
14 Annu. Rep. Prog. Chem., Sect. C, 2011, 107, 14–46

This journal is © The Royal Society of Chemistry 2011

Cite this: Annu. Rep. Prog. Chem., Sect. C, 2011, 107, 14–46
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Disordered porous materials filled with liquid or solution may be considered
as partly-quenched, i.e., as systems in which some of the degrees of freedom
are quenched and others annealed. In such cases, the statistical-mechanical
averages used to calculate the system’s thermodynamical properties become
double ensemble averages: first over the annealed degrees of freedom and
then over all possible values of the quenched variables. In this respect, the
quenched-annealed systems differ from regular mixtures. The multi-faceted
applications of the partly-quenched systems to a kaleidoscope of techno-
logical and biological processes make the understanding of these systems
important and of interest. Present contribution reviews recent developments
in theory and simulation of partly-quenched systems containing charges.
Specifically, two different models of such systems are discussed: (a) the
model in which the nanoporous system (matrix subsystem) formed by
charged obstacles is electroneutral, and (b) the model, where the subsystem
of obstacles has some net charge. The latter model resembles, for example,
the situation in ion exchange resins etc. Various theoretical methods are
applied to investigate structural and dynamical peculiarities of such
systems. One is the replica Ornstein-Zernike theory, especially adapted
for charged systems, and the other is the Monte Carlo computer simulation
method. These two approaches are well suited to study thermodynamical
parameters, such as the mean activity coefficient of the annealed electrolyte
or Donnan’s exclusion parameter. Highly relevant issue of dynamics of ions
in partly-quenched systems is also addressed. For this purpose, the
Brownian dynamic method is used: the self-diffusion coefficients of ions
are calculated for various model parameters and discussed in light of the
experimental data. These results, together with the thermodynamical
data mentioned above, provide additional evidence that properties of the
adsorbed fluid substantially differ from those of its bulk counterpart.
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Highlights

In the present review article, we highlight the major advancements in theory and

simulation of partly-quenched systems containing charges. One of the most

important steps was the development of the integral equation theory for such

systems. The replica Ornstein-Zernike equation theory in the hypernetted-chain

approximation yields results in good agreement with computer simulations. In

combination with the formula for the excess chemical potential, the theory

represents an excellent tool to study electrolyte adsorption in charged matrices.

Notice that replica theory requires only the pair distribution function (or the

structure factor) of obstacles as an input for the calculation. In the last years, the

studies of thermodynamical properties of nanoporous adsorbents were comple-

mented by examination of dynamics of ions and molecules of the annealed phase.

This approach, together with more realistic modelling of the porous material based

on the experimental data, shall yield further progress in understanding these systems.

1. Introduction

Understanding thermodynamical and structural properties of systems where the

mobility of at least one component is considerably smaller than the mobilities of the

others (for example, high molecular polyelectrolytes and colloidal dispersions) is of

importance for basic research, as well as for technology. In the extreme case where

the mobility of one component is zero and the other components can move freely, we

have the so-called partly-quenched system. Continuum systems with quenched

disorder, such as nanoporous materials, gels, amorphous substances, clays,

engineering composites etc., are of interest for medicine, separation science, and

catalysis, as well as for various technologies.

The progress in statistical-mechanical theories of continuum systems with

quenched disorder made before the year 2000 was reviewed by Pizio, Soko"owski,

and Rosinberg.1–3 The pioneering contributions to this area of research are due to

Madden and Glandt, Given and Stell, Rosinberg, Bratko and Chakraborty,

Chandler, Tosi, Pizio, Lomba, and others.4–28 The theoretical research was

stimulated by observations indicating that properties of an adsorbed fluid differ in

several aspects from those of the unperturbed bulk fluid.29–33

The great majority of the above-mentioned studies was concerned with systems

characterised by short-range interactions, such as hard spheres or Lennard-Jones

fluids. The partly-quenched systems containing charges have received less attention

and have not been thoroughly reviewed so far. This is in discrepancy with their

scientific, medicinal and industrial importance. The review presented here is intended

to fill this gap.

This paper is organised more or less in a chronological order, emphasising the

contributions for which the authors believe that they are important. This makes the

article, as every other review paper, a bit subjective. It is therefore possible that some

of the works related to the discussed field of research will not received adequate

attention or that they were not known to the authors at the time of the writing. The

contributions to this area of research are namely spread through the engineering,

physico-chemical, as also purely physical journals, what makes it rather difficult to

follow the progress.

After the present introductory part and the necessary overview of the basics of the

theory and simulation of partly-quenched systems, the analysis will be organised in
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sub-chapters based on a particular group of papers. Some of the key papers are

briefly introduced below.

We will start the review with the paper of Bratko and Chakraborty.27 We found

the above-mentioned study to be one of the most important early contributions

concerned with the partly-quenched systems containing charges. The authors utilised

the Monte Carlo simulation to show very clearly an influence of the so-called

pre-quenching conditions on the adsorption in such systems. Consider a ‘‘mixture’’

consisting of two (electroneutral) ionic fluids: one quenched and one annealed. In

contrast to the regular mixture, where both component are fully annealed and only

one temperature (temperature of observation) applies, the major distinction for

partly-quenched system is that the obstacles can be prepared under different

conditions (temperature, dielectric constant) than it is the condition at which the

full system is examined. This yields very interesting phenomena related to the fact

that the invading electrolyte can be, depending on the spatial distribution of charged

obstacles, either over- or under-screened.27

Bratko and Chakraborty’s paper27 and some other works published at that time

had prompted Pizio and coworkers34–37 to initiate the integral-equation study based

on the replica Ornstein-Zernike equation. There is a clear distinction between the

thermodynamical systems with short-range potentials, such as Lennard-Jones or

similar, and Coulomb systems when treated via the integral equation approach. It is

known from studies of the bulk ionic fluids (see, for example, ref. 38) that the

pair-potential needs to be ‘‘re-normalised’’, i.e., the short-range and the long-range

(Coulomb) part of the pair-potential have to be treated separately. Notice that the

Ornstein-Zernike (OZ) equation for the point-like ions can be solved exactly, leading

to the Debye-Hückel approximation for bulk electrolytes.

It appeared at that time quite logical to first try to solve the system consisting of

two electroneutral subsystems (one quenched and the other annealed) treating ions

at the Debye-Hückel level of approximation.34 Notice that to perform the replica

theory calculation, one needs an information about the obstacle (matrix particles)

distribution in form of the structure factors (or pair distribution functions) and not

the coordinates of the particles. The results, published in ref. 34 were very

interesting: it was proved that the interesting effects observed in computer

simulations27 are already present for the point-like ions, that is, at the mean-field

level of the approach, leading to the parallel of the Debye-Hückel limiting law for

replica systems.

This result paved the road for more sophisticated approaches. In ref. 35–37 the

model systems were studied via the replica Ornstein-Zernike theory in the

hypernetted-chain and the mean-spherical approximations. Both, the matrix and

the adsorbed fluid were treated in the primitive model, i.e., the ions were modelled as

charged hard spheres embedded in a dielectric continuum. The calculations were

later extended to models with uncharged matrix particles and/or highly asymme-

trical electrolytes.36,37 In addition to the structure given by the spatial distribution of

particles, some thermodynamical properties were examined. The theory and

simulations were recently extended to study the adsorption of ions from electrolyte

mixtures.39

It was of great interest at that time to establish the validity of the replica

Ornstein-Zernike approach for partly-quenched systems with ionic obstacles.

Computer simulations for such systems can be time consuming, since the usual

canonical averages for the fluid structure must be obtained for a set of realisations

of the matrix media.15,16,27 Further, the computer simulations, in contrast with the
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theory, require input in terms of the coordinates of the matrix particles. The Monte

Carlo simulation results for partly-quenched systems with ionic obstacles were

published in ref. 37, 40, 41 and a good agreement was found between the machine

calculation and the replica Ornstein-Zernike results.

Thermodynamical properties of electrolytes under confinement caused by the

charged or uncharged obstacles are clearly of great interest. The excess internal

energy and the compressibility of the adsorbed electrolytes are relatively easy to

calculate but these properties are from chemical point of view less interesting than,

for example, the excess chemical potential of the invading electrolyte. In the

mean-spherical approximation this quantity is relatively easy to calculate.35 In the

hypernetted-chain formalism, the methodology used for bulk fluids42,43 was success-

fully extended37,41 and tested against the Monte Carlo simulation data by some of

us. Very interestingly, the hypernetted-chain closure within the replica theory gives

(compared to computer simulation results) excellent results, even under conditions44

where its ‘‘bulk’’ version ceases to yield convergent solutions.38

Further studies of partly-quenched systems containing charges involve extensions

to templated matrices45 initiated by Zhang and Van Tassel.46,47 In the same context,

an examination of the properties of the water-like fluid in random confinement,

published by Urbič and coworkers,48 should be mentioned. At about the same time

Kovalenko and Hirata49 developed the replica generalisation of the reference

interaction site model (replica RISM) integral equation theory to describe the

structure and thermodynamics of quenched-annealed systems comprising polar

molecular species such as water.

More recently a molecular theory of an electrochemical double layer in a

nanoporous carbon supercapacitor was developed by Tanimura, Kovalenko, and

Hirata.50,51 Again, the theory is based on the replica RISM theory of electrolyte

solution. The model comprises carbon nanospheres forming a disordered network

with the porosity, pore sizes and surface area fitted to carbonised polyvinylidene

chloride material and to activated carbon.

Recent developments52 in both theory and simulation of partly-quenched systems

are concerned with the situations where both relevant subsystems (obstacles and

annealed electrolyte) are having net charge while, of course, the whole system is

electroneutral. Such models mimic, for instance, an adsorption of electrolyte in

polyelectrolyte gels and ion-exchangers.

The paper continues with a short section reviewing the systems with directional

dependent potentials and partly-quenched systems in external field.

The last sub-chapter of the review is concerned with theoretical description of

dynamical properties of electrolyte solutions. Such studies yield an information

which is complementary to the thermodynamical data. Here we need to mention the

seminal works of Chandler, Chakraborty and others22,24 who studied the classical

diffusion of particles in random media. Monte Carlo simulations of diffusion of ionic

particles in charged, disordered media were presented by Mehrabi and Sahimi53 and

commented by Deem.54 Finally, Dominguez and Rivera55,56 published a series of

molecular dynamics simulation studies of the diffusion of charged fluids in charged

porous matrices. The diffusive relaxation of a colloidal fluid adsorbed in a porous

medium was studied by Medina–Noyola and coworkers.57

The self-diffusion coefficient of ions of the charge- and size-symmetric +1 : �1
(or +2 : �2) electrolyte was studied in the presence of ionic obstacles (matrix)

representing disordered media by Jardat and coworkers.58 The study was recently

extended to systems mimicking ion-exchangers.59 The work was stimulated by recent
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experimental paper of Smith and Zharov60 who studied the transport of ions

through the sulfonated films comprised of silica spheres in water as a function of

the ion charge, pH, and solution ionic strength. One of the most recent contribution

in this important area of research is due to Rotenberg and coworkers.61

At the end, conclusions and perspectives of the rapidly developing field of partly-

quenched systems are briefly discussed.

2. Partly-quenched systems

The model used to describe partly-quenched systems consists of two components:

one is a quenched fluid, which is called the matrix or adsorbent, and the second is an

annealed fluid which thermally equilibrates in the presence of the matrix species. The

notation used in this paper is the same as generally used in the literature: the indices

0 and 1 correspond to the matrix and the annealed fluid species, respectively.7 In the

canonical ensemble, the Helmholtz free energy of the partly-quenched system, A, is

given by7,8,27

� bA ¼ lnZTOT ¼
1

Z0

Z
expð�b0H00Þ lnZ1d0 ð1Þ

where b = 1/kBT, b0 = 1/kBT0 (kB is the Boltzmann’s constant), and ZTOT is the

total partition function. Further,

Z1 =
R
exp[�b(H01 + H11)]d1

Z0 =
R
exp(�b0H00)d0

are usual expressions for the partial sums, and Hmn (m,n = 0,1) are the

Hamiltonians consisting of relevant pairwise interactions. Notation d0 and d1

signifies the integration over the coordinates of the quenched and annealed

subsystem, respectively. It is important to mention that the temperature of observa-

tion of an annealed fluid T does not necessarily coincide with the temperature T0 at

which matrix has been quenched. It is of practical interest to introduce the so-called

quenching parameter Q = e0T0/eT, where e0 and e are dielectric constants (relative
static permittivities) of the quenched and of the annealed subsystem, respectively.

To solve eqn (1) the replica trick is used.62,63 The method exploits a mathematical

isomorphism between a partly-quenched system and corresponding fully

equilibrated system.8 The properties of the partly-quenched system are obtained

by the s - 0 limit of a replicated system, i.e., a mixture of a one-component fluid

(the quenched species) with an s-component fluid, described by s identical copies or

replicas of the annealed species

lnZ ¼ lim
s!0

1

s
ðZs � 1Þ ð2Þ

Substituting eqn (2) into eqn (1) gives for the total partition function

lnZTOT ¼ lim
s!0

1

sZ0

Z
exp �b

Xs
i¼1
ðH01

ðiÞ þH11
ðiÞÞ

( )
� 1

" #
expð�b0H00Þd1d0 ð3Þ

The total partition function given by eqn (3) belongs to a system described by the

following Hamiltonian

H ¼
X
ioj

U00ðrÞ þ
X
i;j

U01ðrÞ þ
X
ioj

U11ðrÞdsisj ð4Þ
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where dsisj
is the Kronecker delta function, si denotes the replicated component to

which particle i belongs, and Umn(r) (m,n = 0,1) denotes the interaction potential

between particles i and j separated by a distance r. The Hamiltonian belongs to a

mixture of a one component fluid (0) with the s-component fluid in which particles

interact with each other only if they belong to the same replicated component.

Particles belonging to different replicas only correlate through particles 0 (see Fig. 1).

Note that this so-called ‘‘replica’’ method was originally developed to treat model

systems on a lattice in which the exchange interaction strength between lattice sites

was chosen from a fixed random distribution.63,64 The liquid-state replica method, or

‘‘continuous replica’’, that is being reviewed in this paper, on the other hand, is

applied to systems in which some of the particles have been quenched or ‘‘frozen’’ in

an equilibrium distribution corresponding to a temperature of a quench.7,8,65

(a) Computer simulation approach

The simulation procedures developed to study the partly-quenched systems in

general combine two processes. First, the matrix is prepared in advance in a separate

simulation by equilibrating the subsystem at temperature T0. The Monte Carlo

simulation method or molecular dynamics simulation can be used for this purpose.

After the equilibration procedure the particles are frozen in their positions; the

particle distribution represents one of the possible equilibrium configurations. The

annealed fluid is then distributed within the (matrix) system at temperature T,

without imposing any effect on the matrix structure, i.e., the distribution of obstacles

remains unaffected. During the simulation, the thermodynamical properties of the

annealed fluid are calculated as ensemble averages over different fluid configura-

tions. Since the properties of the partly-quenched systems are actually given as

double averages, e.g., over the annealed fluid and over possible matrix configura-

tions, the procedure is repeated for other matrix realisations in order to obtain the

matrix average. In practise, usually only few matrix configurations are

sufficient17,22,37,66 to obtain the convergent result.

Fig. 1 To give a pictorial explanation of the correlations included in the connecting and

blocking parts of the correlation functions, we imagine the partly-quenched system as a fluid

adsorbed in a porous material with the porous material being constituted by the quenched

particles (black circles–‘‘0’’) and the fluid being constituted by the annealed particles

(grey circles–‘‘1’’). The connected functions (denoted ‘‘11’’ in the figure) account for correlations

between a pair of fluid particles that are transmitted through successive layers of fluid particles

within the same ‘‘replica’’, and the blocking functions (denoted ‘‘12’’) account for the

correlations between fluid particles ‘‘blocked’’ or separated from each other by matrix particles,

e.g., fluid particles from different ‘‘replicas’’ (dashed circles).
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An exception to this simulation scheme is the work of Bratko and Chakraborty.27

In the latter simulation, the properties of dilute annealed electrolyte at the finite

matrix concentration were studied using the Widom’s insertion technique, performing

the two processes (averaging over the fluid and the matrix configurations) simulta-

neously. The matrix was equilibrated at temperature T0 using the canonical Monte

Carlo simulation. For each matrix configuration, several insertions of a neutral

combination of the annealed fluid ions were attempted at temperature T.

(b) Integral equation theory

The first attempt to develop an integral equation theory for partly-quenched systems

was, to best of our knowledge, the work of Madden and Glandt.4,5 They used the

graph theory to develop and analyse the cluster expansion of the total, h11(r), and the

direct correlation functions, c11(r). In the process, both functions were divided into

the ‘‘connected’’ part (‘‘c’’), representing the interaction within the same replica, and

‘‘blocking’’ part (‘‘b’’), describing interactions mediated by the matrix particles. In

the graph theory, this is a subset of graphs in which all paths between the annealed

fluid root points pass through at least one matrix point.4,5 In their seminal work,

Madden and Glandt proposed the approximation: c11,b(r) = 0, and obtained an

Ornstein-Zernike-like set of equations describing the partly-quenched systems.

The exact equations for such systems, relaxing the approximation above, were

later proposed by Given and Stell.7,8 Using the notation common in the literature,

and introducing c11,b(r) = c12(r), and h11,b(r) = h12(r), the equations read8

H00 � C00 = C00 # q0H00 + sC01 # q1H10

H10 � C10 = C10 # q0H00 + C11 # q1H10 + (s � 1)C12 # q1H10

H
11 � C

11 = C
10 # q0H01 + C

11 # q1H11 + (s � 1)C12 # q1H21

H12 � C12 = C10 # q0H01 + C11 # q1H12 + C12 # q1H11 + (s � 2)C12 # q1H21

(5)

The capital letters H
mn and C

mn (m,n = 0,1,2) denote the matrix forms of the

correlation functions, hmn(r) and cmn(r), respectively, and the symbol # denotes

convolution in r-space. In the limit s - 0, one obtains the so-called replica

Ornstein-Zernike equations (ROZ)8

H00 � C00 = C00 # q0H00

H10 � C10 = C10 # q0H00 + C11 # q1H10 � C12 # q1H10

H11 � C11 = C10 # q0H01 + C11 # q1H11 � C12 # q1H21

H12 � C12 = C10 # q0H01 + C11 # q1H12 + C12 # q1H11 � 2C12 # q1H21

(6)

For electrolyte solutions,Hmn and Cmn are matrices of dimension at least 2� 2. Note

that in eqn (7) and (18) the matrices are explicitly written for the case of a single

electrolyte in an electroneutral electrolyte matrix. In this case, the matrices

contain++, +� , �+, and �� functions, and qi has the form67

riþ 0
0 ri�

� �
ð7Þ
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The total correlation functions, h11(r), and the direct correlation functions, c11(r),

contained in the matrices are divided into the connecting (‘‘c’’) and blocking (‘‘b’’)

parts, respectively8

c11(r) = c11,c(r) + c11,b(r) = c11,c(r) + c12(r)

h11(r) = h11,c(r) + h11,b(r) = h11,c(r) + h12(r) (8)

The set of integral equations presented above, eqn (6), can only be solved with

additional approximations: the so-called closure conditions. In contrast to a bulk

electrolyte, where only approximations for c00(r), c10(r) and c11(r) are required, we

need here additional equations to approximate the blocking part c12(r) of the direct

correlation functions. For bulk ionic systems, two closure relations–the so-called

mean spherical approximation (MSA) and the hypernetted-chain (HNC)

approximation–are widely used and represent a natural choice also in our example.

Each of these two closures has its advantages and disadvantages. The HNC

approximation has proved to be very successful for ionic fluids, and can even be

improved by including the so-called bridge functions.14,68 In addition, the HNC

approximation is consistent with the ROZ methodology while, in contrast, in the

MSA the blocking term of the direct correlation function, c12(r), is neglected.35 There

is one advantage of the latter closure: it appears to be easier to evaluate

the thermodynamical properties of quenched-annealed systems within the MSA

formalism.19

The HNC closure relations are given by35

cmn(r) = exp[�bUmn(r)] + gmn(r)] � 1 � gmn(r)

c12(r) = exp[g12(r)] � 1 � g12(r) (9)

where gmn(r) = hmn(r) � cmn(r) and the superscripts m,n assuming values 0 and 1.

Umn(r) are the inter-particle potentials for different components.

The MSA closure sets c12(r) to zero and consequently we have69

hmn(r) = �1, r o (sm + sn)/2

cmn(r) = �bUmn(r), r Z (sm + sn)/2 (10)

where again the superscripts m,n assume values of 0 and 1, and sm, sn are the

diameters of the species m and n, respectively. Note that setting the blocking part of

the direct correlation function to zero does not imply that there is no correlation

between the particles belonging to different replicas. As shown in ref. 34, the

blocking part of the total correlation function, h12(r), remains to be nonzero in such

a case.

Dilute electrolyte solutions are most often described by the primitive model, where

the particle-particle interaction is

U00
ij ðrÞ ¼

1; roðs0i þ s0j Þ=2
e2z0

i
z0j

4pe0e0r
; r � ðs0i þ s0j Þ=2

(
ð11Þ
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and

U10
ij ðrÞ ¼

1; roðs1i þ s0j Þ=2
e2z1i z

0
j

4pe0er ; r � ðs1i þ s0j Þ=2

(
ð12Þ

U11
ij ðrÞ ¼

1; roðs1i þ s1j Þ=2
e2z1i z

1
j

4pe0er ; r � ðs1i þ s1j Þ=2

(
ð13Þ

In eqn (11)–(13) e denotes the elementary charge, zmi (zmj ) the charge numbers

(valencies) of ions (m = 0,1), e0 the permittivity of vacuum, e0 and e the

dielectric constants of the pre-quenching conditions and of the studied partly-

quenched system, respectively, s0
i and s1

i the diameters of the matrix and

of the fluid particles, respectively, and as usual r denotes the distance between

particles i and j. Note that setting the charge numbers z0i and z0j in eqn (11) and (12)

to zero, we obtain the expression valid for matrix composed of uncharged hard

spheres.37

To continue, we need to develop a re-normalisation scheme for the long-

range terms of ion–ion correlations. The procedure was for the bulk electro-

lytes described in details elsewhere (see, for example ref. 38, 67, 68, 70). However,

to solve the ROZ/HNC or the ROZ/MSA equations, some modifications are

needed.

Similarly to previous such studies, we denote the long-range terms of the total pair

correlation functions in eqn (6) by qmn
ij (r). Moreover, we apply the linearised theory

and assume that the long-range terms of the direct correlation functions contained in

the matrices Umn are equal to jmn
ij (r)35

Cmm = Cmm
(s) + Umm

C0m = C0m
(s) + U0m

C12 = C12
(s) (14)

and

Hmn = Hmn
(s) + qmn (15)

where the superscripts m,n assume the values 0,1,2 and subscript (s) denotes the

short-range part of the correlation functions. qmn is the matrix containing the long-

range parts of the total correlation functions qmn
ij (r). Further, C22 = C

11, C01 = C
02,

H
22 = H

11, U22 = U11. Most importantly, since the particles belonging to different

replicas do not interact, U12 = 0.We now choose the elements jmn
ij (r) of the matrix

Umn in the form of the Coulomb interaction35

jmn
ij ðrÞ ¼ �

e2zmi z
n
j

4pe0erkBT

j00
ij ðrÞ ¼ �

e2z0i z
0
j

4pe0e0rkBT0

ð16Þ

Functions qmn are further chosen to satisfy the following equations34

q
00 � U00 = U00 # q0q00

q10 � U10 = U10 # q0q00 + U11 # q1q10
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q11 � U11 = U10 # q0q01 + U11 # q1q11

q12 � U12 = U10 # q0q01 + U11 # q1q12 (17)

The set of eqn (17) can be readily solved to obtain the Fourier transforms of the screened

potentials.34 The expressions in Cartesian space follow then straightforwardly36

q00þþðrÞ q00þ�ðrÞ
q00�þðrÞ q00��ðrÞ

 !
¼ � LB

Q

z0þz
0
þ z0þz

0
�

z0�z
0
þ z0�z

0
�

 !
expð�k0rÞ

r

q10þþðrÞ q10þ�ðrÞ
q10�þðrÞ q10��ðrÞ

 !
¼ � LB

k20
k20 � k21

z1þz
0
þ z1þz

0
�

z1�z
0
þ z1�z

0
�

 !

� expð�k0rÞ
r

� k21
k20

expð�k1rÞ
r

� �

q12þþðrÞ q12þ�ðrÞ
q12�þðrÞ q12��ðrÞ

 !
¼ 2pL2

B

r0þðz0þÞ
2 þ r0�ðz0�Þ

2

k20 � k21

� � 2k20 expð�k0rÞ
rðk20 � k21Þ

þ 2k20 expð�k1rÞ
rðk20 � k21Þ

� k1 expð�k1rÞ
� �

�
z1þz

1
þ z1þz

1
�

z1�z
1
þ z1�z

1
�

 !

q11þþðrÞ q11þ�ðrÞ
q11�þðrÞ q11��ðrÞ

 !
¼ � LB

z1þz
1
þ z1þz

1
�

z1�z
1
þ z1�z

1
�

 !
expð�k1rÞ

r
þ

q12þþðrÞ q12þ�ðrÞ
q12�þðrÞ q12��ðrÞ

 !

ð18Þ

where k0 = (Sir
0
i (z

0
i )
2LB/Q)1/2, k1 = (Sir

1
i (z

1
i )
2LB/Q)1/2 and LB = e2/(4pe0ekBT).

Finally, the ROZ equations can be rewritten in the re-normalised form.36 As a first

expression, we present the equation for the matrix subsystem

H
00
(s) � C

00
(s) = C

00
(s) # q0(H00

(s) + q
00) + U00 # q0H00

(s) (19)

and continue with the others

H10
(s) � C10

(s) = C10
(s) # q0(H00

(s) + q00) + U10 # q0H00
(s) + C11

(s)# q1(H10
(s) + q10)

+ U11 # q1H10
(s) � C12

(s)# q1(H10
(s) + q10)

H11
(s) � C11

(s) = C10
(s) # q0(H01

(s) + q01) + U10 # q0H01
(s) + C11

(s)# q1(H11
(s) + q11)

+ U11 # q1H11
(s) � C12

(s)# q1(H21
(s) + q21)

H12
(s) � C12

(s) = C10
(s) # q0(H01

(s) + q01) + U10 # q0H01
(s) + C11

(s)# q1(H12
(s) + q12)

+ U11 # q1H12
(s) � C12

(s)# q1H11
(s) � 2C12

(s)# q1H21 (20)

(c) Thermodynamical properties

Calculating thermodynamical properties of the partly-quenched system we have to

be aware that the standard statistical-mechanical expressions used for bulk solutions,

such as virial equation of state, may not be valid any more. In principle, all the

thermodynamical parameters have to be re-derived within the replica formalism in a

similar way as, for example, the replica Ornstein-Zernike equations given in section

2b. The thermodynamical equations for the partly-quenched systems were formally
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introduced by Ford and Glandt,17 and Rosinberg et al.13 A thorough analysis of

thermodynamical properties of partly-quenched systems was performed by Given.6

He developed the Mayer expansion for the thermodynamical quantities

of an adsorbed fluid, as well as discussed the relationships between correlation

functions and thermodynamical quantities that hold for such systems. Although

the calculation of some thermodynamical properties, such as the excess internal

energy and the isothermal compressibility, are quite straightforward, other

equations presented, such as the Gibbs-Duhem-like equation, are of little practical

application.

The excess internal energy, Eex, of a charged fluid per annealed particle (N1) inside

a charged matrix (b = 1/kBT) can be calculated as19

bEex

N1
¼ 1

2

X
i¼þ;�

X
j¼þ;�

x1i r
1
j

Z
g11ij ðrÞU11

ij ðrÞdr

þ
X
i¼þ;�

X
j¼þ;�

x1i r
0
j

Z
g10ij ðrÞU10

ij ðrÞdr
ð21Þ

where x1i = r1i /Sir
1
i denotes the mole fraction of the annealed species, gmn

ij (r) =

hmn
ij (r) + 1 is the radial distribution function, Umn

ij the pair potential (m,n= 0,1), and

dr = 4pr2dr.
Another well established relation is the equation for the inverse value of the

reduced isothermal compressibility, which reads13

@bP
@r1

� �
T

¼ 1� r1
X
i¼þ;�

X
j¼þ;�

x1i x
1
j

Z
½c11ðsÞijðrÞ � c12ðsÞijðrÞ�dr ð22Þ

P denotes the pressure of the system, cmn
(s)ij(r) is the short-range part of the direct

correlation function and r1 = Sir
1
i .

The excess chemical potential is of primary importance for the description of the

adsorption isotherms. Within the MSA this quantity can be approximated by19

bmexi ¼ bmex;ri þ 1

2
b
X
j¼þ;�

r1j

Z
g11ij ðrÞU11

ij ðrÞdr

þ 1

2
b
X
j¼þ;�

r0j

Z
g10ij ðrÞU10

ij ðrÞdr

�
X
j¼þ;�

r1j

Z
½c11ðsÞijðrÞ � c11ðrÞijðrÞ�dr

�
X
j¼þ;�

r0j

Z
½c10ðsÞijðrÞ � c10ðrÞijðrÞ�dr

ð23Þ

cmn
(r)ij(r) stands for the direct correlation functions for the reference system. Very often

a hard sphere fluid in a hard sphere matrix is chosen as the reference system.

The reduced chemical potential of the reference system, bmex,ri , was obtained by

integration of the compressibility equation13,17

bmex;ri ðr0; r1Þ ¼ bmex;ri ðr0; r1þ ¼ 0; r1� ¼ 0Þ

�
X
j¼þ;�

Z r1=2

0

dðr1j Þ
0
Z

c11ðrÞijðr; ðr1þÞ
0; ðr1�Þ

0Þdr
ð24Þ
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Note that eqn (24) is written for a symmetric electrolyte where r1+ = r1�= r1/2. In
the case where s0

+ = s0
+ = s0, the expression for bmex,r+ (r0,r

1
+ = 0,r1�= 0) follows

from the Mansoori-Carnahan-Starling-Leland equation of state71,72

bmex;rþ ðr0; r1þ ¼ 0; r1� ¼ 0Þ ¼ 3Z30 � 9Z20 þ 8Z0
ð1� Z0Þ

3
ð25Þ

where Z0 denotes the packing fraction, defined as Z0 = pr0s
3
0/6.

Another route to calculate the excess chemical potential of electrolytes,

valid for bulk electrolytes within the HNC approximation, was proposed by

Belloni.42,43 The expression was re-derived by us within the replica formalism and

reads37

bmexi;1 ¼ �
X
j¼þ;�

r0j c
10
ðsÞijð0Þ �

X
j¼þ;�

r1j ½c11ðsÞijð0Þ � c12ðsÞijð0Þ�

þ 1

2

X
j¼þ;�

r0j

Z
h10ij ðrÞ½h10ij ðrÞ � c10ij ðrÞ�dr

þ 1

2

X
j¼þ;�

r1j

Z
fh11ij ðrÞ½h11ij ðrÞ � c11ij ðrÞ� � h12ij ðrÞ½h12ij ðrÞ � c12ij ðrÞ�gdr

ð26Þ

where c
mn
(s)ij(0) denotes the Fourier transform of the short-range part of the direct

correlation function at k = 0. As we will show later, this extension of the equation

for the excess chemical potential proved to be extremely valuable; the expression for

mexi,1 proposed (eqn (26)) is accurate and simple to use.

3. Case studies

Bratko and Chakraborty27 used the Monte Carlo simulation method to study

the influence of the matrix consisting of a quenched electrolyte on the

properties of the dilute ionic fluid at temperatures different from the temperature

of the quench. The characteristic quantity of the ionic disordered material,

the quenching parameter Q = e0T0/eT, was introduced. Focusing on the

characteristic properties, such as the distribution functions and the chemical

potential of the solute they noticed qualitative differences between the

partly-quenched and fully annealed fluids under similar conditions of observation.

They ascribed these differences to the influence of the presence of fixed

obstacles being prepared under different conditions (T0, e0) from the conditions of

observation. If the product e0T0 exceeds the corresponding value at the conditions of

observation, eT, (Q > 1) the electrostatic potential fluctuations will be stronger

than expected in an equilibrated ionic mixture at eT, and the solute ions will

typically find themselves in oppositely charged domains with the net charge

exceeding their own charge. The resulting over-screening of the solute charge

leads to a long-ranged disorder-induced attraction between equally charged ions

and a similar mechanism induces a long-ranged repulsive interaction between

ionic solutes of opposite sign (Fig. 2c). A similar effect was noticed in solutions of

highly asymmetric electrolytes in the presence of divalent counterions.73 If, on the

other hand, e0T0 o eT, (Q o 1) the solute ions remain under-screened (Fig. 2a).

In the latter case, a long-ranged interaction representing a fraction of the

direct Coulomb potential between the solute ions remains unscreened. The
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simulation results therefore reveal a crucial effect of Q not just on the annealed fluid

structure but also on solution energies and on the activity coefficients of the solute

particles.27

Fig. 2 The Debye-Hückel-like level of the ROZ theory. The screened potentials of the fluid

ion–ion interaction, q11(r) (continuous lines), and their blocking parts, q12(r) (dashed lines), all

calculated using the eqn (18), at different values of the quenching parameter: Q= 0.7 (panel a),

Q = 1.0 (panel b), and Q = 1.7 (panel c). The matrix and the fluid are +1 : �1 electrolytes

with concentrations c0 = 0.01 mol dm�3, and c1 = 0.1 mol dm�3, respectively. LB = 7.14 Å.

A similar figure but for a different set of parameters was previously presented in ref. 34.
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(a) The Debye-Hückel-like level of the ROZ theory

Before we start this and other sections, we have to stress that the numerical results

presented in this article, obtained via the integral equation theory, were not taken

from previous papers but were rather calculated from scratch. The speed of

nowadays computers allowed us better numerical accuracy in solving the ROZ

equations than it could be obtained a decade ago. Yet, we did not notice any

disagreements between the old and new results, wherever exactly the same input

parameters were used. This made it possible to re-plot all the figures published

before, using the new data. In few cases, also the computer simulations were

repeated; wherever we used the old simulation results this is clearly mentioned in

the caption to the figure (i.e., Fig. 7, 9–11).

Although there were previous attempts to apply the ROZ equations to study the

partly-quenched ionic fluids by Pastore et al.,74 and Cardenas and Tosi,75 the first

systematic integral equation study of liquids, described by the Coulomb potential in

charged matrices, based on the correct closure, was initiated by Pizio and

coworkers.34,35 In their first paper,34 the ROZ equations were utilised to study the

ionic fluid adsorbed in an electroneutral disordered matrix, where both ionic

subsystems were presented as point charges interacting via classical Coulomb potential.

We shall denote this approach as the Debye-Hückel-like level of approximation.

It was shown34 that the peculiar behaviour, described with the terms ‘‘over-’’ and

‘‘under-screening’’, observed in computer simulations,27 follows straightforwardly

from the ROZ equations already on the simplest mean-field level of approach. One

example of such behaviour is shown in Fig. 2, where the screened potentials of the

fluid ion–ion interaction, q11(r) (continuous lines), and their blocking parts, q12(r)

(dashed lines), are presented for different values of the quenching parameter:

Q = 0.7 (panel a), Q = 1.0 (panel b), and Q = 1.7 (panel c). The matrix and the

fluid are both pictured as+1 : �1 electrolytes with concentrations c0 = 0.01 mol dm�3,

and c1 = 0.1 mol dm�3, respectively. Note that a similar figure, but for different set

of parameters was previously presented in ref. 34. The results presented here are

showing same qualitative behaviours as in the original paper.34 In all cases, the

annealed electrolyte was considered to be an aqueous solution at T = 298.15 K

(corresponding Bjerrum length equals LB = 7.14 Å), and the temperature of the

quench, T0, was determined by the quenching parameter Q. The results are

consistent with those obtained by computer simulations.27 An interesting

observation, which was not shown by computer simulations, is the fact that the

blocking functions, q12(r), have an opposite sign to their 11 counterparts, leading to

faster decay of q11+�(r), and faster augmenting of q11++(r).34

Hribar et al.34 systematically investigated the influence of the fluid and the matrix

concentrations to the structure of the annealed fluid. Fig. 3 is showing the screened

potentials of the fluid ion–ion interaction, q11(r) (continuous lines), and their

blocking parts, q12(r) (dashed lines), at a single quenching parameter, Q = 1.2,

and different values of the annealed fluid concentration: c1 = 5 � 10�5 mol dm�3

(panel a), 5 � 10�3 mol dm�3 (panel b), and 5 � 10�2 mol dm�3 (panel c). Again, the

matrix and the fluid are +1 : �1 electrolytes and the matrix concentration is c0 =

0.5 mol dm�3. The functions shown in Fig. 3 were for different set of parameters

presented first in ref. 34. However, the same qualitative trends were observed.

Similar type of behaviour as triggered by different pre-quenching conditions is here

observed as a consequence of different fluid concentration. While at low annealed

fluid concentration (Fig. 3a) strong effect of the blocking term on the behaviour of
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q11(r) is observed, the influence of the matrix ions diminishes with the increasing fluid

concentration. At high concentrations, the fluid behaves similar as a matrix-free

(bulk) electrolyte solution (Fig. 3c).34

Fig. 3 The Debye-Hückel-like level of the ROZ theory. The screened potentials of the fluid ion–ion

interaction, q11(r) (continuous lines), and their blocking parts, q12(r) (dashed lines), calculated using

eqn (18), at different values of the annealed fluid concentration: c1 = 5 � 10�5 mol dm�3 (panel a),

5� 10�3 mol dm�3 (panel b), and 5� 10�2 mol dm�3 (panel c). Thematrix and the fluid are+1 : �1
electrolytes, matrix concentration c0 = 0.5 mol dm�3, LB = 7.14 Å, and quenching parameter

Q = 1.2. A similar figure but for a different set of parameters was previously presented in ref. 34.
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The influence of the matrix concentration on the structure of the annealed

electrolyte is shown in Fig. 4. Here, the screened potentials of the fluid ion–ion

interaction, q11(r), are presented at Q = 1.2, and different values of the matrix

concentration: c0 = 0.005 mol dm�3 (dash-dotted line), 0.05 mol dm�3 (dotted line),

0.5 mol dm�3 (continuous line), and 5 mol dm�3 (dashed line). Fig. 4a applies to a

single fluid concentration, c1 = 5 � 10�5 mol dm�3, while in Fig. 4b the q11(r)

functions are presented for a constant ratio, c1/c0 = 0.1. As intuitively, as well as

previously established, the higher the matrix concentration, the stronger is its

influence. At low fluid concentrations, such as in Fig. 4a, already a moderate

matrix concentration causes the q11++(r) and q11+�(r) functions to intersect. Note

that at relatively low fluid to matrix concentration ratio the intersecting of the curves

does not occur even at high concentration of the matrix particles (Fig. 4b).

The results presented in this subsection are interesting per se showing the

sensitivity of the properties of an annealed electrolyte to the structure of

the quenched media. The results can be considered as the replica version of the

Debye-Hückel limiting law as valid for bulk electrolytes (in this work we refer to it as

the Debye-Hückel-like level of the ROZ theory). The results are further used in

Fig. 4 The Debye-Hückel-like level of the ROZ theory. The screened potentials of the fluid

ion–ion interaction, calculated using the eqn (18), at Q = 1.2 (LB = 7.14 Å), and different

values of the matrix concentration: c0 = 0.005 mol dm�3 (dash-dotted line), 0.05 mol dm�3

(dotted line), 0.5 mol dm�3 (continuous line), and 5 mol dm�3 (dashed line). (a) c1 = 5 �
10�5 mol dm�3, (b) c1/c0 = 0.1.

Pu
bl

is
he

d 
on

 1
9 

A
pr

il 
20

11
. D

ow
nl

oa
de

d 
by

 P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
18

/0
9/

20
16

 0
1:

38
:2

5.
 

View Article Online

http://dx.doi.org/10.1039/c1pc90001c


30 Annu. Rep. Prog. Chem., Sect. C, 2011, 107, 14–46

This journal is © The Royal Society of Chemistry 2011

a re-normalisation procedure of the ROZ equations to describe a more realistic

primitive model electrolyte.

(b) Hypernetted-chain level of approach

An integral equation study of a screened Coulomb fluid in a disordered porous

media was within the mean spherical approximation presented by Trokhymchuk

et al.76 The development of the re-normalisation procedure described in the previous

subsection34 made possible the integral equation study of unscreened Coulomb

liquids. The ROZ study of Hribar et al.35 of the primitive model electrolyte in the

ionic matrix considered charge and size symmetric +1 : �1 electrolyte in electro-

neutral +1 : �1 ionic matrix. In this work two approximations, traditionally used to

describe bulk electrolyte fluids (HNC and MSA) were used as closure conditions for

the proper ROZ equations.11 Both approximations were found to provide reason-

ably good agreement of thermodynamical and structural properties with the

computer simulation results.35 It is worth noting that the MSA closure is, setting

the blocking part of the direct correlation function to zero,3,7 just a special case of

the Madden-Glandt approximation.5

Fig. 5 shows the comparison of the fluid-fluid pair distribution functions of the

primitive model +1 : �1 electrolyte in +1 : �1 matrix newly obtained by three

different methods: canonical Monte Carlo simulation (symbols), ROZ/HNC

approximation (continuous lines), and Debye-Hückel-like approximation

(dashed lines). The matrix concentration was c0 = 1.0 mol dm�3, while the fluid

concentration, c1, varied from 0.05 mol dm�3 (panel a), to 0.5 mol dm�3 (panel c), to

capture different kinds of behaviour. In all cases, the quenching parameter Q = 2.0,

LB = 7.14 Å, and s1 = s0 = 4.25 Å. It can be seen from the comparison with the

computer simulation results that the ROZ/HNC theory describes the structure of the

annealed fluid very well, even at the extreme conditions where the fluid is under-

screened (Fig. 5a), or over-screened (Fig. 5c). A similar figure but for a different set

of parameters was previously presented in ref. 35. Similarly good agreement was

obtained for structural properties of charge and size asymmetric electrolyte in a

symmetric electroneutral matrices,36 as well as in a asymmetric electrolyte40 and

hard-sphere matrices.37

It is worth mentioning again that at low fluid concentrations we observe disorder-

induced attraction between similarly charged ions and concomitant repulsion

between oppositely charged ions which is reflected in crossing of the fluid pair

correlation functions (Fig. 5a). Another interesting observation is the increase of the

g11+�(r) contact value with the increasing fluid concentration, which is in contrast

with the concentration dependence of the contact value in bulk electrolytes. All these

results are consequences of the blocking effect of the matrix particles.

Thermodynamical properties, such as the excess internal energy and compressi-

bility, calculated from the ROZ/HNC theory, as well as from the ROZ/MSA

closure, were tested against computer simulations and show reasonably good

agreement.35–37 An important quantity describing the adsorption isotherms,

however, is the chemical potential of the annealed fluid. The expression for the

excess chemical potential valid within ROZ/HNC approximation was first intro-

duced by Hribar et al.37 and further established and tested against the grand

canonical Monte Carlo (GCMC) simulations in ref. 40 and 41.

Fig. 6 shows the dependence of the reduced excess chemical potential, bmex� ,
of the +1 : �1 electrolyte on its concentration c1 in the presence of the matrix
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(+1 : �1 electrolyte) particles with concentration c0 = 0.4 mol dm�3 (continuous

line) and in its absence (dotted line). For the comparison, the same quantity for a

fully annealed mixture is also shown by a dashed line. Note that a similar figure but

Fig. 5 The pair distribution functions, g11++(r) and g11+�(r), obtained with different methods:

Monte Carlo simulation (symbols), ROZ/HNC approximation (continuous lines), and the

Debye-Hückel-like approximation (dashed lines). Q = 2.0, LB = 7.14 Å, s1 = s0 = 4.25 Å,

c0 = 1.0 mol dm�3, c1 = 0.05 mol dm�3 (panel a), 0.1 mol dm�3 (panel b), and 0.5 mol dm�3

(panel c).
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for a different set of parameters was previously presented in ref. 40. The reduced

excess chemical potential of the adsorbed electrolyte differs substantially from the

values obtained for a bulk electrolyte under the same conditions. At low fluid

concentrations, the excess chemical potential, and with it the total chemical

potential, is lower than that of a bulk fluid of the same concentration, causing an

adsorption of the electrolyte in the matrix, while the opposite is true at larger fluid

concentration, where the electrolyte gets ‘‘excluded’’ from the matrix.40

At infinite dilution, where the excess chemical potential of the fluid particles in a

matrix reflects the affinity of the fluid species to matrix obstacles,44,77 the values

would approach those of a fully annealed fluid,41 as expected for the case where

e0T0 = eT (Q = 1), see Fig. 6.27

Fig. 7a shows the dependence of the reduced excess chemical potential of the

annealed +1 : �1 size symmetric electrolyte as a function of the square root of its

concentration for different matrix concentrations at Q = 1: c0 = 0.2 mol dm�3

(continuous line), 0.425 mol dm�3 (dashed line), and 1.0 mol dm�3 (dotted line). The

lines show the results obtained using the ROZ/HNC theory, while the symbols show

the results of GCMC calculations and were taken from ref. 41. A similar figure was

first presented in ref. 41. The agreement between the results obtained by the two

methods is excellent. The values of the chemical potential of the annealed fluid

increase with the increasing matrix concentration in the whole concentration range

studied here, which is a manifestation of the interaction between the matrix and the

fluid particles.44 At higher matrix concentrations, the matrix ions are better screened

mutually and consequently electrostatic effect of the matrix on the annealed fluid is

smaller. This effect is prevailing at low fluid concentrations. At higher fluid

concentration, the ‘‘excluded volume’’ effect becomes more pronounced.44

It is worth mentioning that the adsorption of electrolyte mixtures of two annealed

electrolytes with a common anion was studied using the the ROZ/HNC theory39 and

GCMC simulation technique.78 Again, the agreement between the two approaches

was very good. Depending on the properties (size, charge) of the cations, the

preferential adsorption of one electrolyte over the other was observed.39,78

Fig. 6 The reduced excess chemical potential, bmex� , as a function of the annealed electrolyte

concentration, c1, for a symmetric +1 : �1 electrolyte in a symmetric+1 : �1 matrix with

c0 = 0.4 mol dm�3. Q = 1, LB = 7.14 Å, s1 = s0 = 4.25 Å. ROZ/HNC results are shown by

continuous line, OZ/HNC results for a pure electrolyte are shown by a dotted line, and the

results for a fully annealed mixture by a dashed line. A similar figure but for a different set of

parameters was previously presented in ref. 40.
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In the examples shown so far, the adsorption was studied at a single, (room)

temperature. The influence of the conditions at which the adsorption takes place

(temperature, solvent properties) were systematically explored in ref. 44. In this

work44 most of the calculations apply to the matrix formed at T0 = 298.15 K with its

dielectric constant being e0 = 78.54 (LB,0 = e2/4pe0e0kBT0 = 7.14 Å). The properties

of the annealed electrolyte were examined for a set of T and e values. Note that the

two parameters, T and e, can be combined into one. For simplicity of presentation,

e was chosen to be equal to e0 in all the cases so the strength of the interaction

between all ionic species was ascribed solely to the values of T.

Fig. 7b is showing the reduced excess chemical potential of the annealed +1 : �1
electrolyte, adsorbed in the +1 : �1 matrix prepared at 298.15 K, varying the

conditions of observation. The ROZ/HNC results for Q = 0.7 (LB = 4.998 Å) are

shown by a continuous line, the results for Q = 1.0 (LB = 7.14 Å) by a dashed line,

and the results for Q = 1.2 (LB = 8.568 Å) by a dotted line. The symbols represent

the GCMC results taken from ref. 41. Similar figure was previously shown in ref. 41.

Fig. 7 The reduced excess chemical potential, bmex� , as a function of the annealed electrolyte

concentration, c1/21 , for a symmetric +1 : �1 electrolyte in a symmetric +1 : �1 matrix (s1 =
s0 = 4.25 Å) at 298.15 K (LB,0 = 7.14 Å). ROZ/HNC results are shown by lines, and GCMC

results (taken from ref. 41) are shown by symbols. (a) Q = 1, c0 = 0.2 mol dm�3 (continuous

line), 0.425 mol dm�3 (dashed line), and 1.0 mol dm�3 (dotted line). (b) c0 = 0.425 mol dm�3,

Q = 0.7 (continuous line), 1.0 (dashed line), and 1.2 (dotted line). A similar figure was

originally presented in ref. 41.Pu
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As expected, the reduced excess chemical potential of the annealed fluid decreases

with decreasing the temperature or dielectric constant of the fluid, e.g., with the

increasing LB.

In the cases where the fluid-fluid, as well as the fluid-matrix, interaction is stronger

than the matrix-matrix one (Q > 1), an annealed ion will, on average, find itself in

configurations such that an opposite charge exceeds its own charge. As a con-

sequence, the competition between adsorption of the fluid ions on the matrix

particles and the screened interactions between annealed ions leads to the rather

complex behaviour of adsorption isotherms.44

The screening effect of the matrix on the behaviour of the adsorbed fluid can be

seen also from the isothermal compressibility of the annealed fluid. Fig. 8 shows the

reduced isothermal compressibility (cf. eqn (22)) of a model LiCl (s1
+ = 5.43 Å and

s1
�=3.62 Å)44 at different temperatures of observation in the absence (dotted lines),

as well as in the presence of a + 1 : �1 symmetric matrix (s0 = 4.25 Å) at c0 =

0.1 mol dm�3 (continuous lines). All the results were obtained using the OZ or ROZ

theory in the HNC approximation. The data for ROZ/HNC at T equal to 40 K were

taken from ref. 44. A similar figure was previously presented in ref. 44. While the

compressibility of the bulk electrolyte increases with the increasing concentration,

the compressibility of the same electrolyte in the matrix first decreases and starts

increasing only at intermediate concentrations. This indicates that the presence of

the charged obstacles in the systems (matrix ions) strongly suppresses the

concentration fluctuations in partly-quenched systems. Note that the reduced

isothermal compressibility is shown as a function of the mean activity of the

annealed electrolyte, a�, defined as: lna� = bmex� + ln(c1/1 mol dm�3).

It is further seen that some of the lines describing the compressibility of the bulk

electrolyte (dotted lines) at different temperatures are not complete. The reason for

this is that at low temperatures and/or low concentrations the convergence problems

are encountered using the HNC closure. On the other hand, for an electrolyte in the

matrix convergent results can be obtained for much more stringent conditions.44 It

was suggested that the matrix phase, depending on its concentration, ‘‘stabilises’’ the

Fig. 8 The reduced isothermal compressibility (cf. eqn (22)) for a model LiCl at various

temperatures of observation, T (as indicated in the figure), as a function of the mean activity,

a�. The dotted lines are calculated for the bulk electrolyte, and the continuous lines for the LiCl

(s1+ = 5.43 Å and s1�= 3.62 Å) in +1 : �1 electrolyte matrix with c0 = 0.1 mol dm�3, T0 =

298.15 K, s0 = 4.25 Å (data for 40 K are taken from ref. 44). For the definition of the

temperature consult the original paper.44 A similar figure was originally presented in ref. 44.
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adsorbed fluid: it inhibits the cation–anion pair formation, which appears to be

overestimated by the OZ/HNC theory.44

(c) Templated systems

The microstructure of the matrix (not only the porosity but also the size and

distribution of the micropores) is an important parameter dictating the adsorption of

annealed fluids. It is reflected in the affinity of the fluid species to matrix obstacles

and can be expressed as the reduced excess chemical potential of infinitely diluted

fluid particles, bmex,1� , in a matrix of concentration c0, usually given in the form44,77

exp[�bmex,1� (c1 = 0,c0)] (27)

It was shown, first by Van Tassel and Zhang,46,47,79 that apart from temperature and

dielectric constant, the quenched media structure can be influenced also by the

template particles that are removed after the quench. The authors46,47,79 extended

the replica formalism to microporous non-ionic material treated by a template

(denoted by the subscript 00).

The equations for an electrolyte in a hard sphere matrix templated by hard spheres

were first presented by Dominguez et al.45 and read

h10i0 � c10i0 ¼ c10i0 � r0h0000 þ c10
0

i00 � r0
0
h0
00

000 þ c11ii � r1i h
10
i0

þ c11ij � r1j h
10
j0 � c12ii � r1i h

10
i0 � c12ij � r1j h

10
j0

h10
0

i00 � c10
0

i00 ¼ c10i0 � r0h00
0

000 þ c10
0

i00 � r0
0
h0
000
0000 þ c11ii � r1i h

100
i00

þ c11ij � r1j h
100
j00 � c12ii � r1i h

100
i00 � c12ij � r1j h

100
j00

h11ij � c11ij ¼ c10i0 � r0h010j þ c10
0

i00 � r0
0
h0
01

00j þ c11ii � r1i h
11
ij

þ c11ij � r1j h
11
jj � c12ii � r1i h

21
ij � c12ij � r1j h

21
jj

h12ij � c12ij ¼ c10i0 � r0h010j þ c10
0

i00 � r0
0
h0
01

00j þ c11ii � r1i h
12
ij

þ c11ij � r1j h
12
jj þ c12ii � r1i h

11
ij þ c12ij � r1j h

11
jj

� 2c12ii � r1i h
21
ij � 2c12ij � r1j h

21
jj

ð28Þ

The dependence of the correlation functions on r was for clarity of presentation

omitted. The set of eqn (28) was re-normalised and solved in the HNC approxima-

tion. Note that the presence of the templated particles does not change the form of

the qmn
ij (r) functions given by eqn (18).45,52 Within this same approximation, the

equation for the excess chemical potential reads45

bmexi;1 ¼ � r0c10ðsÞi0ð0Þ � r0
0
c10

0
ðsÞi00 ð0Þ �

X
j¼þ;�

r1j ½c11ðsÞijð0Þ � c12ðsÞijð0Þ�

þ 1

2
r0
Z

h10i0 ðrÞ½h10i0 ðrÞ � c10i0 ðrÞ�drþ
1

2
r0
0
Z

h10
0

i00 ðrÞ½h10
0

i00 ðrÞ � c10
0

i00 ðrÞ�dr

þ 1

2

X
j¼þ;�

r1j

Z
fh11ij ðrÞ½h11ij ðrÞ � c11ij ðrÞ� � h12ij ðrÞ½h12ij ðrÞ � c12ij ðrÞ�gdr

ð29Þ

Fig. 9 shows the adsorption isotherms for a model LiCl (s1
+ = 5.43 Å and s1

� =

3.62 Å) at 298.15 K (LB = 7.14 Å) in a hard sphere matrix as a function of the mean

activity of the annealed electrolyte, a�. s0 = 5.0 Å and s00 = 6.0 Å. The continuous

lines apply to untemplated, and symbols (taken from ref. 45, connected by

dashed lines) to templated matrix (c00 = 1.0 mol dm�3). The top two curves apply
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to c0 = 2 mol dm�3 and the bottom two to c0 = 6 mol dm�3. Similar figure was

previously published in ref. 45.

For both matrix concentrations, the adsorption in templated matrices is higher

than in the untemplated.45 The effect is more pronounced at higher matrix

concentrations and can be explained as follows: the presence of template particles

causes less uniform distribution of the obstacles. After the removal of the template,

the matrix has, on one hand, dense domains where it is difficult to insert a pair of

ions and on the other hand ‘‘microcavities’’ where such an insertion is facilitated

and where ions have fewer unfavourable contacts with matrix particles.45 As a

consequence, the adsorption is enhanced in templated matrices.

(d) Matrices with non-zero net charge

An important example of templated matrices that requires special attention are

matrices with non-zero net charge. The matrix in this case is prepared by equilibrating

an electrolyte solution at temperature T0, however, after the quench, only anions are

‘‘frozen’’ in their positions, while cations are allowed to equilibrate52,80 (or vice versa).

The ROZ equations, treating the matrix cations as template particles in the matrix

(anions) are given in ref. 52 and are in principle the same as eqn (28), the particles

‘‘0’’ being the the matrix anions, while the index ‘‘00’’ denotes the matrix cations.

Again, of special interest are the adsorption isotherms that are determined by the

activity of the electrolyte in the matrix. The equation for the reduced excess chemical

potential is given by eqn (29).45,52

Lukšič et al.52 showed important qualitative differences in the adsorption in

charged matrices compared to electroneutral ones. One such comparison is given in

Fig. 10 which shows the relation between the concentration of the adsorbed +1 : �1
electrolyte (s1 = 4.25 Å), c1�, and its mean activity, a1�, for (a) c0 = 0.5 mol dm�3

and (b) c0 = 1.0 mol dm�3. LB = LB,0 = 7.14 Å, s0� ¼ s0
0
þ ¼ 4:25 Å. The mean

activity of the annealed charge symmetric electrolyte considered here is defined as

a1� = (c1+c1�g
2
�)

1/2, where lng1� = bmex� . The continuous lines represent the

Fig. 9 The adsorption isotherms for a model LiCl (s1+ = 5.43 Å and s1�= 3.62 Å) in a hard

sphere matrix (s0 = 5 Å) as a function of the mean activity, a�. The continuous lines apply to

the untemplated and the symbols (taken from ref. 45 and connected by dashed lines)

to templated matrix (s00 = 6 Å, c00 = 1.0 mol dm�3). The top two curves apply to c0 =

2 mol dm�3, and the bottom ones to c0 = 6 mol dm�3. A similar figure was originally presented

in ref. 45. Note a misprint in the original ref. 45 where c0 values are stated to be twice too small.

The correct values are given here.
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ROZ/HNC results and the symbols correspond to GCMC results. The dashed line

shows the OZ/HNC results for the bulk electrolyte, the middle line shows the results

for the electroneutral matrix (empty symbols), and the bottom line shows the results

for the charged matrix (full symbols).52

There are qualitative differences in the mechanism of the adsorption for the two

cases presented in Fig. 10. In the case of the electroneutral matrix, the matrix is

represented by some equilibrium distribution of positive and negative ions frozen in

their positions. The spatial distribution of fixed positive and negative charges that is

determined by the pre-quenching conditions (temperature, dielectric constant,

concentration c0) influences the adsorption of the electrolyte in such a material.

For example, if the matrix contains a large fraction of the +,� ion-pairs

(only dipoles in an extreme situation), then the adsorption power of such a matrix

would be considerably different from the one containing little or no ion pairs.81 The

invading electrolyte cations and anions are, namely, attracted by the matrix charges,

each of them to the opposite charge. If these charges are well separated the

Fig. 10 The dependence of the adsorbed +1 : �1 electrolyte concentration c1�, on its mean

activity, a1�, for two different matrix concentrations: (a) c0 = 0.5 mol dm�3 and (b) c0 =

1.0 mol dm�3. LB = LB,0 = 7.14 Å, s1 ¼ s0� ¼ s0
0
þ ¼ 4:25 Å, z0� = �1 and, z0

0
þ ¼ þ1. The

continuous lines represent the ROZ/HNC results and the symbols correspond to GCMC

results. The dashed line shows the OZ/HNC results for the bulk electrolyte, the middle line

shows the results for the electroneutral matrix (empty symbols), and the bottom line shows the

results for the charged matrix (full symbols). Reprinted with permission from ref. 52. Copyright

2007 American Chemical Society.Pu
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adsorption is stronger; in the case of a dipolar fluid (small charge separation), it is

much weaker. There is, however, always an ‘‘excluded volume’’ effect to be considered.

The latter works against the adsorption and gains its importance for dense matrices.37

In the case of charged matrices, the matrix possesses net (negative in the case

presented here) fixed charge,52 which attracts electrolyte cations and repels anions.

The primary parameter in such a case is the charge density (depending on concentra-

tion and charge of the obstacles) of the matrix. Porous material, together with an

invading electrolyte, forms an electroneutral system. The resulting adsorption

(or desorption) of the electrolyte depends most notably on the matrix charge and

dielectric constant of the solvent, as also on the concentration and composition of the

invading electrolyte. In most cases, the result is the electrolyte rejection, which can be,

by the mean-field type of arguments, explained as follows: the mean electrostatic

potential in the matrix containing net negative charge is negative which makes it more

difficult for the negative ions, and because of the electroneutrality condition their

positive counterparts, to enter the matrix. These arguments which derive from the

classical electrical double-layer theory82 are only approximately correct because they

ignore the correlation between the invading ions and fixed charges. The correlation

effects, not taken into account by the classical Poisson-Boltzmann’s approach, are

especially strong for multivalent counterions if present in solution. It was shown

theoretically, and to a certain degree also documented by experiment, that the effect

may ultimately change the sign of the Donnan exclusion coefficient.83,84

A similar study, but for a two-dimensional positively charged matrix formed from

an asymmetric electrolyte, was recently published by Lomba and Weiss.85 The

ROZ/HNC theory was tested against Monte Carlo computer simulation for

structural and thermodynamical properties and good agreement was obtained.

Interesting results, not presented before, are the results for the individual chemical

potentials of the annealed ions that show strong dependence on the matrix structure.

(e) Other potentials/systems in external field

Up to here, we were concerned with simple models of electrolytes in partly-quenched

systems, treating particles (ions) as charged hard spheres. A successful description of

realistic molecular liquids of various complexity is feasible within the so-called

reference interaction site model (RISM) in the replica formalism.86 The theory,

pioneered by Chandler and Andersen,87 is an orientational reduction of the

molecular OZ integral equation and can handle the description of the solution

including polar and nonpolar polyatomic molecules as well as polyatomic ions and

various chemical specificities such as hydrogen bonding.88 Hirata and

co-workers49,51 have extended the RISM theory to polar liquids and ions in

molecular polar solvent, and successfully extended replica RISM equations for

describing quenched disorder in realistic molecular systems with polar and charged

species. As a first example, the authors have studied the extended simple point

charge model water adsorbed into a quenched microporous material of molecular

species that also contained charges. To avoid divergence, Kovalenko and Hirata

utilised the partly linearised hypernetted-chain closure for the site-site correlations

gijagðrÞ ¼
exp½dij

agðrÞ�; dij
agðrÞ � 0

1þ dij
agðrÞ; dij

agðrÞ40

�
ð30Þ

dijag(r) = �buijag(r) + hijag(r) � cijag(r)
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where gijag(r) = hijag(r) + 1 are the site-site distribution functions, and uijag(r) are the

site-site interaction potentials. This closure combines the HNC approximation

for density depletion regions of hijag(r) o 0 and MSA for enrichment regions of

hijag(r) > 0. The main conclusions of the work mentioned above (water confined in

matrices of quenched network of interconnected branched chains with or without

grafted activating polar groups) are that the matrix confinement increases the

compressibility of ambient water and that it rises its excess chemical potential.

Hydrogen bonding in water and for water molecules adsorbed at activating

carboxylic groups is considerably enhanced by the presence of the matrix phase.

With respect to this, we would like also to mention the paper of Urbič et al.48 who

studied a very simple two-dimensional model of water in the presence of Lennard-

Jones obstacles utilising an associative ROZ theory. Although the model is much

simpler than the model of Kovalenko and Hirata,49 the authors came to identical

conclusions. Mentioned works are relevant for studying water inside biological cells,

which are characterised by a high degree of molecular crowding from organelles and

high concentration of biomolecules.

Replica RISM theory was recently used to investigate the structure of electrolyte

solutions confined in carbonised polyvinylidene chloride nanoporous material.51 The

work is important in the light of electric energy storage devices research since the

model mimics the electric double layer capacitor. The structure of the electrolyte

solution sorbed in carbon nanopores exhibits substantial changes in comparison to

the (unperturbed) bulk solution. Due to the reduced density of the sorbed solution,

hydrogen bond network of water molecules is different from that in the bulk, and

water molecules make small clusters coexisting with regions of water vapour. The

ion–water interaction is enhanced due to reduced density of the solution. Cations are

distributed more or less evenly over the pore space, while anions can access the

carbon surface and stay in direct contact with the surface. Differences in the

behaviour of cations and anions are explained with their hydration nature.

Another interesting field of research are solutions of polyelectrolytes. For

instance, Bratko and Chakraborty21 have considered a linear polyion embedded in

a disordered medium with quenched fluctuations in the density of ionic sites that

comprise the disorder. They have utilised the Monte Carlo simulations and the

Feyman-Bogoliubov variational method to conclude that the charge-density fluctua-

tions in the system cause the effective interaction between equally charged beads to

displays a minimum at characteristic distance rmin and that the interaction is

attractive at large separations. This feature is explained by the attraction of the

beads to the same potential walls created by the accumulation of oppositely charged

ionic sites of the quenched disorder. The polyion tends to reduce its Coulomb energy

by assuming configurations favouring optimal bead to bead distances, rmin.

With respect to polyelectrolyte solutions, recent works of Fleck and Netz89 and

Podgornik et al.90–92 need to be mentioned. These authors have investigated the

effect of quenched surface charge disorder of the macroion on the electrostatic

interactions between charged surfaces surrounded by the mobile neutralising

counterions. In many cases of biological importance (DNA microarrays,

surfactant-coated surfaces, random polyelectrolytes and polyampholites etc.) the

charge patterns along macromolecular complex surface are inhomogeneous and

exhibit a highly disordered spatial distribution. Since interactions between macro-

ions are essential for maintaining their complex structure and function such research

is highly desirable. Poisson-Boltzmann approach treating charge on the surfaces of

macroions as homogeneous and constant cannot explain the unexpected and
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counter-intuitive collapse of highly charged polyelectrolytes (e.g., DNA) in the

presence of polyvalent counterions. Utilising field-theoretic and replica methods

the authors showed that in the case of the presence of neutralising counterions, the

quenched disordered distribution of macroion’s surface charges induces an additive

interaction in the strong-coupling limit even if the mean charge of the macroions is

zero. For small distances from the macroion’s surface a pronounced enhancement of

the counterion density was found, caused by the coupling between surface ion

disorder and counterions. Podgornik et al.90–92 investigated also the interesting

effects connected with the partial annealing of the disorder and found that partial

annealing of the surface charges leads to additional attractive interactions between

the surfaces and may even result in a global attractive instability of the system.

Membrane equilibria can also be studied in the framework of partly-quenched

systems with directional dependent potentials. Models of partly-quenched systems

with permeable interfaces are of considerable interest as they represent simple

prototypes of membrane partitioning. Bryk et al.93 used a density functional

approach to study phase behaviour of a Lennard-Jones fluid in a system with

slit-like pores separated by semipermeable walls while Boda and co-workers94

studied the selective partitioning of two restricted primitive electrolytes across the

membrane, permeable to only one electrolyte, using the Monte Carlo simulations

and density functional theory. A review of the density functional theory (DFT) for

quenched-annealed fluid mixtures is given by Schmidt in ref. 95, 96. The author,

however, deals only with uncharged systems. DFT for systems containing ions is,

e.g., given in ref. 94 and 90–92.

Bracamontes et al.97 used grand canonical Monte Carlo simulation and ROZ

integral equation theory to study a hard sphere fluid in an array of permeable

obstacles. The difference from matrices described in previous subsections is in the

direction-dependent potential between the annealed and the matrix species. The

authors used the following potential

U10ðrÞ ¼ 4e10
U0 � ðU0 þ e10Þ s0=2�r

w

� 	6
4e10 þ ðU0 þ e10Þ s0=2�r

w

� 	12 ð31Þ

to model the membrane, where e10 denotes the depth of the attractive part of the

potential,U0 is the height of the barrier and w is the half-width of the barrier. If e10 is
small, the potential becomes almost entirely repulsive. For large values of e10

attraction between fluid particles on both surfaces of the model membrane barrier

exposed to the interior of each matrix cavity and to the external porous space is

obtained. Preliminary results on partitioning of the simple ions through such

membrane were obtained by one of us using machine calculations. Parameters

e10 = 0.5 kBT and w = 2 Å were set equal for anions and cations of the restricted

primitive +1 : �1 electrolyte (the diameters of ions were 4.25 Å), while the heights

of the barriers were U+
0 = 8 kBT and U�0 = 2 kBT for cations and anions,

respectively. It was established that both kinds of ions crowded at the inner and

outer surface of the cell membrane, the concentration of positive ions being slightly

smaller than the negative ones. This effect became more pronounced with an

increasing concentration of the electrolyte. At high electrolyte concentrations

(0.02 mol dm�3) the consequence of smaller penetration of positive ions was noticed

also outside the cell, where there were more positive than negative ions in the contact

with the cell. Within the membrane, there were no positive ions and a very small
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concentration of negative ions, irrespective of the concentration of the annealed

electrolyte. Studies of matrices formed by permeable obstacles (vesicles) selective to

one ionic species are of interest for all applications that require the removal of a

particular ionic species, for example heavy metals or radionuclides.

At the end of this subsection, we wish to mention the work of Pizio and

co-workers98,99 who developed the inhomogeneous replica Ornstein-Zernike equa-

tions to study fluid adsorbed in slit-like pore filled with a quenched disordered hard

sphere fluid. As already stressed, such situations are important in gel-exclusion

chromatography techniques, extraction from porous rocks, study of fluids adsorbed

in clays with quenched disordered pillar etc. To our best knowledge, no reports on

inhomogeneous ROZ for ionic systems have been published so far.

(f) Dynamical properties

In vitro construction of artificial tissues from human stem cells, biodegradation of

organic contaminants by microbial biofilms, the delivery of chemotherapeutical

agents to malignant tumors, and storage of radioactive ions in nuclear waste are just

few of the processes where dynamical phenomena play a crucial role.100–103 The first

theoretical work considering the ion motion in charged disordered materials were

performed by Chakraborty et al.,22 and Deem and Chandler.24 They used

approximate theories to study the effect of the matrix disorder on the diffusion of

the ions. They showed that the diffusion coefficient decreases with the disorder

strength of the porous media and at a certain value abruptly goes to zero.

Recently, Jardat et al. presented the Brownian dynamics study of the self-diffusion

coefficients of ions of the charge- and size-symmetric +1 : �1 electrolyte in the

presence of ionic disordered electroneutral matrix.58 In this study, the ions interacted

with each other through a ‘‘soft’’ Coulomb potential.58 During the process of the

simulation, the trajectories of the annealed particles were computed, and the self-

diffusion coefficient, D, was obtained from the auto-correlation function of the force

using the expression58

D ¼ D0 � 1

3

Z 1
0

ðbD0Þ2hFðt0 þ tÞFðt0Þidt ð32Þ

where F(t0) and F(t0 + t) are the forces on the particle at some arbitrary initial time

t0 and at some later time t0 + t, respectively.

The study was concerned with the self-diffusion of the annealed ions, as measured

by D/D0, D0 being the self-diffusion coefficient of ions at infinite dilution, i.e.,

without any interactions. Since fluid and matrix were both represented as a charge

and size symmetric electrolytes, D+ = D� = D.

Fig. 11 shows the self-diffusion coefficient, D, of ions divided by the value at

infinite dilution, D0, as obtained with the Brownian dynamics method.58 Open

squares denote the results for the annealed electrolyte of concentration c1 in the

matrix with c0 = 0.425 mol dm�3. The open circles denote the results for the mixture

of identical +1 : �1 electrolytes with concentrations 0.425 mol dm�3 and c1. The

presence of obstacles reduces the value of the self-diffusion coefficient more than the

presence of the mobile ions at the same total concentration. Although there are

qualitative differences in concentration dependence of D/D0 in both cases (in the

bulk electrolyte D/D0 decreases with increasing concentration, while it first increases

and than decreases in the case of the matrix present), the difference between the two

sets of results becomes smaller with the increasing electrolyte concentration c1.
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In the last decade, molecular dynamics was vastly used to study the dynamics and

transport in charged (not electroneutral) porous media,104–108 mostly clays. The

results of these studies confirm the generally admitted ideas that anions are repelled

by the negatively charged external surface of clays, while on the contrary, the cations

are attracted by the surface and may exchange with the natural inter-layer

counterions.106 It has been shown that the empirical partitioning coefficients between

mobile and trapped ions can be evaluated from the microscopic dynamics of ions.105

The latter is, depending on the fluid concentration, controlled by two different

mechanisms. While at low concentration the Coulomb attraction between fluid and

matrix particles increases the equilibrium concentration of the fluid in the matrix, the

excluded volume effect dominates at high concentrations, reducing the amount of

the ionic fluid entering the matrix.108 These findings are consistent with the

thermodynamical results52 and can be explained with continuous solvent models.

The exchange of cations in clays (ion-exchange process), however, was recently

found to be driven by ‘‘hydrophobicity’’ and not by the affinity of ions for charged

clay surface.107

Most of the theoretical investigations of dynamics of partly-quenched ionic

systems described above, as well as the experimental results, apply to charged

microporous materials with well defined geometry.101 Very interesting, yet unpublished,

results were obtained by Jardat et al.59 for disordered non-electroneutral matrices.

The authors focused on the self-diffusion coefficients of ions, D, in charged

matrices.59 Jardat and coworkers studied the behaviour of individual self-diffusion

coefficients for coions (ions of the same charge sign as the matrix) and counterions

(ions of the opposite charge sign than the matrix ions) in matrices made of �1, and
�10 charges, respectively. In �1 matrices and at higher concentration of

�10 matrices, the counterions become faster than the coions.59 This result is in

qualitative agreement with the predictions of the thermodynamical mean-field

theory as described above, as well as with with recent coarse-grained simulations

of Rotenberg et al. of effective diffusion coefficient of charged tracers in a charged

porous media saturated by an electrolyte solutions.61 The explanation was suggested

that the counterions follow preferential pathways along the surfaces of the porous

Fig. 11 Self-diffusion coefficient, D, of ions divided by the value at infinite dilution, D0. Open

squares denote the results for the annealed electrolyte of concentration c1 in the matrix with

c0 = 0.425 mol dm�3. The open circles denote the results for the mixture of identical +1 : �1
electrolytes with concentrations 0.425 mol dm�3 and c1. From ref. 58—Reproduced by

permission of The Royal Society of Chemistry.
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medium, while the coions have a bigger volume to explore and are therefore

slower.59 However, an unexpected and not yet completely understood results is that

in matrices made of �10 charges at low matrix concentrations, the counterions are

slowed down and coions become faster (D�/D
0
� > D+/D0

+).59 It seems that the

combined influence of the excluded volume and the electrostatic interaction causes a

change in the mechanism of transport.

4. Conclusion and perspectives

In this contribution, we reviewed theoretical developments in the field of partly-

quenched systems containing charges. We briefly discussed the methods used to

investigate such systems, but laid more stress on the results setting guidelines for

possible applications. Understanding the properties of ionic solutions trapped in the

quenched environment is, as mentioned several times before, of great practical

importance. For illustration: many porous materials, acting as membranes or

retention barriers in various industrial, environmental, and biological processes,

contain charges. This makes them—together with the invading electrolyte

solution—good candidates to be examined by the replica methodology. The story,

of course, does not end here; the replica theory can be applied to any system in which

some degrees of freedom are quenched and the others are annealed. One such

example is the study of DNA unzipping phase diagram.109 Development of the

replica methodology for more advanced models is desirable also from the perspective

of ionic solvation. The water molecules buried inside a protein are often considered

as an integral part of the protein structure. The rotation of these molecules is

hindered in comparison with the rotational freedom of the bulk water; in principle

they could be treated within the formalism used for partly-quenched systems.

Further development of the replica methodology would need to be directed toward

studies of more realistic matrices and interaction potentials. In this respect, we see a

great potential of the integral equation approaches reviewed here. The ROZ theory

provides results in good agreement with computer simulation and, in contrast to the

latter, it does not require a detailed information on the matrix structure. The input

data to the theory can in principle be provided through the experimentally obtained

structure factor(s), what may eventually pave the path for theoretical investigations

of more realistic systems.

There is a need for further development of theories for ionic and molecular

systems based on the replica formalism. One direction is, for example, an extension

of the theory to systems under the influence of an external field. The other is to

treat the partly-quenched ionic systems in the framework of some kind of

perturbation approach or, as it was done recently by Holovko and Dong for hard

spheres,110 within the ‘‘scaled particle’’ theory. Further, an interesting problem

of the symmetry-breaking for the fluids within the charged material has not been

solved yet. Some other challenging issues to be addresses in this field of science

were pointed out by Sarkisov and van Tassel86 in the concluding section of their

review paper.

However, the role of computer simulations in investigating partly-quenched

systems, molecular dynamics in particular, should not be overlooked. They are

indispensable for studying ionic transport in systems with coupled solvent and

charge flow in the vicinity of charged surfaces, causing the so-called electro-kinetic

phenomena. These are of great practical importance in fields as diverse as micro-

fluidics, colloid science and oil exploration.101
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All in all, we believe that the partly-quenched systems containing charges will

remain a vivid and important field of research also in the future.
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