is not required, it may
help the user a lot. The spellchecker may be instantiated
in a resource-rich environment and left out in a constrained
computing environment. Figure 2 illustrates the four views:
the task model has a mapping onto deployment plan, the
deployment plan leads to resource contracts when the re-
quest for instantiation is processed, and on acceptance of all
contracts, the composition is instantiated (representing the
application that is used to perform the user task).

5. ADAPTATION
In a pervasive computing environment resource manage-

ment is very important since the computing space consists
of a mixture of mobile devices and devices embedded in our
daily environment. Optimized resource provision can be re-
alized in a distributed way by using foraging and adaptation
mechanisms. Considering the nature of the adaptation, we
distinguish two types of adaptations: external adaptations
(adaptations driven by forces external to the application)
and internal adaptations (adaptations driven by the appli-
cation itself).

5.1 External Adaptations
External adaptations are performed by interfering with

the runtime instance of an application without having effects
on the application’s correct1 execution. In other words, the
adaptation should be transparent for the application. Usu-
ally only middleware can execute this type of adaptation
since only middleware has access deep down to the applica-
tion’s internal structures.

For a component-oriented application, its nature of fine-
grained delineated software entities provides what is needed
for doing application adaptations. In these applications,
there are two commonly used external adaptations: com-
ponent reconfiguration and component replacement. Recon-
figuration of components is possible when the components
provide a special interface that allows for certain changes
in the components configuration (such as changing a buffer
size, changing a frame rate, . . . ). Examples in literature
are [4, 5, 6]. Component replacement is a more general used
technique (e.g. live update mechanisms). One component
is swapped by another in an atomic action. It transfers the
component’s internal state and execution to the new com-
ponent without stopping the application. The goal in both
cases of the adaptation is to change the behavior of the ap-
plication with respect to its resource use. This means that
contracts will be renegotiated resulting in either an increase
or decrease in the use of certain resources. As a consequence,
the functional behavior of the application changes as well,
but without crippling its ability to support the user’s task.

A third type of external adaptation is component relo-
cation. This is a foraging technique that forages external
resources such as memory and CPU cycles by moving a com-
ponent from one host to another. By instantiating the com-
ponent on the other host and removing it on the local host,

1According to its contracts



Dynamic Task Model Component Deployment Description

Resource Contract viewRuntime Instances

Consistency

Figure 2: Task model is consistent with runtime
component instances

resources are freed locally and consumed remotely instead.
An disadvantage of this technique is that it usually increases
bandwidth use between the hosts involved and the tradeoff
must be considered.

Component relocation involves a resource allocation prob-
lem, for which several constraint-solving solutions have al-
ready been worked out. An appropriate solution would be
one that works in a pervasive context. This means that
the algorithms working out a new component configuration
should find a solution in a reasonable time. One approach
could be using an incremental constraint solver [7], because
relocation means working out a new (and better) solution
starting from a given solution (configuration). The infor-
mation the relocation algorithm needs can be acquired two
sources. On one hand from context information (remote re-
source availability) and on the other hand from the resource
contract view2 of a component composition (see figure 2).

5.2 Internal Adaptations
Internal adaptations are adaptations performed by the ap-

plication itself. In a pervasive context, this type of adapta-
tion is mainly driven by the user’s personal context, and
especially the context that is related to the progress of the
user’s current task. The goal of the adaptations remains the
same: handling resources economically while still supporting
the user as good as possible. The key idea here is that user
support changes through time (because of the evolving task
of the user) and thus the application does not need to offer
all of its functionality at the time. The evolution of the ap-
plication through time is guided by context and knowledge
about the user’s task. This means that parts of an appli-
cation that are not needed at the moment can be removed,
which saves resources. Optional components, for example,
can be instantiated only when a user is in a resource-rich
environment.

One approach to solve task management in pervasive en-
vironments has been described in [8]. This paper focuses
on guaranteeing task availability and proposes a contract-
driven solution involving a design methodology supported
by middleware that allows for adaptable task behavior at
runtime.

2which is a runtime instance of a resource meta model

5.3 Pervasive Adaptations
Coordination between internal and external adaptation

in pervasive systems is an interesting challenge that could
result in extremely flexible computing spaces where robust
user support is the ultimate goal. Several schemes for co-
operation of external and internal adaptations are possi-
ble. External forces may request an internal adaptation
(e.g. middleware wants to instantiate a additional appli-
cation and needs more free resources), internal adaptations
may be realized in combination with an external adaptation
(e.g. more functionality is added by the application but the
middleware can only instantiate the component remotely).

6. IN CONCLUSION
In pervasive computing systems the tradeoff between func-

tionality and resource use must be considered whenever re-
source availability changes. This states the importance of
resource information being available as context. Therefore,
middleware must be able to discover, find, process and in-
terpret resource information to perform the described mech-
anisms. Resource contracts are the means for managing re-
sources in a predictable way in a distributed environment.
Component-oriented approaches deliver applications with a
fine-grained composition structure which ensures the flexible
nature required for the presented adaptation mechanisms. A
task-centered approach ensures that applications move along
with the user’s activities.

7. REFERENCES
[1] Mark Weiser. The computer for the twenty-first

century. Scientific American, pages 94–10, Sept 1991.

[2] David Garlan, Dan Siewiorek, Asim Smailagic, and
Peter Steenkiste. Project aura: Toward distraction-free
pervasive computing. IEEE Pervasive computing,
1(2):22–31, April-June 2002.

[3] Jan Van den Bergh and Karin Coninx. Contextual
concurtasktrees: Integrating dynamic contexts in task
based design. In Second IEEE Conference on Pervasive
Computing and Communications Workshops, pages
13–17, Orlando, USA, 14 Mar 2004.

[4] Vanegas R, Zinky JA, and Loyall JP. Quo’s runtime
support for quality of service in distributed objects. In
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing, The Lake District, England, Sept 1998.

[5] Loyall JP, Schantz RE, Zinky JA, and Bakken DE.
Specifying and measuring quality of service in
distributed object systems. In Proceedings of the First
International Symposium on Object-Oriented Real-Time
Distributed Computing, Kyoto, Japan, 20-22 Apr 1998.

[6] David Pierre-Charles and Thomas Ledoux. Towards a
framework for self-adaptive component-based
applications. In Proceedings DAIS’04, volume 2893 of
LNCS, pages 1–14, Paris, France, Nov 19-21 2003.

[7] Greg J. Badros, Alan Borning, and Peter J. Stuckey.
The cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer Human
Interaction, 8(4):267–306, December 2001.

[8] Zhenyu Wang and David Garlan. Task-driven
computing. Technical Report CMU-CS-00-154, School
of Computer Science, CMU, Pittsburgh, USA, May
2000.


