
Uppsala Master's Theses inComputing Science 109Examensarbete DV3June 9, 1997ISSN 1100{1836SafeErlangGustaf NaeserComputing Science DepartmentUppsala UniversityBox 311S-751 05 UppsalaSwedenSupervisor: Dan SahlinExaminer: H�akan MillrothPassed:

AbstractErlang is a process oriented functional programming language developedfor fast prototyping of soft real time distributed systems. The languagecould be suited for implementation of mobile agents if it supported thesecurity which is needed in such systems. The code loading currently usedin the language with its demand that code is locally available, needs also bemodi�ed to enable transparent mobile programming. This paper describesthe design of extensions which make the language secure. They also enablethe design of safer systems and also provide a new modi�ed code loading.A prototype has been implemented which shows that the extensions addthe needed security. The prototype has also shown that the extensions withadvantage can be used in other applications.

Contents1 Introduction 12 Agents 52.1 De�nitions of agents . 52.2 Representation of agents . 62.3 Environments for mobile agents 72.3.1 Communication . 82.3.2 Transport . 82.3.3 Security . 103 Erlang 153.1 The distributed runtime system 153.2 Communication . 163.3 Transport . 173.4 Security . 174 Design 194.1 Identifying weaknesses . 194.1.1 Security . 204.2 Capabilities . 224.2.1 Representation of capabilities 224.3 Nodes . 244.4 Distributed code . 264.4.1 Managing code with Mids 265 The Prototype 295.1 Capabilities . 295.1.1 Using capabilities . 295.1.2 Revocation . 315.2 Nodes . 32i

5.2.1 Using nodes . 325.3 Distributed code . 325.3.1 Using Mids . 325.4 Implementation of the prototype 336 Conclusions and further work 356.1 Conclusions . 356.2 Further work . 36A Unsafe built in functions 43B The node module 49

ii

Chapter 1IntroductionThe demand for a safer and more secure Erlang becomes apparent whenthe language is tried in new areas of programming. One such area is agentprogramming. Agents are programs devised to solve speci�c tasks usinga de�ned behaviour. When the agents start moving around in a networkor distributed system they are called mobile agents. The environments inwhich they execute are vulnerable and measures to make them safe andsecure must be taken.The foundation for mobile agent programming is that live executable codecan be sent between clients in a network, rather than having the clientsexchange dead data only. The networks considered in this paper are open.In an open system all components are not trusted so there are many possiblesecurity threats.The security issues found in agent programming will in this paper be usedto identify and then be the base for a design of extensions to the Erlangprogramming language. The implemented prototype has also shown thateven if the extensions were designed with agent security in mind, they aregeneral enough to be used in other types of problems as well. They impose nosevere limitations on the language and one goal has been that older programswith little or no modi�cation should be able to run in the extended system.One other goal has been to transform Erlang into a more secure language,rather than to create a secure environment inside Erlang.1

Related workMost work concerning agents and agent programming has not focused on thesecurity issues. Many agent systems and languages seem to regard securityas a feature, not a requirement. Many systems stress the importance, butonly suggests solutions rather then implementing them.Some languages have implemented various levels of security and the mainin
uences on the extension in this paper come from:� Agent Tcl [Gra95] is a modi�ed version of Tcl 7.5 [LO95]. It providesthe commands agents use to communicate, migrate and create childagents. Authentication, based on PGP, is used to protect the machinesform agents tampering. The agent's owner is identi�ed and accesspermissions based on this authentication are assigned to the agent.Resource protection is maintained using Safe Tcl [Bor92, Bor94] anda set of resource manager agents.� Telescript [Gen95, Whi94, Whi95] is developed by General Magic. Thelanguage an interpreted object oriented language with dynamic codeloading. Runtime type checking, automatic memory management withgarbage collection and exception processing makes scripts either suc-ceed or fail gracefully. A mechanism using permits is used to set quotasfor limiting resource usage and controlling the capabilities of objects.If an object has a number of permits, the engine computes the e�ec-tive permit as a logical intersection of the applicable permits. Tardoand Valente [TV96] notes that with Telescripts mechanisms, safety canonly be achieved by defensive coding practices.� Java [Sun94, Sun95, Yel96] is an interpreted language with garbagecollection. Although not a dedicated agent programming language, itis used in similar environments and contains several solutions to agentsecurity issues. The de�nition of the language is strict and programswill execute identically regardless of the compiler or run-time systemused. A extensive, stringent, compile-time checking tries to �nd asmany errors as possible at compile time. The byte code is veri�edbefore it is passed to the interpreter by a veri�er which ensures thata set of constraints hold, e.g. that code does not over- or under
owthe stack or tries to use registers in invalid ways. What Java lacks isa way to manage resource consumption.2

The structure of this reportThe report is organised into the following chapters:Chapter 2 introduces the concept of agents and describes the securityrequirements of agent environments.Chapter 3 gives a brief introduction to the parts of Erlang which needsto be modi�ed by the extensions. Some other parts vital to agentsprogramming are also described.Chapter 4 describes the design of the proposed extensions.Chapter 5 overview of the prototype.Chapter 6 conclusions and further work.

3

4

Chapter 2AgentsIn later years agents have become a term more and more used. Every pro-gramming language and system with self respect supports them in someway. There are however one side of agents which has not been solved mostsystems, the security.This chapter will introduce the concept of agents and di�erent issues thatwill have to be addressed by a language which supports possibly malignantagents.2.1 De�nitions of agentsThere are several di�erent de�nitions on what agents are. Most of thesede�nitions concern the behaviour of agents and di�erent kinds of proper-ties they should have. Woolridge and Jennings [WJ95] have proposed thebehaviours autonomity, social ability, reactivity and pro activeness. Thesemakes it possible to reason about the expected behaviour of an agent. Oneway of describing what agents are is therefore that an agent is a programwith a speci�c task which makes it necessary for it to implement some orall of a set of properties, not necessarily the set mentioned above.When agents start interacting with each other they form an agent applica-tion. It is possible that the application only has two agents where one ofthem is a simple interface to the user, but applications can have a muchlarger number of agents. An example of a two agent application is an in-telligent mail watcher which sorts the mail in a way the user wants it. Amulti agent application can be an electronic marketplace where agents buy5

and sell items and services.When agents exist in a distributed system, they might be able to solvetheir task in a more e�cient way, both for themselves and for the totale�ciency of the distributed system, if they are allowed to move betweenthe di�erent hosts. Agents moving around, or travelling, in a system arecalled mobile agents. Harrison et. al. [HCK95] have discussed whether ornot mobile agents can be used to improve the performance of an application.In general it can be said that only a few applications really enhance theirperformance when using agents, but that there are several other gains whichcan justify the use of agents. Applications can for example be made mucheasier to modify and extend if agents are used. As an example we can lookat distributed queries. Assume that we have access to a huge database andwant to collect data from it using a set of rules. There are three basicsolutions to this problem. Either we can collect all data from the serverand then locally process it to re�ne the data we want; we can let the server,given a query in some query language, give us the information we want; orwe can send an agent to the server, and then let the agent collect the data wewant. That the two latter cases are superior to the �rst should be obvious,but the di�erence between the query and agent cases is less distinct. Theeasiest way to see the di�erence is the action taken when the data has beencollected and the work at the server is done. In the query case the data issimply returned to querier, but in the agent case a multitude of di�erentscenarios are possible|the agent can act on the information it has collectedand, should this be the case, need not even send all information back to thequerier. It is possible that the agent �nds out that it needs supplementaryinformation and moves on to another site to �nd this information.Even if this paper focuses most at mobile agents and the security issuesconcerning them, all agents do not have to, and will not, be mobile. Thereare several agents in a system which do not need to be mobile, e.g. databaseor �le system.2.2 Representation of agentsLignau and Drobnik [LD95] has presented a model where agents themselvesconsist of three parts. The �rst part is their description, code, which de�nesthe behaviour and task of the agent. The format of this description isdependent of the environment the agent executes in. The commonly usedvariants are that the agents are described in source code or scripts, or byte6

code. In terms of security the byte code representation seems to introducesecurity problems which can be hard to identify and handle without helpfrom advanced tools. As an example, Java [Sun94] relies on that its loader,which installs foreign code into the system, does its job correctly. If on theother hand source code, or some representation of it like a parse tree, is usedthe trust is placed in the compiler instead. It is easier to create a compilerthat cannot generate malignant code than a veri�er which can detect if anarbitrary piece of code is malignant.The second part of agents is their knowledge database. In some systemsthis database is called a suitcase. How the knowledge of an agent should bemanaged, and subsequently moved, can be handled in two ways:� The runtime environment keeps track of all the information belongingto a speci�c agent. When the agent chooses to move, the environmentgathers the information and transmits this together with the agentdescription.� The agent itself is responsible for that the information is transmittedto the new location.The third part of an agent is its attributes. Attributes are informationabout the agent, e.g. its place of origin, an unique identi�er of the agentand possible resource requirements.The anatomy of an agent can be various forms. In this paper an agentconsists of one process. If the agent creates child processes these will beconsedered to be thralls and not part of the agent. One reason for this viewof an agent is that it makes it much easier to capture the agents state. Theresponsibility of managing the agent rests on the application programmerand not on the agent environment.2.3 Environments for mobile agentsAn environment which is to be the base for mobile agent programmingwill at least need some speci�c properties. These have discussed in severalpapers [LD95, HCK95, Whi95]. Attributes needed in an agent programmingenvironment for mobile agents are� communication; 7

� transport; and� security.2.3.1 CommunicationAgents may have to use communication to solve, or better solve, their as-signments. The communication is used to exchange and obtain information,negotiate or state purposes. Mostly agents may wish to communicate withother agents but the communication with its owner, to report results andor receive new tasks or directions, is also important. Standards for agentcommunication have been designed, KQML [FFM+93] and KIF [GF92], inan e�ort to make agent systems able to communicate within themselves aswell as with other agent systems.There are two main ways in which communication can be managed in agentenvironments. Genesereth and Ketchpel [GK94] call them direct communi-cation and assisted coordination.In a system with direct communication, agents communicate directly withother agents. This does not rely on other programs than the agents. Thealternative is to implement a federated system in which the agents com-municate with facilitators which in turn communicate with agents or otherfacilitators. Communication in federated systems can more easily be con-trolled, screened or processed, but there will always be a slowdown due tothe extra communication to and from the facilitators.2.3.2 TransportMeans of transportation are needed in applications where mobile agents areused. The agents travel between the nodes in an distributed system in ane�ort to more e�ciently solve their assignments. The choice when and whereto move is made by the agents themselves.When agents move there are three main things which need to be considered.� How the agents knowledge is moved;� how the agents description, code, is to be moved (and also if the stateof the agent, i.e. the procedure stack, should be moved); and� what the agent should execute upon arrival to the destination node.8

Another problem is references to the agent. When an agent leaves a location,references to that agent might have to be updated. The references, if globalreferences are not used, points to the agent on the location it is leavingand they should be updated to point to the agents new location. Relatedproblems are issues like what happens with messages underway to the oldlocation and how long a redirection, forwarding, from the old location needto be kept.Moving agent knowledgeThe solutions of how the knowledge is moved is closely related to how theknowledge is stored. If the environment manages the knowledge it shouldalso be responsible for transmitting it to the agents new location. If theagent manages its own knowledge, it should be responsible.A security problem is that agent knowledge could be modi�ed while it istransported to a new location.Moving agent descriptionsHow the agents code is transmitted to the new location is a bigger problemthan how its knowledge is moved. The way in which this is handled can notonly put great limitations on programming style but it can also introducesecurity problems. Environments demanding that the modules that will haveto be moved with the agent can be decided prior to the transfer of the agent,makes it harder for the programmer to create distributed applications. Themechanism for agent transportation is however made much easier.There is also the question if the state of the agent need to be captured andtransmitted. If the agent consists of one process only this is not a problembut if the agent consists of several processes the state of every one of thesemust be captured if the agent is to be started as an identical copy on thenew place. This is why the agents in this paper are considered to consist ofone process only.As with the knowledge transportation, the agent description can be modi�edwhile being transported to a new location. A related problem is that thereis no way for a agent to check that it actually executes the description itbelieves it is executing. 9

Restarting agentsThere are di�erent views on how the agents should arrive and be received byagent environments. First the agent is installed into the system, after secu-rity has cleared it, and then it should be started. Telescript [Gen95] has theagents continue with the instruction following the go-instruction. The go-instruction is Telescripts method for moving agents. AprilQ++ [CM95] hasthe target environment install the code and then call a re-activate-methodto start the agent.2.3.3 SecurityThere are several threats [Che] to an agent application. A simple way ofcategorise them can be:� An agent threats the environment.� An environment threats an agent.� An agent threats an other agent.� An environment threats an other environment.One could argue that there only exists two categories, agent threats envi-ronment and environment threats agent, but this would put distinct issuesinto the same category.Communication is also a problem. In open systems, measures must be takenso that messages between two nodes are not forged, changed, tapped, re-moved or in any other way tampered with.Agents threatening environmentsThe �rst threat in agent applications is that an agent tries to modify thebehaviour of the environment in some way. In a sample scenario the agentwould simply make the environment fail (crash). It is easy to realize thatthe environment needs some kind of protection from this, especially sinceone of the wanted properties in many agent applications is availability ofservice. This threat is important and should be a key issue when designingof the whole agent environment. 10

What allows the agent to threat the environment can be reduced down tothe agents description. If the description contains nothing which can causedamage, it is safe to execute the agent. If the description does containsomething which might compromise the security of the environment, thismust be handled. Suggested ways to handle this is:� Designing the language so that all unsafe constructs are removed, orexecuted in a safe interpreter like SafeTcl [LO95].� Verifying the incoming description. As an example Java veri�es bytecode before it is loaded.� Run-time checks of the execution. Java also makes run-time checksthat the description for example does not index outside arrays.The agents must also be scheduled in a fair way so that they can not mo-nopolise the CPU, and the amount of system resources they use must becontrolled.Environments threatening agentsThe second threat is that the environment executing an agent reads orchanges the description or knowledge of the agent. This threat is proba-bly impossible to handle in a reasonably e�cient way without using extraspecialised hardware, Knabe [Kna95] discusses this1. More feasible methodswould be to use authorisation or to have some kind of gossip telling whichsystems to avoid.One related issue is that the operation of an environment can be disturbedin other ways than by agents. Failure of the nodes in a distributed net-work should be expected and ways of reporting that agents die, or are lost,in an abnormal ways are most likely to be needed. A scheme where rearguards [JvRS95] are left in the trail of an agent, i.e. when the agent leaves abase it leaves an agent behind which monitors the status of the new agent atthe next base, can be used to manage this problem. The rear guards detectif the connection to the next or previous incarnation of the agent is lost andtake the appropriate action. This kind of protection mechanism is howevernot the environments task but the applications.1It seems fair to say that the usefulness of such systems would be severely limited.11

Agents threatening agentsThat an agent harms another agent is the third threat. The harm can bethat the agent� mounts some kind of denial of service attack; or� modi�es an other agent.As examples of denial of service attacks, agents could kill the executionenvironment or kill the other agents. They could �ll the mailboxes of otherspreventing other agents from communicating with them. Filling mailboxescan also make the agent use all of some resource of which it has been givenlimited amount, e.g. execution time. Denial of service attacks are hardto solve since they can be implemented using, for example, communicationwhich the agent system requires.The easiest way to modify another agent it to lie to it, and thereby try tochange its beliefs and knowledge. The protection from this is applicationbased and should not be a part of an agent environment. That an agentmodi�es the code or knowledge of another agent in other ways must howeverbe prevented.Environments threatening environmentsThe category where environments hurt each other is a common distributedsystems problem. An environment could pose as an other environment toincrease its access rights to a third environment. This kind of problemssuggests that some kind of authentication is needed together with securecommunication. There are several methods of solving this, but it will notbe the subject of this paper.Scope of this paperOf the threats described above, this paper will present means to manageagent-agent and agent-environment threats. The environment threats envi-ronment problem will also be be dealt with, but not as fully or clearly. Thisprotection will come from the fact that references to other environments aremade into unforgeable capabilities with restricted access rights.12

The safest way to protect agents from environments is to make them avoidvisiting untrusted environments before they are convinced that the environ-ments will not hurt them. To be perfectly safe an authentication mechanismis needed to verify the identity of the environment. This will be further elab-orated in this paper.

13

14

Chapter 3ErlangThis chapter gives a short introduction to the parts of the Erlang1 languageand runtime environment which can be used, or will have to be modi�ed forthe programming of mobile agents.Erlang is a process oriented functional language designed for programmingconcurrent, real-time, distributed fault-tolerant systems. Some features sup-ported or easily implemented are� continuous operation;� robustness;� memory management; and� distribution.The language has been developed in the telecommunication world, a domainwhere many applications need these features. As an example it is well suitedfor the implementation of telecommunication switches.3.1 The distributed runtime systemWhen an Erlang distributed runtime system is started it becomes a dis-tributed node. These nodes are the execution environments of Erlang1A full description of the language can be found in [AVW+96] in union with the sourcecode. 15

programs. A node is addressed by its globally unique name. Nodes can beconnected in an all-to-all way to form a distributed system. In the nodesprocesses can be started to do computation.The nodes have their own name space, for registering process names, andthere is only one name space per node.A process is accessed using its Pid (Process Identi�er). The Pids are globallyunique and can be used in any part of a distributed system to address theprocess.3.2 CommunicationCommunication has been a key issue when Erlang was designed. It isimplemented as asynchronous message passing. The recipients of messagesare the processes. There are however two kinds of messages in the system,� normal messages created using the message passing mechanism; and� special runtime signals.Each process has a mailbox and all messages sent to that process are storedin this mailbox in the order they arrive. The message passing guaranteesthat if the messages are delivered from one process to another, they aredelivered in the same order as they where sent.A process is addressed using its Pid or a name the process has been registeredunder. Processes can only be registered under one name. Registration isnode local but it is possible to specify names on other nodes using a specialname format.The reception of messages is simple. A receive primitive gives a number ofpatterns and an action taken for each pattern. When the execution reachesthe receive statement it tries to match the �rst message in the mailboxagainst the patterns in order. If the message matches a pattern the actionassociated with that pattern will be taken. If the pattern contains anyunbound variables these will become bound with corresponding parts of themessage. If the �rst message does not match any pattern, the second messagein the mailbox will be tried. The �rst message will however not be removedor lose its position in the mailbox. If no message matches the patterns theprocess executing the receive will be suspended until a message that does16

match a pattern arrives. The receive primitive can be given timeouts withactions to be taken.There also exists signals which are system information, mostly errors. Thesignals are delivered using a mechanism similar to the one for message pass-ing but by default there exists no way of conditional reception. Some signalscan however upon request be transformed into messages and they can thenbe treated like messages. Using this it is possible to monitor processes andget messages when they quit executing, whether it is normally or abnormally.3.3 TransportThe transportation was in the previous chapter divided into two separateparts, the knowledge transmission and the agent description transmission.As Erlang is a functional programming language it becomes natural tocarry around a state as an argument to the process. This state can easilybe viewed as the knowledge of an agent.The description transmission is a bit trickier. It is today possible to executecode on other distributed nodes by sending code to another process. Thecode can be transmitted as byte code or as a lambda expression. The func-tionality of the remotely executed code is however limited to one moduleor expression. Something that is not supported is auto loading of remotemodules, i.e. that when a module is executed on a node di�erent from itsnode of origin, it triggers auto loading form the node of origin and not fromthe current node. Without support for this type of distribution of code,agent programming in Erlang would be cumbersome.3.4 SecurityThere is only one security construct in the language dealing with distribu-tion. It is a cookie protocol which is used in the communication betweendistributed nodes. Nodes must have the same cookie set if they are to beable to communicate with each other. This means that if three nodes are tocommunicate they will all have to have the same cookie. This scheme makesit tricky for a node to communicate with two other nodes which in turn arenot allowed to communicate with each other. In our earlier categorisationthis can be seen as a environment treating environment solution. Nodes can17

today only communicate if they have set the same cookie.There is no security protecting the run-time system in any other way. Nei-ther is there protection of the processes. This is however reasonable sincethe language has been used in closed systems where all components havebeen well speci�ed.

18

Chapter 4DesignThis chapter �rst identi�es the weaknesses of Erlang today. Then thedesign of extensions to remedy these weaknesses are described.There are di�erent ways in which security can be incorporated in a program-ming language. Either the language can be modi�ed so that it contains noinsecure constructs, as in Safe Tcl [Bor94], or the language can be run in asecure environment.The approach used in this paper is to modify the language into a safe andsecure language, not to create a safe sub or super set of it. The languageis extended and parts of it are modi�ed to better work with the extensions.Together the changes better control the security of the environment.4.1 Identifying weaknessesThe parts in the Erlang environment that have to be made secure are easyto identify. The threats from processes, c.f. chapter 2, comes from that theprocesses can� modify the run-time system; and� modify the state of other processes.The solution is to put restrictions on the right to do this.As mentioned earlier, the other threats outlined will not be addressed. Theenvironment environment threat will be handled in much the same way as19

the \agent threats environment" threat and we make some assumptionsbelow that further reduces this threat.Assumption 1 The communication channels between di�erent run-timesystems are secure. This might not be the case today, but with thecurrent demand for this and with the current developments in the area,e.g. SSL, it is reasonable to assume that channels in a near future willbe secure. This assumption leads to that the communication in thispaper will not be encrypted by the run-time system.Assumption 2 All communication passes through de�ned channels, i.e.there are no secret channels connecting to a system without it knowingabout them. This assumption leads to that systems can scan and, ifneed be, modify all incoming and outgoing communication.4.1.1 SecurityFrom now on we consider the Erlang processes as possible agents and treatthem as the same.We start by describing how the di�erent threats presented in the previouschapter appear in Erlang and then we give means of eliminating them.Processes threatening the run-time systemThere are two ways in which processes can change the behaviour of theErlang run-time environment.� The run-time environment can be halted using the built in functionhalt().� The state of the run-time environment can be changed by using re-sources like memory, reductions1 and the number of processes runningin the system.Note that the resources in the second threat have something in common.They, in some aspect, belong to the runtime system, not the processes. Aruntime system is, for example, limited to a given amount of memory and amaximum number of processes.1The measure of computation in Erlang.20

In the application Erlang was designed for, these threats are not presentsince these applications often are closed systems where all code is trusted.There is no need for protection from processes executing the halting prim-itive, the only ones doing it are designed to have the functionality. In asystem where all process may not execute this command a policy for thebuilt in functions usage must be introduced.That the run-time system can be harmed by processes using resources de-mands a bigger extension. The resources available can be divided into twocategories:� System resources like memory; and� application resources like registered names.To handle the problem of system resource consumption it must be madepossible to put some kinds of restrictions on this usage. Such restrictionscould be that an application is not allowed to use more than 10Mb of memoryor that it may not have more than 100 process executing in parallel. Thiskind of restriction is actually present in todays Erlang system. It has alimited amount of memory and a limited number of concurrently runningprocesses available to it. If the run-time system tries to exceed these limits,it fails and is shut down.Processes threatening other processesIt is easy for processes to harm other processes in the current implementa-tions of Erlang.� Processes can be harmed using their identi�er, Pid, and� the code a process uses can be modi�ed.Processes are identi�ed and referenced using their process identi�er, Pid.There exists a built in function which returns a list containing the Pid ofevery process executing in the same node as the calling process. Pids areused for all purposes, e.g. killing processes, getting information about themand sending messages to them.A more elaborate way for processes to harm other processes is if the codethey use becomes modi�ed. Erlang supports run-time loading and swap-ping of code and this makes it easy to utilise this threat. What makes this21

possible is that all processes share the same name space and directly canswap or unload loaded code. This problem will be handled using a combi-nation of subnodes and a new code loading mechanism.Since Erlang nodes have only one name space, processes can register nameswhich other applications may require. This could lead to that an applicationnever can register a name needed.4.2 CapabilitiesThe �rst extension aims to make the identi�ers used to access objects moresecure. The discussion will be about processes but the extension can and isbe used on identi�ers to other objects as well, e.g. node identi�ers.The processes are referenced using process identi�er, Pids. In todays Er-lang there are no restrictions on how these identi�ers can be obtained orused. If not found in another way, the Pids can be created from strings.In an open agent environment this is not acceptable. Both the ways ofobtaining the identi�ers and the way in which they can be used must berestricted.The problem is very similar to the one operating systems have with issueslike access to resources and memory addressing and protection. Capabili-ties [Rob83, Mil92] have sometimes been used to provide operating systemswith a single, uni�ed mechanism to handle these issues. This mechanismcan be used for the protection needed in Erlang.4.2.1 Representation of capabilitiesCapabilities have two parts, the identi�er and access rights. The accessrights speci�es how the capability can be used to access the speci�ed object.Identi�ersThe identi�er in a capability references the object which the capability canbe used to a�ect. The current Pids can be used as this part of the capability.22

Access rightsThe choice in this paper has been to have the identi�ers carry the informa-tion about their allowed usage with them. This removes the need for nodesto remember all granted capabilities concerning objects on the node.In a �le system the objects identi�ed by the capabilities are �les and theaccess rights needed are rights like read, access and write. In object orientedlanguages identi�ers are the methods of the object and the rights are oneslike public and private. When processes are referenced the choice of accessrights becomes more complicated. If you hold an identi�er to an objectscommunication mechanism, you should be able to communicate with thatobject. This might suggest capabilities with only one access right each.This is not a reasonable solution in Erlang since it would be awkward ifprocesses had to remember more than one reference to other processes. Ifthey had to, the extension would gravely change the language.The solution described in this paper has the access rights represent each ofthe built in functions applicable on the identi�er and place them in a listinside the capability together with the process identi�er. Processes havetheir set of built in functions a�ecting them and they have these functionsas access rights. If �le descriptors are to be made safe, their identi�ersare turned into capabilities and the access rights in these set to representthe functions operating on �les. Nodes and other objects accessed throughcapabilities also can get their own tailored set of access rights.As an example we see that capabilities can be used to restrict the usage ofthe halt primitive simply by demanding that the node a�ected is identi�ed.EncryptionThe run-time system can be modi�ed to guarantee that a capability may notbe locally altered, i.e. it can prohibit the locally executing processes fromchanging the access rights of capabilities. When the capabilities leave thesafety of the node where they where created, i.e. the only trusted node, theyneed protection so that they are not altered by other processes or nodes.We have chosen to encrypt the capability. The parts containing the identi�erand the access right are encrypted together so that they can not be forged,partly replaced or substituted. This does however impose some awkwardrestrictions on the usage of capabilities. Simple comparison can not be usedto decide whether two capabilities identify the same object.23

4.3 NodesThe second extension makes the run-time system both more secure and alsointroduces new was to make applications run safer.If agents could crash the node they execute in or use up a resource, theye�ectively could deny other agents the services provided by that node. Er-lang has today no protection at all against these kinds of attacks.The resource issues have been solved in Telescript [Gen95] which has ascheme where permits are used to manage resources. This solution is basedon that there exists a base for paying for service and since this base is notpresent, perhaps even should not be present, in Erlang, an other mecha-nism must be found.When the run-time system is started today it becomes a node. This node hasa set of resources bound to it in an indirect way. It has for example a limitedamount of memory available to it. Should it try to use more memory thenode will fail and shut down. The failure is detected by the runtime systembut there is no way to stop the system from shutting down.This concept of nodes will just need to be slightly modi�ed to give a moregeneral mechanism for security and management of resource usage. Thesolution presented here is a scheme where an arbitrary hierarchy of nodescan be built. Constructs for creating child nodes and managing nodes areadded to the language. Child nodes share their parents resources. If a nodeviolates the usage of a resource it is shut down, and any children nodes ofnodes shutting down are also shut down. The runtime systems become topnodes since they do not have any parent node.Nodes are started with restrictions on their resource usage. How the restric-tions should be applied is discussed below.ResourcesThe resources available in nodes are system resources, e.g. memory or diskspace, and processes. It is possible that system resources are shared betweenseveral top nodes but the processes can never be shared between Erlangnodes, i.e. between Erlang run-time systems.If a node has its usage of a resource restricted and it is detected that thisrestriction has been violated, the node is shut down. To supply the meansfor nodes to guard their resource usage, and monitor usage so that shut24

down can be avoided, functionality has been added to the node modulewhich returns the resource status of a node.The restrictions do not however ensure the availability of a resource. Toensure that a subnode always has, for example, 10Mb of memory availableto it, would also ensure that no other node could use that memory. This isnot an e�ective way to use memory and should not be encouraged, hencethe scheme does not allow this to be described2Name spacesNames, i.e. registered processes, and modules are node local. It is possiblefor other nodes to address registered names, but they can not register namesor load modules inside a node from the outside.With child nodes the issue of scope and visibility arises. Should child nodessee names registered in parents or vice versa? The answer is that neithershould be the case. This can easily be illustrated with a small scenario.A node creates a subnode and starts an application inside it. One of thenodes, say the child node, registers the name security server. Now, when thechild node has done that, the parent node registers the same name. Thechild node now unregisters the security server, but alas, the name is stillavailable to processes in the subnode. Now imagine what can happen if thefunctionality of the two servers di�er. In the other direction, where parentssee the names registered in child nodes, the problem of name spaces is notsolved in the parent nodes, they will still have to deal with all names inside them and they will be forced to run con
icting applications in separatesubnodes.SecurityThe �rst threat identi�ed in chapter 2 was the threat from processes. Thisthreat came from that processes could halt the system or misuse its re-sources. The subnodes prevent the resources from being violated and thecapability mechanism can be used to protect the nodes from being misusedin other ways. The use of capabilities as identi�ers of the nodes will makethe access to them manageable.2The property can however only be described if the top node has a guaranteed amountof the resource available to it. 25

The second threat comes from that other nodes or processes on other nodestry to misuse resources in a node. The only way for other nodes to reach thenode is through communication channels so the nodes will need to have theircommunication managed in some way. The capabilities are to be encryptedoutside the node so there should be a standard way to communicate withthe node, and the processes inside it.4.4 Distributed codeTodays code loading mechanism in Erlang is not suited for mobile agents.The two main reasons are that� auto loaded code is only searched for locally and� the loader is not secure so malignant code can be loaded into the run-time environment.The requirement that code has to be available on local disk to be auto-loadedcan easily be changed. By modifying the code loader, code can be loadedfrom an arbitrary place to the cost of added need for security. Code loadedfrom another system must, as earlier stressed, be checked so that it will notthreat the security and safety of the own system.4.4.1 Managing code with MidsIf code is to be moved around in a distributed system the need for some kindof package to hold the code becomes evident. The structure introduced hereis the Mid (Module identi�er). A Mid contains information on the origin ofthe code and some kind of representation of it. The representation can beeverything from byte code or source code to a reference. There are di�erentproperties of the code format.� If the code is sent as byte code it will be fast to load when need be butwill demand that the loading mechanism is made safe so that the run-time system can run the code without the need of run-time securitychecking.� Using source code, or a parsed representation, will make security easysince the code easily can be checked and compiled using a trusted com-26

piler. The fact that the code will have to be compiled will obviouslylead to that this format if slower than using byte code.In SafeErlang the parse tree representing the code is used as the transferformat. This enables each node to compile any code using a trusted compiler,thereby assuring itself that the code is safe.There are also other gains when using Mids. It becomes possible to haveseveral versions of the same code running in the same node. In Erlangscurrent implementation only two versions of a module can be loaded in thesystem at a given time, the old and the current version. When a newerversion is loaded the current version will become the old version and theold will be unloaded. This would be awkward in an agent application sincethere might be agents who live longer than two changes of a module. Theseagents would be destroyed should the current implementation of the codeloading be used.Mids in a distributed systemThere is however some more aspects of the code mechanism that will haveto be modi�ed to make the use of Mids in a distributed Erlang systemcomfortable.When a Mid is used on a node other than its origin and a call is made toa remote function from inside it the module referred is probably a modulelocated at the current modules node of origin, and not the module locatedin the current node. If for example an agent moves to a node and calls afunction in the module maintenance it is most likely expecting the modulefrom its origin node and not some module available in its current environ-ment. The module form the node of origin will therefore have to be loadedinto the node where the agent executes.If this is the case other problems rise. How are modules from other nodesused? If a process is started at a node using code from another node, howcan it access node local code? There is one obvious way which makes theagent communicate with a local process and having that process sending aMid with the code. Another way is to let the nodes register modules andthen making registered modules available to processes executing in the node.27

Registered modulesIf a module is registered, that module will take precedence over other mod-ules with the same name in that node. Call to modules of the same nameas a registered module will always be treated as calls to the registered mod-ule. This is done regardless of if the process calling the module has anothermodule in mind.This mechanism makes it possible for nodes to supply a set of specialisedmodule instances to executing processes. As an example a node can registerits own version of the module for �le management. Processes will then calland use this module instead of the standard �le module.Safe standard modules should also be registered or else processes executingin the node would bring, and install, their own instances of the standardmodules. This would lead to that the node could have several loaded versionsof a given module.

28

Chapter 5The PrototypeThe prototype implements a fully functional runtime environment with ca-pabilities, a hierarchy of nodes and a modi�ed code loading mechanism.The changes are in the compiler and not in the emulator. The emulatoris ever changing and the prototype would not be able to take advantageof future improvements if parts of it were implemented in the emulator.It would however be possible to make it more e�cient than the currentcompiler based implementation should it be in the emulator.The changes in the compiler are made in its pre-expansion pass. This pass isused to implement transformations of the parse tree enabling, for example,records and lambda expressions. The pass can easily be extended to handleother constructs as well. The changes made redirects all calls to built infunctions to function calls in the module kernel, making it possible tomodify the behaviour of the built ins. Some test predicates are changed tohandle new arguments, e.g. the Pids have changed into capabilities so thetest pid must be trapped and its behaviour altered so it can test whetheror not the capability supplied is a process identi�er.5.1 Capabilities5.1.1 Using capabilitiesCapabilities are used to reference objects in the environment. Mainly theusage of capabilities is identical to the usage of current Pids. The maindi�erence is that when a capability is used in a way not granted by its29

access rights, the process over using it will be noti�ed (by an exit signal).Creating and obtaining capabilitiesThere are three ways of obtaining capabilities.� Executing the built in function self(), which returns a reference tothe calling process, will return a full capability containing all availableaccess rights,� creating a new process will also return a full capability (to the newprocess) and� a capability can be created with arbitrary access rights by a processwhich has the required access rights to the node the capability belongsto.Other built in functions returning Pids like whereis, which given a namereturns the associated process' identi�er, and processes, which returns allprocesses executing in the same node as the caller, will return empty capa-bilities, i.e. capabilities with no access rights. The reason for not removingthese functions is that system processes should be able to, for example, col-lect all processes in a node and then manipulate them. In order to do thisthe system process would however need to add rights to the empty capa-bilities �rst. A more detailed description of how this could be done can befound in appendix B.Capabilities can also be obtained by message passing or by shared mem-ory. This is not considered a security problem since the process sending orstoring the capability, obviously, only can do so with a capability it alreadypossesses. The usage of obtained capabilities is up to the application, notto the Erlang system.Viewing capabilitiesTo view the part of a capability a new built in function, view is been in-troduced. A call with a capability given as argument returns the identi�erof the process referenced (i.e. the Pid), the node the process executes onand list of access rights (i.e. names of the built in function with which thecapability can be used). 30

Restricting capabilitiesTo restrict the access rights of a capability the primitive restrict with twoarguments is introduced. The �rst argument is a source capability and thesecond is a list of access rights. If the list of new rights is a subset of thosepresent in the capability, a new capability will be returned containing onlythe subset of rights. If the list is not a subset of rights the function will fail.Executing the built in function will not modify the source capability.Comparing capabilitiesSecurity makes it necessary to have the capabilities encrypted. This doeshowever make it di�cult to compare, and match, two capabilities to see ifthey refer to the same process. Both capabilities will have to be decoded�rst, and the only ones who can do this are the nodes the capabilities camefrom. If they are local, i.e. they have not been sent outside the node, thiscan be made fairly cheap but if both capabilities from other nodes it becomesexpensive since communication will be necessary.The functionality can not be implemented as a test. Tests are used for clauseselection and have restrictions on what they can do. They may for examplenot have any side e�ects and since there might be communication involvedin resolving the di�erent part of a capability, the function can not be im-plemented as a test. The solution has been to implement it as a built infunction which shorthands the two view calls needed. The comparison func-tion is called same and it returns true if both capabilities given as argumentsidentify the same process, otherwise false.This problem could be eliminated with a space sacri�ce. If the capabili-ties where extended with unencrypted information, for example the processidenti�er and the access rights, the comparison would be reduced to a simpleequality check.5.1.2 RevocationOne facility desired in a capability based system is the availability of ca-pability revocation. How this can be implemented in a system where nodatabase containing valid capabilities might not be obvious. When a capa-bility is revocated it becomes invalid and further usage of it will not a�ectthe identi�ed process. This can be implemented using the capability scheme31

described here simply by giving the responsibility of revocation to the appli-cation. If the application wants to implement revocation it can start extraprocesses which just works as duplicates of the original process. These du-plicates can then be destroyed to revoke any capabilities granted throughthe use of that process.Another way to manage revocation would be to use names, circumventingcapabilities altogether. Revocation would then be unregistering the name.5.2 Nodes5.2.1 Using nodesThere is currently one way to create a node, to start an Erlang run-timesystem. This creates a top node. To create sub nodes the new built infunction subnode is introduced. The function takes two arguments of whichthe �rst argument is the name of the new node and the second argumentare options for the node. These options are the resource restrictions placedon the node1. The return value from the function is an identi�er of the newnode, a capability containing all access rights used with nodes.The capability is used to access the node. This is the di�erence from thecurrent Erlang implementations where the name of the node is used. Usingthe new scheme a node's name is useful for identifying the node, in forexample node-down messages or other similar situations where the need foraccess rights is not present, only.5.3 Distributed code5.3.1 Using MidsTo read code into Mids the built in read_module is introduced. It takes amodule name as argument and returns a Mid containing the code. The Midcan then be used wherever a module name can be used.Modules called inside the Mid will be regarded as calls to the module at theMids node of origin. If the called module name is registered in the node1It is possible to have the options containing other information, such as the names ofservers, as well. This is regarded as an extension of its own, outside the scope of thispaper. 32

where call is done, the registered module will be used instead. Registration,and unregistration, of modules is managed using functions in the modulenode, see appendix B.5.4 Implementation of the prototypeThis section describes the experimental prototype that has been imple-mented. Most of the prototypes components are not needed if the system isintegrated into the Erlang run-time system.The prototype is divided into �ve parts:� The kernel� Nodes� Gates� The name server� The code managementThe built in functions are divided into two categories, safe and unsafe.� The safe functions can be executed without any risk that the envi-ronment will be compromised. The main resource used in safe calls isCPU (although a little memory also can be used).� The unsafe functions use one or more resources other than CPU. Ifthe function is executed directly it might compromise parts of theenvironment so the call must be checked before the call is actuallycarried out. As an example we have to check if a process uses a validcapability when it tries to send a message. If the capability is valid wesend the message, otherwise we report failure to the process.The requests created in the kernel are sent to the node on which the callingprocess executes. How the nodes work will be described below.NodesThe nodes are simulated using processes. They maintain information aboutthe resources currently used by them and the resources it has used. When33

a process is created inside a node the maintaining process of that nodewill register the process and keep track of the resources it uses. When aprocess wants to execute an unsafe function, the kernel turns the call into arequest which is sent to the maintainer of the process' node. In some casesthe request does not a�ect the node the process executes on and it can insome of those cases be sent to the maintainer of the node where the unsafefunction tries to use a resource.The resources used are checked by statistics gathering. The processes re-port resource usage when they die and if the node needs to check its currentresource usage it can add this to the resources used by the currently exe-cuting processes. The resources used by the currently executing processesis collected using Erlang s built in function for viewing the informationabout a given process.GatesTo handle the communication between the nodes the notion of gates is in-troduced. The only way to send a message to a node (manager) is to sendit through the gate of the node. The gate is the part of the prototype whichchecks that capabilities can be used with speci�ed resources.As functions can be used to operate on a remote node and the result willhave to pass through the gate of the calling process node, an extra accessright is needed. In the prototype this right is called reply and it can only beused to return a value to a speci�ed process.The code managementA code server is started for each top node. This server will load code intothe run-time environment and it is used by the top node and all its children.Using just one loader solves the problem that several copies of the samecode are installed into the system. To allow all nodes in the same run-timesystem to share code, code is installed under a unique name and calls aretranslated into these names before a call to a module is made.It is however not required that all nodes inside and including a top node usethe same loader. As with all servers it is up to the node to choose whichserver it actually uses. 34

Chapter 6Conclusions and furtherwork6.1 ConclusionsThe proposed expansions are a good complement to the language. Togetherthe Erlang language and the extensions form a strong environment inwhich safety critical and secure applications can be implemented.CapabilitiesIf the size of the capabilities is limited so that it can not contain an unen-crypted representation of its access rights comparison will become a problem.An integrated implementation would not need to have the capabilities en-crypted while they are in the node where they where created, they wouldonly have to be encrypted when outside that node. The unencrypted formwould not be available to the processes, they still believe them to be en-crypted, but the run-time system can e�ectively execute node local com-parison and access right veri�cation. Comparison on remote nodes wouldhowever require communication with the node of origin. If, on the otherhand, size can be sacri�ced for e�ciency it would be possible to implementan e�cient comparison of capabilities on any node.The capability concept seems like a promising way of restricting the accessrights to objects in the Erlang environment.35

NodesNodes introduced the means of restricting the resource usage in a node.The concept is very close to the notion of nodes in current versions of thelanguage.The nodes also introduced name spaces, something missing today. Severalproblems in larger Erlang applications come from the fact that there arename con
icts. This problem can be eliminated using subnodes.Safety critical application can be run inside subnodes to ensure that theydo not a�ect each others computation.The new code loadingThe new code loading enables code to be loaded from other nodes and notonly from the local node. The code is sent as a parse tree representation andfully compiled in the node where it is used. This places all the responsibilityin our own compiler. This seems like a feasible way to solve the problemwith distribution of code.6.2 Further workThere are several problems which are outside the scope of this paper.CapabilitiesThis paper have presented a solution using encrypted capabilities. It hasnot presented how they are encrypted. There are several di�erent crypto-graphic techniques that could be used. If parts of the capability contains un-encrypted information, e.g. to enable more e�cient comparison, the choicebecomes even more delicate. Which technique to use should be studied.Protecting more resourcesThe identi�ers of processes and nodes have been turned into capabilities,but there exists other objects which should be capabilities as well. Files,ports and databases are a few examples. All these di�erent object typesmust be identi�ed and a scheme to separate their access rights derived.36

NodesThis paper has not described a scheme for authentication of nodes. Theneed for the cookie protocol used in the current versions of Erlang hasbeen eliminated by the proposed extensions but the protocol was not reallyused to solve the authentication problem.Secure channelsLarge parts of the design is based on one of the assumptions made in chap-ter 4, that the channels are secure. This makes it obvious that secure chan-nels must be added to the Erlang environment.CodeThe new code loading was implemented without modi�cations to the run-time system. This is however an awkward way of solving this problem. Smallmodi�cations need to be done in the run-time system to allow an arbitrarycode loading mechanism to be implemented.Code garbage collectionWith the introduction of Mids one problem has been left aside, the need forgarbage collecting old modules. In a distributed system where the sourcenode always is available all modules currently not in use, i.e. not having aprocess executing them, can be unloaded. The only loss is the time whenreloading modules. When the connection to the source node of a modulebecomes unsafe, i.e. it might not always be possible to reload the module,it however becomes a problem. If the code is removed from a system whileit is still needed, processes executing it will not be able to complete theirtasks and the module should not have been unloaded.
37

38

Bibliography[AVW+96] Joe Armstrong, Robert Virding, Claes Wikstr�om and MikeWilliams. Concurrent Programming in Erlang, Prentice Hall, 1996.[Bor92] Nathaniel S. Borenstein. Computational mail as network infrastruc-ture for computer-supported cooperative work. In Proceedings of CSCW92 (Computer-Supported Cooperative Work), 1992.[Bor94] Nathaniel S. Borenstein. Email with a mind of its own: The Safe-Tcl language for enabled mail. In Proceedings of the 1994 IFIP WG6.5Conference on Upper Layer Protocols, Architectures, and applications,May 1994.[CGH+95] David Chess, Benjamin Grosof, Colin Harrison, David Levine,Collin Parris and Gene Tsudik. Itinerant agents for mobile computing.Technical report RC 20010, IBM T. J. Watson Research Center, March1995. Revised October 17, 1995.[Che] David Chess, Things that go bumpp in the Net, IBM Corporation,Available as http://www.research.ibm.com/xw-D953-bump.[CM95] K. L. Clark and F. G. McCabe. April - agent process interactionlanguage. In M. Wooldridge N. Jennings, editor, Intelligent Agents,LNAI, vol 890. springer LNAI, 1995.[FFM+93] Tim Finin, Rich Fritzson, Don McKay, and Robin McEntire.KQML: an information and knowledge exchange protocol. In Interna-tional Conference on Building and Sharing of Very Large-Scale Knowl-edge Bases, December 1993.[Gen95] Telescript Language Reference, General Magic, Inc. October 1995.39

[GF92] Michael P. Genesereth, Richard E. Fikes, et al. Knowledge inter-change format version 3.0 reference manual. Technical report, Com-puter Science Department Stanford University, 1992.[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software agents.Communications of the ACM, 37(7):48{53, 147, 1994.[Gra95] Robert S. Gray. Agent Tcl: A transportable agent system. InProceeding of the CIKM Worshop on Intelligent Information Agents,Fourth International Conference on Information and Knowledge Man-agement (CIKM 95), December 1995.[HCK95] Colin G. Harrison, David M. Chess and Aaron Kershenbaum. Mo-bile agents: Are they a good idea? Technical report, IBM T. J. WatsonResearch Center, March 1995.[JvRS95] Dag Johansen, Robbert van Renesse and Fred B. Schneider. Oper-taing system support for mobile agents. In Proceesings of the 5th IEEEWorkshop on Hot Topics in Operating Systems, 1995.[Kna95] Frederick Colville Knabe. Language Support for Mobile Agents.Tehcnical report ECRC-95-36, European Computer-Industry ResearchCentre, December 1995.[LD95] Anselm Lingnau and Oswald Drobnik. An infrastructure for mo-bile agents: Requirements and architecture. Fachbereich Informatik(Telematik), Johann Wolfgang Goethe-Universit�at, August 1995.[LO95] Jacob Y. Levy and John K. Ousterhout. Saft Tcl toolkit for elec-tronic meeting places. In Proceeding of the First USENIX Workshop onElectronic Commerce, pages 133{135, July 1995.[Mil92] Milan Milenkovi�c. Operating systems concepts and design, secondedition, pages 348{352, McGraw-Hill, 1992.[Rob83] Dorothy E. Robling Denning. Cryptography and data security,pages 216{228. Addison-Wesley publishing company, 1983.[Sun94] The Java language: A white paper. Sun MicrosystemsWhite Paper,Sun Microsystems, 1994.[Sun95] Java Mobile Code, A white paper. Sun Microsystems White Paper,Sun Microsystems, 1995. 40

[TV96] Joseph Tardo and Luis Valente. Mobile agent security and Tele-script. In Proceedings of the 14th International Conference of the IEEEComputer Society (CompCon 96), February 1996.[Whi94] James E. White. Telescript Technology: The foundation for theelectronic marketplace. General Magic White Paper, 1994.[Whi95] James E. White. Mobile agents. General Magic, 1995.[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents:Theory and Practice, January 1995.[Yel96] Frank Yellin. Low level security in Java. WWW4 Conference, De-cember 1995. Available ashttp://www.sun.com/sfaq/veri�er.html.

41

42

Appendix AUnsafe built in functionsThis appendix lists the unsafe built in functions, BIFs, of SafeErlang.New functions are introduced, some are modi�ed to work in the new envi-ronment and some are rendered obsolete and hence removed.The new BIFsTo support capabilities, the hierarchy of nodes and the new code loading,there is need for an extension of the built in functions.New process and capability BIFskill(Capa) Is the new BIF to terminate the execution of processes. Theold BIF used to do this was exit(Pid,Reason), Pid now a Capa,with Reason set to kill but having exit(Pid,Reason) overloaded inthis way makes it impossible to have distinct access rights for the twodi�erent behaviours of the function. The solution was to introduce thenew built in.same(A,B) Returns true if the arguments refer to the same process, elsefalse.view(Capa) Returns the tuple {Id,Node,List}. Id identi�es the process,Node is the name of the node on which the process executes and Listis a list of the access rights of Capa43

restrict(Capa,List) Returns a modi�ed version of Capa having only theaccess rights listed in List. The new access rights must be a subsetof the access rights in Capa.Id, returned from view, is the identi�er of a process. This identi�er is onlygood for comparison and can never be used as anything else.The lists of access rights contain the names of the built in functions thecapability can be used with.New distribution BIFs, node BIFssubnode(Name [,Options]) Creates a subnode and returns a reference toit. Options is used to restrict the resources used by the node.The resource usage is restricted by the options. These restrictions do notguarrantee availability. However it is guarranteed that the node will be shutdown if the restrictions are compromised.The options given to nodes are1� {average load,Limit} where Limit is a
oat indicating the maximumCPU load the node will exist under. If the load exceeds the limit, thenode will shut down.� {memory,Limit} where Limit is an integer indicating the maximummemory usage of the processes inside the node.� {processes,Limit} where Limit is an integer indicating the maximumnumber of processes running in parallel inside the node.� {reductions,Limit} where Limit is an integer indicating the maximumnumber of reductions the node may use.New module BIFsread module(Module) Returns a Mid containing the current disk versionof the module Module. This Mid will be di�erent from other instances1The options are implementation dependent, this is the set implemented in the proto-type. 44

of the same module if the code is not identical, i.e. if the source haschanged a new Mid will be generated.modules() Returns a list containing all modules visible to the calling pro-cess. Visible modules are the ones it uses privately and those registeredin the node.Registration of modules is described in appendix B.The modi�ed BIFsThere are several built in functions that need to be modi�ed to handlecapabilities or Mids. These functions are described in this section.apply(M,F,A) Extended so it can use Mids.spawn(M,F,A) Extended so it can use Mids.spawn link(M,F,A) Extended so it can use Mids.spawn(N,M,F,A) Extended so it can use Mids and now uses a capabilityas its �rst argument.spawn link(N,M,F,A) Extended so it can use Mids and now uses a capa-bility as its �rst argument.exit(Capa,kill) This call is turned into a call to kill(Capa) so that itcan get an access right distinct from other calls to the function.whereis(Name) Returns a capability without any access rights.list to pid(List) Like whereis(Name).processes() Like whereis(Name).unregister(Capa) Replaces unregister(Name).Note that whereis, list_to_pid and processes are kept and not removeonly because that they are convenient while administrating a node. It thenis handy to have identi�ers to all processes running in a node available.45

The removed BIFsThere are several built in functions that are no longer needed when the newextensions are used. Most of these handle the modules or the nodes.Removed module BIFsThe following functions are not needed when Mids are used (their function-ality has to be handled using other methods, e.g. garbage collection):delete module(Module)load module(Module,Binary)module loaded(Module)purge module(Module)Then there is one function which lacks a meaningful result when Mids areused, so it is removed too:pre loaded()Removed distribution BIFs, node BIFsWith the hierarchy of nodes and the assumption that there are no channelsthe node does not have control over, c.f. chapter 4, several BIFs handlingnodes can be removed.alive(Name,Port) Not needed when all nodes are supposed to be dis-tributed.halt() Replaced by shutdown in module node, see appendix B.disconnect node(Node) Like alive(Name,Port).get cookie() Handled by the gates.set cookie(Node,Cookie) Handled by the gates.46

Removed process BIFsThe built in function with process functionality are removed since they,potentially, only a�ect other processes, not the caller.group leader(Leader,Pid)check process code(Pid,M)

47

48

Appendix BThe node moduleThis module is for accessing and altering the nodes at runtime. Most func-tions require that a Pid with the correct access right, N, is given as anargument, otherwise the process executing the call will exit due to a viola-tion.New BIFs in the node moduleshutdown(N) Shuts the node down.create pid(N,Type,Id,Capa) Returns a capability referring to Id withthe access rights of Type present in Capa. As an example, supposethat we have a capability to a node N and that the capability con-tains the access right create pid in its list of access rights. It wouldthen be possible to use N to modify capabilities from node N. The pro-cess capability P, belonging to the node, could be changed using thecall create pid(N,pid,P,[send,kill]), creating a capability with theaccess rights send and kill.register module(N,Name,Mid) Registers the Mid in the node.unregister module(N,Name) Unregisters the name.49

