
Foundations of Sequence Analysis

Lecture notes for a course
in the Winter Semester 2000/2001

Stefan Kurtz

July 18, 2002





Contents

1 Overview 1

1.1 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems on Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basic Notions and Definitions 3

3 String Comparisons 5

3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The Edit Distance Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 The Number of Alignments . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 The Edit Distance Problem . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 A Dynamic Programming Algorithm . . . . . . . . . . . . . . . . 11
3.2.4 Fast Computation of the Simple Levenshtein Distance . . . . . 16
3.2.5 Fast Computation of the Unit Edit Distance . . . . . . . . . . . 21

3.3 Local Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Advanced Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 The Maximal Matches Model . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 The q-Gram Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 The Fasta Similarity Model . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 The BlastP Similarity Model . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Suffix Trees 35

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The Concept of Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 An Informal Introduction to Suffix Trees . . . . . . . . . . . . . . . . . 36
4.4 A Formal Introduction to Suffix Trees . . . . . . . . . . . . . . . . . . 37
4.5 The Role of the Sentinel Character . . . . . . . . . . . . . . . . . . . . 38
4.6 The Size of Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Suffix Tree Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 39

I



Contents

4.7.1 The Write Only Top Down Suffix Tree Construction . . . . . . . 39
4.7.2 The Linear Time Online Construction of Ukkonen . . . . . . . 41
4.7.3 The Linear Time Construction of McCreight . . . . . . . . . . . 47

4.8 Representing Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Suffix Tree Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9.1 Searching for Exact Patterns . . . . . . . . . . . . . . . . . . . . 51
4.9.2 Minimal Unique Substrings . . . . . . . . . . . . . . . . . . . . . 52
4.9.3 Maximal Unique Matches . . . . . . . . . . . . . . . . . . . . . . 53
4.9.4 Maximal Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Approximate String Matching 59
5.1 Sellers Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Improving Sellers Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Ukkonen’s Cutoff Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Ukkonen’s Column DFA . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Agrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.1 Exact String Matching . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.2 Allowing for Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Further Reading 69

Bibliography 71

II



CHAPTER 1

Overview

1.1 Application Areas

Sequences or equivalently texts, strings, or words are a natural way to represent
information. We give a short list of areas where sequences to be analyzed come
from:

� molecular biology

DNA �����������
	�����	��
����� 4 nucleotides, length: ���������������
RNA �����������
	�	������������ 4 nucleotides, length: ������ ��������
proteins ������!�"�#%$&"�#%'(!�"�)+*,����� 20 aminoacids, length: ������ ��������

! = Leucin
" = Isoleucin
# = Serin
$ = Alanin etc.

� phonetic spelling:

english 40 phoneme
japanese 113 “morae” (syllables)

� spoken language, birdsong: discretized measurements, multidimensional
(frequency, energy) on a dynamic time scale

� graphics: -/.103240�576 vectors with .103240�598;: <
0�=?>?>�@ for the intensity of the red,
green, and blue color of a pixel.

� text processing: sequences in ASCII format
(comparison of files, search in index, spelling correction)

� information transmission: bitsequences, blockcodes in noisy channels
substitution/synchronisation errors — decoding and correction

1



1 Overview

Usually sequences encoding experimental or natural information are almost
always inexact. Thus similar sequences have in a lot of cases the same or similar
meaning or effect. Thus a main part of this lecture will be devoted to notions of
similarity, and we will show how to handle these notions algorithmically.

1.2 Problems on Strings

Here is a short list of problems occurring on strings:

1. sequence comparison: compare two sequences and show the similarities
and differences.

2. string matching: find all positions in a text where a pattern string occurs.

3. regular expression matching: find all positions in a text where a regular
expression matches.

4. multiple string matching: find all positions in a text where one of the strings
in a given set matches.

5. approximate string matching: find all positions in a text where a string
matches, allowing for errors in the match.

6. dictionary matching: for a given word � find the word � in a given set of
words with maximal similarity to � .

7. text compression: find long duplicated substrings in a given text.

8. text compression: sort all suffixes of a given string lexicographically.

9. structural pattern matching: find regularities in sequences, like repeats,
tandems ��� , palindromes, or unique subsequences.

1.3 Topics

Section 2 introduces the datatype “sequence”. Section 3 considers different no-
tions of similarity (edit distance, maximal matches distance, � -gram-distance)
and methods to compute the similarity of two sequences according to these no-
tions. Section 4 will introduce an index structure, called suffix tree, which stores
all substrings of a given string very efficiently. We consider how to build a suffix
tree and show several applications. Section 5 will be devoted to approximative
string matching, i.e. finding occurrences of patterns, allowing for errors.

2



CHAPTER 2

Basic Notions and Definitions

Let � be a set. ����� denotes the number of elements in � and � -��
6 refers to the set
of subsets of � .�

denotes the set of positive integers including < . �	� denotes the set of posi-
tive reals including < . The symbols 
 0�� 0�
 0�� 0���0�� 0���0 ��0 . refer to integers if not stated
otherwise. � ��� is the absolute value of � and ����
 denotes the product of � and 
 .

Let � be a finite set, the alphabet. The elements of � are characters. Strings
are written by juxtaposition of characters. In particular, � denotes the empty
string. The set ��� of strings over � is defined by

� ����� "!$# �
 

where � # �&% �(' and �  �*) �&%,+ �-� + 8.� 0 � 8/�  ' . �0� denotes � �21 % �3' . The
symbols + 0�5�0�4�0�5 refer to characters and 6 0�7 0�8�0�9 0 � 0 � 0�: 0�; 0�< to strings, unless stated
otherwise.

Example 1 1. ASCII: 8-bit characters, encoding as defined by the ASCII stan-
dard

2. %,= 0?>?>?>�0A@ 0 + 0?>?>?>�0�< 0 <
0?>?>?>�0�B�0�' : alphanumeric subset of the ASCII-set

3. %,= 0?>?>?>�0A@C' 1 %,D 0�E 0AF 0�G�0�H 0A@I' : letter code for 20 aminoacids

4. %,+ 0�4103240�8A' : DNA-alphabet (Adenin, Cytosin, Guanin, Thymin)

5. %,J 0�K�' : purine/pyrimidine-alphabet

6. %,L 0AFM' : hydrophile/hydrophobe nucleotides/aminoacids

7. %ON 0?PC' : positive/negative electrical charge Q

3



2 Basic Notions and Definitions

These examples show that the size of the alphabets can be quite different.
The alphabet size is an important parameter when determining the efficiency of
several algorithms.

The length of a string 7 , denoted by � 7 � , is the number of characters in 7 . We
make no distinction between a character and a string of length one. If 7 � 9 � �
for some (possibly empty) strings 9 0 � and � , then

� 9 is a prefix of 7 ,
� � is a substring of 7 , and

� � is a suffix of 7 .
A prefix or suffix of 7 is proper if it is different from 7 . A suffix of 7 is nested if

it occurs more than once in 7 . A set � of strings is prefix-closed if 9 8 � whenever
9 + 8 � . A set � of strings is suffix-closed if 9&8 � whenever + 9�8 � . A substring
� of 7 is right-branching if there are different characters + and 5 such that � + and
��5 are substrings of 7 . Let � � < . A � -gram of 7 is a substring of 7 of length � .
� -grams are sometimes called � -tuples.

7  is the � -th character of 7 . That is, if � 7 � � � , then 7 � 7 ) >?>?>A7�� where 7  8 � .
7 � >?>?>A7 ) , denoted by 7�� ) , is the reverse of 7 � 7 ) >?>?>A7 � . If ��� 
 , then 7  >?>?>A7	� is
the substring of 7 beginning with the � -th character and ending with the 
 -th
character. If � � 
 , then 7  >?>?>A7	� is the empty string. A string � begins at position �
and ends at position 
 in 7 if 7  >?>?>A7
� � � .

4



CHAPTER 3

String Comparisons

The comparison of strings is an important operation applied in several fields,
such as molecular biology, speech recognition, computer science, and coding
theory. The most important model for string comparison is the model of edit
distance. It measures the distance between strings in terms of edit operations,
that is, deletions, insertions, and replacements of single characters. Two strings
are compared by determining a sequence of edit operations that converts one
string into the other and minimizes the sum of the operations’ costs. Such a
sequence can be computed in time proportional to the product of the lengths of
the two strings, using the technique of dynamic programming.

The edit distance is a measure of local similarities in which matches between
substrings are highly dependent on their relative positions in the strings. There
are situations where this property is not desired. Suppose one wants to consider
strings as similar which differ only by an exchange of large substrings. This
occurs, for instance, if a text file has been created from another by a block move
operation. In such a case, the edit distance model should not be used since it
gives a large edit distance. There are two other string comparison models that
are more appropriate for this case: The maximal matches model and the � -gram
model.

The idea of the maximal matches model is to count the minimal number of
occurrences of characters in one string such that if these characters are “crossed
out”, the remaining substrings are all substrings of the other string. Thus, strings
with long common substrings have a small distance. The idea of the � -gram
model is to count the number of occurrences of different � -grams in the two
strings. Thus, strings with many common � -grams have a small distance. A very
interesting aspect is that the maximal matches distance and the � -gram distance
of two strings can be computed in time proportional to the sum of the lengths of
the two strings.

When comparing biological sequences, the edit distance computation is often

5



3 String Comparisons

to expensive, while the order of the sequence characters is still important. There-
fore heuristics have been developed, which approximate the edit distance model.
Two of these heuristics are described in Sections 3.7 and 3.8.

In the following, we first consider the issue of string comparison in general.
Then we describe the three models of string comparison in details and give algo-
rithm to compute the respective distances. For the rest of this section let 9 and �
be strings of length � and � , respectively.

3.1 The Problem

The trivial method to compare two sequences is to compare them character by
character: 9 and � are equal if and only if � 9 � � � � � and 9  � �  for ��8 :�� 0�� @ .
However, this comparison model is too restrictive for several problems:

� searching for a name of which the spelling is not exactly known

� finding diffracted forms of a word

� accounting for typing errors

� tolerating error prone experimental measurements

� allowing for ambiguities in the genetic code, e.g. 2 4 9 , 2 4�4 , 2 4 + , and 2 4�2 all
code for alanin.

� searching for a protein with unknown function, a “similar” protein sequence,
whose biological function is known.

To be more general one has to define a function ���*� ��� � ��� � , which deliv-
ers a qualitative measure of distance/similarity. Note that there is a duality in
the notions “distance” and “similarity”: the smaller the distance, the larger the
similarity.

Let 	 be a set and �
��	 � 	 � � � be a function. � is a metric on 	 if for all
: 0�; 0�<�8�	 the following properties hold:

Zero Property ��- : 0�; 6 � <�
�� : � ;
Symmetry ��- : 0�; 6 � ��- ; 0�: 6
Triangle Inequality ��- : 0�; 6 ����- : 0�< 6 N ��- < 0�; 6A>

If the symmetry and the triangle inequality hold, and also

: � ;�����- : 0�; 6 � <
then � is a pseudo-metric on 	 .

Example 2 Let � be a finite subset of
�

. Suppose � � < and 	 � � � . Then we
define the following distance notions:

euclidian distance: ��- 9 0 � 6 �
���� ��
 �� )
- 9  P �  6��

6



3.2 The Edit Distance Model

block distance: ��- 9 0 �
6 �
��
 �� )

� 9  P �  �
hamming distance: ��- 9 0 �
6 � � % ��� � � � � ��0�9  �� �  ' � Q

These distance notions only make sense for sequences of the same length. The
distance notions we consider now are also defined for sequences of different
length.

3.2 The Edit Distance Model

The notion of edit operations is the key to the edit distance model.

Definition 1 An edit operation is a pair -�� 0�� 6 8 - � )�� % �3'16 � - � )�� % �3'16 1 % - � 0��16�' . Q� and � denote strings of length � � . However, if � �� � and � �� � , then the edit
operation -���0�� 6 is identified with a pair of characters.

An edit operation -�� 0���6 is usually written as � � � . This reflects the operational
view which considers edit operations as rewrite rules transforming a source string
into a target string, step by step. In particular, there are three kinds of edit
operations:

� � � � denotes the deletion of the character � ,

� � � � denotes the insertion of the character � ,

� � � � denotes the replacement of the character � by the character � .

Notice that � � � is not an edit operation. Insertions and deletions are sometimes
referred to collectively as indels.

Sometimes string comparison just means to measure how different strings
are. Often it is additionally of interest to analyze the total difference between two
strings into a collection of individual elementary differences. The most important
mode of such analyses is an alignment of the strings.

Definition 2 An alignment = of 9 and � is a sequence

-�� ) � � ) 0?>?>?> 0���	 � �
	 6
of edit operations such that 9 � � ) >?>?>���	 and � � � ) >?>?>��
	 . Q

Note that the unique alignment of � and � is the empty alignment, that is, the
empty sequence of edit operations. An alignment is usually written by placing
the characters of the two aligned strings on different lines, with inserted dashes
denoting � . In such a representation, every column represents an edit operation.

Example 3 The alignment = � - � � 540�5 � 5�0�4 � + 0�� � 5 0 + � + 0�4 � � 0�5 � 5
6 of the
sequences 5 4 + 4�5 and 5�5 + 5 + 5 is written as follows:�

- 5 4 - + 4 5
5 5 + 5 + - 5�


Q

7



3 String Comparisons

Example 4 Five alignments of 9 � 2 + 5�
 and � � 2 4�5 
 5
�
) �

�
2 - + 5 - 
 -
2 4 - - 5 
 5 
 �

� �
�
2 - + - 5 
 -
2 4 - 5 - 
,5 
 ��� �

�
2 - - + 5 
 -
2 4 5 - - 
,5 


��� �
�
2 + - - 5 

2 4 5 
 5 - 
 ��� �

�
2 + 5	
 -
2 4 5 
,5 
 Q

Observation 1 Let = � -�� ) � � ) 0?>?>?>�0�� 	 � �
	 6 be an alignment of 9 and � . Then
� N ��� 
��	��

� % � 0�� ' .
Proof:

1. The alignment � 9 ) 9 � >?>?>(9�� - - >?>?> -
- - >?>?> - � ) � � >?>?> � � 


of 9 and � is of maximal length. Its length is � N � . Hence � N ��� 
 .
2. Let ��� � . Then � 9 ) 9 � >?>?>(9 � 9 � �*) >?>?>(9��

� ) � � >?>?> � � - >?>?> - 

is an alignment of 9 and � of minimal length. Hence 
�� � � ��

� % � 0�� ' .

3. The case ��� � is similar to case 2. Q

3.2.1 The Number of Alignments

For all � 0�
�� < let = � � 2 ��7 - � 0�
�6 be the number of alignments of two fixed sequences
of length � and 
 . The following holds:

= � � 2 ��7�- <
0 < 6 � �
= � � 2 ��7�- � N � 0 < 6 � �
= � � 2 ��7�- <
0�� N � 6 � �
= � � 2 ��7�- � N � 0�� N � 6 � = � � 2 ��7 - � 0�� N � 6 N = �"� 2 ��7 - � N � 0�� 6 N = �"� 2 ��7 - � 0�� 6

= � � 2 ��7�- ��0�� 6 can be approximated by the Stanton-Cowan-Numbers:

= �"� 2 ��7 - ��0�� 6�� � � N�� =�� � � �*) � � �
For � � �7<?<?< we have = �"� 2 ��7 - ��0�� 6�� � � N � = � � #�# ) � � �7<?<?< � �7<������ � � �!�!�
The order of insertions and deletions immediately following each other is not

important. For example, the two alignments� + -
- 5 
 and

�
- +
5 - 
 (3.1)

should be considered equivalent. This results in the notion of subsequences:

8



3.2 The Edit Distance Model

Definition 3 A subsequence of 9 and � is a sequence of index pairs

- � ) 0�
 ) 6�0?>?>?>�0 - ��� 0�
�� 6
such that � � � ) � >?>?>�� � � � � and

� � 
 ) � >?>?> � 
 � � � > Q
The index pair - � 	
0�
 	 6 stands for the replacement 9  �� � � � � . All characters

in 9 and � not occurring in a subsequence are considered to be deleted in 9 or
� . For example, the empty subsequence stands for the alignments in (3.1). In
a graphical representation, the index pairs of the subsequence appear as lines
connecting the characters in the subsequence.

Example 5 The following subsequences of 9 � 2 + 5 
 and � � 2 4�5 
45 represent the
alignments of Example 4. In particular,

�
) represents

�
) ,

�
� , and

� �
, while

�
�

represents
���

, and
� �

represents
� �

.

�
) �

��
� 2 + 5 

� �
2 425 
%5

	�

� �

� �
��
� 2 + 5 

� �
2 4 5 
 5

	�

� � � �

��
� 2 + 52
� � � �
2 4 5 
 5

	�

� Q

Observation 2 Let � 9 5�7�
 �37�- � 0�� 6 be the number of subsequences of two fixed se-
quences of length � and � . Then

� 9 5�7�
 �37 - � 0�� 6 ��������� ��� ����� � #
� �
. 
 �

� �
. 


Proof: For each . 8 : <
0������ % � 0�� '7@ we have: for the ordered selection of the indices
� ) 0?>?>?>�0�� � there are � � � � possibilities; for the ordered selection of the indices 
 ) 0?>?>?> 0�
 �
there are � � � � possibilities. All these possibilities have to be combined. Q
� 9 5�7!
 �37 - ��0�� 6 can be approximated by = � � -#"C� � �%$ 6 � ) , e.g. � 9 5 7�
 �37�- �7<?<?<
0 �7<?<?< 6��
�7< � #�# .
3.2.2 The Edit Distance Problem

The notion of optimal alignment requires some scoring or optimization criterion.
This is given by a cost function.

Definition 4 A cost function & assigns to each edit operation � � � , � �� � a
positive real cost &�-�� � ��6 . The cost &�-�� � ��6 of an edit operation � � � is 0. If&�-�� � � 6 � & - � � ��6 for all edit operations � � � and � � � , then & is symmetric. If&�-�� � � 6 � � , for all edit operations � � � , + �� 5 then & is the unit cost function. & is
extended to alignments in a straightforward way: The cost & - = 6 of an alignment
= � -�� ) � � ) 0?>?>?> 0���	 � �
	 6 is the sum of the costs of the edit operations = consists
of. More precisely,

&�- = 6 � 	�
 �� )

& -��  � �  6A> Q
9



3 String Comparisons

Example 6

1. Let &�-�� � ��6 ��� < if ��0�� 8 � and � � �
� otherwise

Then & is the unit cost.

2. Let

& -�� � � 6 ����� ��
< if ��0��(8 � and � � �
� else if ��0��(8 � and � �� �� otherwise

Then & is the hamming cost.

3. Let

&�-�� � � 6 � ��� ��
< if ��0��(8 � and � � �
= else if � 0�� 8 � and � �� �
� otherwise

Then & is the LCS cost. We will later see that this cost function is related to
the LCS problem, hence the name.

4. Suppose & is given by the following table:& � A C G T
� 3 3 3 3
A 3 0 2 1 2
C 3 2 0 2 1
G 3 1 2 0 2
T 3 2 1 2 0

Then & is the transversion/transition cost function. Bases A and G are
called purine, and bases C and T are called pyrimidine. The transver-
sion/transition cost function reflects the biological fact that a purine/purine
and a pyrimidine/pyrimidine replacement is much more likely to occur than
a purine/pyrimidine replacement. Moreover, it takes into account that a
deletion or an insertion of a base occurs more seldom.

5. The following tables shows costs for replacements of amino acids, as sug-
gested by Willy Taylor. For a cost function we would have to define the indel
costs:

A R N D C Q E G H I L K M F P S T W Y V
A 0 14 7 9 20 9 8 7 12 13 17 11 14 24 7 6 4 32 23 11
R 14 0 11 15 26 11 14 17 11 18 19 7 16 25 13 12 13 25 24 18
N 7 11 0 6 23 5 6 10 7 16 19 7 16 25 10 7 7 30 23 15
D 9 15 6 0 25 6 3 9 11 19 22 10 19 29 11 11 10 34 27 17
C 20 26 23 25 0 26 25 21 25 22 26 25 26 26 22 20 21 34 22 21
Q 9 11 5 6 26 0 5 12 7 17 20 8 16 27 10 11 10 32 26 16
E 8 14 6 3 25 5 0 9 10 17 21 10 17 28 11 10 9 34 26 16
G 7 17 10 9 21 12 9 0 15 17 21 13 18 27 10 9 9 33 26 15
H 12 11 7 11 25 7 10 15 0 17 19 10 17 24 13 11 11 30 21 16
I 13 18 16 19 22 17 17 17 17 0 9 17 8 17 16 14 12 31 18 4
L 17 19 19 22 26 20 21 21 19 9 0 19 7 14 20 19 17 27 18 10
K 11 7 7 10 25 8 10 13 10 17 19 0 15 26 11 10 10 29 25 16
M 14 16 16 19 26 16 17 18 17 8 7 15 0 18 17 16 13 29 20 8
F 24 25 25 29 26 27 28 27 24 17 14 26 18 0 27 24 23 24 8 19
P 7 13 10 11 22 10 11 10 13 16 20 11 17 27 0 9 8 32 26 14
S 6 12 7 11 20 11 10 9 11 14 19 10 16 24 9 0 5 29 22 13
T 4 13 7 10 21 10 9 9 11 12 17 10 13 23 8 5 0 31 22 10
W 32 25 30 34 34 32 34 33 30 31 27 29 29 24 32 29 31 0 25 32
Y 23 24 23 27 22 26 26 26 21 18 18 25 20 8 26 22 22 25 0 20
V 11 18 15 17 21 16 16 15 16 4 10 16 8 19 14 13 10 32 20 0

10



3.2 The Edit Distance Model

Definition 5 The edit distance of 9 and � , denoted by 
 5(� 7 8�� - 9 0 � 6 , is the minimum
possible cost of an alignment of 9 and � . That is,
 5 � 7 8��?- 9 0 � 6 � � ��� % &�- = 6�� = is an alignment of 9 and � '(>
An alignment = of 9 and � is optimal if &�- = 6 � 
 5(� 7 8��1- 9 0 �
6 . If & is the unit cost
function, then 
 5 � 7,8��1- 9 0 �
6 is the unit edit distance between 9 and � . Q

By definition, & satisfies the zero property. If & is symmetric and satisfies the
triangle inequality, then 
 5 � 7 8�� is a metric. Note that there can be more than
one optimal alignment. The unit edit distance is sometimes called Levenshtein
distance. The following observation states a simple property of the edit distance.

Observation 3 For any cost function & and any two strings 9 0 � 8 � � the following
equation holds: 
,5(� 7,8��?- 9 0 �
6 � 
,5(� 7,8�� - 9 � ) 0 � � ) 6
Proof: Let = � -�� ) � � ) 0?>?>?> 0�� 	 � � 	 6 be an optimal alignment of 9 and � . Obvi-
ously, = � ) � -�� 	 � �
	 0?>?>?> 0�� ) � � ) 6 is an alignment of 9 � ) and � � ) . Now suppose
there is an alignment H of 9 � ) and � � ) such that & - H 6 � &�- = � ) 6 . That is, = � ) is
not the optimal alignment of 9 � ) and � � ) . Now H � ) is an alignment of 9 and �
and we have &�- H � ) 6 � & - H 6 ��& - = � ) 6 � & - = 6 . Thus = is not an optimal alignment.
This is a contradiction. Hence our assumption above was wrong, i.e. there is no
alignment H of 9 � ) and � � ) with & - H 6 � &�- = � ) 6 . As a consequence


,5(� 7,8��1- 9 0 �
6 � & - = 6 � &�- = � ) 6 � 
 5 � 7,8��?- 9 � ) 0 � � ) 6 Q
Definition 6 The edit distance problem is to compute the edit distance and all
optimal alignments. Q

By specifying the cost functions, we obtain special forms of edit distances:

Definition 7

� If & is the unit cost, then 
,5(� 7,8�� is the unit edit distance or Levenshtein dis-
tance.

� If & is the hamming cost, then 
,5(� 7,8�� is the hamming distance.

� If & is the LCS cost, then 
 5 � 7,8�� is the simple Levenshtein distance. Q

3.2.3 A Dynamic Programming Algorithm

Suppose a cost function & is given and 9 0 � 8 � � are fixed but arbitrary. We
will now develop some recursive equation for 
 5 � 7 8�� - 9 0 � 6 from which we derive a
dynamic programming algorithm.

Consider an optimal alignment

= �
� � ) � � >?>?> � 	� ) � � >?>?> �
	 


of 9 � 9 ) >?>?>�9�� and � � � ) >?>?> � � . Then &�- = 6 � 
,5(� 7,8�� - 9 0 �
6 .
11



3 String Comparisons

� Case (1): 9 � � . Since 9 � � ) � � >?>?>�� 	 , we conclude �  � � for all ��8 :�� 0�

@ .
Hence 
 � � , and � � � ��� for 
 8 :�� 0�

@ . Thus the cost of = is & - = 6 ��� �� � ) &�- � �� � 6 .

� Case (2): � � � . Since � � � ) � � >?>?>��
	 , we conclude � � � � for all 
 8 :�� 0�

@ .
Hence 
 � � , and �  � 9  for �
8 :�� 0�
 @ . Thus the cost of = is &�- = 6 ��� � �� ) &�-��  ��16 .

� Case (3): 9 �� � and �
�� � . Then 9 � 9�� + and � � ��� 5 for some 9�� 0 ����8 � � and

some + 0�5�8 � . Now split = into an alignment = � (consisting of the first 
 P �
edit operations) and the 
 th edit operation:

= �
�
= � ��	�
	 


– Case (3a): ��	 � + and � 	 � � . Then = � is an alignment of 9 � and � .
Suppose that = � is not optimal. Then &�- = � 6 � 
,5(� 7,8�� - 9 � 0 � 6 . Now
 5(� 7 8��1- 9 0 �
6 � & - = 6 � &�- = � 6 N &�-���	 � �
	�6 � 
 5 � 7 8��?- 9 � 0 �
6 N &�- + � � 6 � 
 5 � 7 8��?- 9 0 � 6
This is a contradiction. Hence = � is an optimal alignment of 9�� and � ,
and 
,5(� 7,8��1- 9 0 �
6 � & - = 6 � 
 5(� 7 8��1- 9 � 0 �
6 N &�- + � �16 . The following case (3b)
handles insertions and case (3c) handles replacements in an analogous
way.

– Case (3b): � 	 � � and � 	 � 5 . Then = � is an alignment of 9 and � � .
Suppose that = � is not optimal. Then &�- = � 6 � 
,5(� 7,8�� - 9 0 ��� 6 . Now
 5(� 7 8��1- 9 0 �
6 � & - = 6 � &�- = � 6 N & -���	 � �
	 6 � 
 5 � 7 8�� - 9 0 � � 6 N &�- � � 576 � 
 5 � 7 8��?- 9 0 � 6
This is a contradiction. Hence the = � is an optimal alignment of 9 and
� � . Hence 
 5 � 7 8��1- 9 0 �
6 � & - = 6 � 
,5(� 7,8��1- 9 0 � � 6 N &�- � � 576 .

– Case (3c): � 	 � + and � 	 � 5 . Then = � is an alignment of 9 � and � � .
Suppose that = � is not optimal. Then &�- = � 6 � 
,5(� 7,8�� - 9�� 0 ��� 6 . Now
 5(� 7 8��1- 9 0 �
6 � & - = 6 � &�- = � 6 N &�-���	 � �
	�6 � 
 5 � 7 8��?- 9 � 0 � � 6 N & - + � 576 � 
 5 � 7 8��?- 9 0 � 6
This is a contradiction. Hence = � is an optimal alignment of 9�� and ��� ,
and 
 5 � 7 8�� - 9 0 � 6 � &�- = 6 � 
,5(� 7,8�� - 9 � 0 � � 6 N & - + � 576 .

Since all three cases (3a), (3b), and (3c) may occur, we have to compute the
minimum over all three cases. Altogether, we get the following system of
recursive equations:


 5 � 7,8�� - � 0�� 6 � <
 5 � 7,8�� - � 0 � � 5 6 � 
 5 � 7,8�� - � 0 � � 6 N & - � � 576
 5 � 7,8�� - 9 � + 0��16 � 
 5 � 7,8�� - 9 � 0��16 N & - + � � 6


 5 � 7,8�� - 9�� + 0 ��� 576 � � ��� ������ �����

,5(� 7,8��1- 9 � + 0 � � 6 N &�- � � 5 6
,5(� 7,8��1- 9��/0 ��� 5 6 N & - + � �16
,5(� 7,8��1- 9��/0 ��� 6 N & - + � 576

	 ����
�����
12



3.2 The Edit Distance Model

Of course, the direct implementation of 
 5 � 7 8�� as a recursive function would be
inefficient, since the same function calls might appear in different contexts. How-
ever, note that 
 5 � 7 8��?- 9 � 0 � � 6 is evaluated for all pairs of prefixes 9 � of 9 and � � of
� . So the idea is to tabulate these intermediate results. That is, we compute an
- � N � 6 � - � N � 6 matrix � � defined as follows:

� � - � 0�
 6 � 
 5 � 7,8�� - 9 ) >?>?>�9  0 � ) >?>?> � ��6
for all � 8 : <
0�� @ and 
%8 : <
0�� @ . Using the equations above, it is easy to prove that
the following recurrences hold:

� � - <
0 < 6 � < (3.2)

� � - � N � 0 < 6 � � �1- � 0 < 6 N &�- 9  �*) � �16 (3.3)

� � - <
0�
 N � 6 � � �1- <
0�
�6 N &�- � � � � �*) 6 (3.4)

� � - � N � 0�
 N � 6 � � ��� ��� ��
� �1- � 0�
 N � 6 N & - 9  �*) � �16
� �1- � N � 0�
 6 N & - � � ��� �*) 6
� �1- � 0�
�6 N &�- 9  �*) � � � �*) 6

	 �
�� (3.5)

By definition, � � - � 0�� 6 gives the edit distance of 9 and � . The values in � � are
computed in topological order, i.e. consistent with the data dependencies. The
following algorithm, for example, employs a computation column by column.

Algorithm DP Algorithm for the Edit Distance
Input: sequences 9 � 9 ) >?>?>�9�� and � � � ) >?>?> � �

cost function &
Output: 
,5(� 7,8�� - 9 0 � 6

� � - <
0 < 6 � � <
for � � � � to � do

� � - � 0 < 6 � � � �1- �*P � 0 < 6 N & - 9  � �16
for 
�� � � to � do

� � - <
0�
 6 � � � � - <
0�
MP � 6 N &�- � � ���?6
for � � � � to � do

� � - � 0�
 6 � � � � � ��� ��
� � - � 0�
IP � 6 N &�- � � ���?6
� � - � P � 0�
 6 N &�- 9  � � 6
� � - � P � 0�
 P � 6 N &�- 9  � � � 6

	 �
��
print � � - � 0�� 6

Example 7 Let 9 � 5 4 + 4�5 , � � 5 5 + 5 + 5 , and assume that & is the unit cost function.

13



3 String Comparisons

Then � � is as follows:

5 5 + 5 + 5
� �1- ��0�
 6 < � = � " > �

< < � = � " > �

5 � � � � = � " >
4 = = = = = � " >
+ � � � � = � � "
4 " " " " � � " "
5 > > " > " � " "

Hence the edit distance of 9 and � is 4. Q
Each entry in � � is computed in constant time. This leads to an F - � �?� 6 time

complexity. Note that the values in each column only depend on the values of
the previous column. Hence, if we only want to compute the edit distance, then
it suffices to store only two columns in each step of the algorithm. Hence, in
this case, the space requirement is F - � ��� % � 0�� '16 . The corresponding algorithm is
then also termed “distance-only algorithm” for computing the edit distance.

In molecular biology, the above algorithm is usually called “the dynamic pro-
gramming algorithm”. However, dynamic programming (DP, for short) is a general
programming paradigm. A problem can be solved by DP, if the following holds:

� optimal solutions to the problem can be derived from optimal solutions to
subproblems.

� the optimal solutions can efficiently be determined, if a table of solutions for
increasing subproblems are computed.

To completely solve the edit distance problem, we also have to compute the
optimal alignments. An optimal alignment is recovered by tracing back from the
entry � � - � 0�� 6 to an entry in its three-way minimum that yielded it, determining
which entry gave rise to that entry, and so on back to the entry � � - <
0 < 6 . This
requires saving the entire table, giving an algorithm that takes F - � �(� 6 space.
This backtracking algorithm can best be explained by giving a graph theoretic
formulation of the problem.

Definition 8 The edit graph ��- 9 0 � 6 of 9 and � is an edge labeled graph. The
nodes are the pairs - � 0�
�6 8 : <
0�� @ � : <
0�� @ . The edges are given as follows:

� For < � � � � P � 0 < � 
 � � there is a deletion edge - � 0�
�6������
	 �
� � - � N � 0�
�6 .
� For < � � � � 0 < � 
 � � P � there is an insertion edge - � 0�
 6 ����������	 � - ��0�
 N � 6 .
� For < � � � � P � 0 < � 
 � �	P � there is a replacement edge - � 0�
�6 ������	 �
������	 � - � N
� 0�
 N � 6 .

14



3.2 The Edit Distance Model

Figure 3.1: A Part of the Edit Graph ��- 9 0 �
6

��

�

� ��  �*) � � � �  �*) � � �*) �

�  � � � �  � � �*) �
�����
	 �
��� �
	

���
��� �
	

���
��� �
	

� ����	 �
������
	 �
�

Q
This is illustrated in Figure 3.1.
The central feature of ��- 9 0 �
6 is that each path from - � � 0�
 � 6 to - � 0�
�6 is labeled

by an alignment of 9  �� �*) >?>?>�9  and � � � �*) >?>?> � � , and a different path is labeled by
a different alignment. An edge - � � 0�
 � 6 �

�
�

� - � 0�
 6 is minimizing if � �1- � 0�
�6 equals
� �1- � � 0�
 � 6 N &�-�� � � 6 . A minimizing path is any path from - <
0 < 6 to - � 0�� 6 that consists
of minimizing edges only. In this framework, the edit distance problem means
to enumerate the minimizing paths in ��- 9 0 �
6 . This is done by starting at node
- � 0�� 6 and tracing the minimizing edges back to node - <
0 < 6 . The back tracing pro-
cedure can be organized in such a way that each optimal alignment = of 9 and
� is computed in F -�� = � 6 time. To facilitate the backtracking, we store with each
entry � � - � 0�
 6 three bits. Each of these bits tells us whether an incoming edge into
- ��0�
 6 is minimizing. Thus we conclude:

Theorem 1 The edit distance problem for two sequences 9 of length � and �
of length � can be solved in F�- � �3� N < 6 time, where < is the total length of all
alignments of 9 and � . Q
Example 8 Let 9 � 5A4 + 4�5 and � � 5�5 + 5 + 5 . Suppose & is the unit cost function.
Then we have 
,5(� 7,8�� - 9 0 � 6 � " and there are the following optimal alignments of 9
and � .

- 5�4 + 4 - 5 5 4 + 4 - 5 - 5 4 - + 4 5 - 5 - 4 + 425 - 5�4 + - 4 5 5 4 + - 4 5 - 5 4 + 4 5
5 5 - + 5 + 5 5�5 + 5 + 5 5 5 + 5 + - 5 5 5 + 5 + - 5 5 5 - + 5 + 5 5�5 + 5 + 5 5 5 + 5 + 5

Figure 3.2 shows ��- 9 0 �
6 with all minimizing edges. The minimizing paths
are given by the thick edges. Each node is marked by the corresponding edit
distance. It is straightforward to read the optimal alignments of 9 and � from the
edit graph. Q

The space requirement for the above procedure is F - � � � 6 . Using a distance-
only algorithm as a sub-procedure, there are divide and conquer algorithms that
can determine each optimal alignment in F - � N � 6 space and F�- � � � 6 time. These
algorithms are very important, since space, not time, is often the limiting factor
when computing optimal alignments between large strings. However, we will not
consider them further.

15



3 String Comparisons

Figure 3.2: The Minimizing Edges and Paths in the Edit Graph ��- 5 4 + 4 540�5 5 + 5 + 5�6 .
Edge labels are not shown.

5

4

+

4

5

5 5 + 5 + 5# ) �
� � � �

) ) ) �
� � �

� � � �
� � �

� � �
�

� � �
� � � � � � �
� � � � � � �

��

��

�

�

�

��

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

�

�

�

�

�

�

3.2.4 Fast Computation of the Simple Levenshtein Distance

Recall that the simple Levenshtein distance is the edit distance given the cost
function & defined by

& -�� � � 6 ����� ��
< if � 0�� 8	� and � � �
= else if � 0�� 8 � and � �� �
� otherwise

Now consider the edit graph ��- 9 0 �
6 when computing the simple Levenshtein dis-
tance. Consider a minimizing edge from node - � 0�
�6 to node - � N � 0�
 N � 6 labeled
by the replacement operation 9  �*) � ��� �*) . If 9  �*)

�� ��� �*) , then the minimizing
edge has weight 2. So a detour from - � 0�
 6 to - � N � 0�
 N � 6 via - � N � 0�
�6 or - � 0�
 N � 6
involving the deletion of 9  �*) and the insertion of � � �*) has the same total weight
2. In other words, if we want to compute the simple Levenshtein distance, then
we can restrict to minimizing paths which do not contain a diagonal edge labeled
by a replacement of two distinct characters. So, in this subsection, when we talk
about diagonal edges, we always refer to those with weight 0, i.e. those labeled
by a replacement of two identical characters.

As a consequence, the computation of the simple Levenshtein distance means
to minimize the number of horizontal/vertical edges in the edit graph. Equiva-
lently, we can maximize the number of diagonal edges in the edit graph. Thus
the simple Levenshtein distance is closely related to the LCS-problem which we
define now.

16



3.2 The Edit Distance Model

Definition 9 A common subsequence of 9 and � is a subsequence

- � ) 0�
 ) 6�0?>?>?>�0 - ��� 0�
�� 6
such that 9  �� � ��� � for � 8 :�� 0 .1@ . The longest common subsequence problem (LCS-
problem, for short) is to find a common subsequence of 9 and � of maximal length.
This length is denoted by � 4?7�- 9 0 �
6 . Each common subsequence denotes a string
9  	 9  �� >?>?>A9  �� � ��� 	 ��� � >?>?> � � � . Q
Example 9 Let 9 � 475 + 5 + 4 and � � + 5 4 + 5 5 + . Then - <
0�= 6�0 - =�0 � 6�0 - ��0 "
6�0 -#" 0 � 6 is a longest
common subsequence denoting the string 4 + 5 + . Hence � 4?7 - 9 0 �
6 � " . Q
Observation 4 Let & be the LCS-cost function. Then the following property holds
for all strings 9 and � :

= �,� 4?7 - 9 0 �
6 N 
,5(� 7,8��1- 9 0 �
6 � � N � (3.6)

Proof: Consider an optimal alignment = of 9 and � , which does not contain any
replacement + � 5 with + �� 5 . As shown above, this must exist. Since � � � 9 � and
� � � 9 � , there are � N � characters occurring in = . 
,5(� 7,8�� - 9 0 �
6 is the number of
deletions and insertions in = , and this is identical to the number of characters
occurring in a deletion or an insertion. The number of replacements + � 5 with
+ � 5 is identical to � 4?7�- 9 0 � 6 . Each such replacement contains 2 characters. So
the alignment contains = � � 4�7�- 9 0 � 6 N 
,5(� 7,8��1- 9 0 �
6 characters. Thus (3.6) holds. Q

Due to (3.6) the LCS-problem and the problem to compute the simple Leven-
shtein distance are equivalent. A solution to one problem can in constant time
be transformed into a solution to the other problem.

We now give an output-sensitive algorithm for computing the simple Leven-
shtein distance. That is, an algorithm, whose running time depends on the com-
puted distance value. The smaller this value, the faster it runs.

Definition 10 Let 5 8 � # . A 5 -path is a path in ��- 9 0 �
6 which begins at node
- <
0 < 6 and which contains 5 non-diagonal edges. That is, a 5 -path has cost 5 .
Let 
98 : P�� 0�� @ . The forward diagonal 
 (

�
) consists of all pairs - � 0�
�6 satisfying


IP � � 
 . Q
By definition, - <
0 < 6 is on diagonal 0, and - � 0�� 6 on diagonal � P � . Hence it

is clear that any path from - <
0 < 6 to - � 0�� 6 must cross the diagonal band between
diagonal 0 and diagonal �	P � , as shown in Figure 3.3.

Observation 5 A 5 -path must end in a diagonal 
 8���� � � % P 5 0?P�5 N =�0?>?>?>�0�5 P =�0�5 ' .
Proof: We prove the claim by induction on 5 .

� Case 5 � < : A 0-path begins at - <
0 < 6 (on diagonal 0) and it only has diagonal
edges. Hence it ends on diagonal < 8	�
� � % < ' .

� Consider a - 5 N � 6 -path. It contains at least one non-diagonal edge, and thus
can be split into 3 parts:

17



3 String Comparisons

Figure 3.3: The diagonal band from diagonal 0 (left) to diagonal � P � (right)
� P � �

�

� �	P �

part 1: maximal prefix which is a 5 -path. By assumption this path ends in
diagonal 
%8 � � .

part 2: either a horizontal edge from diagonal 
 to 
 N � or a vertical edge
from diagonal 
 to 
 P � .

part 3: a path on diagonal 
 N � or 
�P � depending on part 2.

Hence the - 5 N � 6 -path ends in diagonal


 � 8 % P�5 N � 0?P�5 N = N � 0?>?>?>�0�5 P = N � 0�5 N �O' � % P�5 P � 0?P�5 N = P � 0?>?>?>�0�5 P =CP � 0�5 P �O'
�.% P - 5 N � 6 N =�0?P - 5 N � 6 N " 0?>?>?> 0 - 5 N � 6 P(=�0�5 N �O' �
% P - 5 N � 6�0?P - 5 N � 6 N =�0?>?>?> 0 - 5 N � 6 P =�0�5 N �O'

�.% P - 5 N � 6�0?P - 5 N � 6 N =�0?>?>?> 0 - 5 N � 6 P =�0�5 N �O'
� � � �*) Q

Definition 11 A 5 -path of maximal length on diagonal 
 is a maximal 5 -path on

 . Q

The idea of the algorithm is to compute how far we come in the edit graph
using 5 vertical or horizontal edges. More precisely, compute for each 5 � <
0 � 0?>?>?>
and all 
 89: P�540�5?@ the endpoint of a maximal 5 -path on 
 . Now recall that - � 0�� 6
is on diagonal � P � . Hence, if 5 is minimal such that - � 0�� 6 is the endpoint of a
maximal path on � P � , then we have 
,5(� 7,8�� - 9 0 �
6 � � � - � 0�� 6 � 5 . The endpoint is
defined in terms of the

�������	�
of a diagonal:

Definition 12 For any 5�8 � # and any 
%8 : P�5 0�5 @ define
�����
��� - 
 0�5�6 � ��

� % � 8 : <
0�� @ � � � - � 0�
 N � 6 � 5 '(> Q

That is, the end point of a 5 -path on a particular diagonal 
 is given as the
row number of the end point.

Observation 6 Let 5 ����� � � � ��� % 5 8 � # � �����
��� - � P � 0�5�6 � � ' . Then 5 ����� is the
simple Levenshtein distance of 9 and � .

Proof: Let 5 � 
,5(� 7,8�� - 9 0 � 6 . We have 5 � � � - � 0�� 6 � � � - � 0 - � P � 6 N � 6 and hence�����
��� - � P � 0�5
6 � � . Thus 5���5 ����� . Now suppose 5 � 5 ����� . We have
�����
��� - � P

� 0�5 ����� 6 � � which implies 5 ����� � � � - � 0 - � P � 6 N � 6 � � � - � 0�� 6 � 5 . This is a
contradiction, which implies that the assumption 5 � 5 ����� was wrong. Hence
5 � 5 ����� . Q
18



3.2 The Edit Distance Model

Figure 3.4: Case 1.: Splitting of a 5 -path into 3 parts

first
part

second
part

third
part

- � 0�
�6
� � ��� �
�	� - 
 P � 0�5 P � 6

 � 
�P � N �


 P �




- � � 0�
 � 6
� � � � � �
�	� - 
 0�5�6

 � � 
 N � �

We will now develop recurrences for computing
�����
���

.
Consider the case 5 � < . A maximal < -path ends on - � 0�� 6 where � � � � 4 6 - 9 0 �
6?�

and � 4 6 - 9 0 �
6 is the longest common prefix of 9 and � . Hence we derive

� � �
�	� - <
0 < 6 � � � 4�6�- 9 0 �
6?� (3.7)

Now let 5 � < and consider a maximal 5 -path ending on 
 . There are two ways
to split this path into three parts.

� Suppose the 5 -path on 
 consists of the following three parts (as shown in
Figure 3.4):

1. a maximal - 5 P � 6 -path on 
 P � .
2. a horizontal edge from diagonal 
�P � to diagonal 
 .
3. a maximal path on diagonal 
 .

Suppose that the maximal - 5 P � 6 -path on 
2P � ends in - � 0�
 6 , i.e. � � �����
��� - 
2P
� 0�5 P � 6 and 
 � 
 P � N � . Then the maximal path on diagonal 
 ends in some
point - � �/0�
 � 6 where � � � � � �
�	� - 
 0�5�6 and 
 � � 
 N � � . The length of the maximal
path on diagonal 
 is the length of � 4 6 - 9  �*) >?>?>�9�� 0 � 	 �  �*) >?>?> � � 6 . Hence we
conclude

�����
��� - 
 0�5�6 � � N � � 4 6 - 9  �*) >?>?>�9 � 0 � 	 �  �*) >?>?> � � 6?�
� Suppose the 5 -path on 
 consists of the following three parts (as shown in

Figure 3.5):

1. a maximal - 5 P � 6 -path on 
 N � .
2. a vertical edge from diagonal 
 N � to diagonal 
 .
3. a maximal path on diagonal 
 .

19



3 String Comparisons

Figure 3.5: Case 2.: Splitting of a 5 -path into 3 parts

first
part

second
part

third
part


 N �
- � 0�
�6 � � �������	� - 
 N � 0�5 P � 6


 � 
 N � N �

- � � 0�
 � 6 � � � �������	� - 
 0�5
6

 � � 
 N � �

Suppose that the maximal - 5 P � 6 -path on 
 N � ends in - ��0�
 6 , i.e. � � � � �
�	� - 
 N
� 0�5 P � 6 and 
 � 
 N � N � . Then the maximal path on diagonal 
 ends in some
point - � � 0�
 � 6 where � � � ��� �
�	� - 
 0�5
6 and 
 � � 
 N � � . The length of the maximal
path on diagonal 
 is the length of � 4 6 - 9  � � >?>?>�9�� 0 � 	 �  � � >?>?> � � 6 . Hence we
conclude

�������	� - 
 0�5
6 � � N � N � � 4 6 - 9  � � >?>?>�9 � 0 � 	 �  � � >?>?> � �
6?�
Since both cases can occur we have to combine them to obtain the following
recurrence:

� � �
�	� - 
 0�5�6 � � N � � 4�6�- 9 � �*) >?>?>A9 � 0 � 	 � � �*) >?>?> � �
6?� (3.8)

where � � � 

� % �������	� - 
�P � 0�5 P � 6�0 ��� �
�	� - 
 N � 0�5MP � 6 N �O'
We can now define the greedy algorithm for computing the simple Levenshtein
distance.

Algorithm Greedy DP Algorithm for the simple Levenshtein distance
Input: sequences 9 � 9 ) >?>?>�9 � and � � � ) >?>?> � �& is the LCS cost function
Output: 
,5(� 7,8�� - 9 0 � 6
for 5 � � < to � N � do

for 
 � � P�5 to 5 do��� � 6$9$8 
 �����
��� - 
 0�5�6 + 4�4 � . 5 ��� 2 8 � - � >��?6 + � 5 - � >�� 6
if

��� �
�	� - �	P � 0�5
6 � � then . 
?8 94. � 5
Let 
 � � 
 5(� 7 8�� - 9 0 � 6 . For each 5 8 : <
0�
7@ , the algorithm computes a front of width

=C� 5 N ��8 F�- � N � 6 . Hence the running time is F�- - � N � 6*��
16 . Thus the algorithm

20



3.2 The Edit Distance Model

is output sensitive. The smaller the distance, the faster it runs. Each generation
of

�������	�
-values

�������	� - P�5 0�5
6�0 � � �
�	� - P�5 N � 0�5
6�0?>?>?>�0 �������	� - 5 P � 0�5
6�0 � � �
�	� - 5 0�5
6 with 5 � <
can be computed from the previous generation. Thus we only need to store two
generations at any time. Hence the space requirement is F - � N � 6 . The expected
running time of the algorithm is F�- � N � N 
16 . We do not give a proof for this.

Note that newer versions of the UNIX command diff are based on this al-
gorithm. This gave large speedups in comparison to a previous version of the
algorithm.

3.2.5 Fast Computation of the Unit Edit Distance

The algorithm from the previous section can be generalized to also compute the
unit edit distance. We just have to add a third case. But before we consider the
details we show some properties of the unit edit distance, and the corresponding
edit distance table. Assume for this subsection that & is the unit cost function.
From Section 3.2.3 we can derive the following equations for table � � :

� � - � 0 < 6 � �
� � - <
0�
 6 � 


� � - � N � 0�
 N � 6 � � ��� ��� ��
� �1- � 0�
 N � 6 N �
� �1- � N � 0�
 6 N �
� �1- � 0�
�6 N - if 9  �*) � � � �*) then < else � 6

	 �
��
Consecutive entries in � � -columns, � � -rows, and � � -diagonals differ by at

most one. Additionally the entries in � � -diagonals are non-decreasing. This is
formally stated in the following observation. We do not give a proof.

Observation 7 Table � � has the following properties:

1. � � - � 0�
 6 P � � � �1- � N � 0�
 6 � � � - � 0�
�6 N � , � 8 : <
0�� P ��@ , 
 8(: <
0�� @ .
2. � � - � 0�
 6 � � � - � N � 0�
 N � 6 � � � - � 0�
�6 N � , � 8 : <
0�� P ��@ , 
 8(: <
0�� P ��@ .
3. � � - � 0�
 N � 6 P � � � � - � 0�
 6 � � � - � 0�
 N � 6 N � , �
8 : <
0�� @ , 
 8(: <
0�� P ��@ . Q
From the properties stated in Observation 7 we can conclude the following:

Observation 8 For all - ��0�
 6 8 : <
0�� P ��@ � : <
0�� P ��@ the following properties hold.

1. If � � - � 0�
 6 � � � - � 0�
 N � 6 and � � - � 0�
 6 � � � - � N � 0�
�6 , then � �1- � 0�
�6 � � � - � N � 0�
 N � 6
if and only if 9  �*) � ��� �*) .

2. � � - � N � 0�
 N � 6 � ��� ��
� � - � 0�
 6 if 9  �*) � � � �*)� N � � - � 0�
 N � 6 else if � �1- � 0�
 N � 6 � � � - � 0�
 6
� N � ��� % � �1- � N � 0�
 6�0 � � - � 0�
 6�' otherwise

Proof:

21



3 String Comparisons

1. By assumption, we have

� � - � N � 0�
 N � 6 � � ��� ��� ��
� � - � N � 0�
 6 N � 0
� � - � 0�
 N � 6 N � 0
� � - � 0�
�6 N &�- 9  �*) � ��� �*) 6

	 �
�� � � � - � 0�
�6 N &�- 9  �*) � � � �*) 6
Hence, � � - � 0�
�6 � � �1- � N � 0�
 N � 6 
�� &�- 9  �*) � � � �*) 6 � <�
�� 9  �*) � ��� �*) .

2. By Case distinction. Q
Due to the previous observation, we do not have to evaluate � � completely.

Whenever pair - 9  �*) 0 � � �*) 6 is identical, the corresponding edge in the edit distance
graph is minimizing. Hence it suffices to evaluate an entry along this edge. If
9  �*)

�� ��� �*) , then we additionally have to test if � �1- ��0�
 N � 6 � � �1- ��0�
 6 holds. If
so, then we can evaluate � � - � N � 0�
 N � 6 without computing � �1- � N � 0�
�6 . Thus
matrix � � can be evaluated in a lazy strategy. Requesting the evaluation � � - � 0�� 6
then triggers the computation of all necessary values in � � in a band around the
main diagonal. The smaller � � - � 0�� 6 , the smaller the band. However, we can also
compute 
,5(� 7,8�� - 9 0 � 6 by extending the greedy algorithm for the simple Levenshtein
distance. For 5 � < , we have to consider an additional case, since we now have
diagonal edges with weight 1:

Suppose the 5 -path on 
 consists of the following three parts (as shown in
Figure 3.6):

1. a maximal - 5 P � 6 -path on 
 .
2. a diagonal edge with weight 1 on diagonal 
 .
3. a maximal path on diagonal 
 .
Suppose that the maximal - 5CP � 6 -path on 
 ends in - � 0�
�6 , i.e. � � �����
��� - 
 0�5IP � 6

and 
 � 
 N � . Then the maximal path on diagonal 
 ends in some point - � � 0�
 � 6
where � � � �����
��� - 
 0�5�6 and 
 � � 
 N � � . The length of the maximal path on diagonal 

is the length of � 4�6�- 9  � � >?>?>�9�� 0 � 	 �  � � >?>?> � � 6 . Hence we conclude

��� �
�	� - 
 0�5
6 � � N � N � � 4 6 - 9  � � >?>?>�9�� 0 � 	 �  � � >?>?> � � 6?�
and we obtain the following recurrence for

��� �
�	�
:

� � �
�	� - 
 0�5
6 � � N � � 4 6 - 9 � �*) >?>?>�9 � 0 � 	 � � �*) >?>?> � � 6?� (3.9)

where � � ��

� ��� ��
� � �
�	� - 
 P � 0�5 P � 6� � �
�	� - 
 N � 0�5 P � 6 N �� � �
�	� - 
 0�5 P � 6 N �

	 �
��
The greedy algorithm can be used verbatim, except that instead of (3.8) we use
(3.9) to compute the front values. The worst case running time remains F�- - � N � 6O�
�6 where 
 is the unit edit distance. However, the expected running time becomes
F�- � N � N 
 � 6 . See Figure 3.7 for an example of the values implicitly computed by
this algorithm.

22



3.3 Local Similarity

Figure 3.6: Case 3.: Splitting of a 5 -path into 3 parts

first
part

second
part

- � 0�
 6
� � ��� �
�	� - 
 0�5 P � 6

 � 
 N �

- � � 0�
 � 6
� � � ��� �
�	� - 
 0�5
6

 � � 
 N � �third

part

3.3 Local Similarity

Up to this point we have focussed on global comparison. That is, we have com-
pared the complete sequence 9 with the complete sequence � . In biological se-
quences we often have long non-coding regions and small coding regions. Thus
if two coding regions are similar, this does not imply that the sequences have a
small edit distance. As a consequence, when comparing biological sequences it
is sometimes important to perform local similarity comparisons: Find all pairs
of substrings in 9 and � which are similar. To clarify the notion of similarity, we
introduce score functions.

Definition 13 A score function � assigns to each edit operation � � � a score
�
-�� � � 6 8 � . For each alignment =/� -�� ) � � ) 0?>?>?> 0�� 	 � �
	 6 we define the score
�
- = 6 � � 	 �� ) �
-��  � �  6 . The similarity score of 9 and � is defined by

7,4 � . 
��4- 9 0 �
6 � ��

� % �
- = 6 � = is an alignment of 9 and �$'(> Q
Note that, while distances are minimized, similarity scores are maximized. Table
3.8 shows the BLOSUM62 similarity matrix, which is currently widely used when
comparing proteins. With some additional scores for insertions and deletions we
would obtain a score function.

Definition 14 Let � be a score function. We define

1. � � 4�� - 9 0 �
6 � ��

� % 7,4 � . 
�� - 9�� 0 ��� 6 �O9�� is substring of 9 and � � is substring of � '
2. Let 9�� be a substring of 9 and � � be a substring of � such that 7 4 � . 
�� - 9�� 0 ��� 6 �

� � 4�� - 9 0 �
6 . An alignment = of 9 � and � � satisfying 7,4 � . 
�� - 9 � 0 � � 6 � �
- = 6 is a local
optimal alignment of 9 and � .

23



3 String Comparisons

Figure 3.7: A complete distance matrix � � and the values implicitly computed for
5 � � and � � >

Z E I T G E I S T
0 1 2 3 4 5 6 7 8 9

F 1 1 2 3 4 5 6 7 8 9
R 2 2 2 3 4 5 6 7 8 9
E 3 3 2 3 4 5 5 6 7 8
I 4 4 3 2 3 4 5 5 6 7
Z 5 4 4 3 3 4 5 6 6 7
E 6 5 4 4 4 4 4 5 6 7
I 7 6 5 4 5 5 5 4 5 6
T 8 7 6 5 4 5 6 5 5 5

complete distance matrix

Z E I T G E I S T
0 1 2 3

F 1 1 2 3
R 2 2 3
E 3
I 2 3
Z 3 3
E
I
T

values implicitly computed for
�����

e.g. ���	��

��� ��� ������� �����	��

��� � ��� ������� �����	��
���� �! �� �������

Z E I T G E I S T
0 1 2 3 4 5

F 1 1 2 3 4 5
R 2 2 3 4
E 3
I 2 3 4 5 5
Z 3 3
E 4 4 4
I 5 4
T 5 4 5 5 5 5

values implicitly computed for
�"���

. Since # �%$
and & ��'

,
we have ���	��
����(&��)#*� ���+� ���	��

��� ��� ���+�%$

and therefore
�,�%�

.

24



3.3 Local Similarity

Figure 3.8: The BLOSUM62 similarity score matrix specifying replacements score
for each pair of amino acid

A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

3. The local optimal alignment problem is to compute � � 4 � - 9 0 � 6 and a local opti-
mal alignment of 9 and � . Q

A brute force solution to the local optimal alignment problem would be as
follows:

compute for each pair - 9 � 0 � � 6 of substrings 9 � of 9 and � � of � the value
7,4 � . 
��4- 9�� 0 ��� 6 .

Since there are F - � � � � 6 pairs - 9�� 0 ��� 6 of substrings and each computation of
7 4 � .�
��4- 9 � 0 � � 6 requires F�- �	� 6 , this method would require F - �

�
�

�
6 time. This is, of

course, too expensive.
Now note that each substring 9�� of 9 is a suffix of a prefix of 9 and each

substring � � of � is a suffix of a prefix of � . So the idea is to compute a matrix
where each entry - � 0�
�6 contains the score for all pairs of suffixes of prefixes ending
at position � in 9 and position 
 in � . More precisely, we compute an - � N � 6 � - � N � 6 -
Matrix

�
defined by

� - � 0�
 6 � ��

� % 7 4 � . 
 � - : 0�; 6��O: is suffix of 9 ) >?>?>�9  and ; is suffix of � ) >?>?> � � '
It is easy to see that � � 4�� - 9 0 � 6 � � 

� % � - � 0�
 6 � � 8 : <
0�� @ 0�
 8 : <
0�� @ ' . That is,

� � 4�� - 9 0 �
6 can be computed by maximizing over all entries in table
�

. Consider
an edit graph representing all local alignments. Since we are interested in align-
ments of all pairs of substrings of 9 and � , we are interested in each path. The
paths do not necessarily have to start at - <
0 < 6 or end at - � 0�� 6 . Since a path can
begin at any node, we have to allow the score 0 in any entry of the matrix. These
considerations lead to the following result:

25



3 String Comparisons

Theorem 2 Let � be a score function satisfying

� � 4 � - 7 0��16 � � � 4�� - � 0�716 � < (3.10)

for any sequence 7 8 ��� . Then the following holds:

� If � � < or 
 � < , then
� - � 0�
 6 � < .

� Otherwise,

� - � 0�
 6 � ��

� ����� ����
<� - �*P � 0�
 6 N �
- 9  � � 6� - ��0�
 P � 6 N �
- � � � �16� - �*P � 0�
 P � 6 N �
- 9  � � �16

	 ���
����
Condition (3.10) is very important for the Theorem: prefixes with negative

score are suppressed, and similar substrings occur as positive islands in a ma-
trix dominated by 0-entries. In general, it is not easy to verify condition (3.10).
However, the following simple condition implies (3.10): �
-�� � � 6 �9< for all inser-
tions and deletions � � � . This is because:

� � 4�� - 7 0��16 � ��

� % 7,4 � . 
�� - : 0��16 �O: is a substring of 73'
� ��

� % 7,4 � . 
 � - � 0��16�' � % 7 4 � . 
 � - : 0�� 6�� : is a substring of 7 0�: �� �('
� <

One can similarly show � � 4�� - � 0�7 6 � < .
Using these observations, we can derive a simple algorithm for the local simi-

larity search problem:

Algorithm Smith-Waterman Algorithm
Input: sequences 9 � 9 ) >?>?>�9�� and � � � ) >?>?> � �

score function � satisfying 3.10
Output: � � 4 � - 9 0 � 6 and a local optimal alignment of 9 and � .

1. Compute Matrix
�

according to Theorem 2.

2. Compute a maximal entry, say
� - � 0�
 6 , in

�
.

3. Compute local optimal alignments by backtracking on a maximizing path
starting at - � 0�
 6 and ending in some entry

� - � � 0�
 � 6 � < .

The Smith-Waterman Algorithm requires F�- �	� 6 time and space.

Example 10 Consider the similarity score

�
- + � 576 ����� ��
P � if +0� ���%5 � �
P�= if + 0�5 8 � 0 + �� 5
= if + 0�5 8 � 0 +0� 5

and the sequences 9 � : ; + : 5 + 4�7 � � and � � 6 �1. + : + 5 4?7,8 � � . Then matrix
�

is as
follows:

26



3.4 Advanced Problems

: ; + : 5 + 4 7 � �
< < < < < < < < < < <

6 < < < < < < < < < < <
� < < < < < < < < < < <
. < < 0 < < < < < < < <
+ < < < 2 � < = � < < <
: < = � � 4 3 = � < < <
+ < � < � � = 5 " � = �
5 < < < = = > 4 � = � <
4 < < < � � " � 6 > " �
7 < < < < < � = > 8 � �
8 < < < < < = � " � � >
� < < < < < � < � � > "
� < < < < < < < = > " �

The maximum value is � . Tracing back the path along the bold face numbers
gives a path representing the local optimal alignment (with score 8)

+ : 5 + P 4 7
+ : P + 5 4 7

3.4 Advanced Problems

There is a multitude of more advanced problems concerning the edit distance
model. We only mention a few important here:

� The Multiple Alignment Problem: Given sequences � ) 0A� � 0?>?>?> 0A� � , compute
an optimal Alignment of all these sequences. This can be done by gen-
eralizing the Algorithm for computing the edit distance. The modified al-
gorithm computes an -���� ) � N � 6 � -���� � � N � 6 � �?�?� � -���� � � N � 6 matrix. Each
entry (except for the boundary entries) has = � P � predecessors over which
the minimum/maximum has to be computed. Thus the algorithm runs in
F�- = � ��� � �� ) ���  � 6 time. There are heuristic algorithms which only compute a
part of the matrix, but the worst case running time remains.

� Determining biologically important score functions. There are several meth-
ods to do this: One method is to take multiple alignments which have been
thoroughly studied by biologists, and considered to be correct in the bio-
logical sense. From the alignment one determines a score function such
that a dynamic programming algorithm would nearly compute the “correct
alignment”. This method involves several techniques from statistics. For
example, the BLOSUM62 matrix has been determined by this method.

� In biology, the uniform scoring of gaps (i.e. a contiguous sequence of inser-
tions and deletions) is not always correct. One would like a more general

27



3 String Comparisons

cost/score for gaps. For example, a gap of length � could have the cost
2 - � 6 � � � N � � � , where � and � are constants: � is the cost for starting a
gap and � is the cost for extending the gap. The cost function is then called
“affine gap cost.” One usually chooses � � � . There is a modification of the
dynamic programming algorithm which can handle affine gap costs, while
maintaining the running time of F�- �	� 6 .

� We have learned about global and about local comparison of sequences.
There are problems in between these, e.g. the approximate string matching
problem. We will learn about this problem in Section 5.

3.5 The Maximal Matches Model

The idea of this model is to measure the distance between strings in terms of
common substrings. Strings are considered similar if they have long common
substrings. The key to the model is the notion of partition. Recall that 9 and �
are strings of length � and � , respectively.

Definition 15 A partition of � w.r.t. 9 is a sequence - � ) 0�4 ) 0?>?>?> 0 � � 0�4 � 0 � � �*) 6 of sub-
strings � ) 0?>?>?> , � � 0 � � �*) of 9 and characters 4 ) 0?>?>?> 0�4 � such that � � � ) 4 ) >?>?> � ��4 � � � �*) .
Let � � - � ) 0�4 ) 0?>?>?> 0 � � 0�4 � 0 � � �*) 6 be a partition of � w.r.t. 9 . � ) 0?>?>?> 0 � � 0 � � �*) are the
submatches in � . 4 ) 0?>?>?> 0�4 � are the marked characters in � . The size of � , denoted
by ����� , is . . mmdist - �40�9 6 is the size of any minimal partition of � w.r.t. 9 . We call
mmdist - � 0�9 6 maximal matches distance of � and 9 . Q
Example 11 Let � � 475 + + 5 5 475 and 9 � + 5A475 + . � ) � - 475 + 0 + 0�5 0�540�475 6 is a partition of �
w.r.t. 9 , since 475 + , 5 , and 475 are substrings of 9 . � � � - 475 0 + 0 + 5 0�540�475 6 is a partition
of � w.r.t. 9 , since 475 and + 5 are substrings of 9 . It is clear that � ) and � � are of
minimal size. Hence, mmdist - �40�9 6 � = . Q
There are two canonical partitions.

Definition 16 Let � � - � ) 0�4 ) 0?>?>?>�0 � � 0�4 � 0 � � �*) 6 be a partition of � w.r.t. 9 . If for
all 
 8 :�� 0 .�@ , � 	34 	 is not a substring of 9 , then � is the left-to-right partition of �
w.r.t. 9 . If for all 
 8 :�� 0 .1@ , 4 	 � 	 �*) is not a substring of 9 , then � is the right-to-left
partition of � w.r.t. 9 . The left-to-right partition of � w.r.t. 9 is denoted by � � � - �40�9 6 .
The right-to-left partition of � w.r.t. 9 is denoted by � � � - �40�9 6 . Q
Example 12 For the strings � � 4 5 + + 5 5 4 5 and 9 � + 5 475 + of Example 11 we have
� � � - � 0�9 6 � � ) and � � � - �40�9 6 � � � . Q

One can show that � � � - � 0�9 6 and � � � - � 0�9 6 are of minimal size. Hence, we can
conclude ��� � � - �40�9 6?� � mmdist - � 0�9 6 � ��� � � - � 0�9 6?� . This property leads to a simple
algorithm for calculating the maximal matches distance. The partition � � � - �40�9 6
can be computed by scanning the characters of � from left to right, until a prefix
� 4 of � is found such that � is a substring of 9 , but � 4 is not. � is the first sub-
match and 4 is the first marked character in � � � - �40�9 6 . The remaining submatches
and marked characters are obtained by repeating the process on the remaining

28



3.5 The Maximal Matches Model

suffix of � , until all of the characters of � have been scanned. Using the suffix
tree of 9 (see Section 4), the longest prefix � of � that is a substring of 9 , can be
computed in F -�� �	�,� � � � 6 time. This gives an algorithm to calculate mmdist - � 0�9 6 in
F -�� �	� ��- � N � 6 6 time and F - � 6 space.

� � � - �40�9 6 can be computed in a similar way by scanning � from right to left.
However, one has to be careful since the reversed scanning direction means to
compute the longest prefix of � � ) that occurs as substring of 9 � ) . This can, of
course, be accomplished by using ����- 9 � ) 6 instead of ��� - 9 6 .

It is easily verified that mmdist - 9 0 �
6 � � and mmdist - � 0�9 6 � = if � and 9 are as
in Example 11. Hence, mmdist is not a metric on � � . However, one can obtain a
metric as follows:

Theorem 3 Let �	�	�(- 9 0 � 6 ������� � - - mmdist - 9 0 �
6 N � 6 ��- mmdist - �40�9 6 N � 6 6 . �	�	� is a
metric on � � . Q

From the above it is clear that �	�	�(- 9 0 � 6 can be computed in F�-�� � � � - � N
� 6 6 steps and F - ��

� % � 0�� '16 space. Next we study the relation of the maximal
matches distance and the unit edit distance. We first show an important relation
of alignments and partitions.

Observation 9 Let = be an alignment of � and 9 . Then there is an . 8 : <
0�&�- = 6 @ ,
and a partition - � ) 0�4 ) 0?>?>?> 0 � � 0�4 � 0 � � �*) 6 of � w.r.t. 9 such that � ) is a prefix and � � �*)
is a suffix of 9 .
Proof: By structural induction on = . If = is the empty alignment, then &�- = 6 � < ,
� � 9 � � , and the statement holds with . � < and � ) � � . If = is not the
empty alignment, then = is of the form - = � 0�� � ��6 where = � is an alignment of
some strings � � and 9�� and � � � is an edit operation. Obviously, � � � � � and
9 � 9�� � . Assume the statement holds for = � . That is, there is an . � 8&: <
0�& - = �/6 @ and
a partition - � ) 0�4 ) 0?>?>?> � � � 0�4 � � 0 � � � �*) 6 of � � w.r.t. 9 � such that � ) is a prefix and � � � �*)
is a suffix of 9�� . First note that � ) is a prefix of 9 since it is prefix of 9�� . There are
three cases to consider:

� If � � � , then � �� � and &�- = 6 � &�- = � 6 N � . Hence, � � � � � � � ) 4 ) >?>?> � � � 4 � � � � � �*) . If
� � � �*) is the empty string, then it is a suffix of 9 � 9 � � . If � � � �*) � � 4 for some
string � and some character 4 , then � � � � � ) 4 ) >?>?> � � � 4 � � � 4 � � where � � � � is
a suffix of 9 � 9�� � . Thus, the statement holds with . � .�� N � � & - = 6 .

� If � �� � and � �� � , then &�- = 6 � & - = � 6 N � . Hence, � � ��� � � � ) 4 ) >?>?> � � � 4 � � � � � �*) � �
where � � � is a suffix of 9 � 9�� � . Thus, the statement holds with . � .�� N � �& - = 6 .

� If � �� � and � � � , then & - = 6 � &�- = � 6 . Let � � � � � �*) � . Then � � � � � �
� ) 4 ) >?>?> � � � 4 � � � , and � is a suffix of 9 � 9�� � since � � � �*) is a suffix of 9�� . Thus,
the statement holds with . � . � � & - = 6 . Q

The following theorem shows that mmdist - �40�9 6 is a lower bound for the unit
edit distance of � and 9 .

29



3 String Comparisons

Theorem 4 Suppose & is the unit cost function. Then mmdist - � 0�9 6 � 
 5 � 7 8 � - �40�9 6 .
Proof: Let = be an optimal alignment of � and 9 . Then by Observation 9 there is
a partition � of � w.r.t. 9 such that ����� � &�- = 6 . Hence, mmdist - �40�9 6 � ��� � � & - = 6 �
 5 � 7,8��?- �40�9 6 . Q

The relation between mmdist and 
,5(� 7,8�� suggests to use mmdist as a filter in
contexts where the unit edit distance is of interest only below some threshold � .
In fact, there are algorithms for the approximate string searching problem (see
Section 5) using filtering techniques based on maximal matches.

3.6 The q-Gram Model

Like the maximal matches model, the � -gram model considers common sub-
strings of the strings to be compared. However, while the former model con-
siders substrings of possibly different length, the latter restricts to substrings of
a fixed length � . In this section let � be a positive integer. Recall that 9 and � are
sequences of length � and � , respectively.

Definition 17 The � -gram profile of 9 is the function ���1- 9 6 � � � � �
, such that

��� - 9 6 - ��6 is the number of different positions in 9 where the sequence � 8 � �
ends. Q

The parameters � and � �	� are very important for the � -gram distance. For
example, if � � � and � � � � " , then � � � � � ��" . That is, we can assume that in a
short string, all � -gram occur. If � � " and � � � � = < , then � �	� � � � � <?<?<?< and the
string has to be very long to contain all � -grams. In general, one chooses ��� � ,
e.g. � 8 : ��0 ��@ for DNA sequences.

Definition 18 The � -gram distance ��2 5(� 7 87- 9 0 � 6 of 9 and � is defined by

��2 5(� 7,87- 9 0 �
6 � �
�����
	

� ���1- 9 6 - ��6 P ����- � 6 - ��6?� > Q

One can show that the symmetry and the triangle inequality hold for ��2 5(� 7,8 .
The zero property does not hold as shown by the following example. Hence, ��2 5 � 7 8
is not a metric.

Example 13 Let � � = , 9 � + + 5 + and � � + 5 + + . Then 9 and � have the same � -gram
profile %,+ +
�� � 0 + 5 �� � 0�5 +��� � 0�5�5 �� < ' . Hence, the � -gram distance of 9 and � is 0.
Q

The simplest method to compute the � -gram distance is to encode each � -
gram into a number, and to use these numbers as indices into tables holding the
counts for the corresponding � -gram.

Definition 19 Let � � %,+ ) 0?>?>?>�0 + � ' . Then

+ � � � P �

30



3.6 The q-Gram Model

is the code of + � and

� �
��
 �� )
�  �7. � �  

is the code of � 8 � � .
An important property is that the code of each � -gram can be computed in-

crementally in constant time, due to the fact that : 4 � - + : P + � . � � ) 6�� . N 4 for any
: 8 � � and any + 0�5�8	� .

The algorithm to compute the � -gram distance follows the following strategy:

1. Accumulate the � -gram profiles of 9 and � in two arrays � � and � � such that
� � : � @ � ����- 9 6 - ��6�� � : � @ � ���1- � 6 - ��6 for all � 8 � � .

2. Compute the list
� � % � � � is � -gram of 9 or �$' .

3. Compute ��2 5 � 7,8 - 9 0 �
6 � � �
� ��� � � � : 4�@$P�� � : 4�@ � .

Algorithm Computing the � -gram distance
Input: sequences 9 � 9 ) >?>?>�9�� and � � � ) >?>?> � �

�
� <

Output: ��2 5 � 7 87- 9 0 � 6
. � � � � �
for 4 � � < to . � P � do

� � : 4�@ � � <
� � : 4�@ � � <

4 � �
�� � ) 9

 �7. � �  

� � : 4�@ � � �� � � % 4 '
for � � � � to � P � do

4 � � - 4 P 9  � . � � ) 6 �7. N 9  � �
if � � : 4�@ � < then

� � � � � % 4 '
� � : 4�@ � � � � : 4�@ N �

4 � �
�� � ) �

 �7. � �  

� � : 4�@ � � �
if � � : 4�@ � < then

� � � � � % 4 '
for � � � � to �	P � do

4 � � - 4 P �  � . � � )�6 �7. N �  � �
if � � : 4�@ � < and � � : 4�@ � < then

� � � � � % 4 '
� � : 4�@ � � � � : 4�@ N �

return �
� ��� � � � : 4�@$P�� � : 4�@ �

Let us consider the efficiency of the algorithm. The space for the arrays � � and
� � is F�-/. � 6 . The space for the set

�
is F - � P � N � N � P � N � 6 � F�- � N � 6 . Hence the

31



3 String Comparisons

total space requirement is F - � N � N . � 6 . We need F�-/. � 6 time to initialize the arrays
� � and � � . The computation of the codes requires F - � N � 6 time. Each array lookup
and update requires F - � 6 . Hence the total time requirement is F - � N � N . � 6 . If
. � 8 F�- � N � 6 , then this method is optimal. There are other techniques to compute
the � -gram distance. These are based on suffix trees, see Section 4.

Like the maximal matches distance, the � -gram distance provides a lower
bound for the unit edit distance.

Theorem 5 Let & be the unit cost function. Then � 2 5(� 7,8 - 9 0 �
6 � - = � � 6 � 
,5(� 7,8�� - 9 0 � 6 .
3.7 The Fasta Similarity Model

This model is based on the Fasta-program, which is a very popular tool for com-
paring biological sequences. First consider the problem the Fasta-program was
designed for: Let � be a query sequence (e.g. a novel DNA-sequence or an un-
known protein). Let � be a set of sequences (the database) and � �+< be a thresh-
old value. The problem is to find all sequences in � , whose similarity to � is at
least � .

We now need to define the similarity notion used by Fasta. Consider for each
9 8 � , the corresponding matrix � � defined by � �1- � 0�
�6 � 
 5(� 7 8��1- 9 ) >?>?>�9  0 � ) >?>?> � �16
where & is the unit cost function. The idea is to count for each diagonal the num-
ber of minimizing subpaths of length � on this diagonal. Each such minimizing
subpath stands for a common � -gram in 9 and � . This number gives a score,
according to the following definition:

Definition 20 Let � � � ��� % � 9 � 0 � �0� ' and � � ��

� % � 9 � 0 � � � ' . For 5 8 : P�� 0�� @ let

4 � 9 � 8 - 5
6 � � % - � 0�
�6 ��
 P � � 5 and 9  >?>?>�9  � � � ) � �  >?>?> �  � � � ) ' �
The Fasta score is now defined by 7,4 � . 
��������	�?- 9 0 ��6 � � 

� % 4 � 9$� 87- 5�6 �O5 8 : P�� 0�� @ ' . Q
Example 14 Let � � freizeit, 9 � zeitgeist, and � � = . Then 4 � 9$� 87- P�" 6 � � ,
4 � 9$� 87- P�� 6 � � , 4 � 9$� 87- < 6 � � , 4 � 9$� 87- � 6 � � and 4 � 9$� 87- 5�6 � < for 5 �8 % P " 0?P�� 0 <
0 � ' . This
can be easily verified in Figure 3.9. Q

Note that only the subpaths on the same diagonal are counted. In other words,
the matching � -grams have to be at the same distance in both 9 and � . This is
the main difference to the � -gram distance model, where the order of the � -grams
is not important.

We now sketch an algorithm to compute 7 4 � . 

�������	�?- 9 0 ��6 .
1. Encode each � -gram as an integer 4�8 : <
0 . � P ��@ , where . � � � � . The details of

this encoding are described in Section 3.6.

2. The query sequence � is preprocessed into a function 
 ��: <
0 . � P���@ � � - � 6
defined by


 - 4 6 � � % � 8 :�� 0 � �0� P � N ��@ � 4 � �  >?>?> �  � � � ) '
That is, each “bucket” 
 : 4�@ holds the positions in � where the � -gram with
code 4 occurs.

32



3.8 The BlastP Similarity Model

Figure 3.9: The matching diagonals for freizeit and zeitgeist

z e i t g e i s t

f
r
e

� �
i

� �
z

�
e

� �
i

� �
t

� �

3. In the final phase, the data base is processed.

foreach 9 8 �
� � � � 9 �
for 5 � � P�� to � do 4 � 9$� 87- 5�6 � <
for 
�� � � to �	P � N � do

4 � � 9 � >?>?>�9 � � � � )
foreach � 8 
 - 4 6

4 � 9 � 8 - 
 P � 6 � � 4 � 9 � 8 - 
 P � 6 N �
7 4 � . 
 �������	� - 9 0 ��6 � � � 

� % 4 � 9$� 87- 5�6 �O5 8 : P�� 0�� @ '
if 7 4 � .�
 �������	�?- 9 0 ��6 � � then 64. ��� 8 " 9 and � are similar"

The running time of this algorithm is clearly F�-/. � N � N � N � � � � � � 4 � 9 � 8 - 5
6 6 for
one database sequence 9 . That is, the more similar � and 9 the more time the
algorithm requires.

It is often not sufficient to just know that the two sequences under consider-
ation are similar. One also would like to know where the similarities are. There-
fore, in an earlier version of the Fasta-program, an alignment is constructed
which contains a maximal number of matching � -grams. New versions of the
Fasta-program simply apply the Smith-Waterman algorithm to the sequences 9
and � , whenever 7 4 � .�
 � ��� � � - 9 0 ��6�� � . Thus the Fasta-score serves as a heuristic
filter of the database search.

3.8 The BlastP Similarity Model

This similarity model is based on the Blast-program which is perhaps the most
popular program to perform sequence database searches. Here we will describe
the program for the case where the input sequences are proteins (hence the name
BlastP). We will restrict ourselves to an older version of Blast which was used
until about 1998 (Blast 1.4). The newer version of Blast (Blast 2.0) is more com-
plicated.

33



3 String Comparisons

Suppose we want to search a protein sequence database, given a score func-
tion � , satisfying �
-�� � � 6 � P � for any deletion or insertion operation � � � .
That is, the model does not allow for insertions and deletions.

Definition 21 Let � 8 �
and ��� < be a threshold. Two sequences 9 and

� are similar in the Blast model if there is a pair - � 0�
 6 (called hit) such that
7 4 � . 
�� - 9  >?>?>�9  � � � ) 0 � � >?>?> � � � � � ) 6 � � . Q

In practice, � is the query sequence and 9 is a sequence from a database, e.g.
from SWISSPROT (version 39.11 of 8. December 2000 contains 91131 sequences
of total length 33,206,837).

We now sketch an algorithm to find the hits between the query sequence � of
length � and a database sequence 9 of length � . This algorithm is iterated over
all 9 in the database.

1. In the first step, we construct the following set:

	 � % - 7 0�� 6 �37�8	� � 0�� 8 :�� 0 � �0� P � N ��@ 0�7 4 � . 
�� - 7 0 �  >?>?> �  � � � ) 6 � � '

2. Then we construct a deterministic finite automaton (DFA) which accepts
exactly the set � � % 7 � � ��8 � 0 - 7 0�� 6(8 	 ' . Identify the accepting state
corresponding to 7 by 7 . For each 7 8 � , the DFA stores the set L�� � � % � �
- 7 0�� 6 8 	 ' with state 7 .

3. The string � is then processed using the DFA. Whenever, the DFA reaches
an accepting state, say 7 , after processing 
 characters, then - � 0�
0P � N � 6 is
a hit for all �
8 L � .

The first two steps only depend on the query sequence � . Hence they only
have to be performed once for the database.

The size of the DFA grows exponentially with � and � � � . So these parameters
should be selected carefully. For protein sequences, � � " and � � � � (if � is the
PAM250-scorefunction) seem to be a reasonable choice.

Once the DFA has been constructed � is processed in F�-�� � � 6 time.
Finding the hits is only one step in the BlastP-program. Each hit - � 0�
�6 is

separately extended to the left and to the right. The user specifies a “drop-off”
parameter H � according to which the extension is stopped. For the extension to
the left the sequences 9 ) >?>?>A9  � ) and � ) >?>?> � � � ) are compared from right to left.
For the extension to the right the sequences 9  � �*>?>?>�9�� and � ) >?>?> � � are compared
from left to right. Each pair of characters - 9  � � 0 � � � � 6 , �
8 :�� 0�� � � % �*P � 0�
MP �O'7@ , and
- 9  � � � � 0 � � � � � � 6 , . 8 : <
0�� � � % � P � P � 0�� P � P 
 '7@ , delivers a score according to
the score function � . For both extensions the scores are accumulated and the
maximum value H reached during the extension is kept track of. As soon as
a score smaller than H P H
� is reached, the extension is stopped. The pair of
sequences around the hit delivered by this extension is called maximum segment
pair (MSP). For any such MSP, a significance score is computed. If this is better
than some predefined significance threshold, then the MSP is reported.

34



CHAPTER 4

Suffix Trees

4.1 Motivation

The amount of sequence information in today’s data bases is growing very fast.
This is especially true for the domain of genomics: The current and future pro-
jects to sequence large genomes (e.g. human, mouse, rice) produce gigabytes and
will soon produce terabytes of sequence data, mainly DNA sequences and Pro-
tein sequences derived from the former. To make use of these sequences, larger
and larger instances of string processing problems have to be solved. While the
sequence databases are growing rapidly, the sequence data they already contain
does not change much over time. As a consequence, this domain is very suitable
for applying indexing methods. These methods preprocess the sequences in or-
der to answer queries much faster than methods that work sequentially. Apart
from the size of the string processing problems in genomics, their diversity is also
remarkable. For example, to assemble the Genome of Drosophila melanogaster,
a multitude of string processing problems involving exact and approximate pat-
tern matching tasks had to be solved. These problems are often complicated by
additional constraints about uniqueness, containment, or repetitiveness of se-
quences. Suffix trees are perfectly well suited to solve such problems. In this
chapter, we will introduce the concept of suffix trees, show their most important
properties, and take a look at some applications of biological relevance.

4.2 The Concept of Suffix Trees

Let us consider a sequence � over some alphabet � . Think of � as being a
database of sequences concatenated (e.g. Swissprot) or a genome, etc. We will
mostly use the synonym string for sequence.

Problems on strings are often formulated like this:

35



4 Suffix Trees

... enumerate all substrings of � satisfying the property ...

In order to answer such queries it would be helpful to have an index of all sub-
trings of � . To pursue this idea further, we first should consider how many
substrings exist. For example, if � � 4 + + 4 + 4 + 4 4 + , then there are 40 different sub-
strings. Since the alphabet is so small, many of them occur more than once.
Now assume that � is of length � . One can show that a string of length � has
at most � � different substrings. There are examples where this number is exact,
e.g. if � � abcdef (no character appears more than once). There are examples
where there are only � substrings, e.g. if � �/+ + + + + + + . But � � is a good estima-
tion in practice. As a consequence of these considerations we see that there are
too many substrings of � to represent them all explicitly. We need an implicit
representation.

4.3 An Informal Introduction to Suffix Trees

It is easy to see that each substring of � is a prefix of a suffix of � . And � has only
� suffixes. So consider an index consisting of all suffixes of � . But let us append
a unique character $ to the end of � , so that no suffix is a prefix of another suffix.
For example, if � � + 5 + 5 , then we get an index consisting of all suffixes of + 5 + 5 $:

$ 0�5 $ 0 + 5 $ 0�5 + 5 $ 0 + 5 + 5 $
Unfortunately, the index consisting just of the suffixes of � $ does not support

queries like

“does 9 occur only once as a substring of � ?”

To solve the above minimal unique substring problem, we need to augment the
set of suffixes with more structure. The idea is to share common prefixes between
the suffixes. Let us consider this idea systematically for � � + 5 + 5 :

� suffixes + 5 + 5 $ and + 5 $ have a common prefix + 5 , and this is the longest
common prefix. The remaining suffixes after dropping + 5 are + 5 $ and $. Let
us draw a tree � ) to illustrate this:

�
���

��
��� $ $

� ) consists of just four nodes and three edges; the
��� � �

node at the top, a
branching node reached by an edge from the

��� ���
, and two leaves reached

by edges from the latter. The edges are marked by non-empty substrings
of � $. � ) represents all prefixes of the suffixes + 5 + 5 $ and + 5 $, i.e. the set
� 9 5 ) � %,+ 0 + 5�0 + 5 + 0 + 5 + 5�0 + 5 + 5 $ 0 + 5 $ ' of substrings of � $. Each string in this set
can be found by following a path in � ) , reading the labels and stopping at
a node or anywhere between two nodes. For example, the string + can be
found as follows: follow the path from the

� � ���
and stop reading the label

after the first character. The string + 5 can be found by continuing to read
the label on the edge outgoing from the

� � ���
completely.

36



4.4 A Formal Introduction to Suffix Trees

Figure 4.1: The suffix tree for � � + 5 + 5 with leaf annotations. These are easily
verified given the starting positions of the suffixes of + 5 + 5 $ as depicted
on the right.

��

���

��

��� $# $

�

$ ��
�

��

��� $

)
$ �

+ 5 + 5 $
< � = � "

� suffixes 5 + 5 $ and 5 $ have a common prefix 5 , and this is the longest common
prefix. The remaining suffixes after dropping 5 are + 5 $ and $. Let us draw a
similar tree � � as above, to illustrate this:

�
�

��
��� $ $

It should be clear now that � � represents all prefixes of the suffixes 5 + 5 $ and
5 $, i.e. the set � 9 5 � � % 5�0�5 + 0�5 + 5�0�5 + 5 $ 0�5 $ ' of substrings of � $.

� There is only one suffix of � $ which we have not considered yet, namely suf-
fix $. This has no common prefix with any other suffix, so we can represent
it by a tree �

�
consisting of a

� � ���
node, a leaf and an edge labeled by $:

�

$

So �
�

represents the set � 9 5 � � % $ ' of substrings of � $.

Notice that the sets � 9 5 ) 0A� 9 5 � 0A� 9 5
�

have no common element. The union of
these sets is clearly the set of all substrings of � $. So if we join the trees � ) 0 � � 0 �

�
by giving them a common

��� � �
, we obtain a tree representing all substrings of � $.

This is what we call the suffix tree of � $. It is shown in Figure 4.1. (Ignore the
numbers on the leaves for the moment. We will need them later.)

4.4 A Formal Introduction to Suffix Trees

We do not want to introduce the properties of suffix trees all at once. So we first
introduce the raw material for suffix trees: An � � -tree � is a finite rooted tree
with the following properties

- � 6 the edges are labeled by non-empty strings over alphabet � .

- = 6 for every node � in � and each + 8 � , there is only one + -edge � �
� � � for

some string � and some node � .

37



4 Suffix Trees

An � � -tree is more general than a suffix tree, but several notions important
for suffix trees can already be introduced on � � -trees. Let � be an � � -tree. It
consists of different types of nodes and edges: A node in � is branching if it has
at least two outgoing edges. A leaf in � is a node in � with no outgoing edges.
An internal node in � is either the

� � ���
or a node with at least one outgoing edge.

An edge leading to an internal node is an internal edge. An edge leading to a leaf
is a leaf edge.

6 + 8�
 -���6 denotes the concatenation of the edge labels on the path from the
��� ���

of � to the node � . Due to the requirement of unique + -edges at each node of �
(see property (2) above), paths are also unique. Therefore, we denote � by � if and
only if 6 + 8�
 - � 6 � � . The node � is the

� � ���
. (Remember that � denotes the empty

string). For any node � in � , � � � is the depth of � .

A string � occurs in � if � contains a node ��9 , for some (possibly empty) string
9 . In other words, if we can extend a string � by some (possibly empty) string 9
and ��9 is a node in the suffix tree, then � occurs in the tree. This is equivalent,
but more formal than stating “there is a path for � ” as we did before.

If � occurs in � , then we also say that � represents � .
� 4�4?- ��6 denotes the set

of strings occurring in � . Let � 8 � 4�4?- ��6 . An � � -tree is compact if every node is
either the

� � ���
, a leaf, or a branching node. In other words, in a compact suffix

�0� , we do not allow nodes which only have one successor (except for the
��� ���

, but
this exception is not important).

From now on we assume that � 8 ��� is a string of length � � � . The suffix
tree for � , denoted by

��� -��
6 , is the compact � � -tree � s.t.
� 4�4 - ��6 � % � 8 � � �

� is a substring of � ' . Thus the suffix tree for � represents exactly the substrings
of � .

4.5 The Role of the Sentinel Character

Suppose � is the suffix tree for � . Then the following property holds: If � is a
leaf in � , then � is a suffix of � . The reverse of this property does not hold:
Consider, for example, the suffix tree for + 475A4 + 5 4 + 4 . Here the suffixes + 4 and 4 do
not correspond to a leaf. This is because the suffixes are nested. If we restrict to
suffixes which are not nested, then we can characterize the strings corresponding
to leaves in the suffix tree: � is a leaf in � if and only if � is a suffix of � and �
is not nested. Now what is the corresponding characterization for the branching
nodes? To clarify it, we introduce the following notion: A substring � of � is
right-branching if and only if there are different characters + and 5 such that � +
and ��5 are substrings of � . Now the following holds: � is a branching node in �
if and only if � is a right-branching substring of � .

Suffix trees are often only defined for strings which end with a character not
occurring elsewhere in the strings. Such a character, usually the symbol $, is
called sentinel. With a sentinel at the end, there are no nested suffixes, and the
one-to-one correspondence of leaves and suffixes is easier to express.

38



4.6 The Size of Suffix Trees

4.6 The Size of Suffix Trees

Due to the above considerations it is clear that the number of leaves in the suffix
tree is bounded by � where � is the length of ����� . For example, the suffix tree for
+ 5 + 5 $ in Figure 4.1 has 5 leaves. By definition, each internal node is branching or
it is the

��� ���
. Thus there cannot be more than ��P � internal nodes. For each node,

except for the
� � ���

there is exactly one edge leading to this node. Vice versa, for
each edge there is exactly one node it points to. As a consequence, the number of
edges is one less than the number of nodes. So if there are at most =O� P � nodes
in the suffix tree, there are at most =O��P = edges. Since the nodes are not labeled,
we can surely represent each node in constant space. Each edge is labeled by a
substring �  >?>?> � � of � . Thus we do not need to store a copy of that substring. A
pair - ��0�
 6 of integers suffices, to refer to �  >?>?> � � . As a consequence, each edge can
be stored in constant space.

Altogether we need constant space for each of at most =O��P � nodes and at most
=O� P = edges. Thus the space requirement for the suffix tree is F - � 6 . In Section
4.8, we will in more detail consider how to represent suffix trees in more detail.

4.7 Suffix Tree Constructions

We start with a suffix tree construction method that is fast in practice and easy
to explain. In Sections 4.7.2 and 4.7.3 we explain two linear time suffix tree
construction methods.

4.7.1 The Write Only Top Down Suffix Tree Construction

In this subsection, we assume that the input sequence ends with a sentinel. This
is not really necessary, but it simplifies the explanation.

The wotd-algorithm adheres to the recursive structure of a suffix tree. The
idea is that for each branching node 9 the subtree below 9 is determined by
the set of all suffixes of � $ that have 9 as a prefix. In other words, if we have
the set J - 9 6 � � % 7 � 9 7 is a suffix of � $ ' of remaining suffixes available, we can
evaluate the node 9 . This works as follows: at first J - 9 6 is divided into groups
according to the first character of each suffix. For any character 4 8 � , let
2 . � 9 6 - 9 0�4 6 � � % � 8 � � � 4 � 8 J - 9 6�' be the 4 -group of J - 9 6 . If for some 4,8 � ,
2 . � 9 6 - 9 0�4 6 contains only one string � , then there is a leaf edge labeled 4 � out-
going from 9 . If 2 . � 9(6�- 9 0�4 6 contains at least two strings, then there is an edge
labeled 4 � leading to a branching node 9 4 � , where � is the longest common prefix
(lcp, for short) of all strings in 2 . � 9(6�- 9 0�4 6 . The child 9 4 � can then be evaluated
from the set J - 9 4 � 6 � % �.� � � 8 2 . � 9(6�- 9 0�4 6�' of remaining suffixes.

The wotd-algorithm starts by evaluating the
��� ���

from the set J - ��� � � 6 of all
suffixes of � $. All nodes of the suffix tree can be evaluated recursively from the
corresponding set of remaining suffixes in a top-down strategy.

Example 15 Consider the input string � �-+ 5 + 5 . The wotd-algorithm for � $
works as follows: At first, the

� � ���
is evaluated from the set J - ��� � � 6 of all non-

empty suffixes of the string � $, see the first five columns in Figure 4.2. The

39



4 Suffix Trees

Figure 4.2: The write-only top-down construction of the suffix tree for + 5 + 5

� � � � $
� � � $
� � $
� $
$� ��� �

� � ���	��
 �
�

� $�

$� ��� �
� � ��� �

� $�

$� ��� �
� � � �

��

��� $

�

�

� ��

���

��

��� $ $

$

�

�

��

��� $ $

algorithm recognizes three groups of suffixes. The + -group, the 5 -group, and the
$-group. The + -group and the 5 -group each contain two suffixes, hence we ob-
tain two unevaluated branching nodes, which are reached by an + -edge and by a
5 -edge. The $-group is singleton, so we obtain a leaf reached by an edge labeled
$. To evaluate the unevaluated branching node corresponding to the + -group,
one first computes the longest common prefix of the remaining suffixes of that
group. This is 5 in our case. So the + -edge from the

� � ���
is labeled by + 5 , and

the remaining suffixes + 5 $ and $ are divided into groups according to their first
character. Since this is different, we obtain two singleton groups of suffixes, and
thus two leaf edges outgoing from + 5 . These leaf edges are labeled by + 5 $ and $.
The unevaluated branching node corresponding to the 5 -group is evaluated in a
similar way, see Figure 4.2. Q

The worst case running time of the wotd-algorithm is F�- � � 6 . Consider, for
example, the string � � + � . The suffix tree for � $ is a binary tree with exactly one
branching node of depth � for any � 8 : <
0�� P ��@ . To construct the branching node
of depth � , exactly � P � suffixes are considered. That is, the number of steps is:

� � )�
 �� # �	P � � � � P

� � )�
 �� # � � � � P � - �	P � 6

= � =O� � P � � N �
= � � � N �

= 8 F - � � 6

In the expected case, the maximal depth of the branching nodes is much smaller
than ��P � , namely F�- � ����
 ��
 � 6 . In other words, the length of the path to the deepest
branching node in the suffix tree is F�- ����� 
 ��
 � 6 . The suffixes along the leaf edges
are not read any more. Hence the expected running time of the wotd-algorithm is
F�- � � ��� 
 ��
 � 6 . Note that the wotd-algorithm has some nice properties, which make
it interesting in practice:

40



4.7 Suffix Tree Constructions

� The subtrees of the suffix trees are constructed independently from each
other. Hence the algorithm can easily be parallelized. Moreover, the locality
behavior is very good: Due to the write-only-property, the construction of
the subtrees only depends on the set of remaining suffixes. Thus the data
required to construct the subtrees is very small. As a consequence, it often
fits into the cache. This makes the algorithm fast in practice since a cache
access is much faster than the access to the main memory. In a lot of cases
the wotd-algorithm is faster than the linear time suffix tree construction we
will explain in Sections 4.7.2 and 4.7.3.

� The paths in the suffix tree are constructed in the order they are searched,
namely top-down. Thus one could construct a subtree only when it is tra-
versed for the first time. This would result in a “lazy construction” which
could also be implemented in an eager imperative language, like C. Experi-
ments show that such a lazy construction is very fast.

4.7.2 The Linear Time Online Construction of Ukkonen

This algorithm constructs
� � -��
6 online, i.e. it generates a sequence of suffix trees

��� - �16�0 ��� -�� ) 6�0
��� -�� ) � � 6�0?>?>?>�0

��� -�� ) � � >?>?> � � 6
for all prefixes of � . Here

��� - �16 is the empty suffix tree which consists only of root.
The method is called online since in each step the suffix trees are constructed
without knowing the remaining part of the input string. In other words, the
algorithm may read the input string character by character from left to right.

Since we know the first suffix tree, we only have to consider the step from
��� -�� ) >?>?>��  6 to

��� -�� ) >?>?>��  �  �*) 6 (4.1)

for some � 8 : <
0�� P ��@ . Now let � be arbitrary but fixed, and define : � � � ) >?>?> �  ,+ � � �  �*) , and ; � �  � � >?>?> � � . When the algorithm is in step � , it has read : and + ,
but ; is not known. Therefore, let us call : + the visible part, and ; the hidden part
of � . In terms of functional programming, ; can be thought of as a lazy list, that
is, an unevaluated list expression. As the online algorithm proceeds, more and
more characters of � become visible, that is, more and more of ; is evaluated.

By definition,
��� - : + 6 represents all substrings of : + , and

��� - : 6 represents all
substrings of : . Thus in step (4.1) we have to add all substrings of : + which are
not substrings of : . Let us call this set of strings INSERT. The following simple
observations about INSERT help in developing the algorithm of Ukkonen:

Observation 10 For all � 8 INSERT there is a suffix 7 of : such that � � 7 + .
Proof: We know that � is not empty, since the empty string already occurs in
� � - : 6 . Hence � is a suffix of : + since otherwise it would be a substring of : and
thus occur in

��� - : 6 . Thus the claim follows. Q
Observation 11 For all 7 + 8 INSERT we have: 7 + is a leaf in

��� - : + 6 .
Proof: To prove this property, assume that 7 + is not a leaf in

��� - : + 6 . Then 7 + is a
nested suffix of : + . This implies that 7 + occurs at least twice as a substring of : + .

41



4 Suffix Trees

Hence 7 + is a substring of : , and hence it occurs in
��� - : 6 . This is a contradiction.

Thus the assumption was wrong. Q
Let us split INSERT into two disjoint subsets INSERTleaf and INSERTrelevant

where
� INSERTleaf � % 7 + 8 INSERT � 7 is a leaf in

��� - : 6�'
� INSERTrelevant � % 7 + 8 INSERT � 7 is not a leaf in

��� - : 6�'
Now we show how to insert the substrings in the two different sets. Let us start
with INSERTleaf. Suppose 7 + 8 INSERTleaf. Then 7 is a leaf in

��� - : 6 . We insert 7 +
without removing anything by extending the corresponding leaf edge. That is, by
extending the label of the leaf edge 9 � � 7 by + we obtain the leaf edge 9 �

� � 7 + . In
other words, to insert all elements in INSERTleaf we have to extend all leaf edges
in

��� - : 6 by the new character + . One of the basic ideas of Ukkonen’s algorithm
is to represent the leaf edges such that they automatically grow whenever a new
character is read from the input.

Definition 22 An open edge in
��� - : + 6 is a leaf edge with a label � + ; representing

the suffix � + of : + . (Recall that ; is the “unevaluated” remaining part of the input
string.) For Ukkonen’s algorithm all leaf edges are open edges. Q

When implementing Ukkonen’s algorithm in a lazy language, ; could be a lazy
(unevaluated) list. In an imperative language one would implement the label of
a leaf edge by a pair of an integer, say � , and a pointer to the memory cell where
the length of the input already read is stored. In this way, an increment of the
input length would automatically mean that all leaf edges implicitly grow by one
character.

Due to open edges, the labels of leaf edges grow while more and more char-
acters become visible. Thus, to insert a new suffix 7 + into

��� - : 6 , nothing must
be done when 7 is a leaf. Hence, we only consider the complementary case (i.e.
INSERTrelevant), when 7 is not a leaf in

��� - : 6 , or equivalently 7 is a nested suffix
of : .
Definition 23 A suffix 7 + of : + is relevant if 7 is a nested suffix of : and 7 + is not
a substring of : . Q

The step from
��� - : 6 to

��� - : + 6 now means the following: Insert all relevant
suffixes 7 + of : + into

��� - : 6 . To make this description more precise, we study
some properties of relevant suffixes. In particular, we show that the relevant
suffixes of : + form a contiguous segment of the list of all suffixes of : + , whose
bounds are marked by “active suffixes”:

Definition 24 The active suffix of : , denoted by � - : 6 , is the longest nested suffix
of : . Q
Example 16 Consider the string + 5 4 5 + 4�5 + 5 and a list of columns, where each
column contains the list of all suffixes of a prefix of this string. The relevant
suffixes in each column are marked by the symbol � and the active suffix is
printed in bold face.

42



4.7 Suffix Tree Constructions

� � + + 5 + 5 4 + 5 4�5 + 5 4�5 + + 5 4�5 + 4 + 5 4 5 + 4�5 + 5 4�5 + 4 5 + + 5 4�5 + 4 5 + 5
� � 5 5 4 5 4�5 5 4�5 + 5 4�5 + 4 5 4�5 + 4�5 5 4�5 + 4�5 + 5 4�5 + 4�5 + 5

� � 4 4�5 4�5 + 4�5 + 4 4 5 + 4�5 4�5 + 4 5 + 4�5 + 4 5 + 5
� � � 5 + 5 + 4 5 + 4 5 5 + 4�5 + 5 + 4�5 + 5

� � � + 4 + 4�5 + 4�5 + + 4�5 + 5
� � � � � � � � 4�5 + 5

� 5 5 + � 5 + 5
� + � �

� 5
�

Observation 12

1. For all suffixes 7 of : : 7 is nested 
�� � � - : 6?� � � 7 � .
2. For all suffixes 7 of : : 7 + is a relevant suffix of : + 
�� � � - : 6 + � � � 7 + � � � � - : + 6?� .
3. � - : + 6 is a suffix of � - : 6 + .
4. If 7 + � � - : + 6 and � - : 6 + �� 7 + , then 7 is a right-branching substring of : .

Proof:

1. Routine.

2. 7 + is a relevant suffix of : + 
�� 7 is a nested suffix of : and 7 + is not a
substring of : 
�� � � - : 6?� � � 7 � and 7 + is not a nested suffix of : + 
�� � � - : 6 + � �
� 7 + � and � 7 + � � � � - : + 6?� 
�� � � - : 6 + � � � 7 + � � � � - : + 6?� .

3. Since both � - : + 6 and � - : 6 + are suffixes of : + , it suffices to show � � - : 6 + � �
� � - : + 6?� . If � - : + 6 � � , then this is obviously true. Let � - : + 6 � � + . Since � + is
a nested suffix of : + , we have 9 � + � � : for some strings 9 and � . Hence, �
is a nested suffix of : . Since � - : 6 is the longest nested suffix of : , we have
� � - : 6?� � � �0� and hence � � - : 6 + � � � � + � � � � - : + 6?� .

4. Suppose 7 + � � - : + 6 and � - : 6 + �� 7 + . Then there is a suffix 4?7 + of : + such that
� � - : 6 + � � � 4�7 + � � � � - : + 6?� . From Statement 2 we know that 4?7 + is a relevant
suffix of : + . That is, 4?7 is a nested suffix of : , and 4?7 + is not a substring of
: . Hence, there is a character 5 �� + such that 4?715 is a substring of : . Since
7 + is a substring of : , too, 7 is a right-branching substring of : . Q

By Statement 2 the relevant suffixes of : + are “between” � - : 6 + and � - : + 6 .
Hence, by Statement 3, � - : + 6 is the longest suffix of � - : 6 + that is a substring of
: . Based on this fact, the step from ��� - : 6 to ����- : + 6 can be described as follows:

Take the suffixes of � - : 6 + one after the other by decreasing length and
insert them into ����- : 6 , until a suffix is found which occurs in the tree
and therefore equals � - : + 6 .

43



4 Suffix Trees

More formally this could be stated by the following pseudo-code:
� � � � - : 6 +
while � 5 � 
,7I� � 8 � 4�4A9 . ��� � � - : 6 do

����7�
7. 8 ����� ��� - : 6
� � � 5 . � 6 � �� - : + 6 � � �

Note that � � � ) �� ) � � -�� ) >?>?>��  6��  �*) �(P � � -�� ) >?>?>��  �  �*) 6?� �.� . That is, the total number
of all relevant suffixes is bounded by � . For the previous refinement we have to
implement the following operations:

- � 6 decide if � occurs in
��� - : 6

- = 6 insert � in
� � - : 6

- � 6 drop the first character from �

These operations are executed F�- � 6 times. Thus we would obtain a linear time
algorithm, if we could implement each operation in constant time. Note that
either � � � or � � 7 + for some string 7 occurring in

��� - : 6 . The idea now is to
represent � by the appropriate edges and nodes of

��� - : 6 . In this way, operations
(1) and (2) can be implemented in constant time. The second idea is to construct
for each branching node, say + � , a suffix link which points to branching node �
(if it exists). See Figure 4.3, for an example, where also the leaves have suffix
links. Using suffix links, (3) can be realized in constant time.

Definition 25 Let � be a compact � � -tree and 7 8 � 4�4?- ��6 . The location of 7 in � ,
denoted by � � 4���- 716 is defined as follows:

� If 7 is a branching node, then � � 4�� - 7 6 � 7 .
� If 7 is a leaf, then there is a leaf edge 9 � � 7 in � and � � 4���- 7 6 � - 9 0 �40�� 0 7 6 .
� If there is no node 7 in � , then there is an edge 9 �

� � 9 � � in � such that
7 � 9 � , � �� � , � �� � and � � 4�� - 716 � - 9 0 � 0 � 0 9 � � 6 . If a location is a node, we
call it node location, otherwise edge location. Sometimes we identify a node
location with the corresponding node. Q

It is easy to see that a location can be represented in constant space.

Example 17 Let � be the compact � � -tree shown in Figure 4.3. Then, for in-
stance,

� � 4���- �16 � . � � 8
� � 4���- + 6 � -/. � � 8�0 + 0�5A4 + 0 + 5 4 + 6
� � 4���- + 5 4 + 6 � -/. � � 8�0 + 5A4 + 0�� 0 + 5 4 + 6
� � 4���- 476 � 4
� � 4���- 4 + 576 � - 4 0 + 5 0�4 + 0 4 + 5 4 + 6 Q

Definition 26 For any ��� -tree � we define the following operations on locations:

44



4.7 Suffix Tree Constructions

Figure 4.3: An ��� -tree with Suffix Links

��

��� � � �

��

��� � � � ��� � �

�

� � �

� �

�

�

1.
� 4�4 94.(7�- � � 4�� - 716�0 + 6 
�� 7 + occurs in � . This operation can be implemented in
constant time.

2. 2 
?8 � � 4?- � � 4�� - 7 6�0 ��6 � � � 4���- 7 ��6 for all 7 � 8 � 4�4?- ��6 . This operation can be imple-
mented in F -�� � � 6 time.

3. Insertion of 7 + ; : � : � � 4 � - 7 6 � + ; @ delivers the pair - � � 0 < 6 which is specified as
follows:

� If � � 4�� - 716 � 7 , then � � is obtained from � by adding a leaf edge 7 ���
� 7 + ; .

Moreover, < ��� which should be read as “ < is undefined”.
� If � � 4���- 7 6 � - 9 0 �40 � 0 9 � ��6 , then � � is obtained from � by splitting the

edge 9 �
� � 9 � � into 9 � � 7 � � 9 � � , and adding a new leaf edge 7 ���

� 7 + ; .
Moreover, < � 7 , that is, < is the new inner node created by the splitting.

4. Linking locations via suffix links:

� ����� � � 4?- 7?6 � <
where 7 � < is the suffix link for 7

� ����� � � 4?- 9 0 + � 0 � 0 9 + � � 6 ��� � � 4���- �
6 if 9 � . � � 8
2 
?8 � � 4?- < 0 + � 6 otherwise

where 9 � < is the suffix link for 9�> Q

Example 18 Let � be the compact � � -tree of Figure 4.3 and - � � 0 5 4 6 � ��: � � 4���- 5 4 6 �
5 @ . The compact ��� -tree � � is shown in Figure 4.4. Q
Observation 13 Let � be a compact � � -tree such that the suffix links for all
branching nodes in � are defined. Suppose that 4A; and ; occur in � . Then
� ����� � � 4?- � � 4�� - 4 ; 6 6 � � � 4���- ; 6 . Q

We are now ready to define the algorithm of Ukkonen. The function 9 � � 7,8 
 6
implements the construction of

��� - : + 6 from
��� - : 6 .

Definition 27 The function 9 � � 7 8 
 6 is defined as follows:

45



4 Suffix Trees

Figure 4.4: The Result of an Insert-Operation

��

��� � � �

��

��� � � � ��� � �

�

� �

��

� �

9 � � 7,8 
 6 - � 0 � 0 + ; 0 < 0�� � 4 6 � ��� ��
- � 0 � � 032 
?8 � � 4 - � � 410 + 6 6 if

� 4�4 94.(7�- � � 410 + 6
- � � 0 � �/0�� � 4 6 else if � � 4 � . � � 8
9 � � 7 8 
 6�- � � 0 � � 0 + ; 0 .
0��"����� � � 4?- � � 476 6 otherwise
where - � �/0 . 6 � � : � � 4 � + ; @

� � � ��� ��
�

if < ���� � % < �$� � 4 ' else if
� 4�4A9 .(7 - � � 410 + 6 or . ���� � % < � . ' otherwise

Here the parameters of 9 � � 7 8 
 6 satisfy the following properties:

� � is the current ��� -tree.

� �
is the set of suffix links.

� + is the current input character.

� ; is the remaining input string.

� < is the node for which the suffix link has to be set, or < ��� .

� � � 4 is the location of 7 in � , where 7 + is a suffix of : + and � � - : 6 + ��� � 7 + � �
� � - : + 6?� .

Note that for a new inner node < the suffix link < � . cannot be set instantly,
since . may not exist yet. However, . will be created in the next call to 9 � � 7,8 
�6 .
Therefore, < is taken as an argument of 9 � � 7 8 
 6 and the setting of the suffix link
is delayed until . is constructed.

To complete the algorithm we iterate 9 � � 7,8 
 6 , as defined by the function 9 � � :
9 � � - � 0 � 0�� 0�� � 4 6 � - � 0 � 6
9 � � - � 0 � 0 + ; 0�� � 4 6 � 9 � � - � � 0 � � 0�; 0�� � 4 � 6

where - � �/0 � � 0�� � 4 � 6 � 9 � � 7 8 
 6�- � 0 � 0 + ; 0 � 0�� � 4 6
Theorem 6 Let � 8 � � . Then 9 � � - � � - �16�0���0A� 0 . � � 8 6 returns - ��� -�� 6�0 � 6 in F�- � 6 time
and space, where

�
is the set of suffix links for all branching nodes of

��� -�� 6 . Q

46



4.7 Suffix Tree Constructions

Figure 4.5: The sequence of � � -Trees constructed by mcc for + 5 + 5 $. The last tree,
��� �

, is omitted, since it is identical to the suffix tree shown in Figure
4.1.

���
	

�

��� ��� $

��� �

��

��� ��� $ � ��� $

�����

��

���

��

��� $ $

� ��� $

�����

��

���

��

��� $ $

�

��

��� $ $

4.7.3 The Linear Time Construction of McCreight

The suffix tree construction of McCreight is the classical method. It is also linear
but not online and slightly faster than Ukkonen’s algorithm.

McCreight’s algorithm requires that the input string � ends with a unique
sentinel character $. So let us consider the suffix tree construction for the string
� $. For � 8�:�� 0�� N ��@ , let :  be the suffix of � $ starting at position � in � $. Let

��� #
be the empty ��� -tree. For any � 8+:�� 0�� N ��@ , let

���  be the compact ��� -tree such
that � 4�4?- ���  6 � % � 8 � � � � is a prefix of : � for some 
�8 :�� 0�� @ '
Notice that

��� � �*) �
� �

. Let
�	��

�

) � � and for � 8 : =�0�� N ��@ let
�	��

�  be the longest

prefix of :  which is also a prefix of : � for some 
 8 :�� 0�� P���@ . � 
����  denotes the
remaining suffix of :  , i.e.

� 
����  satisfies
�	��

�  � 
����  � :  . We obviously have

� 
���� � �*) � $
and

� 
����  �� � for any ��8 :�� 0�� N ��@ . One can show that there is a branching node
�
�� � � ���

in
���  if and only if � � �	��
�� � �� � for some 
�8(: =�0�� @ .

The head’s are represented by locations and the tail ’s by pointers into the
input string � $. We therefore define

�	��
��	� ���  � � � 4 ���
��� 	 -

����
��  6 and
� 
���� � � �  8 :�� 0�� N ��@

such that
� 
����  � � 
���� � ! 
 �

�
>?>?> � � $ for any �
8 :�� 0�� N ��@ .

The general structure of McCreight’s algorithm is to construct
���

by suc-
cessively inserting the suffixes of � $ into an initially empty tree, from longest
to shortest. More precisely, the algorithm constructs the following sequence of
compact � � -trees:

���

) 0
���

� 0 >?>?>�0
��� � 0 ��� � �*) (4.2)

Figure 4.5 shows this sequence for the input string + 5 + 5 $.
Additionally, with each

���  , �
8 :�� 0�� @ , the algorithm constructs the suffix links
for all nodes

����
�� � �� � � ���
, 
�8 : =�0���P ��@ . In other words, the only branching node in

� �  whose suffix link is possibly not constructed, is node
�	��
��  . Note furthermore

that there is no suffix link for the
� � ���

.
���

) is the compact ��� -tree with only one edge
� � ���#" $� : ) . This can easily

be constructed in constant time. In order to compute
���  for � 8 : =�0�� N ��@ , it

is crucial to compute
����
��	� ���  and

� 
���� � � �  . Once this has been done,
���  can

be constructed by a single tree insertion operation. More precisely, we have
- � �  0 . 6 � ���  

� ) :
�	��
���� ���  � � 
����  @ , where . � � or . is the node for which the suffix

link has not been constructed yet.

47



4 Suffix Trees

The following function � 4�4�7,8 
 6 specifies how the construction of
���  from

� �  
� )

works:

� 4�4?7 8 
 6 - � 0 � 0�� � 4�0�4 ; 0 < 6
� - � � 0 � � 0�� � 4 � � 0�; � 0 . 6

where � � 4 � � � ����� � � 4 - � � 4 6
- � �/0 . 6 � � : � � 4 � � � ; � @
- - � � 4 � � 0�; � 6�0 � � 6 � ����� ����

-�� � 
 � � � ����� - � � 410�; 6�0 � 6 if � � 4 � . � � 8
-�� � 
 � � � ����� - � � 4 � 0�4A; 6�0 � 6 else if � � 4 is a node
-�� � 
 � � � ����� - � � 4 � 0�4A; 6�0 � � % < � � � 4 � '16 else if � � 4 � is a node
- - � � 4 � 0�4 ; 6�0 � � % < � . '16 otherwise

The parameters of � 4 4?7,8 
�6 satisfy the following properties:

1. � is
���  

� ) and � � � ���  .
2.

�
is the set of suffix links for all branching nodes in

���  
� � , and

� � is the set
of suffix links for all branching nodes in

� �  
� ) .

3. � � 4 � � � 4 ���
��� 	 - 
 
 + 5  � ) 6 and � � 4 � � � � 4 ���

� - 
 
 + 5  6 .
4. 4 ; � 8 + ���  � ) .
5. < is the branching node created during the previous construction step, or

< ��� .

It remains to define the function �
� 
 � � � �����

:

Definition 28 Let � be an � � -tree. For each 7 8 � 4 4?- ��6 and each string �
the function �

� 
 � � � �����
is specified as follows: �

� 
 � � � ����� - � � 4 ��- 716�0 ��6 � - � � 4���- 7,9 6�0 � 6 ,
where 9 � � � and 9 is the longest prefix of � such that 7,9 8 � 4�4?- ��6 . Q

Example 19 Let � be the � � -tree as shown in Figure 4.3. Then, for instance,

�
� 
 � � � ����� - � � 4 ��- 4 + 576�0�4 5
6 � - � � 4���- 4 + 5A4 6�0�5
6
�
� 
 � � � ����� - � � 4�� - 5 4 + 6�0�5�6 � - � � 4���- 5 4 + 6�0�5
6 Q

McCreight’s algorithm is specified by the function � 4�4 .

� 4�4?- � 0 � 0�� � 410�4 ; 0 < 6 � � - � 0 � 6 if ; � � and � � 4 � . � � 8
� 4�4?- � 4 4?7,8 
�6 - � 0 � 0�� � 410�4 ; 0 < 6 6 otherwise

Theorem 7 Let � 8 � � . Then � 4 4?- ��� ) 0���0 .
� � 8�0A� $ 0 � 6 returns - � � -�� $ 6�0 � 6 in F - � 6

time and space, where
�

is the set of suffix links for all branching nodes of
��� -�� $ 6 . Q

48



4.8 Representing Suffix Trees

Figure 4.6: The references of the suffix tree for : � + 5 + 5 (see Figure 4.1).
Vertical arcs stand for

� �
�
� � �
�����

references, and horizontal arcs for� � 
 � � ��� � ��� �	� �
and � � � ��� references.

��� $

���

� ��� $ � $

$
�

��� ��� $

4.8 Representing Suffix Trees

In this section, we describe an implementation technique for suffix trees which
is space efficient and allows a linear time construction using the algorithms of
Ukkonen or of McCreight.

Again we assume that the suffix tree ends with a sentinel.
��� -�� $ 6 is repre-

sented by two tables � � � ��� and ��� � ���
	�� which store the following values: For each
leaf number 
 8 :�� 0�� N ��@ , � � � ��� : 
?@ stores a reference to the right brother of leaf : � .
If there is no such brother, then � � ���
� : 
 @ is a nil reference. For each branching
node � , ��� � ���
	�� : � @ stores a branch record consisting of five components

� �
�
� � �
�����

,� � 
 � � ��� ��� � �	� �
,

�
� � � �
, ����� ��� �

� , and ����� ��� � ���
whose values are specified as follows:

1.
� �

�
� � �
�����

refers to the first child of �

2.
� � 
 � � ��� � ��� �	� �

refers to the right brother of � . If there is no such brother, then� � 
 � � ��� � ��� �	� �
is a nil reference.

3.
�
� � � �

is the depth of �

4. ����� � � �
� is some 
�8 :�� 0�� N ��@ such that � is a prefix of : � .

5. ����� ��� � ���
refers to the branching node � , if � is of the form + � for some + 8 �

and some � 8 � �
The successors of a branching node are therefore found in a list whose ele-

ments are linked via the
� �

�
� � �
��� �

,
� � 
 � � ��� ��� � �	� �

, and � � � ��� references. To speed up
the access to the successors, each such list is ordered according to the first char-
acter of the edge labels. Figure 4.6 shows the child and brother references of the
nodes of the suffix tree of Figure 4.1. We use the following notation to denote a
record component: For any component 4 and any branching node � , �M> 4 denotes
the component 4 stored in the branch record � � � ���
	�� : � @ . Note that the suffix posi-
tion 
 of some branching node � 9 tells us that the leaf : � occurs in the subtree
below node ��9 . Hence � 9 is the prefix of : � of length ��9*> �
� � � �

, i.e. the equality
� 9 � � � >?>?> � � � � � ��� � ! 
�� � ) holds. As a consequence, the label of the incoming edge

49



4 Suffix Trees

Figure 4.7: The tables � � � ��� and � � �����
	 � representing the suffix tree for : � + 5 + 5 (see
Figure 4.1). A bold face number refers to table � � � ��� .

� � � ���
leaf + 5 + 5 $ 5 + 5 $ + 5 $ 5 $ $
leaf number 
 � = � " >
� � � ��� : 
?@ � �

nil nil nil

� � � ���
	��
branching node

� � ��� + 5 5
node number � = �� �

�
� � �
����� = � �� � 
 � � ��� � ��� �	� �

nil � �
�
� � � � < = �
����� ��� �

� � � "
����� ��� � ��� � �

to node � 9 can be obtained by dropping the first �M> �
� � � �
characters of ��9 , where

� is the predecessor of ��9 :
Observation 14 If � � � � 9 is an edge in

� � -�� $ 6 and ��9 is a branching node, then
we have 9 � �  >?>?> �  � � � ) where � � � 9*> ����� ��� �

� N � > ��� � � �
and � � ��9 > �
� � � � P � > ��� � � �

.
Q

Similarly, the label of the incoming edge to a leaf is determined from the leaf
number and the depth of the predecessor:

Observation 15 If � � � � 9 is an edge in
��� -�� $ 6 and ��9 � : � for some 
�8 :�� 0�� N ��@ ,

then 9 � �  >?>?> � � $ where � � 
 N � > ��� � � �
. Q

Note that storing the depth of a branching node has some practical advan-
tages over storing the length of the incoming edge to a node. At first, during the
suffix tree constructions of Ukkonen and of McCreight, the depth of a node never
changes. So it is not necessary to update the depth of a node (the same is true for
the suffix position). Second, the depth of the nodes along a chain of suffix links
is decremented by one, a property which can be exploited to store a suffix tree
more space efficiently. The third advantage of storing the depth is that several
applications of suffix trees assume that the depth of a node is available.

The references
� �

�
� � �
�����

,
� � 
 � � ��� � ��� �	� �

, and � � � ��� : 
 @ can be implemented as inte-
gers in the range : <
0�� N ��@ . An extra bit with each such integer tells whether the
reference is to a leaf or to a branching node. Each leaf : � is referred to by leaf
number 
 . Suppose there are � branching nodes in

��� -�� $ 6 . Let 5 ) 0�5 � 0?>?>?> 0�5 � be the
sequence of branching nodes as generated during the Ukkonen’s or McCreight’s
suffix tree construction. Each branching node 5  is referred to by it’s node num-
ber � . Obviously, 5 ) is the

� � ���
. Figure 4.7 depicts � � � ��� and ��� � ���
	�� for the suffix

tree of Figure 4.1.
Like the references, the other components of the branch records can be im-

plemented by an integer in the range : <
0�� N ��@ . Thus table � � ���
� requires � integers
and table � � �����
	 � requires > � integers. The total space requirement of this suffix
tree implementation is � N > � integers. In the worst case we have � � � , so that the

50



4.9 Suffix Tree Applications

implementation technique requires �O� integers. However, � is usually consider-
ably smaller than � ( � � < > �?=O� is the theoretical average value for random strings).
So in practice, we usually achieve a requirement of less than "3� integers.

4.9 Suffix Tree Applications

4.9.1 Searching for Exact Patterns

Since the suffix tree for � $ contains all substrings of � $, it is easy to verify
whether some pattern string

� 8 � � is a substring of � : just follow the path from
the root directed by the characters of

�
. If at some point you cannot proceed with

the next character in
�

, then
�

does not occur in the suffix tree and hence it is
not a substring of � . Otherwise, if

�
occurs in the suffix tree, then it also is a

substring of � . We, of course, assume that $ does not occur in
�

.

Example 20 Let � � + 5 + 5 . The corresponding suffix tree is shown in Figure 4.1.
Suppose

� � + 5 5 is the pattern. Then we read the first two characters of
�

and
follow the left edge from the root. This leads to the branching node + 5 . However,
there is no 5 -edge outgoing from + 5 , and hence we cannot proceed matching

�
against the suffix tree. In other words,

�
does not occur in the suffix tree and

hence it is not a substring of � . Now suppose
� � 5 + + . Then we follow the second

edge from the root to node 5 . This has an + -edge leading to a leaf. The next
character to read in

�
is the last character which is + . It does not match the next

character on the leaf edge. Hence
�

does not occur in the suffix tree, i.e. it is not
a substring of � . Q

The algorithm to match a pattern string
�

against the suffix tree runs in F�-�� � � 6
time, since for each character we can check in constant time if we can proceed in
the suffix tree. Thus the running time does not depend on the size of the input
string � . Of course one has to invest some time and space to construct the suffix
tree. But this should pay off if we are looking for many patterns in a fixed input
sequence, like e.g. a genome.

If we have found that a pattern occurs in the suffix tree, we can also find
the positions in � where

�
occurs. We only have to annotate the leaves of the

suffix tree. Recall that a leaf 9 $ corresponds to the suffix 9 $ of � $. 9 $ has a
leaf number, that is, the position where the corresponding suffix 9 $ starts. If the
comparison of

�
against

��� -�� $ 6 ends in an edge, then we go to the node, the edge
leads to. If the comparison ends on a node, then we stay at that node. Suppose
� is the node we reached in that way. We now enumerate all leaf numbers of the
leaves in the subtree below � . These leaf numbers are exactly those positions in
� where

�
starts.

Example 21 Suppose
� � + 5 and assume the suffix tree of Figure 4.1. We follow

the first edge from the root which brings us to the branching node + 5 . Thus
�

is a substring of � . The leaf numbers in the subtree below + 5 are < and = , and
indeed + 5 starts in � � + 5 + 5 at positions < and = . Q

51



4 Suffix Trees

There are many variations of this pattern search algorithm. One variation is
to search for the longest prefix of

�
, say

� � , that is a substring of � . This can
clearly be done in F -�� � � � 6 time. It is useful for computing the maximal matches
distance, see Section 3.5.

4.9.2 Minimal Unique Substrings

This problem has applications in primer design. It consists of enumerating all
substrings 9 of some string � satisfying the following properties:

1. 9 occurs exactly once in � (uniqueness),

2. all proper prefixes of 9 occur at least twice in � (minimality),

3. 9 is of length at least � for some given fixed parameter � .
Example 22 Let � � + 5 + 5 and � � = . Then the minimal unique substrings are + 5 +
and 5 + . Note that 5 + 5 is not a minimal unique substring, since the proper prefix
5 + of 5 + 5 is already unique, i.e. the minimality condition does not hold. Q

To solve the minimal unique substring problem, we exploit two properties of
the suffix tree of � $:

� if a string � occurs at least twice in � , there are at least two suffixes in � $ of
which � is a proper prefix. Hence in the suffix tree

��� -�� $ 6 , � corresponds
to a path ending with an edge to a branching node.

� if a string � occurs only once in � , there is only one suffix in � $ of which �
is a prefix. Hence in the suffix tree

��� -�� $ 6 , � corresponds to a path ending
with an edge to a leaf.

According to the second property, we can find the unique strings by looking at
the paths ending on the edges to a leaf. So if we have reached a branching node,
say � , then we only have to enumerate the leaf edges outgoing from � . Suppose
�

�
� � ; is an edge from � leading to a leaf ; , and + � is the edge label, such that + is

the first character on that edge. Then � + occurs only once in � , i.e. it is unique.
Moreover, � corresponds to a path leading to a branching node, and by the first
property, � occurs at least twice. Finally we only have to check if the length of
� + is at least � . Thus the suffix tree based algorithm to solve the minimal unique
substring problem is very simple.

Example 23 Let us apply the algorithm to the suffix tree of Figure 4.1, and as-
sume � � = . We can skip the root, since it would result in strings which are too
short. Let us consider the branching node reached by the edge from the root
labeled + 5 . Then � � + 5 and with the first character + of the label of the first
edge we obtain the minimal unique substring + 5 + . The other solution 5 + can be
found by looking at the other branching node reached by the label 5 from the root
together with its first edge. Q

52



4.9 Suffix Tree Applications

The running time of this simple algorithm is linear in the number of nodes
and edges in the suffix tree, since we have to visit each of these only once and for
each we do a constant amount of work. The algorithm thus runs in linear time
since the suffix tree can be constructed in linear time, and there are F�- � 6 nodes
and edges in the suffix tree. This is optimal, since the running time is linear in
the size of its input.

4.9.3 Maximal Unique Matches

The standard dynamic programming algorithm to compute the optimal alignment
between two sequences of length � and � requires F�- �	� 6 steps. This is too slow
if the sequences are on the order of 100000 or millions of characters.

There are other methods which allow to align two genomes under the assump-
tion that these are fairly similar. The basic idea is that the similarity often results
in long identical substrings which occur in both genomes. These identities, called
MUMs (for maximal unique matches) are almost surely part of any good align-
ment of the two genomes. So the first step is to find the MUMs. These are then
taken as the fixed part of an alignment and the remaining parts of the genomes
(those parts not included in a MUM) are aligned with traditional dynamic pro-
gramming methods. In this section, we will show how to compute the MUMs in
linear time. This is very important for the applicability of the method. We do not
consider how to compute the final alignment. We first have to define the notion
MUM precisely.

Suppose we are given sequences � 0A� � 8 � � (the genomes) and a positive integer
� . The maximal unique matches problem (MUM-problem) is to find all sequences
9 with the following properties:

� � 9 � � � .
� 9 occurs exactly once in � and it occurs exactly once in � � (uniqueness).

� For any character + neither 9 + nor + 9 occurs both in � and in � � (maximality).

Example 24 Let � � 4�4 8 8 4�2 8 , � � � 4 8 2 8 4�2 8 , and � � = . Then there are two maximal
unique matches 4 8 and 8 4�2 8 . Now consider an optimal alignment of these two
sequences (assuming the same costs for insertions, deletions, and replacements):

cct-tcgt
-ctgtcgt

Clearly the two MUMs 4 8 and 8 4�2 8 are part of this alignment. Q
To compute the MUMs, we first have to construct the suffix tree for the con-

catenation of the two sequences � and � � . To prevent from considering any match
that occurs on the borderline between � and � � , we put a unique symbol # be-
tween � and � � , i.e. we construct the suffix tree for H � � # � � $. Now observe that
a MUM, say 9 , must occur exactly twice in H , once in � and once in � � . Hence 9
corresponds to a path in the suffix tree

��� - H 6 ending with an edge to a branching
node. Since 9 is right-maximal by definition (i.e. for any symbol + , 9 + does not

53



4 Suffix Trees

Figure 4.8: The suffix tree for 4�4A8 8 4�2 8 # 4 8�2 8 4�2 8 $ without the leaf edges from the root

c
gt

t

t

gt

cgt

#ctgtcgt$

cttcgt#ctgtcgt$

gtcgt$ tcgt#ctgtcgt$

#ctgtcgt$

cgt$

#ctgtcgt$

$

gtcgt$

tcgt#ctgtcgt$

#ctgtcgt$

$

$

$

occur both in � and in � � ), 9 must even correspond to a branching node. In other
words, for each MUM 9 there exists a branching node 9 in the suffix tree for H .

Since 9 occurs twice in H , there are exactly two leaves in the subtree below 9 .
The subtree can thus contain no branching node, and hence there are two leaf
edges outgoing from 9 . One edge must lead to a leaf, say � , that corresponds to a
suffix starting in � and the other edge must lead to a leaf, say � , that corresponds
to a suffix starting in � � . Given a branching node 9 , the existence of exactly two
such leaf edges can easily be checked. What remains is to verify left-maximality,
i.e. to check if there is a character + such that + 9 occurs both in � and in � � . But
this is easy: Suppose that leaf � has leaf number � and leaf � has leaf number 
 .
Then 9 is left maximal, if and only if � � < or H  � )

�� H � � ) . In other words, we only
have to look at the two positions immediately to the left of the two positions in H
where 9 starts.

Example 25 Let � � 4 4 8 8 4�2 8 , � � � 4 8 2 8 4�2 8 , and � � = . Consider the suffix tree
for � # � � $. This is shown in Figure 4.8. Obviously, the string 8 4�2 8 occurs once
in � and � � , since there are two corresponding edges from branching node 8 4�2 8 .
Comparing the characters 2 and 8 immediately to the left of the occurrences of 8 4�2 8
in � and � � verifies left-maximality. The string 4A8 also occurs once in � and once
in � � , as verified by the two leaf edges from 4 8 . The left-maximality is obvious,
since the characters 4 and # to the left of the occurrences are different. Q

4.9.4 Maximal Repeats

In this section we show how to compute all maximal repeats of a given input
sequence. We generally assume that the input sequence � is indexed from < to
��P � , i.e. � � � # >?>?>�� � � ) . A substring �  >?>?>?� � of � is represented by the pair - � 0�
�6 . A
pair - � 0 . 6 of different substrings � � - � 0�
�6 and . � - � � 0�
 � 6 in � is a repeat if � � � � and
�  >?>?>�� � � �  �� >?>?> � � � . � is the left instance of the repeat and . is the right instance.

54



4.9 Suffix Tree Applications

See the following figure for an illustration.

� � � 

� ��� �
�  >?>?>�� � =

� � 
 �
� ��� �
�  �� >?>?>�� � �

Note that the left instance and the right instance of a repeat may overlap.

Example 26 � � 2 + 2 4 8 4�2 + 2 4 contains the following repeats of length �+= :
- - <
0 � 6�0 - ��0�B 6 6 2 + 2 4
- - <
0�= 6�0 - ��0 � 6 6 2 + 2
- - <
0 � 6�0 - ��0 �?6 6 2 +
- - � 0 � 6�0 - � 0�B 6 6 + 2 4
- - =�0 � 6�0 - ��0�B 6 6 2 4

Example 26 reveals that shorter repeats are often contained in longer repeats.
To remove redundancy, we restrict to maximal repeats. A repeat is maximal if
it is left maximal and right maximal, where these notions are defined as follows:
A repeat - - � 0�
 6�0 - � ��0�
 � 6 6 is left maximal if and only if � P � � < or �  � )

�� �  �� � ) . A
repeat - - � 0�
 6�0 - � � 0�
 � 6 6 is right maximal if and only if 
 � N � � � P � or � � �*)

�� � � � �*) . The
maximality notion is illustrated in the following figure:

� � + � 

5� ��� �

�  >?>?>�� � = 4
� + : ��� + � 
�� + �� 4 and 5 �� 5

� � 
 �5� ��� �
�  � >?>?>�� � �

From now on we want to restrict ourselves to maximal repeats. All repeats
which are not maximal can easily be obtained from the maximal repeats. In
Example 26, the last four repeats can be extended to the left or to the right.
Hence only the first repeat is maximal.

In the following we will present an algorithm to compute all maximal repeats.
It works in two phases. In the first phase, the leaves of the suffix tree are anno-
tated and in the second phase the repeats are output while simultaneously the
branching nodes are annotated.

We will show how the algorithm works for the input string x 2 2 4�2 4 y 2 4�2 4 4 z. The
corresponding suffix tree (with some unimportant edges left out) is shown in
Figure 4.9.

Now suppose we have the suffix tree for some string � of length � over some
alphabet � such that the first and the last character of � both occur exactly
once in � (as in Figure 4.9). We ignore leaf edges from the root, since the root
corresponds to repeats of length zero, and we are not interested in these. In the
first phase the algorithm annotates each leaf of the suffix tree: if � � �  >?>?> � � , then
the leaf � is annotated by the pair - + 0�� 6 , where � is the position where the suffix �
starts and + � �  � ) is the character to the immediate left of that position. - + 0��36 is
the leaf annotation of � . We also write = - � 0A�  � ) 6 � % ��' to denote the annotation,
and assume = - �40�4 6 � � (the empty set) for all characters 4 8 � different from
�  � ) . The latter assumption holds in general (also for branching nodes), whenever

55



4 Suffix Trees

Figure 4.9: The suffix tree for x 2 2 4�2 4 y 2 4�2 4 4 z. Leaf edges from the root are not
shown. These edges are not important for the algorithm.

Figure 4.10: The suffix tree for x 2 2 4�2 4 y 2 4�2 4�4 z with leaf annotation.

56



4.9 Suffix Tree Applications

there is no annotation - 4�0�
�6 for some 
 . For the suffix tree of Figure 4.9, the leaf
annotation is shown in Figure 4.10.

The leaf annotation gives us the character upon which we decide the left-
maximality of a repeat, plus a position where a repeated string occurs. We only
have to combine this information at the branching nodes appropriately. This is
done in the second phase of the algorithm: In a bottom-up traversal the repeats
are output and simultaneously the annotation for the branching nodes is com-
puted. A bottom-up traversal means that a branching node is visited only after
all nodes in the subtree below that node have been visited. Each edge, say �

�
� � � ,

is processed as follows: At first repeats (for � ) are output by combining the an-
notation already computed for node � with the complete annotation stored for
� (this was already computed due to the bottom-up strategy). In particular, we
output all pairs - - ��0�� N �2P � 6�0 - 
 0�
 N �2P � 6 6 , where

1. � is the depth of node � , i.e. � � � �0� ,
2. �
8 = - � 0�4 6 and 
 8 = - �40�4 � 6 for some characters 4 �� 4 � ,
3. = - � 0�4 6 is the annotation already computed for � w.r.t. character 4 and

= - � 0�4 � 6 is the annotation stored for node � w.r.t. character 4 � .
The second condition means that only those positions are combined which have
different characters to the left. Thus it guarantees left-maximality of the repeats.
Recall that we consider processing the edge �

�
� � � . The annotation already com-

puted for � was inherited along edges outgoing from � , that are different from
�

�
� � � . Thus the first character of the label of such an edge, say 4 , is different

from + . Now since � is the repeated substring, 4 and + are characters to the right
of � . As a consequence, only those positions are combined which have differ-
ent characters to the right. In other words, the algorithm also guarantees right
maximality of the repeats.

As soon as for the current edge the repeats are output, the algorithm com-
putes the union = - � 0�476 � = - � 0�476 for all characters 4 , i.e. the annotation is in-
herited from node � to node � . In this way, after processing all edges outgoing
from � , this node is annotated by the set of positions where � occurs, and this
set is divided into (possibly empty) disjoint subsets = - � 0�4 ) 6�0?>?>?> 0 = - ��0�4 � 6 , where
� � % 4 ) 0?>?>?> 0�4 � ' .
Example 27 Figure 4.11 shows the annotation for a large part of the previous
suffix tree, and some repeats. The bottom up traversal of the suffix tree for
x2 2 4�2 4 y 2 4�2 4�4 z begins with node 2 4�2 4 of depth 4, before it visits node 2 4 of depth
2. The maximal repeats for the string 2 4 are computed as follows: The algorithm
starts by processing the first edge outgoing from 2 4 . Since initially there is no
annotation for 2 4 , no repeat is output, and 2 4 is annotated by - 410�B 6 . Then the
second edge is processed. This means that the annotation - 240�= 6 and - ; 0 �?6 for
2 4�2 4 is combined with the annotation - 410�B 6 . This gives the repeats - - � 0 � 6�0 - B�0 �7< 6 6
and - - =�0 � 6�0 - B�0 �7< 6 6 . The new annotation for 2 4 becomes - 410�B 6 , - ; 0 �?6 , - 240�= 6 . Finally,
the third edge is processed. - 410�B 6 and - 410 " 6 cannot be combined, see condition
2 above. So only the repeats - - " 0�> 6�0 - � 0 � 6 6 and - - =�0 � 6�0 - " 0�> 6 6 are output, resulting

57



4 Suffix Trees

Figure 4.11: The annotation for a large part of the suffix tree of Figure 4.10 and
some repeats.

((7,8),(9,10)) ((2,3),(9,10))
((4,5),(7,8))   ((2,3),(4,5))

((2,5),(7,10))

from the combination of - ; 0 �?6 and - 240�= 6 with - 410 " 6 . The final annotation for 2 4 is
- 410�B 6 , - ; 0 �?6 , - 240�= 6 , - 410 " 6 which can also be read as = - 2 4?0�4 6 � % " 0�B ' , = - 2 4?0�; 6 � % � ' ,
and = - 2 4?032
6 � % = ' . Q

Let us now consider the running time of the algorithm. Traversing the suffix
tree bottom-up can surely be done in time linear in the number of nodes, since
each node is visited only once and we only have to follow the paths in the suffix
tree. There are two operations performed during the traversal: Output of repeats
and combination of annotations. If the annotation for each node is stored in
linked lists, then the output operation can be implemented such it runs in time
linear in the number of repeats. Combining the annotations only involves linking
lists together, and this can be done in time linear in the number of nodes visited
during the traversal. Recall that the suffix tree can be constructed in F�- � 6 time.
Hence the algorithm requires F�- � N < 6 time where � is the length of the input
string and < is the number of repeats.

To analyze the space consumption of the algorithm, first note that we do not
have to store the annotations for all nodes all at once. As soon as a node and its
father has been processed we no longer need the annotation. As a consequence,
the annotation only requires F�- � 6 space. Hence the space consumption of the
algorithm is F�- � 6 .

Altogether the algorithm is optimal, since its space and time requirement is
linear in the size of the input plus the output.

58



CHAPTER 5

Approximate String Matching

We consider the approximate string searching problem. Given a pattern 6 8 � �
of length � and an input string 8 8 � � of length � , it consists of finding the
positions in 8 where an approximate match ends. These positions are referred to
as solutions of the approximate string searching problem. An approximate match
is a substring 6 � of 8 such that 
 5 � 7 8��?- 6 � 0 6 6 � � , for a given threshold value � 8 � � .

The approximate string searching problem is of special interest in biological
sequence analysis. For instance, when searching a DNA database (the input
string) for a query (the pattern), a small but significant error must be allowed, to
take into account experimental inaccuracies as well as small differences in DNA
among individuals of the same or related species. Note that in biological context,
especially when dealing with proteins, the cost function plays an important role.
It provides a simple way to consider knowledge about biological phenomena on
the amino acid level. That is, by choosing an appropriate cost function, one can
select those matches which make biological sense, and reject others which do
not.

Computer scientists have mainly focused on the � -differences problem. This
is the approximate string searching problem, restricted to the unit cost function
(each edit operation has cost 1). We will show two algorithms for this special
problem in Sections 5.4, 5.3, and 5.5.

5.1 Sellers Algorithm

By a slight modification of the dynamic programming algorithm for computing
the edit distance (see Section 3.2.2), Sellers obtained a simple method to solve
the approximate string searching problem. Sellers’ method is usually described
by giving the recurrence for an - � N � 6 � - � N � 6 -table. Our approach is slightly dif-
ferent. We specify Sellers algorithm by an initial distance column and a function

59



5 Approximate String Matching

that transforms one distance column into the next distance column, according
to some character 5 .

Definition 29
�

denotes the set of functions �
� % <
0?>?>?>10�� ' � �	� where � � is the
set of non-negative real numbers. The elements of

�
are columns. We define a

function � 
 :$8 5 4 � � � � � � � �
as follows. For all � 8 �

and all 5 8 � , � 
?: 8 5 4 � � - � 0�576 �
� � where � � - < 6 � < and

� � - � N � 6 � � � � ��� ��
� � - � 6 N &�- 6  �*) � �16�0
��- � 6 N &�- 6  �*) � 576�0
��- � N � 6 N &�- � � 5 6

	 �
��
Moreover, we define a function 5 4 � � �$� � � �

by 5 4 � �3- �
576 � � 
 :$8 5 4 � � - 5 4 � �3- � 6�0�576 and
5 4 � � - �16 � � � where � � - < 6 � < and � � - � N � 6 � � � - � 6 N & - 6  �*) � �16 . 5 4 � � - �
6 is the distance
column of � . � 8 �

is a distance column if � � 5 4 � �3- � 6 for some � 8 � � . Q
Sellers algorithm evaluates for each character in 8 a “distance column” of � N

� entries. If the last entry in the 
 th distance column is at most � , then an
approximate match ending at position 
 in 8 is found.

Algorithm Compute 5 4 � � - �16 . For each 
 8 :�� 0�� @ , compute

5 4 � � - 8 ) >?>?>�8 � 6 � � 
 :$8 5 4 � � - 5 4 � �3- 8 ) >?>?>�8 � � ) 6�0�8 � 6A>
If 5 4 � �3- 8 ) >?>?>�8 � 6 - � 6 � � , then output 
 . Q

It is straightforward to show that

5 4 � �3- 8 ) >?>?>�8 ��6 - � 6 � � ��� % &�- 7 0 6 ) >?>?> 6  6 �37 is a suffix of 8 ) >?>?>�8 �O'
for any ��8 : <
0�� @ and any 
 8 : <
0�� @ . This implies the correctness of Sellers algo-
rithm. For each 
,8 : <
0�� @ , the distance column 5 4 � � - 8 ) >?>?>A8 � 6 can be computed in
F�- � 6 steps. This gives an overall time efficiency of F�- � ��� 6 . Since in each step at
most two columns have to be stored, Sellers algorithm needs F�- � 6 space.

5.2 Improving Sellers Algorithm

In this section, we show how to improve Sellers algorithm. The idea is to compute
the distance column of 8 ) >?>?>A8 � modulo some equivalence.

Definition 30 An entry ��- � 6 of a distance column � is essential if ��- � 6 � � . �#
 ��- � 6 ���

� % � 8 : <
0�� @ � ��- �36 � � ' is the last essential index of � . The distance columns �
and ��� are equivalent, denoted by ��� � � , if for all � 89: <
0�� @ , ��- � 6 � ��� - � 6 whenever
��- � 6 � � or � � - � 6 � � . Q

The relation � is preserved by � 
 :$8 5 4 � � , as shown in the following observation.

Observation 16 Let ��� ��� and 5 8 � . Then � 
?:$8 5 4 � � - � 0�576�� � 
?: 8 5 4 � � - ���/0�5 6 .
Proof: Let � � � � 
?: 8 5 4 � � - � 0�576 and ���� � � 
?: 8 5 4 � � - ���/0�576 . By induction on � , we show
that � � - � 6 � � or � �� - � 6 � � implies � � - � 6 � � �� - � 6 . For � � < we have � � - � 6 � < � � �� - � 6 .
Assume that � � - � N � 6 � � and consider the following cases:

60



5.3 Ukkonen’s Cutoff Algorithm

� If � � - � N � 6 � � � - � 6 N & - 6  �*) � �16 , then � � - � 6 � � which implies � � - � 6 � � �� - �36 by
induction hypothesis.

� If � � - � N � 6 � ��- � 6 N &�- 6  �*) � 576 , then ��- � 6���� which implies ��- � 6 � � � - � 6 by
assumption.

� If � � - � N � 6 � ��- � N � 6 N &�- � � 576 , then ��- � N � 6 � � which implies ��- � N � 6 � � � - � N � 6
by assumption.

Hence, we obtain

� � - � N � 6 � � ��� ��� ��
� � - � 6 N & - 6  �*) � �16
��- �36 N &�- 6  �*) � 576
��- � N � 6 N &�- � � 576

	 �
�� � � ��� ��� ��
���� - � 6 N & - 6  �*) � �16
� � - � 6 N & - 6  �*) � 576
��� - � N � 6 N & - � � 576

	 �
�� � � �� - � N � 6

By an analogous argumentation, one shows � �� - � N � 6 � � � - � N � 6 whenever ���� - � N � 6 �
� . Q

Note that ��- � 6 ��� if and only if the last essential index of � is � . Let � �
� 
 ��- � 6 . The essential entries of � � � � 
?:$8 5 4 � � - � 0�576 do not depend on the entries
��- � N � 6�0 ��- � N = 6�0?>?>?>�0 ��- � 6 since these are larger than � . Hence it is not necessary
to calculate � � completely, as done by Sellers’ algorithm. The calculation of � � can
be modified as follows. Compute � � - < 6�0 � � - � 6�0?>?>?>10 � � - � 6 according to Definition 29. If
� � � , then compute

� � - � N � 6 � ����� % � � - � 6 N & - 6 � �*) � � 6�0 ��- � 6 N & - 6 � �*) � 576�' 0
� � - � N = 6 � � � - � N � 6 N & - 6 � � � � � 6�0
� � - � N � 6 � � � - � N = 6 N & - 6 � � � � � 6�0

...

until an entry � � - 
 6 is reached such that either 
 � � or � � - 
 6 � � holds. Thus
the computation of � � is cut off at index 
 . The last essential index of � � is the
maximal �
8 : <
0�
 @ such that � � - � 6 � � . This modification leads to a cutoff variation
of Sellers’ method. If & is the unit cost function, then one can show that the
expected running time of Seller’s Algorithm is F�- � �,� 6 . Empirical measurements
suggest that this result holds for arbitrary cost functions, too. Note that the
cutoff variation does not improve on the worst case efficiency of F�- � �?� 6 .

5.3 Ukkonen’s Cutoff Algorithm

The � -differences (approximate string searching) problem is the approximate string
searching problem restricted to the case of the unit cost function. For the rest
of this chapter, we consider this problem. That is, we assume that � is a non-
negative integer and that & is the unit cost function.

From the previous sections we know how to solve this problem by computing
an - � N � 6 � - � N � 6 table � such that � - � 0�
 6 � 5 4 � � - 8 ) >?>?>�8 ��6 - �36 . Note that the only
differences between table � � and � is the initialization of the first row, which is
<
0 � 0�=�0?>?>?>10�� for the former and constant 0 for the latter. This difference is not im-
portant for the Observations 7 and 8 of Section 3.2.5. That is, both observations

61



5 Approximate String Matching

Table 5.1: The values of table � computed for 6 � + 5 5 5 4 , 8 � + 5 5 5 + 5 475 4 , and � � = .
The solutions to the � -differences problem ar 3,4,7,8,9.



� 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 1 1 1 1

� 2 2 1 1 2 1 1 0 1 2 2
3 2 1 1 2 2 1 1 1 2
4 2 1 2 2 2 1 2
5 2 2 2 2 1

also hold for table � , when substituting 6 for 9 and 8 for � . This means that the
cutoff variation of Sellers algorithm can further be optimized for the � -differences
problem.

Algorithm Compute � - � 0 < 6 � � for each � 8 : <
0�� @ , and set � # � � . For each

 8 : <
0�� P ��@ and each ��8 : <
0�� � @ , perform the following steps:

- � 6 If � � � � , then compute ��- � N � 0�
 N � 6 according to Observation 8.

- = 6 Let � � � � � � . If 6  �*) � 8 � �*) or � � � - � 0�
 N � 6 , then set � - � N � 0�
 N � 6 � � and
� � �*) � � � N � . Otherwise, set � � �*) � � 

� % � 8 : <
0�� �7@ � � - � 0�
 N � 6 � � ' .

For each 
 8 : <
0�� @ output 
 if � � � � . Q
This algorithm was first described by Ukkonen, hence we call Ukkonen’s cutoff

algorithm. Table 5.1 shows the values of table � computed for a particular input.

Theorem 8 Ukkonen’s cutoff algorithm correctly solves the � -differences prob-
lem.

Proof: We show by induction on 
 that � � is the last essential index of the 
 th
column of table � , and that the values ��- � 0�
�6 are computed correctly for each
� 8 : <
0�� � @ . This implies the correctness. For 
 � < the claim easily follows. Suppose
the claim holds for some 
�8 : <
0�� P ��@ . Let � 8(: <
0�� � @ .
- � 6 If � � � � , then � - � N � 0�
 N � 6 depends on � - � 0�
 N � 6 , ��- � N � 0�
 6 and ��- ��0�
 6 . These

values are computed correctly. Hence, � - � N � 0�
 N � 6 is computed correctly
according to Observation 8.

- = 6 Let � � � � � � . Then ��- � 0�
�6 � � and ��� � - � N � 0�
 N � 6 � � - � N =�0�
 N � 6 � �?�?���
��- � 0�
 N � 6 . If 6  �*) � 8 � �*) or � � � - � 0�
 N � 6 , then � - � N � 0�
 N � 6 � � and � � �*) � � � N �
is the last essential index of column 
 N � . Otherwise, � - � N � 0�
 N � 6 � � and
the last essential index of the column 
 N � is � � � . Q

The algorithm computes F�- � ��6 entries in column 
 of table � . In the worst
case, � � � � . Hence, the worst case running time is F - � � � 6 . It can be shown that
the expected value of � � is F�- � 6 . Thus, we can conclude that the expected running
time of Ukkonen’s cutoff algorithm is F�- �M� � 6 .

62



5.4 Ukkonen’s Column DFA

5.4 Ukkonen’s Column DFA

Note that each column computed by Ukkonen’s cutoff algorithm transforms one
column into another column, according to a given character. (This view was
already employed when describing Sellers Algorithm.) The idea now is to pre-
process the column transformations into a deterministic finite automaton. Intu-
itively, each state of the automaton represents a possible column of table � and
each transition represents the computation of a column from a previous column.

Let � be a distance column. If ��- � 6 � � , then the exact value of ��- � 6 does not
matter (see Observation 16). Hence, each value ��- � 6 larger than � can be set to
� N � , without affecting the correctness of Sellers’ algorithm. This motivates the
following definition.

Definition 31 For each � 8 ��� the column � 5 4 � �3- � 6 is defined as follows:

� 5 4 � � - �
6 - � 6 � � ��� % 5 4 � � - �
6 - �36�0�� N �O'
for all � 8 : <
0�� @ . � 5 4 � �3- � 6 is the normalized distance column of � . � 8 �

is a
normalized distance column if � � � 5 4 � � - �
6 for some � 8 � � . Q

Note that a normalized distance column contains � N � values, all of which
are � � N � . Hence, there are only finitely many normalized distance columns.

Definition 32 The column-DFA for � , � , and 6 is the deterministic finite automa-
ton

- � 0�� 0�7 # 0�� 
 :$8 � 5 4 � � 6
which is specified as follows:

1.
� � % � 5 4 � � - �
6 � � 8 � �,' ,

2. � � % ��8 � � ��- � 6 � � ' ,
3. 7 # � � 5 4 � � - � 6 ,
4. � 
?:$8 � 5 4 � � - � 5 4 � � - �
6�0�576 � � 5 4 � � - �
5 6 , for all � 8 ��� and all 5�8	� . Q
Notice that one can define the column-DFA on all distance columns. However,

using normalized distance columns reduces the size of the automaton consider-
ably.

Example 28 Let � � %,+ 0�5,' , � � � , and 6 �/+ 5�5 + . The column-DFA for � , � , and
6 is represented by the following table. The states are written as sequences of
integers. The accepting states are underlined.

< � =?=?= < � � =?= < � � � = < � � � � < � �7< � < �7< � = < �7< � � <?< � =?= <?< � = � <?< � � � <?< � �7<
+ <?< � =?= <?< � =?= <?< � = � <?< � = � <?< � �7< <?< � � � <?< � � � <?< � =?= <?< � =?= <?< � = � <?< � = �
5 < � � =?= < � � � = < � � � = < � � � = < � � � � < � �7< � < � �7< � < �7< � = < �7< � = < �7< � = < �7< � �
Q

63



5 Approximate String Matching

Algorithm CDFA: Preprocess the column-DFA 	 � - � 0�� 0�7 # 0�� 
?:$8 � 5 4 � � 6 for � , � ,
and 6 . Let 7 # � 7 # and 7 � � � 
?:$8 � 5 4 � � - 7 � � ) 0�8 �16 for 
�8 :�� 0�� @ . Output 
 if 7 � 8 � . Q

The crucial point in Algorithm CDFA is the preprocessing phase. In order to
compute a transition efficiently, the representation of

�
is very important. One

can represent each ��8 �
by the sequence

- ��- � 6 P ��- < 6�0 ��- = 6 P ��- � 6�0?>?>?>�0 ��- � 6*P ��- � P � 6 6 (5.1)

of differences. According to Observation 7, ��- � 6 P ��- � P � 6 8 % � 0 <
0?P��O' for all ��8 :�� 0�� @ .
Hence, (5.1) can conveniently be stored in a ternary tree whose edge labels are 1,
0, and P � . Each membership test and each insertion into the ternary tree can be
performed in F�- � 6 steps. Thus, a transition can be computed in F - � 6 steps. Let
� � � � � . Since there are � � �3� � transitions, the column-DFA can be constructed in
F�-�� � �O�,� �?� 6 time. The space requirement for the ternary tree is F -�� � � � � 6 .

By the cutoff technique described in section 5.3, one can improve the average
case efficiency of the preprocessing. In particular, each � 8 �

can be uniquely
represented by the sequence

- ��- � 6 P ��- < 6�0 ��- = 6 P ��- � 6�0?>?>?> 0 ��- � 
?��- � 6 6 P ��- � 
?��- � 6 P � 6 6 (5.2)

Since the expected value of the last essential index is F - � 6 , a membership test and
an insertion into the ternary tree takes F�- � 6 steps in the expected case. Hence,
the construction time and the size of the ternary tree reduce in the expected case
to F�-�� � �O� � � � 6 and F�-�� � �O� � 6 , respectively.

In every step of the preprocessing phase, the new states, that is, those for
which the transitions have not been computed yet, must be stored. As all new
states occur in the ternary tree, Ukkonen suggests to use a queue of pointers
to the nodes representing the new states. This queue takes F�-�� � � 6 space, and
deletions and insertions can be performed in constant time. Hence, the worst
case preprocessing time is F -�� � � � � ��� 6 and the space requirement is F -�� � � ��- � N � 6 6 .
To obtain the complexities for the average case, one substitutes � by � .

The representation of
�

by a ternary tree implies � � ��8 F�- � � 6 . Taking the
threshold and the size of the input alphabet into consideration, Ukkonen derives
a second upper bound. He shows that � � ��8 F - = � � � � � � � �*)�6 . This gives the following
result.

Theorem 9 Algorithm CDFA correctly solves the � -differences problem in F�- � �?�$�
� N � 6 time and F�- �2� - � N � 6 6 space where � � � ��� % � � 0�= � � � � �?� � �*) ' and � � � �	� . Q
Theorem 9 shows that if � and � are not quite small, the large time and space
requirements may limit the applicability of Algorithm CDFA.

5.5 Agrep

In this section we discuss the basic algorithms used in the popular string match-
ing tool agrep. The name agrep is an abbreviation for “approximate general
regular expression print”. The user interface is similar to the well known pro-
grams grep, egrep, and fgrep. Agrep was developed in the early 1990’s by

64



5.5 Agrep

Manber and Wu. The main goal was to search for short patterns with few errors.
The speed and versatility of the tool is mainly based on a new string matching
approach exploiting bit-parallelism.

We assume a pattern 6 of length � . The bitvectors used in agrep are of length
at least � . We assume that they are exactly of length � . This does not cause
any problems, but the algorithms are more easy to explain. Agrep actually uses
4 byte unsigned integers to represent the bitvectors. So only words of length up
to 32 can be searched.

5.5.1 Exact String Matching

For the exact string searching (i.e. � � < ), the agrep-algorithm computes bitvec-
tors J #� for 
�8 : <
0�� @ defined by:

J #� : � @ � � 
�� 6 ) >?>?> 6  � 8 � �  �*) >?>?>�8 � (5.3)

for � 89:�� 0�� @ . Hence there is an exact match ending at position 
 in 8 if and only
if J #� : � @ � � . Now consider how to compute the bitvectors J #� . For 
 � < we have
8 � �  �*) >?>?>�8 � � � and hence J ## : � @ � < . Now suppose 
 � < and � � < . We have
J #� :���@ � � 
�� 6 ) � 8 � . Suppose � � � . Then

J #� : � @ � � 
�� 6 ) >?>?> 6  � 8 � �  �*) >?>?>�8 �
�� 6 ) >?>?> 6  � ) � 8 � �  �*) >?>?>�8 � � ) and 6  � 8 �

�� 6 ) >?>?> 6  � ) � 8 � � � ) � � �  � ) � �*) >?>?>�8 � � ) and 6  � 8 �

�� J #� � ) : ��P ��@ � � and 6  � 8 �

Altogether we obtain

J #� : � @ � ��� ��
< if 
 � <
� if 
 � < and - � � � or J #� � ) : �*P ��@ � � 6 and 6  � 8 �
< otherwise

To compute the transition from J #� � ) to J #� efficiently, we make use of bit paral-
lelism. The idea is to preprocess for each character + 8 � a bitvector � � defined by
� � : � @ � � 
�� 6  � + . Then the result of the comparison 6  � 8 � is found in ��� � : � @ .Moreover, the dependence of J #� on J #� � ) implies a right shift before combining
the result with � � � . We have to fill with 1 after the right shift to consider the case
� � � . Altogether we obtain the following equation for J #� , 
�8 :�� 0�� @ :

J #� � �
�
�
� ��� - J #� � ) 6 & ��� �

where
�
�
�
� ��� - � 6 : � @ � � � if � � �

� : ��P ��@ otherwise

and & is the bitwise logical and-operation. Assuming � � �?= we can implement
the expression

�
�
�
� ��� - � 6 easily in

�
by

((v) >> 1) | (1 << 31))

65



5 Approximate String Matching

Table 5.2 shows the sequence of bitvectors J #� and � � computed by the agrep-
algorithm.

Now consider the efficiency. Let � be the word length of the computer. Each
J #� can be stored

� � � ��� computer words. We do not need to store J #� � ) , once we
have computed J #� . Moreover, we need � �	� bitvectors of size � . Hence the space
requirement is F -�� �	� � � � � ����6 .

The precomputation of the bitvectors � � for all + 8 � requires F�-�� � � � � � � ����6
time. It is easy to see that each computation of J #� from J #� � ) requires � � � � � ��� bit
operations. Hence the time requirement is F - � � � � ����6 . For the case � ��� , the
algorithm thus runs in linear time.

5.5.2 Allowing for Errors

Now we consider the case � � < . Suppose � is the - � N � 6 � - � N � 6 table such
that � - � 0�
�6 � 5 4 � � - 8 ) >?>?>�8 � 6 - � 6 , see Section 5.3. We compute � N � bitvectors J �� for
5 8 : <
0�� @ and 
�8 : <
0�� @ satisfying:

J �� : � @ � � 
�� � - � 0�
�6 � 5 (5.4)

for any � 8 : <
0�� @ . Hence there is an approximate match ending at position 
 8 : <
0�� @
if and only if J �

� : � @ � � . Note that � - � 0�
 6 � < if and only if 6 ) >?>?> 6  � 8 � �  �*) >?>?>�8 � .
Hence (5.3) coincides with (5.4) for 5 � < .

Now consider how to compute the bitvectors J �� . Recall that ��- � 0 < 6 � � for
� 8 : <
0�� @ . Hence J �# : � @ � � 
�� � - � 0 < 6 � 5 
�� � � 5 . Let 
 � < . For 5 � < we can
resort to the equality J #� � �

�
�
� � � - J #� � ) 6 & � � � . Now suppose 5 � < , � � < , and 
 � < .

Then

J �� : � @ � � 
�� � - � 0�
�6 � 5

�� ����� ��� ��

��- ��P � 0�
 P � 6 N if 6  � 8 � then 1 else 0
��- ��0�
IP � 6 N �
��- ��P � 0�
 6 N �

	 �
�� � 5

�� - if 6  � 8 � then - � - ��P � 0�
 P � 6 � 5
6 else - � - ��P � 0�
 P � 6 N � � 5�6 6

or � - � 0�
 P � 6 N � � 5
or � - � P � 0�
�6 N � � 5


�� - if 6  � 8 � then - � - ��P � 0�
 P � 6 � 5
6 else - � - ��P � 0�
 P � 6 � 5IP � 6 6
or � - � 0�
 P � 6 � 5 P �
or � - � P � 0�
�6 � 5 P �


�� - if 6  � 8 � then J �� � ) : � P ��@ else J � � )� � ) : � P ��@/6
or J � � )� � ) : � @
or J � � )� : �*P ��@

To apply these operations to the entire bitvectors in parallel, we have to shift right
J �� � ) , J

� � )� � ) and J � � )� , since they access the value at index � P � . The shift right
always fills with the one bit to consider the case � � � . Additionally we have to
combine J �� � ) with the bitvector � � � for the pairwise character comparison. We
obtain the following expression to compute J �� for 5 8 :�� 0�� @ and 
�8 :�� 0�� @ :

66



5.5 Agrep

Table 5.2: The bitvectors J #� , J )� , � � , � � , and � � computed by the agrep-algorithm
for 6 � + + 5 + 4 , 8 � + + 5 + + 4 + + 5 + 4 + 5 , and � � �
+ + 5 + + 4 + + 5 + 4 + 5

J ## J # ) J #� J #� J #� J #� J #� J #� J #� J #� J # ) # J # )�) J # ) � J # )
� � � � � � �

+ < � � < � � < � � < � < � < � < <
+ < < � < < � < < � < < < < < � < <
5 < < < � < < < < < � < < < < < � <
+ < < < < � < < < < < � < < < � < <
4 < < < < < < < < < < < � < < < < �

+ + 5 + + 4 + + 5 + 4 + 5
J )# J )) J )� J )� J )� J )� J )� J )� J )� J )� J )) # J ))�) J )) � J ))

�
+ � � � � � � � � � � � � � �
+ < < � � � � � � � � � < < <
5 < < < � � < < < < � � < < <
+ < < < < � � < < < < � � � <
4 < < < < < < � < < < < � � <

J �� � �
�
�
� � � - J �� � ) 6 & � � �

|
�
�
�
� ��� - J � � )� � ) 6

| J � � )� � )
|

�
�
�
� ��� - J � � )� 6

The algorithm computes the bitvectors in parallel. The precomputation of the
bitvectors � � for all + 8 � requires F�-�� � �"� � � � ����6 time. There are � N � bitvectors J �# ,
5 8 : <
0�� @ to initialize. This takes F�- ��� � � � ����6 time. For computing each generation
of bitvectors J �� , 5 89: <
0�� @ , we need F - ��� � � � ����6 time. Hence the running time is
F - �	�,�M� � � � ����6 . If � � � , then the running time is F�- � � 6 .

67



5 Approximate String Matching

68



CHAPTER 6

Further Reading

There are now several text books on biological sequence analysis. The focus of
the books are different. [Ste94] and [CR94] cover mostly exact and approximate
string matching techniques. [Gus97] is more complete on the biologically relevant
techniques. [Wat95] covers similar topics but it was written from a mathemati-
cian’s viewpoint. [SM97] is also recommended. The most recent book [Pev00]
covers some new topics.

The application areas in Section 1.1 are further described in [KS83]. The
notion of edit operations dates back to [Ula72]. The introduction of the edit
distance model is standard and it can be found in the text books mentioned
above. The algorithm for computing the edit distance was described by [WF74],
but others independently discovered the same algorithm. The methods for the
fast computation of the (simple) Levenshtein distance have independently been
described by [Ukk85a] and [Mye86]. The Smith-Waterman Algorithm is from
[SW81].

The maximal matches model is from [EH88], while the � -gram Model was in-
troduced by [Ukk92]. More information on FASTA can be found in [LP85, Pea90].
The version of BlastP discussed here is described in [AGM � 90]. For some details
on the current version of BlastP, see [AMS � 97].

For a comprehensive overview of suffix trees, see [Gus97]. The Write-Only-
Top-Down suffix tree construction was developed in [GK95]. Efficient implemen-
tation techniques are described in [GKS99]. Ukkonen’s online construction is
from [Ukk95]. The algorithm of McCreight can be found in [McC76]. The pre-
sentations of both algorithms follow [Kur95]. [GK97] show that McCreight’s Algo-
rithm is an optimization of Ukkonen’s Algorithm, although both algorithms rely
on different intuitive ideas. The implementation techniques for suffix trees are
described in [Kur99]. The method to compute maximal unique matches stems
from [DKF � 99]. The algorithm to compute maximal repeats is from [Gus97]. The
first efficient implementation was in the REPuter program [KS99, KOS � 00], see

69



6 Further Reading

als http://www.genomes.de
Seller’s algorithm is from [Sel80]. The improvement was probably known by

many people, but it was written up in [Kur96]. The cutoff technique of Ukkonen
and the column DFA were introduced in [Ukk85b]. Agrep is described in [WM92].
The source code can be obtained from

ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z.

Agrep is also part of the SUSE-Linux distribution.

70



Bibliography

[AGM � 90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A
Basic Local Alignment Search Tool. J. Mol. Biol., 215:403–410, 1990.

[AMS � 97] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D.J. Lipman. Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs. Nucleic Acids Res.,
25(17):3389–3402, 1997.

[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford University
Press, Oxford, 1994.

[DKF � 99] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and
S.L. Salzberg. Alignment of Whole Genomes. Nucleic Acids Res.,
27:2369–2376, 1999.

[EH88] A. Ehrenfeucht and D. Haussler. A New Distance Metric on Strings
Computable in Linear Time. Discrete Applied Mathematics, 20:191–
203, 1988.

[GK95] R. Giegerich and S. Kurtz. A Comparison of Imperative and Purely
Functional Suffix Tree Constructions. Science of Computer Program-
ming, 25(2-3):187–218, 1995.

[GK97] R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A
Unifying View of Linear-Time Suffix Tree Construction. Algorithmica,
19:331–353, 1997.

[GKS99] R. Giegerich, S. Kurtz, and J. Stoye. Efficient Implementation of Lazy
Suffix Trees. In Proc. of the Third Workshop on Algorithmic Engineer-
ing (WAE99), pages 30–42. Lecture Notes in Computer Science 1668,
1999.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, New York, 1997.

71



Bibliography

[KOS � 00] S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich.
Computation and Visualization of Degenerate Repeats in Complete
Genomes. In Proc. of the International Conference on Intelligent Sys-
tems for Molecular Biology, pages 228–238, Menlo Park, CA, 2000.
AAAI Press.

[KS83] J.B. Kruskal and D. Sankoff. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-
Wesley, Reading, MA, 1983.

[KS99] S. Kurtz and C. Schleiermacher. REPuter: Fast Computation of Max-
imal Repeats in Complete Genomes. Bioinformatics, 15(5):426–427,
1999.

[Kur95] S. Kurtz. Fundamental Algorithms for a Declarative Pattern Match-
ing System. Dissertation, Technische Fakultät, Universität Bielefeld,
available as Report 95-03, July 1995.

[Kur96] S. Kurtz. Approximate String Searching under Weighted Edit Dis-
tance. In Proc. of Third South American Workshop on String Processing,
pages 156–170, 1996.

[Kur99] S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software—
Practice and Experience, 29(13):1149–1171, 1999.

[LP85] D.J. Lipman and W.R. Pearson. Rapid and Sensitive Protein Similarity
Search. Science, 227:1435–1441, 1985.

[McC76] E.M. McCreight. A Space-Economical Suffix Tree Construction Algo-
rithm. Journal of the ACM, 23(2):262–272, 1976.

[Mye86] E.W. Myers. An F - � � 6 Differences Algorithm. Algorithmica, 2(1):251–
266, 1986.

[Pea90] W.R. Pearson. Rapid and Sensitive Sequence Comparison with FASTP
and FASTA. In Doolittle, R., editor, Methods in Enzymology, vol-
ume 183, pages 63–98. Academic Press, San Diego, CA, 1990.

[Pev00] P. A. Pevzner, editor. Computational Molecular Biology: An Algorithmic
Approach. The MIT Press, Cambridge, MA, 2000.

[Sel80] P.H. Sellers. The Theory and Computation of Evolutionary Distances:
Pattern Recognition. Journal of Algorithms, 1:359–373, 1980.

[SM97] J. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. PWS Publishing, Boston, M.A., 1997.

[Ste94] G.A. Stephen. String Searching Algorithms. World Scientific, Singa-
pore, 1994.

[SW81] T.F. Smith and M.S. Waterman. Identification of Common Molecular
Subsequences. J. Mol. Biol., 147:195–197, 1981.

72



[Ukk85a] E. Ukkonen. Algorithms for Approximate String Matching. Information
and Control, 64:100–118, 1985.

[Ukk85b] E. Ukkonen. Finding Approximate Patterns in Strings. Journal of
Algorithms, 6:132–137, 1985.

[Ukk92] E. Ukkonen. Approximate String-Matching with � -Grams and Maxi-
mal Matches. Theoretical Computer Science, 92(1):191–211, 1992.

[Ukk95] E. Ukkonen. On-line Construction of Suffix-Trees. Algorithmica, 14(3),
1995.

[Ula72] S.M. Ulam. Some Combinatorial Problems Studied Experimentally on
Computing Machines. In Zaremba, S.K., editor, Applications of Num-
ber Theory to Numerical Analysis, pages 1–3. Academic Press, 1972.

[Wat95] M.S. Waterman. Introduction to Computational Biology: Maps, Se-
quences and Genomes. Chapman Hall, 1995.

[WF74] R.A. Wagner and M.J. Fischer. The String to String Correction Prob-
lem. Journal of the ACM, 21(1):168–173, 1974.

[WM92] S. Wu and U. Manber. Fast Text Searching Allowing Errors. Commu-
nications of the ACM, 10(35):83–91, 1992.

73


