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Abstract—Skeletons are widely used shape descriptors which
summarize the general form of binary objects. A technique
to obtain skeletons is the thinning, that is an iterative layer-
by-layer erosion in a topology-preserving way. Conventional
thinning algorithms preserve line endpoints to provide important
geometric information relative to the object to be represented.
Bertrand and Couprie proposed an alternative strategy by
accumulating isthmus points that are line interior points. In this
paper we present six new 2D parallel thinning algorithms that are
derived from some sufficient conditions for topology preserving
reductions and based on isthmus-preservation.

I. I NTRODUCTION

Skeletons play important role in various applications of
image processing and pattern recognition [11]. Thinning is
an iterative layer-by-layer erosion until only the skeletons of
the binary objects are left [6], [12].

A 2D binary picture [4], [5] is a mapping that assigns a
value of 0 or 1 to each point with integer coordinates in the
2D digital space denoted byZ2. Points having the value of
1 are calledblack points, and those with a zero value are
called white ones. The objects of a picture are comprised
of black points; white points form the background and the
cavities of the picture. We consider(8, 4)–pictures, where
8–adjacency and4–adjacency are, respectively, used for the
objects and their complementary [4]. It is assumed that any
picture contains finitely many black points.

A reduction operatortransforms a binary picture only by
changing some black points to white ones (which is referred to
as thedeletionof 1’s). A parallel reduction operatordeletes all
points satisfying its condition simultaneously. Parallelthinning
algorithms are composed of parallel reduction operations [3].

The first essential requirement for thinning algorithms is the
topology preservation [4]. A 2D reduction operation doesnot
preserve topology if any object in the input picture is split
(into several objects) or completely deleted, any cavity inthe
input picture is merged with the background or another cavity,
or a cavity is created where there was none in the input picture
[5]. A simplepoint is an object point whose deletion does not
alter the topology of the picture [4].

The second requirement to be complied with by thinning
algorithms is the shape preservation. For example, an object
having the shape as the letter “b” should not be transformed
into an object like an “o”. This is why endpoint criteria are

generally applied by most of the existing thinning algorithms
[3]. These conventional algorithms use operators that delete
some simple points which are not endpoints, since preserving
endpoints provides important geometrical information relative
to the shape of the objects. Note that all endpoints are simple
points in each endpoint characterization.

Bertrand and Couprie introduced an alternative strategy to
preserve geometric features in thinning [1]. They proposed
a sequential thinning scheme based on a generalization of
curve/surface interior points that are calledisthmuses. Isth-
muses are dynamically detected and accumulated in a con-
straint set of non-simple points.

Despite of the topological constraint, Couprie found five
existing 2D parallel thinning algorithms that are not topology-
preserving [2]. In order to verify that a parallel reduction
preserves topology, Ronse introduced the minimal non-simple
sets in [9], and Kong gave some sufficient conditions [5].
Németh, Kardos, and Palágyi indroduced modified versions
of Kong’s sufficient conditions and combined them with the
known parallel thinning approaches and endpoint characteri-
zations to generate a family of topology preserving thinning
and shrinking algorithms [7], [8].

In this paper we present various 2D parallel thinning algo-
rithms that are derived from some sufficient conditions for
topology preserving reductions, parallel thinning strategies,
and based on isthmus-preservation.

The rest of this paper is organized as follows. Section 2
gives the basic notions of 2D digital topology and some suf-
ficient conditions for parallel reduction operators to preserve
topology. In Section 3, the conventional and the isthmus-based
parallel thinning schemes are sketched. Section 4 reviews the
proposed isthmus-based parallel thinning algorithms. Finally,
we round off the paper with some concluding remarks.

II. BASIC NOTIONS AND RESULTS

In this paper, we use the fundamental concepts of digital
topology as reviewed by Kong and Rosenfeld [4].

Let p = (px, py) andq = (qx, qy) be two points inZ2 and
let us denote byd(p, q) =

√
(px − qx)2 + (py − qy)2 their

Euclidean distance. These two points,p andq, are4–adjacent
if d(p, q) ≤ 1 and they are8–adjacentif d(p, q) ≤

√
2. Let

Nj(p) (for j = 4, 8) denote the set of pointsj–adjacentto
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pointp, andN∗
j (p) = Nj(p)\{p} refers to the set consisting of

the properj–adjacent neighbors ofp. The sequence of distinct
points 〈x0, x1, . . . , xn〉 is called a j–path (for j = 4, 8) of
length n from point x0 to point xn in a non–empty set of
pointsX if each point of the sequence is inX andxi is j–
adjacent toxi−1 for each1 ≤ i ≤ n. Note that a single point
is a j–path of length 0. Two points are said to bej–connected
in the setX if there is aj–path inX between them. A set
of pointsX is j–connectedin the set of pointsY ⊇ X if any
two points inX are j–connected inY .

The lexicographical order relation≺ between two distinct
points p = (px, py) and q = (qx, qy) is defined as follows:
p ≺ q ⇔ py < qy ∨ (py = qy ∧ px < qx).

The 2D binary (8,4) digital pictureP is a quadrupleP =
(Z2, 8, 4, B) [4]. Each element ofZ2 is called apoint of P .
Each point inB ⊆ Z2 is called ablack pointand has a value of
1 assigned to it. Each point inZ2\B is called awhite pointand
has a value of 0 assigned to it. 8–adjacency and 4–adjacency
are, respectively, used for the black points and the white ones.
A black componentis a maximal 8–connected set of points in
B, while a white componentis a maximal 4–connected set of
points inZ2\B. It is assumed that any picture is finite (i.e., it
contains finitely many black points).

A black point is called aborder point in (8, 4) pictures if
it is 4–adjacent to at least one white point. A black pointp
is called aninterior point if it is not a border point. A border
point p is anendpoint of type Eif there is one black point in
N∗

8 (p) or there are two 4–adjacent black points inN∗
8 (p).

A black point is called asimple point if its deletion
preserves the topology of the picture [4]. There are various
characterizations of simple points. One of them is stated as
follows:

Theorem 1:[4] Black point p is simple in picture
(Z2, 8, 4, B) if and only if all of the following conditions hold:

1) p is a border point.
2) The setN∗

8 (p) contains exactly one black8–component.
Note that the simplicity of pointp in a (8, 4) picture is a

local property; it can be decided in view ofN∗
8 (p).

Parallel reduction operators delete a set of black points
and not only a single simple point. Németh, Kardos, and
Palágyi gave the following sufficient conditions for topology-
preserving parallel reduction operators [8].

Theorem 2:Let O be a parallel reduction operation. The
operationO is topology preserving for(8, 4) pictures if all of
the following conditions hold for any black pointp in picture
(Z2, 8, 4, B) deleted byO:

1) Pointp is simple in picture(Z2, 8, 4, B).
2) For any simple pointq ∈ N∗

4 (p) ∩ B, p is simple in
picture(Z2, 8, 4, B \ {q}), or q is simple in the picture
(Z2, 8, 4, B \ {p}), or q ≺ p.

3) Pointp does not coincide with the points marked “⋆” in
the seven black components depicted in Fig. 1.

III. PARALLEL THINNING

The conventional parallel thinning scheme can be described
by Algorithm 1, where “deletable” points are some simple

⋆

(a)

⋆

(b)

⋆

(c)

⋆

(d)

⋆

(e)

⋆

(f)

⋆

(g)

Fig. 1. Black points marked “⋆” in the seven black components contained
in a 2× 2 square are designated to be preserved by Condition 3 of Theorem
2.

points that are not endpoints.

Algorithm 1 Conventional Parallel Thinning

1: Input: picture(Z2, 8, 4, X)
2: Output: picture(Z2, 8, 4, Y )
3: Y = X
4: repeat
5: D = {p | p is “deletable” inY }
6: Y = Y \D
7: until D = ∅

In Algorithm 1, the kernel of therepeat cycle corresponds
to an iteration step of the thinning process. Iterations (where
all object points that satisfy the deletion condition are removed
simultaneously) are repeated until stability is reached.

Endpoint preservation yields that the produced skeletons
represent the shapes of the original objects, but it is a
double-edged sword. Its risk is that each unwanted endpoint
(that appears during the thinning process) corresponds to
an unwanted side branch in the skeleton produced by an
endpoint-preserving thinning algorithm. That is why Bertrand
and Couprie introduced an alternative strategy to preserve
geometric features in thinning [1]. They proposed a generaliza-
tion of curve/surface interior points that are calledisthmuses.
Isthmuses are dynamically detected and accumulated in a
constraint set of non-simple points. The isthmus-based parallel
thinning scheme is sketched by Algorithm 2.

Algorithm 2 Isthmus-Based Parallel Thinning

1: Input: picture(Z2, 8, 4, X)
2: Output: picture(Z2, 8, 4, Y )
3: Y = X
4: I = ∅
5: repeat
6: B = {p | p 6∈ I andp is a border point inY }
7: S = {p | p ∈ B andp is a simple point inY }
8: I = I ∪ (B \ S)
9: D = {p | p ∈ S andp is “deletable” inY }

10: Y = Y \D
11: until D = ∅
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In each iteration step, some border points that are not
isthmuses can be deleted and detected isthmuses (i.e., border
points that are not simple ones) are accumulated in the
constraint setI.

IV. SIX VARIATIONS ON ISTHMUS-BASED PARALLEL

THINNING ALGORITHMS

In this section, six new isthmus-based thinning algorithms
composed of parallel reduction operations that satisfy Theorem
2 are reported. The proposed algorithms were tested on objects
of different shapes. Here we can present their results superim-
posed on just two test images. The first one is a120×45 image
of a violin with 2498 object points (see Figs. 2, 5, and 7), and
the second test image is a552 × 607 image of a salamander
containing 108 615 object points (see Fig. 8).

The pairs of numbers in parentheses (see Figs. 2, 5, 7, and
8) are the count of object points in the produced pictures and
the parallel speed (i.e., the number of the required parallel
reduction operations [3]).

A. A Fully-Parallel Algorithm

In fully parallel algorithms, the same parallel reduction
operation is applied in each iteration step [3].

Our isthmus-based fully parallel thinning algorithm FP-
Isthmus is sketched by Algorithm 3.

Algorithm 3 FP-Isthmus

1: Input: picture(Z2, 8, 4, X)
2: Output: picture(Z2, 8, 4, Y )
3: Y = X
4: I = ∅
5: repeat
6: B = {p | p 6∈ I andp is a border point inY }
7: S = {p | p ∈ B andp is a simple point inY }
8: I = I ∪ (B \ S)
9: D = {p | p ∈ S andp is FP-deletable inY }

10: Y = Y \D
11: until D = ∅

FP-deletable points are defined as follows:
Definition 1: Black pointp is FP-deletable if all the condi-

tions of Theorem 2 hold.
Figure 2 presents an illustrative example for a skeleton

produced by algorithm FP-Isthmus compared with the existing
fully parallel algorithm FP-E (that preserves endpoints of
type E) [8]. It is illustrated in Fig. 3 how the fully parallel
algorithms FP-E and FP-Isthmus work.

Deletable points of the proposed fully parallel algorithm FP-
Isthmus (see Definition 1) are derived directly from conditions
of Theorem 2. Hence, it is topology preserving.

B. Subiteration-Based Algorithms

In subiteration-based thinning algorithms, an iteration step
is decomposed intok successive parallel reduction operations
according to thek deletion directions. If directiond is the
current deletion direction, then somed-border points are

FP-Isthmus FP-E
(294, 17) (300, 17)

Fig. 2. Skeletons produced by the proposed isthmus-based fully parallel thin-
ning algorithm FP-Isthmus and the corresponding endpoint-based algorithm
FP-E.
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Fig. 3. A sample object to show how the proposed fully parallel thinning
algorithms work with endpoint and isthmus preservation. Points marked “E”
corresponds to the endpoints of type E, while isthmus pointsare marked “I”.
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deleted [3]. Existing 2D subiteration-based parallel thinning
algorithms considerk = 2 or k = 4 directions [3], [7], [8],
[12].

A black pointp is anN -border point if pointpN (see Fig. 4)
is white. TheW -, S-,E-border points can be defined similarly.
In addition, a black pointp is anNE-border point ifpN or
pE is white. Considering another pairs of directions, we can
likewise talk aboutNW -, SW -, SE-border points (see Fig.
4).

pSW pS pSE

pW p pE

pNW pN pNE

Fig. 4. Notations for the3× 3 neighborhood of pointp.

Our new subiteration-based thinning algorithms using
a sequence of deletion directionsQ are SI-Q-Isthmus
(see Algorithm 4), (Q = 〈NE,SW 〉, 〈N,E, S,W 〉,
〈NE,SW,NW,SE〉).

Algorithm 4 SI-Q-Isthmus

1: Input: picture(Z2, 8, 4, X)
2: Output: picture(Z2, 8, 4, Y )
3: Y = X
4: I = ∅
5: repeat
6: D = ∅
7: for all d ∈ Q do
8: B = {p | p 6∈ I andp is a border point inY }
9: S = {p | p ∈ B andp is a simple point inY }

10: I = I ∪ (B \ S)
11: Dd = {p | p ∈ S andp is SI-d-deletable inY }
12: Y = Y \Dd

13: D = D ∪Dd

14: end for
15: until D = ∅

SI-d-deletable points are defined as follows:
Definition 2: Black point p is called SI-d–

deletable if all the following conditions hold
(d ∈ {N,E, S,W,NE, SW,NW,SE}):

1) Pointp is a simple andd-border point.
2) For any simple andd-border pointq ∈ N∗

4 (p), p is
simple inN∗

8 (p) \ {q} or q is simple inN∗
8 (q) \ {p}, or

q ≺ p.
3) Depending on the deletion directiond, the following

conditions are to be satisfied:

• if d ∈ {N,E, S,W}, thenp does not coincide with
the point marked “⋆” depicted in Fig. 1(a) and (b);

• if d = NE, thenp does not coincide with the point
marked “⋆” depicted in Fig. 1(a), (b), (c), (e), and
(f);

SI-〈NE,SW 〉-Isthmus SI-〈NE,SW 〉-E
(271, 26) (299, 26)

SI-〈NE, SW,NW, SE〉-Isthmus SI-〈NE,SW,NW,SE〉-E
(277, 28) (300, 28)

SI-〈N,E, S,W 〉-Isthmus SI-〈N,E,S,W 〉-E
(267, 48) (306, 48)

Fig. 5. Skeletons produced by the proposed isthmus-based algo-
rithms SI-〈NE,SW 〉-Isthmus, SI-〈NE, SW,NW,SE〉-Isthmus, and SI-
〈N,E, S,W 〉-Isthmus and the corresponding endpoint-based algorithmsSI-
〈NE,SW 〉-E, SI-〈NE, SW,NW,SE〉-E, and SI-〈N,E, S,W 〉-E.

• if d = SW , thenp does not coincide with the point
marked “⋆” depicted in Fig. 1(a), (b), (c), (d), and
(f);

• if d = NW , thenp does not coincide with the point
marked “⋆” depicted in Fig. 1(a), (b), (d), (e), and
(f);

• if d = SE, thenp does not coincide with the point
marked “⋆” depicted in Fig. 1(a), (b), (c), (d), and
(e).

Figure 5 presents some examples for skeletons pro-
duced by our new algorithms SI-〈NE,SW 〉-Isthmus, SI-
〈NE,SW,NW,SE〉-Isthmus, and SI-〈N,E, S,W 〉-Isthmus
compared with the corresponding subiteration-based algo-
rithms SI-〈NE,SW 〉-E, SI-〈NE,SW,NW,SE〉-E, and SI-
〈N,E, S,W 〉-E (that preserve endpoints of type E) [8].

It can readily be seen that deletable points of the proposed
subiteration-based algorithms (see Definition 2) are derived
from the conditions of Theorem 2. Hence, all of the three
algorithms are topology preserving.

C. Subfield-Based Algorithms

Subfield-based algorithms partition the digital space intok
subfields. During an iteration step, the subfields are alterna-
tively activated, and a set of border points in the active subfield
can be deleted by a parallel reduction operation [3].

The existing 2D subfield-based thinning algorithms partition
the digital spaceZ2 into two and four subfields, see Fig. 6. In
the case ofk subfields, thei-th subfield denoted bySk(i) is
defined as follows (k = 2, 4; i = 0, . . . , k − 1):

S2(i) = {p = (x, y) | (x+ y) ≡ i (mod 2)},
S4(i) = {p = (x, y) | 2 · (y mod 2) + (x mod 2) = i}.
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0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

(a)

0 1 0 1 0
2 3 2 3 2
0 1 0 1 0
2 3 2 3 2
0 1 0 1 0

(b)

Fig. 6. Partitions ofZ2 into two (a) and four (b) subfields. For thek-
subfield case, the points markedi are in the subfieldSk(i) (k = 2, 4, i =
0, . . . , k − 1).

Our new isthmus-based subfield-based thinning algorithms
are SF-2-Isthmus and SF-4-Isthmus (see Algorithm 5).

Algorithm 5 SF-k-Isthmus

1: Input: picture(Z2, 8, 4, X)
2: Output: picture(Z2, 8, 4, Y )
3: Y = X
4: I = ∅
5: repeat
6: D = ∅
7: for i = 0 to k − 1 do
8: B = {p | p 6∈ I andp is a border point inY }
9: S = {p | p ∈ B andp is a simple point inY }

10: I = I ∪ (B \ S)
11: Di = {p | p ∈ S andp is SF-k-deletable inY }
12: Y = Y \Di

13: D = D ∪Di

14: end for
15: until D = ∅

SF-k-deletable points (k = 2, 4) are defined as follows:
Definition 3: Black point p is called SF-k–deletable if all

the following conditions hold (k = 2, 4):

1) Pointp is simple in subfieldSk(i).
2) If k = 2, thenp does not coincide with the points marked

“⋆” in Fig. 1(a) and 1(b).

Figure 7 presents some examples for skeletons produced by
our new algorithms SF-2-Isthmus and SF-4-Isthmus compared
with the corresponding subfield-based algorithms SF-2-E and
SF-4-E (that preserve endpoints of type E) [8].

It can readily be seen that deletable points of the proposed
subfield-based algorithms (see Definition 3) are derived from
the conditions of Theorem 2. Hence, both algorithms are
topology preserving.

V. CONCLUSIONS

This paper presents new parallel thinning algorithms. The
major contributions of this work are:

• Six variations for parallel thinning algorithms were con-
structed (each algorithm differs from the other ones).
Deletion rules of the proposed algorithms were not given
by matching templates (as it is usual), they were derived
from sufficient conditions for topology preserving parallel
reductions.

SF-2-Isthmus SF-2-E
(311, 20) (342, 20)

SF-4-Isthmus SF-4-E
(271, 40) (590, 40)

Fig. 7. Skeletons produced by the proposed two isthmus-based algorithms
(SF-2-Isthmus and SF-4-Isthmus) and the corresponding endpoint-based al-
gorithms (SF-2-E and SF-4-E).

• The proposed algorithms are based on isthmus-
preservation (instead of the conventional endpoint-
preservation thinning scheme).

• The topological correctness of all the proposed algorithms
is guaranteed.

• Thanks to the isthmus-based approach, our new algo-
rithms produce less unwanted side branches than the
conventional ones with endpoint-preservation. Note that
each skeletonization technique (including thinning) is
rather sensitive to coarse object boundaries. The false
segments included by the produced skeletons can be
removed by a pruning process (i.e., a post-processing
step) [10].

Unfortunately, there is no room to present more examples
here, hence we invite the reader to visit the website at
http://www.inf.u-szeged.hu/˜gnemeth/
thinning_gallery/skeleton_alg2d.php ,
where skeletons produced by various existing 2D thinning
algorithms are also presented.

Finally, note that the proposed algorithms can be imple-
mented efficiently on conventional sequential computers by
adapting the general framework proposed by Németh and
Palágyi [7]. Skeletons of large objects containing 1.000.000
points can be produced within one second on a usual PC.
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4.2.2/08/1/2008-0008 program of the Hungarian National
Development Agency, the European Union and the European
Regional Development Fund under the grant agreement
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