Uppsala Master’s Theses in
Computing Science 109
Examensarbete DV3
June 9, 1997

ISSN 1100-1836

SafekErlang

Gustaf Naeser

Computing Science Department
Uppsala University

Box 311

S-751 05 Uppsala

Sweden

Supervisor: Dan Sahlin
Examiner: Hakan Millroth
Passed:

Abstract

ERLANG is a process oriented functional programming language developed
for fast prototyping of soft real time distributed systems. The language
could be suited for implementation of mobile agents if it supported the
security which is needed in such systems. The code loading currently used
in the language with its demand that code is locally available, needs also be
modified to enable transparent mobile programming. This paper describes
the design of extensions which make the language secure. They also enable
the design of safer systems and also provide a new modified code loading.

A prototype has been implemented which shows that the extensions add
the needed security. The prototype has also shown that the extensions with
advantage can be used in other applications.

Contents

1 Introduction

2 Agents
2.1 Definitions of agents oo,
2.2 Representation of agents 0oL
2.3 Environments for mobile agents
2.3.1 Communication 0oL
2.3.2 Transporto e
2.3.3 Security
3 Erlang
3.1 The distributed runtime system
3.2 Communication Lo oo
3.3 Transport L
3.4 Security e
4 Design
4.1 Identifying weaknesses Lo,
4.1.1 Security
4.2 Capabilities o
4.2.1 Representation of capabilities
4.3 Nodes e
4.4 Distributed codeo oo o
4.4.1 Managing code with Mids
5 The Prototype
5.1 Capabilities o
5.1.1 Using capabilities
5.1.2 Revocation
5.2 Nodes e

52.1 Usingnodes
5.3 Distributed code Lo o oo
53.1 Using Mids

5.4 Implementation of the prototype

Conclusions and further work

6.1 Conclusions
6.2 Further work

A TUnsafe built in functions

B The node module

ii

35
35
36

43

49

Chapter 1

Introduction

The demand for a safer and more secure ERLANG becomes apparent when
the language is tried in new areas of programming. One such area is agent
programming. Agents are programs devised to solve specific tasks using
a defined behaviour. When the agents start moving around in a network
or distributed system they are called mobile agents. The environments in
which they execute are vulnerable and measures to make them safe and
secure must be taken.

The foundation for mobile agent programming is that live executable code
can be sent between clients in a network, rather than having the clients
exchange dead data only. The networks considered in this paper are open.
In an open system all components are not trusted so there are many possible
security threats.

The security issues found in agent programming will in this paper be used
to identify and then be the base for a design of extensions to the ERLANG
programming language. The implemented prototype has also shown that
even if the extensions were designed with agent security in mind, they are
general enough to be used in other types of problems as well. They impose no
severe limitations on the language and one goal has been that older programs
with little or no modification should be able to run in the extended system.
One other goal has been to transform ERLANG into a more secure language,
rather than to create a secure environment inside ERLANG.

Related work

Most work concerning agents and agent programming has not focused on the
security issues. Many agent systems and languages seem to regard security
as a feature, not a requirement. Many systems stress the importance, but
only suggests solutions rather then implementing them.

Some languages have implemented various levels of security and the main
influences on the extension in this paper come from:

e Agent Tcl [Gra95] is a modified version of Tcl 7.5 [LO95]. It provides
the commands agents use to communicate, migrate and create child
agents. Authentication, based on PGP, is used to protect the machines
form agents tampering. The agent’s owner is identified and access
permissions based on this authentication are assigned to the agent.
Resource protection is maintained using Safe Tcl [Bor92, Bor94] and
a set of resource manager agents.

e Telescript [Gen95, Whi94, Whi95] is developed by General Magic. The
language an interpreted object oriented language with dynamic code
loading. Runtime type checking, automatic memory management with
garbage collection and exception processing makes scripts either suc-
ceed or fail gracefully. A mechanism using permits is used to set quotas
for limiting resource usage and controlling the capabilities of objects.
If an object has a number of permits, the engine computes the effec-
tive permit as a logical intersection of the applicable permits. Tardo
and Valente [TV96] notes that with Telescripts mechanisms, safety can
only be achieved by defensive coding practices.

e Java [Sun94, Sun95, Yel96] is an interpreted language with garbage
collection. Although not a dedicated agent programming language, it
is used in similar environments and contains several solutions to agent
security issues. The definition of the language is strict and programs
will execute identically regardless of the compiler or run-time system
used. A extensive, stringent, compile-time checking tries to find as
many errors as possible at compile time. The byte code is verified
before it is passed to the interpreter by a verifier which ensures that
a set of constraints hold, e.g. that code does not over- or underflow
the stack or tries to use registers in invalid ways. What Java lacks is
a way to manage resource consumption.

The structure of this report

The report is organised into the following chapters:

Chapter 2 introduces the concept of agents and describes the security
requirements of agent environments.

Chapter 3 gives a brief introduction to the parts of ERLANG which needs
to be modified by the extensions. Some other parts vital to agents
programming are also described.

Chapter 4 describes the design of the proposed extensions.
Chapter 5 overview of the prototype.

Chapter 6 conclusions and further work.

Chapter 2

Agents

In later years agents have become a term more and more used. Every pro-
gramming language and system with self respect supports them in some
way. There are however one side of agents which has not been solved most
systems, the security.

This chapter will introduce the concept of agents and different issues that
will have to be addressed by a language which supports possibly malignant
agents.

2.1 Definitions of agents

There are several different definitions on what agents are. Most of these
definitions concern the behaviour of agents and different kinds of proper-
ties they should have. Woolridge and Jennings [WJ95] have proposed the
behaviours autonomity, social ability, reactivity and pro activeness. These
makes it possible to reason about the expected behaviour of an agent. One
way of describing what agents are is therefore that an agent is a program
with a specific task which makes it necessary for it to implement some or
all of a set of properties, not necessarily the set mentioned above.

When agents start interacting with each other they form an agent applica-
tion. It is possible that the application only has two agents where one of
them is a simple interface to the user, but applications can have a much
larger number of agents. An example of a two agent application is an in-
telligent mail watcher which sorts the mail in a way the user wants it. A
multi agent application can be an electronic marketplace where agents buy

and sell items and services.

When agents exist in a distributed system, they might be able to solve
their task in a more efficient way, both for themselves and for the total
efficiency of the distributed system, if they are allowed to move between
the different hosts. Agents moving around, or travelling, in a system are
called mobile agents. Harrison et. al. [HCK95] have discussed whether or
not mobile agents can be used to improve the performance of an application.
In general it can be said that only a few applications really enhance their
performance when using agents, but that there are several other gains which
can justify the use of agents. Applications can for example be made much
easier to modify and extend if agents are used. As an example we can look
at distributed queries. Assume that we have access to a huge database and
want to collect data from it using a set of rules. There are three basic
solutions to this problem. Either we can collect all data from the server
and then locally process it to refine the data we want; we can let the server,
given a query in some query language, give us the information we want; or
we can send an agent to the server, and then let the agent collect the data we
want. That the two latter cases are superior to the first should be obvious,
but the difference between the query and agent cases is less distinct. The
easiest way to see the difference is the action taken when the data has been
collected and the work at the server is done. In the query case the data is
simply returned to querier, but in the agent case a multitude of different
scenarios are possible—the agent can act on the information it has collected
and, should this be the case, need not even send all information back to the
querier. It is possible that the agent finds out that it needs supplementary
information and moves on to another site to find this information.

Even if this paper focuses most at mobile agents and the security issues
concerning them, all agents do not have to, and will not, be mobile. There
are several agents in a system which do not need to be mobile, e.g. database
or file system.

2.2 Representation of agents

Lignau and Drobnik [LD95] has presented a model where agents themselves
congsist of three parts. The first part is their description, code, which defines
the behaviour and task of the agent. The format of this description is
dependent of the environment the agent executes in. The commonly used
variants are that the agents are described in source code or scripts, or byte

code. In terms of security the byte code representation seems to introduce
security problems which can be hard to identify and handle without help
from advanced tools. As an example, Java [Sun94] relies on that its loader,
which installs foreign code into the system, does its job correctly. If on the
other hand source code, or some representation of it like a parse tree, is used
the trust is placed in the compiler instead. It is easier to create a compiler
that cannot generate malignant code than a verifier which can detect if an
arbitrary piece of code is malignant.

The second part of agents is their knowledge database. In some systems
this database is called a suitcase. How the knowledge of an agent should be
managed, and subsequently moved, can be handled in two ways:

e The runtime environment keeps track of all the information belonging
to a specific agent. When the agent chooses to move, the environment
gathers the information and transmits this together with the agent
description.

e The agent itself is responsible for that the information is transmitted
to the new location.

The third part of an agent is its attributes. Attributes are information
about the agent, e.g. its place of origin, an unique identifier of the agent
and possible resource requirements.

The anatomy of an agent can be various forms. In this paper an agent
consists of one process. If the agent creates child processes these will be
consedered to be thralls and not part of the agent. One reason for this view
of an agent is that it makes it much easier to capture the agents state. The
responsibility of managing the agent rests on the application programmer
and not on the agent environment.

2.3 Environments for mobile agents

An environment which is to be the base for mobile agent programming
will at least need some specific properties. These have discussed in several
papers [LD95, HCK95, Whi95]. Attributes needed in an agent programming
environment for mobile agents are

e communication;

e transport; and

e security.

2.3.1 Communication

Agents may have to use communication to solve, or better solve, their as-
signments. The communication is used to exchange and obtain information,
negotiate or state purposes. Mostly agents may wish to communicate with
other agents but the communication with its owner, to report results and
or receive new tasks or directions, is also important. Standards for agent
communication have been designed, KQML [FFM193] and KIF [GF92], in
an effort to make agent systems able to communicate within themselves as
well as with other agent systems.

There are two main ways in which communication can be managed in agent
environments. Genesereth and Ketchpel [GK94] call them direct communi-
cation and assisted coordination.

In a system with direct communication, agents communicate directly with
other agents. This does not rely on other programs than the agents. The
alternative is to implement a federated system in which the agents com-
municate with facilitators which in turn communicate with agents or other
facilitators. Communication in federated systems can more easily be con-
trolled, screened or processed, but there will always be a slowdown due to
the extra communication to and from the facilitators.

2.3.2 Transport

Means of transportation are needed in applications where mobile agents are
used. The agents travel between the nodes in an distributed system in an
effort to more efficiently solve their assignments. The choice when and where
to move is made by the agents themselves.

When agents move there are three main things which need to be considered.
e How the agents knowledge is moved;

e how the agents description, code, is to be moved (and also if the state
of the agent, i.e. the procedure stack, should be moved); and

e what the agent should execute upon arrival to the destination node.

Another problem is references to the agent. When an agent leaves a location,
references to that agent might have to be updated. The references, if global
references are not used, points to the agent on the location it is leaving
and they should be updated to point to the agents new location. Related
problems are issues like what happens with messages underway to the old
location and how long a redirection, forwarding, from the old location need
to be kept.

Moving agent knowledge

The solutions of how the knowledge is moved is closely related to how the
knowledge is stored. If the environment manages the knowledge it should
also be responsible for transmitting it to the agents new location. If the
agent manages its own knowledge, it should be responsible.

A security problem is that agent knowledge could be modified while it is
transported to a new location.

Moving agent descriptions

How the agents code is transmitted to the new location is a bigger problem
than how its knowledge is moved. The way in which this is handled can not
only put great limitations on programming style but it can also introduce
security problems. Environments demanding that the modules that will have
to be moved with the agent can be decided prior to the transfer of the agent,
makes it harder for the programmer to create distributed applications. The
mechanism for agent transportation is however made much easier.

There is also the question if the state of the agent need to be captured and
transmitted. If the agent consists of one process only this is not a problem
but if the agent consists of several processes the state of every one of these
must be captured if the agent is to be started as an identical copy on the
new place. This is why the agents in this paper are considered to consist of
one process only.

As with the knowledge transportation, the agent description can be modified
while being transported to a new location. A related problem is that there
is no way for a agent to check that it actually executes the description it
believes it is executing.

Restarting agents

There are different views on how the agents should arrive and be received by
agent environments. First the agent is installed into the system, after secu-
rity has cleared it, and then it should be started. Telescript [Gen95] has the
agents continue with the instruction following the go-instruction. The go-
instruction is Telescripts method for moving agents. AprilQ++ [CM95] has
the target environment install the code and then call a re-activate-method
to start the agent.

2.3.3 Security

There are several threats [Che] to an agent application. A simple way of
categorise them can be:

e An agent threats the environment.
e An environment threats an agent.
e An agent threats an other agent.

e An environment threats an other environment.

One could argue that there only exists two categories, agent threats envi-
ronment and environment threats agent, but this would put distinct issues
into the same category.

Communication is also a problem. In open systems, measures must be taken
so that messages between two nodes are not forged, changed, tapped, re-
moved or in any other way tampered with.

Agents threatening environments

The first threat in agent applications is that an agent tries to modify the
behaviour of the environment in some way. In a sample scenario the agent
would simply make the environment fail (crash). It is easy to realize that
the environment needs some kind of protection from this, especially since
one of the wanted properties in many agent applications is availability of
service. This threat is important and should be a key issue when designing
of the whole agent environment.

10

What allows the agent to threat the environment can be reduced down to
the agents description. If the description contains nothing which can cause
damage, it is safe to execute the agent. If the description does contain
something which might compromise the security of the environment, this
must be handled. Suggested ways to handle this is:

e Designing the language so that all unsafe constructs are removed, or
executed in a safe interpreter like SafeTcl [LO95].

e Verifying the incoming description. As an example Java verifies byte
code before it is loaded.

e Run-time checks of the execution. Java also makes run-time checks
that the description for example does not index outside arrays.

The agents must also be scheduled in a fair way so that they can not mo-
nopolise the CPU, and the amount of system resources they use must be
controlled.

Environments threatening agents

The second threat is that the environment executing an agent reads or
changes the description or knowledge of the agent. This threat is proba-
bly impossible to handle in a reasonably efficient way without using extra
specialised hardware, Knabe [Kna95] discusses this!. More feasible methods
would be to use authorisation or to have some kind of gossip telling which
systems to avoid.

One related issue is that the operation of an environment can be disturbed
in other ways than by agents. Failure of the nodes in a distributed net-
work should be expected and ways of reporting that agents die, or are lost,
in an abnormal ways are most likely to be needed. A scheme where rear
guards [JvRS95] are left in the trail of an agent, i.e. when the agent leaves a
base it leaves an agent behind which monitors the status of the new agent at
the next base, can be used to manage this problem. The rear guards detect
if the connection to the next or previous incarnation of the agent is lost and
take the appropriate action. This kind of protection mechanism is however
not the environments task but the applications.

Tt seems fair to say that the usefulness of such systems would be severely limited.

11

Agents threatening agents

That an agent harms another agent is the third threat. The harm can be
that the agent

e mounts some kind of denial of service attack; or

e modifies an other agent.

As examples of denial of service attacks, agents could kill the execution
environment or kill the other agents. They could fill the mailboxes of others
preventing other agents from communicating with them. Filling mailboxes
can also make the agent use all of some resource of which it has been given
limited amount, e.g. execution time. Denial of service attacks are hard
to solve since they can be implemented using, for example, communication
which the agent system requires.

The easiest way to modify another agent it to lie to it, and thereby try to
change its beliefs and knowledge. The protection from this is application
based and should not be a part of an agent environment. That an agent
modifies the code or knowledge of another agent in other ways must however
be prevented.

Environments threatening environments

The category where environments hurt each other is a common distributed
systems problem. An environment could pose as an other environment to
increase its access rights to a third environment. This kind of problems
suggests that some kind of authentication is needed together with secure
communication. There are several methods of solving this, but it will not
be the subject of this paper.

Scope of this paper

Of the threats described above, this paper will present means to manage
agent-agent and agent-environment threats. The environment threats envi-
ronment problem will also be be dealt with, but not as fully or clearly. This
protection will come from the fact that references to other environments are
made into unforgeable capabilities with restricted access rights.

12

The safest way to protect agents from environments is to make them avoid
visiting untrusted environments before they are convinced that the environ-
ments will not hurt them. To be perfectly safe an authentication mechanism
is needed to verify the identity of the environment. This will be further elab-
orated in this paper.

13

14

Chapter 3

Erlang

This chapter gives a short introduction to the parts of the ERLANG! language
and runtime environment which can be used, or will have to be modified for
the programming of mobile agents.

ERLANG is a process oriented functional language designed for programming
concurrent, real-time, distributed fault-tolerant systems. Some features sup-
ported or easily implemented are

e continuous operation;
e robustness;
e memory management; and

e distribution.
The language has been developed in the telecommunication world, a domain

where many applications need these features. As an example it is well suited
for the implementation of telecommunication switches.

3.1 The distributed runtime system

When an ERLANG distributed runtime system is started it becomes a dis-
tributed node. These nodes are the execution environments of ERLANG

LA full description of the language can be found in [AVWT96] in union with the source
code.

15

programs. A node is addressed by its globally unique name. Nodes can be
connected in an all-to-all way to form a distributed system. In the nodes
processes can be started to do computation.

The nodes have their own name space, for registering process names, and
there is only one name space per node.

A process is accessed using its Pid (Process Identifier). The Pids are globally
unique and can be used in any part of a distributed system to address the
process.

3.2 Communication

Communication has been a key issue when ERLANG was designed. It is
implemented as asynchronous message passing. The recipients of messages
are the processes. There are however two kinds of messages in the system,

e normal messages created using the message passing mechanism; and

e special runtime signals.

Each process has a mailbox and all messages sent to that process are stored
in this mailbox in the order they arrive. The message passing guarantees
that if the messages are delivered from one process to another, they are
delivered in the same order as they where sent.

A process is addressed using its Pid or a name the process has been registered
under. Processes can only be registered under one name. Registration is
node local but it is possible to specify names on other nodes using a special
name format.

The reception of messages is simple. A receive primitive gives a number of
patterns and an action taken for each pattern. When the execution reaches
the receive statement it tries to match the first message in the mailbox
against the patterns in order. If the message matches a pattern the action
associated with that pattern will be taken. If the pattern contains any
unbound variables these will become bound with corresponding parts of the
message. If the first message does not match any pattern, the second message
in the mailbox will be tried. The first message will however not be removed
or lose its position in the mailbox. If no message matches the patterns the
process executing the receive will be suspended until a message that does

16

match a pattern arrives. The receive primitive can be given timeouts with
actions to be taken.

There also exists signals which are system information, mostly errors. The
signals are delivered using a mechanism similar to the one for message pass-
ing but by default there exists no way of conditional reception. Some signals
can however upon request be transformed into messages and they can then
be treated like messages. Using this it is possible to monitor processes and
get messages when they quit executing, whether it is normally or abnormally.

3.3 Transport

The transportation was in the previous chapter divided into two separate
parts, the knowledge transmission and the agent description transmission.

As ERLANG is a functional programming language it becomes natural to
carry around a state as an argument to the process. This state can easily
be viewed as the knowledge of an agent.

The description transmission is a bit trickier. It is today possible to execute
code on other distributed nodes by sending code to another process. The
code can be transmitted as byte code or as a lambda expression. The func-
tionality of the remotely executed code is however limited to one module
or expression. Something that is not supported is auto loading of remote
modules, i.e. that when a module is executed on a node different from its
node of origin, it triggers auto loading form the node of origin and not from
the current node. Without support for this type of distribution of code,
agent programming in ERLANG would be cumbersome.

3.4 Security

There is only one security construct in the language dealing with distribu-
tion. It is a cookie protocol which is used in the communication between
distributed nodes. Nodes must have the same cookie set if they are to be
able to communicate with each other. This means that if three nodes are to
communicate they will all have to have the same cookie. This scheme makes
it tricky for a node to communicate with two other nodes which in turn are
not allowed to communicate with each other. In our earlier categorisation
this can be seen as a environment treating environment solution. Nodes can

17

today only communicate if they have set the same cookie.

There is no security protecting the run-time system in any other way. Nei-
ther is there protection of the processes. This is however reasonable since
the language has been used in closed systems where all components have
been well specified.

18

Chapter 4
Design

This chapter first identifies the weaknesses of ERLANG today. Then the
design of extensions to remedy these weaknesses are described.

There are different ways in which security can be incorporated in a program-
ming language. Either the language can be modified so that it contains no
insecure constructs, as in Safe Tcl [Bor94], or the language can be run in a
secure environment.

The approach used in this paper is to modify the language into a safe and
secure language, not to create a safe sub or super set of it. The language
is extended and parts of it are modified to better work with the extensions.
Together the changes better control the security of the environment.

4.1 Identifying weaknesses

The parts in the ERLANG environment that have to be made secure are easy
to identify. The threats from processes, c.f. chapter 2, comes from that the
processes can

e modify the run-time system; and

e modify the state of other processes.

The solution is to put restrictions on the right to do this.

As mentioned earlier, the other threats outlined will not be addressed. The
environment environment threat will be handled in much the same way as

19

the “agent threats environment” threat and we make some assumptions
below that further reduces this threat.

Assumption 1 The communication channels between different run-time
systems are secure. This might not be the case today, but with the
current demand for this and with the current developments in the area,
e.g. SSL, it is reasonable to assume that channels in a near future will
be secure. This assumption leads to that the communication in this
paper will not be encrypted by the run-time system.

Assumption 2 All communication passes through defined channels, i.e.
there are no secret channels connecting to a system without it knowing
about them. This assumption leads to that systems can scan and, if
need be, modify all incoming and outgoing communication.

4.1.1 Security

From now on we consider the ERLANG processes as possible agents and treat
them as the same.

We start by describing how the different threats presented in the previous
chapter appear in ERLANG and then we give means of eliminating them.

Processes threatening the run-time system

There are two ways in which processes can change the behaviour of the
FERLANG run-time environment.

e The run-time environment can be halted using the built in function
halt().

e The state of the run-time environment can be changed by using re-
sources like memory, reductions! and the number of processes running
in the system.

Note that the resources in the second threat have something in common.
They, in some aspect, belong to the runtime system, not the processes. A
runtime system is, for example, limited to a given amount of memory and a
maximum number of processes.

'The measure of computation in ERLANG.

20

In the application ERLANG was designed for, these threats are not present
since these applications often are closed systems where all code is trusted.
There is no need for protection from processes executing the halting prim-
itive, the only ones doing it are designed to have the functionality. In a
system where all process may not execute this command a policy for the
built in functions usage must be introduced.

That the run-time system can be harmed by processes using resources de-
mands a bigger extension. The resources available can be divided into two
categories:

e System resources like memory; and

e application resources like registered names.

To handle the problem of system resource consumption it must be made
possible to put some kinds of restrictions on this usage. Such restrictions
could be that an application is not allowed to use more than 10Mb of memory
or that it may not have more than 100 process executing in parallel. This
kind of restriction is actually present in todays ERLANG system. It has a
limited amount of memory and a limited number of concurrently running
processes available to it. If the run-time system tries to exceed these limits,
it fails and is shut down.

Processes threatening other processes

It is easy for processes to harm other processes in the current implementa-
tions of ERLANG.

e Processes can be harmed using their identifier, Pid, and

e the code a process uses can be modified.

Processes are identified and referenced using their process identifier, Pid.
There exists a built in function which returns a list containing the Pid of
every process executing in the same node as the calling process. Pids are
used for all purposes, e.g. killing processes, getting information about them
and sending messages to them.

A more elaborate way for processes to harm other processes is if the code
they use becomes modified. ERLANG supports run-time loading and swap-
ping of code and this makes it easy to utilise this threat. What makes this

21

possible is that all processes share the same name space and directly can
swap or unload loaded code. This problem will be handled using a combi-
nation of subnodes and a new code loading mechanism.

Since ERLANG nodes have only one name space, processes can register names
which other applications may require. This could lead to that an application
never can register a name needed.

4.2 Capabilities

The first extension aims to make the identifiers used to access objects more
secure. The discussion will be about processes but the extension can and is
be used on identifiers to other objects as well, e.g. node identifiers.

The processes are referenced using process identifier, Pids. In todays ER-
LANG there are no restrictions on how these identifiers can be obtained or
used. If not found in another way, the Pids can be created from strings.
In an open agent environment this is not acceptable. Both the ways of
obtaining the identifiers and the way in which they can be used must be
restricted.

The problem is very similar to the one operating systems have with issues
like access to resources and memory addressing and protection. Capabili-
ties [Rob83, Mil92] have sometimes been used to provide operating systems
with a single, unified mechanism to handle these issues. This mechanism
can be used for the protection needed in ERLANG.

4.2.1 Representation of capabilities

Capabilities have two parts, the identifier and access rights. The access
rights specifies how the capability can be used to access the specified object.

Identifiers

The identifier in a capability references the object which the capability can
be used to affect. The current Pids can be used as this part of the capability.

22

Access rights

The choice in this paper has been to have the identifiers carry the informa-
tion about their allowed usage with them. This removes the need for nodes
to remember all granted capabilities concerning objects on the node.

In a file system the objects identified by the capabilities are files and the
access rights needed are rights like read, access and write. In object oriented
languages identifiers are the methods of the object and the rights are ones
like public and private. When processes are referenced the choice of access
rights becomes more complicated. If you hold an identifier to an objects
communication mechanism, you should be able to communicate with that
object. This might suggest capabilities with only one access right each.
This is not a reasonable solution in ERLANG since it would be awkward if
processes had to remember more than one reference to other processes. If
they had to, the extension would gravely change the language.

The solution described in this paper has the access rights represent each of
the built in functions applicable on the identifier and place them in a list
inside the capability together with the process identifier. Processes have
their set of built in functions affecting them and they have these functions
as access rights. If file descriptors are to be made safe, their identifiers
are turned into capabilities and the access rights in these set to represent
the functions operating on files. Nodes and other objects accessed through
capabilities also can get their own tailored set of access rights.

As an example we see that capabilities can be used to restrict the usage of
the halt primitive simply by demanding that the node affected is identified.

Encryption

The run-time system can be modified to guarantee that a capability may not
be locally altered, i.e. it can prohibit the locally executing processes from
changing the access rights of capabilities. When the capabilities leave the
safety of the node where they where created, i.e. the only trusted node, they
need protection so that they are not altered by other processes or nodes.

We have chosen to encrypt the capability. The parts containing the identifier
and the access right are encrypted together so that they can not be forged,
partly replaced or substituted. This does however impose some awkward
restrictions on the usage of capabilities. Simple comparison can not be used
to decide whether two capabilities identify the same object.

23

4.3 Nodes

The second extension makes the run-time system both more secure and also
introduces new was to make applications run safer.

If agents could crash the node they execute in or use up a resource, they
effectively could deny other agents the services provided by that node. ER-
LANG has today no protection at all against these kinds of attacks.

The resource issues have been solved in Telescript [Gen95] which has a
scheme where permits are used to manage resources. This solution is based
on that there exists a base for paying for service and since this base is not
present, perhaps even should not be present, in ERLANG, an other mecha-
nism must be found.

When the run-time system is started today it becomes a node. This node has
a set of resources bound to it in an indirect way. It has for example a limited
amount of memory available to it. Should it try to use more memory the
node will fail and shut down. The failure is detected by the runtime system
but there is no way to stop the system from shutting down.

This concept of nodes will just need to be slightly modified to give a more
general mechanism for security and management of resource usage. The
solution presented here is a scheme where an arbitrary hierarchy of nodes
can be built. Constructs for creating child nodes and managing nodes are
added to the language. Child nodes share their parents resources. If a node
violates the usage of a resource it is shut down, and any children nodes of
nodes shutting down are also shut down. The runtime systems become top
nodes since they do not have any parent node.

Nodes are started with restrictions on their resource usage. How the restric-
tions should be applied is discussed below.

Resources

The resources available in nodes are system resources, e.g. memory or disk
space, and processes. It is possible that system resources are shared between
several top nodes but the processes can never be shared between ERLANG
nodes, i.e. between ERLANG run-time systems.

If a node has its usage of a resource restricted and it is detected that this
restriction has been violated, the node is shut down. To supply the means
for nodes to guard their resource usage, and monitor usage so that shut

24

down can be avoided, functionality has been added to the node module
which returns the resource status of a node.

The restrictions do not however ensure the availability of a resource. To
ensure that a subnode always has, for example, 10Mb of memory available
to it, would also ensure that no other node could use that memory. This is
not an effective way to use memory and should not be encouraged, hence
the scheme does not allow this to be described?

Name spaces

Names, i.e. registered processes, and modules are node local. It is possible
for other nodes to address registered names, but they can not register names
or load modules inside a node from the outside.

With child nodes the issue of scope and visibility arises. Should child nodes
see names registered in parents or vice versa? The answer is that neither
should be the case. This can easily be illustrated with a small scenario.

A node creates a subnode and starts an application inside it. One of the
nodes, say the child node, registers the name security server. Now, when the
child node has done that, the parent node registers the same name. The
child node now unregisters the security_server, but alas, the name is still
available to processes in the subnode. Now imagine what can happen if the
functionality of the two servers differ. In the other direction, where parents
see the names registered in child nodes, the problem of name spaces is not
solved in the parent nodes, they will still have to deal with all names in
side them and they will be forced to run conflicting applications in separate
subnodes.

Security

The first threat identified in chapter 2 was the threat from processes. This
threat came from that processes could halt the system or misuse its re-
sources. The subnodes prevent the resources from being violated and the
capability mechanism can be used to protect the nodes from being misused
in other ways. The use of capabilities as identifiers of the nodes will make
the access to them manageable.

2The property can however only be described if the top node has a guaranteed amount
of the resource available to it.

25

The second threat comes from that other nodes or processes on other nodes
try to misuse resources in a node. The only way for other nodes to reach the
node is through communication channels so the nodes will need to have their
communication managed in some way. The capabilities are to be encrypted
outside the node so there should be a standard way to communicate with
the node, and the processes inside it.

4.4 Distributed code

Todays code loading mechanism in ERLANG is not suited for mobile agents.
The two main reasons are that

e auto loaded code is only searched for locally and

e the loader is not secure so malignant code can be loaded into the run-
time environment.

The requirement that code has to be available on local disk to be auto-loaded
can easily be changed. By modifying the code loader, code can be loaded
from an arbitrary place to the cost of added need for security. Code loaded
from another system must, as earlier stressed, be checked so that it will not
threat the security and safety of the own system.

4.4.1 Managing code with Mids

If code is to be moved around in a distributed system the need for some kind
of package to hold the code becomes evident. The structure introduced here
is the Mid (Module identifier). A Mid contains information on the origin of
the code and some kind of representation of it. The representation can be
everything from byte code or source code to a reference. There are different
properties of the code format.

e If the code is sent as byte code it will be fast to load when need be but
will demand that the loading mechanism is made safe so that the run-
time system can run the code without the need of run-time security
checking.

e Using source code, or a parsed representation, will make security easy
since the code easily can be checked and compiled using a trusted com-

26

piler. The fact that the code will have to be compiled will obviously
lead to that this format if slower than using byte code.

In SAFEERLANG the parse tree representing the code is used as the transfer
format. This enables each node to compile any code using a trusted compiler,
thereby assuring itself that the code is safe.

There are also other gains when using Mids. It becomes possible to have
several versions of the same code running in the same node. In ERLANGS
current implementation only two versions of a module can be loaded in the
system at a given time, the old and the current version. When a newer
version is loaded the current version will become the old version and the
old will be unloaded. This would be awkward in an agent application since
there might be agents who live longer than two changes of a module. These
agents would be destroyed should the current implementation of the code
loading be used.

Mids in a distributed system

There is however some more aspects of the code mechanism that will have
to be modified to make the use of Mids in a distributed ERLANG system
comfortable.

When a Mid is used on a node other than its origin and a call is made to
a remote function from inside it the module referred is probably a module
located at the current modules node of origin, and not the module located
in the current node. If for example an agent moves to a node and calls a
function in the module maintenance it is most likely expecting the module
from its origin node and not some module available in its current environ-
ment. The module form the node of origin will therefore have to be loaded
into the node where the agent executes.

If this is the case other problems rise. How are modules from other nodes
used? If a process is started at a node using code from another node, how
can it access node local code? There is one obvious way which makes the
agent communicate with a local process and having that process sending a
Mid with the code. Another way is to let the nodes register modules and
then making registered modules available to processes executing in the node.

27

Registered modules

If a module is registered, that module will take precedence over other mod-
ules with the same name in that node. Call to modules of the same name
as a registered module will always be treated as calls to the registered mod-
ule. This is done regardless of if the process calling the module has another
module in mind.

This mechanism makes it possible for nodes to supply a set of specialised
module instances to executing processes. As an example a node can register
its own version of the module for file management. Processes will then call
and use this module instead of the standard file module.

Safe standard modules should also be registered or else processes executing
in the node would bring, and install, their own instances of the standard
modules. This would lead to that the node could have several loaded versions
of a given module.

28

Chapter 5

The Prototype

The prototype implements a fully functional runtime environment with ca-
pabilities, a hierarchy of nodes and a modified code loading mechanism.

The changes are in the compiler and not in the emulator. The emulator
is ever changing and the prototype would not be able to take advantage
of future improvements if parts of it were implemented in the emulator.
It would however be possible to make it more efficient than the current
compiler based implementation should it be in the emulator.

The changes in the compiler are made in its pre-expansion pass. This pass is
used to implement transformations of the parse tree enabling, for example,
records and lambda expressions. The pass can easily be extended to handle
other constructs as well. The changes made redirects all calls to built in
functions to function calls in the module kernel, making it possible to
modify the behaviour of the built ins. Some test predicates are changed to
handle new arguments, e.g. the Pids have changed into capabilities so the
test pid must be trapped and its behaviour altered so it can test whether
or not the capability supplied is a process identifier.

5.1 Capabilities

5.1.1 Using capabilities
Capabilities are used to reference objects in the environment. Mainly the

usage of capabilities is identical to the usage of current Pids. The main
difference is that when a capability is used in a way not granted by its

29

access rights, the process over using it will be notified (by an exit signal).

Creating and obtaining capabilities

There are three ways of obtaining capabilities.

e Executing the built in function self (), which returns a reference to
the calling process, will return a full capability containing all available
access rights,

e creating a new process will also return a full capability (to the new
process) and

e a capability can be created with arbitrary access rights by a process
which has the required access rights to the node the capability belongs
to.

Other built in functions returning Pids like whereis, which given a name
returns the associated process’ identifier, and processes, which returns all
processes executing in the same node as the caller, will return empty capa-
bilities, i.e. capabilities with no access rights. The reason for not removing
these functions is that system processes should be able to, for example, col-
lect all processes in a node and then manipulate them. In order to do this
the system process would however need to add rights to the empty capa-
bilities first. A more detailed description of how this could be done can be
found in appendix B.

Capabilities can also be obtained by message passing or by shared mem-
ory. This is not considered a security problem since the process sending or
storing the capability, obviously, only can do so with a capability it already
possesses. The usage of obtained capabilities is up to the application, not
to the ERLANG system.

Viewing capabilities

To view the part of a capability a new built in function, view is been in-
troduced. A call with a capability given as argument returns the identifier
of the process referenced (i.e. the Pid), the node the process executes on
and list of access rights (i.e. names of the built in function with which the
capability can be used).

30

Restricting capabilities

To restrict the access rights of a capability the primitive restrict with two
arguments is introduced. The first argument is a source capability and the
second is a list of access rights. If the list of new rights is a subset of those
present in the capability, a new capability will be returned containing only
the subset of rights. If the list is not a subset of rights the function will fail.

Executing the built in function will not modify the source capability.

Comparing capabilities

Security makes it necessary to have the capabilities encrypted. This does
however make it difficult to compare, and match, two capabilities to see if
they refer to the same process. Both capabilities will have to be decoded
first, and the only ones who can do this are the nodes the capabilities came
from. If they are local, i.e. they have not been sent outside the node, this
can be made fairly cheap but if both capabilities from other nodes it becomes
expensive since communication will be necessary.

The functionality can not be implemented as a test. Tests are used for clause
selection and have restrictions on what they can do. They may for example
not have any side effects and since there might be communication involved
in resolving the different part of a capability, the function can not be im-
plemented as a test. The solution has been to implement it as a built in
function which shorthands the two view calls needed. The comparison func-
tion is called same and it returns true if both capabilities given as arguments
identify the same process, otherwise false.

This problem could be eliminated with a space sacrifice. If the capabili-
ties where extended with unencrypted information, for example the process
identifier and the access rights, the comparison would be reduced to a simple
equality check.

5.1.2 Revocation

One facility desired in a capability based system is the availability of ca-
pability revocation. How this can be implemented in a system where no
database containing valid capabilities might not be obvious. When a capa-
bility is revocated it becomes invalid and further usage of it will not affect
the identified process. This can be implemented using the capability scheme

31

described here simply by giving the responsibility of revocation to the appli-
cation. If the application wants to implement revocation it can start extra
processes which just works as duplicates of the original process. These du-
plicates can then be destroyed to revoke any capabilities granted through
the use of that process.

Another way to manage revocation would be to use names, circumventing
capabilities altogether. Revocation would then be unregistering the name.

5.2 Nodes

5.2.1 Using nodes

There is currently one way to create a node, to start an ERLANG run-time
system. This creates a top node. To create sub nodes the new built in
function subnode is introduced. The function takes two arguments of which
the first argument is the name of the new node and the second argument
are options for the node. These options are the resource restrictions placed
on the node!. The return value from the function is an identifier of the new
node, a capability containing all access rights used with nodes.

The capability is used to access the node. This is the difference from the
current ERLANG implementations where the name of the node is used. Using
the new scheme a node’s name is useful for identifying the node, in for
example node-down messages or other similar situations where the need for
access rights is not present, only.

5.3 Distributed code

5.3.1 Using Mids

To read code into Mids the built in read_module is introduced. It takes a
module name as argument and returns a Mid containing the code. The Mid
can then be used wherever a module name can be used.

Modules called inside the Mid will be regarded as calls to the module at the
Mids node of origin. If the called module name is registered in the node

It is possible to have the options containing other information, such as the names of
servers, as well. This is regarded as an extension of its own, outside the scope of this

paper.

32

where call is done, the registered module will be used instead. Registration,
and unregistration, of modules is managed using functions in the module
node, see appendix B.

5.4 Implementation of the prototype

This section describes the experimental prototype that has been imple-
mented. Most of the prototypes components are not needed if the system is
integrated into the ERLANG run-time system.

The prototype is divided into five parts:
e The kernel
e Nodes
o Gates
e The name server

e The code management
The built in functions are divided into two categories, safe and unsafe.

e The safe functions can be executed without any risk that the envi-
ronment will be compromised. The main resource used in safe calls is
CPU (although a little memory also can be used).

e The unsafe functions use one or more resources other than CPU. If
the function is executed directly it might compromise parts of the
environment so the call must be checked before the call is actually
carried out. As an example we have to check if a process uses a valid
capability when it tries to send a message. If the capability is valid we
send the message, otherwise we report failure to the process.

The requests created in the kernel are sent to the node on which the calling
process executes. How the nodes work will be described below.

Nodes

The nodes are simulated using processes. They maintain information about
the resources currently used by them and the resources it has used. When

33

a process is created inside a node the maintaining process of that node
will register the process and keep track of the resources it uses. When a
process wants to execute an unsafe function, the kernel turns the call into a
request which is sent to the maintainer of the process’ node. In some cases
the request does not affect the node the process executes on and it can in
some of those cases be sent to the maintainer of the node where the unsafe
function tries to use a resource.

The resources used are checked by statistics gathering. The processes re-
port resource usage when they die and if the node needs to check its current
resource usage it can add this to the resources used by the currently exe-
cuting processes. The resources used by the currently executing processes
is collected using ERLANG s built in function for viewing the information
about a given process.

Gates

To handle the communication between the nodes the notion of gates is in-
troduced. The only way to send a message to a node (manager) is to send
it through the gate of the node. The gate is the part of the prototype which
checks that capabilities can be used with specified resources.

As functions can be used to operate on a remote node and the result will
have to pass through the gate of the calling process node, an extra access
right is needed. In the prototype this right is called reply and it can only be
used to return a value to a specified process.

The code management

A code server is started for each top node. This server will load code into
the run-time environment and it is used by the top node and all its children.
Using just one loader solves the problem that several copies of the same
code are installed into the system. To allow all nodes in the same run-time
system to share code, code is installed under a unique name and calls are
translated into these names before a call to a module is made.

It is however not required that all nodes inside and including a top node use
the same loader. As with all servers it is up to the node to choose which
server it actually uses.

34

Chapter 6

Conclusions and further
work

6.1 Conclusions

The proposed expansions are a good complement to the language. Together
the ERLANG language and the extensions form a strong environment in
which safety critical and secure applications can be implemented.

Capabilities

If the size of the capabilities is limited so that it can not contain an unen-
crypted representation of its access rights comparison will become a problem.
An integrated implementation would not need to have the capabilities en-
crypted while they are in the node where they where created, they would
only have to be encrypted when outside that node. The unencrypted form
would not be available to the processes, they still believe them to be en-
crypted, but the run-time system can effectively execute node local com-
parison and access right verification. Comparison on remote nodes would
however require communication with the node of origin. If, on the other
hand, size can be sacrificed for efficiency it would be possible to implement
an efficient comparison of capabilities on any node.

The capability concept seems like a promising way of restricting the access
rights to objects in the ERLANG environment.

35

Nodes

Nodes introduced the means of restricting the resource usage in a node.
The concept is very close to the notion of nodes in current versions of the
language.

The nodes also introduced name spaces, something missing today. Several
problems in larger ERLANG applications come from the fact that there are
name conflicts. This problem can be eliminated using subnodes.

Safety critical application can be run inside subnodes to ensure that they
do not affect each others computation.

The new code loading

The new code loading enables code to be loaded from other nodes and not
only from the local node. The code is sent as a parse tree representation and
fully compiled in the node where it is used. This places all the responsibility
in our own compiler. This seems like a feasible way to solve the problem
with distribution of code.

6.2 Further work

There are several problems which are outside the scope of this paper.

Capabilities

This paper have presented a solution using encrypted capabilities. It has
not presented how they are encrypted. There are several different crypto-
graphic techniques that could be used. If parts of the capability contains un-
encrypted information, e.g. to enable more efficient comparison, the choice
becomes even more delicate. Which technique to use should be studied.

Protecting more resources

The identifiers of processes and nodes have been turned into capabilities,
but there exists other objects which should be capabilities as well. Files,
ports and databases are a few examples. All these different object types
must be identified and a scheme to separate their access rights derived.

36

Nodes

This paper has not described a scheme for authentication of nodes. The
need for the cookie protocol used in the current versions of ERLANG has
been eliminated by the proposed extensions but the protocol was not really
used to solve the authentication problem.

Secure channels

Large parts of the design is based on one of the assumptions made in chap-
ter 4, that the channels are secure. This makes it obvious that secure chan-
nels must be added to the ERLANG environment.

Code

The new code loading was implemented without modifications to the run-
time system. This is however an awkward way of solving this problem. Small
modifications need to be done in the run-time system to allow an arbitrary
code loading mechanism to be implemented.

Code garbage collection

With the introduction of Mids one problem has been left aside, the need for
garbage collecting old modules. In a distributed system where the source
node always is available all modules currently not in use, i.e. not having a
process executing them, can be unloaded. The only loss is the time when
reloading modules. When the connection to the source node of a module
becomes unsafe, i.e. it might not always be possible to reload the module,
it however becomes a problem. If the code is removed from a system while
it is still needed, processes executing it will not be able to complete their
tasks and the module should not have been unloaded.

37

38

Bibliography

[AVWT96] Joe Armstrong, Robert Virding, Claes Wikstrom and Mike
Williams. Concurrent Programming in Erlang, Prentice Hall, 1996.

[Bor92] Nathaniel S. Borenstein. Computational mail as network infrastruc-
ture for computer-supported cooperative work. In Proceedings of CSCW
92 (Computer-Supported Cooperative Work), 1992.

[Bor94] Nathaniel S. Borenstein. Email with a mind of its own: The Safe-
Tel language for enabled mail. In Proceedings of the 1994 IFIP W(G6.5
Conference on Upper Layer Protocols, Architectures, and applications,
May 1994.

[CGHT95] David Chess, Benjamin Grosof, Colin Harrison, David Levine,
Collin Parris and Gene Tsudik. Itinerant agents for mobile computing.
Technical report RC 20010, IBM T. J. Watson Research Center, March
1995. Revised October 17, 1995.

[Che] David Chess, Things that go bumpp in the Net, IBM Corporation,
Available as http://www.research.ibm.com/xw-D953-bump.

[CMO95] K. L. Clark and F. G. McCabe. April - agent process interaction
language. In M. Wooldridge N. Jennings, editor, Intelligent Agents,
LNAI vol 890. springer LNAI, 1995.

[FFM193] Tim Finin, Rich Fritzson, Don McKay, and Robin McEntire.
KQML: an information and knowledge exchange protocol. In Interna-
tional Conference on Building and Sharing of Very Large-Scale Knowl-
edge Bases, December 1993.

[Gen95] Telescript Language Reference, General Magic, Inc. October 1995.

39

[GF92] Michael P. Genesereth, Richard E. Fikes, et al. Knowledge inter-
change format version 3.0 reference manual. Technical report, Com-
puter Science Department Stanford University, 1992.

[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software agents.
Communications of the ACM, 37(7):48-53, 147, 1994.

[Gra95] Robert S. Gray. Agent Tcl: A transportable agent system. In
Proceeding of the CIKM Worshop on Intelligent Information Agents,

Fourth International Conference on Information and Knowledge Man-
agement (CIKM 95), December 1995.

[HCK95] Colin G. Harrison, David M. Chess and Aaron Kershenbaum. Mo-
bile agents: Are they a good idea? Technical report, IBM T. J. Watson
Research Center, March 1995.

[JvRS95] Dag Johansen, Robbert van Renesse and Fred B. Schneider. Oper-
taing system support for mobile agents. In Proceesings of the 5th IEEF
Workshop on Hot Topics in Operating Systems, 1995.

[Kna95] Frederick Colville Knabe. Language Support for Mobile Agents.
Tehcnical report ECRC-95-36, FEuropean Computer-Industry Research
Centre, December 1995.

nselm Lingnau and Oswa robnik. An infrastructure for mo-
LD95] Anselm Ling d Oswald Drobnik. An inf f
bile agents: Requirements and architecture. Fachbereich Informatik
(Telematik), Johann Wolfgang Goethe-Universitat, August 1995.

[LO95] Jacob Y. Levy and John K. Ousterhout. Saft Tcl toolkit for elec-
tronic meeting places. In Proceeding of the First USENIX Workshop on
FElectronic Commerce, pages 133-135, July 1995.

[Mil92] Milan Milenkovig. Operating systems concepts and design, second
edition, pages 348-352, McGraw-Hill, 1992.

[Rob83] Dorothy E. Robling Denning. Cryptography and data security,
pages 216-228. Addison-Wesley publishing company, 1983.

[Sun94] The Java language: A white paper. Sun Microsystems White Paper,
Sun Microsystems, 1994.

[Sun95] Java Mobile Code, A white paper. Sun Microsystems White Paper,
Sun Microsystems, 1995.

40

[TV96] Joseph Tardo and Luis Valente. Mobile agent security and Tele-
script. In Proceedings of the 14th International Conference of the IEEF
Computer Society (CompCon 96), February 1996.

[Whi94] James E. White. Telescript Technology: The foundation for the
electronic marketplace. General Magic White Paper, 1994.

[Whi95] James E. White. Mobile agents. General Magic, 1995.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents:
Theory and Practice, January 1995.

[Yel96] Frank Yellin. Low level security in Java. WWW/ Conference, De-
cember 1995. Available as
http://www.sun.com /sfaq/verifier.html.

41

42

Appendix A

Unsafe built in functions

This appendix lists the unsafe built in functions, BIFs, of SAFEERLANG.
New functions are introduced, some are modified to work in the new envi-
ronment and some are rendered obsolete and hence removed.

The new BIFs

To support capabilities, the hierarchy of nodes and the new code loading,
there is need for an extension of the built in functions.

New process and capability BIFs

kill(Capa) Is the new BIF to terminate the execution of processes. The
old BIF used to do this was exit(Pid,Reason), Pid now a Capa,
with Reason set to kill but having exit(Pid,Reason) overloaded in
this way makes it impossible to have distinct access rights for the two
different behaviours of the function. The solution was to introduce the
new built in.

same(A,B) Returns true if the arguments refer to the same process, else
false.

view(Capa) Returns the tuple {Id,Node,List}. Id identifies the process,
Node is the name of the node on which the process executes and List
is a list of the access rights of Capa

43

restrict(Capa,List) Returns a modified version of Capa having only the
access rights listed in List. The new access rights must be a subset
of the access rights in Capa.

Id, returned from view, is the identifier of a process. This identifier is only
good for comparison and can never be used as anything else.

The lists of access rights contain the names of the built in functions the
capability can be used with.

New distribution BIFs, node BIFs

subnode(Name [,Options]) Creates a subnode and returns a reference to
it. Options is used to restrict the resources used by the node.

The resource usage is restricted by the options. These restrictions do not
guarrantee availability. However it is guarranteed that the node will be shut
down if the restrictions are compromised.

The options given to nodes are!

o {average load,Limit} where Limit is a float indicating the maximum
CPU load the node will exist under. If the load exceeds the limit, the
node will shut down.

e {memory,Limit} where Limit is an integer indicating the maximum
memory usage of the processes inside the node.

o {processes,Limit} where Limit is an integer indicating the maximum
number of processes running in parallel inside the node.

o {reductions,Limit} where Limit is an integer indicating the maximum
number of reductions the node may use.

New module BIF's

read module(Module) Returns a Mid containing the current disk version
of the module Module. This Mid will be different from other instances

'The options are implementation dependent, this is the set implemented in the proto-
type.

44

of the same module if the code is not identical, i.e. if the source has
changed a new Mid will be generated.

modules () Returns a list containing all modules visible to the calling pro-
cess. Visible modules are the ones it uses privately and those registered
in the node.

Registration of modules is described in appendix B.

The modified BIFs

There are several built in functions that need to be modified to handle
capabilities or Mids. These functions are described in this section.
apply(M,F,A) Extended so it can use Mids.
spawn(M,F,A) Extended so it can use Mids.
spawn_1ink(M,F,A) Extended so it can use Mids.

spawn(N,M,F,A) Extended so it can use Mids and now uses a capability
as its first argument.

spawn_1ink(N,M,F,A) Extended so it can use Mids and now uses a capa-
bility as its first argument.

exit(Capa,kill) This call is turned into a call to kill(Capa) so that it
can get an access right distinct from other calls to the function.

whereis(Name) Returns a capability without any access rights.
list to pid(List) Like whereis(Name).
processes () Like whereis(Name).

unregister(Capa) Replaces unregister(Name).

Note that whereis, 1ist_to_pid and processes are kept and not remove
only because that they are convenient while administrating a node. It then
is handy to have identifiers to all processes running in a node available.

45

The removed BIFs

There are several built in functions that are no longer needed when the new
extensions are used. Most of these handle the modules or the nodes.

Removed module BIFs

The following functions are not needed when Mids are used (their function-
ality has to be handled using other methods, e.g. garbage collection):

delete module(Module)
load module(Module,Binary)
module_loaded(Module)

purge module(Module)

Then there is one function which lacks a meaningful result when Mids are
used, so it is removed too:

pre_loaded()

Removed distribution BIFs, node BIFs

With the hierarchy of nodes and the assumption that there are no channels
the node does not have control over, c.f. chapter 4, several BIFs handling
nodes can be removed.

alive(Name,Port) Not needed when all nodes are supposed to be dis-
tributed.

halt() Replaced by shutdown in module node, see appendix B.
disconnect node(Node) Like alive(Name,Port).
get_cookie() Handled by the gates.

set_cookie(Node,Cookie) Handled by the gates.

46

Removed process BIFs

The built in function with process functionality are removed since they,
potentially, only affect other processes, not the caller.

group_leader(Leader,Pid)

check process_code(Pid,M)

47

48

Appendix B

The node module

This module is for accessing and altering the nodes at runtime. Most func-
tions require that a Pid with the correct access right, N, is given as an
argument, otherwise the process executing the call will exit due to a viola-
tion.

New BIF's in the node module

shutdown(N) Shuts the node down.

create pid(N,Type,Id,Capa) Returns a capability referring to Id with
the access rights of Type present in Capa. As an example, suppose
that we have a capability to a node N and that the capability con-
tains the access right create_pid in its list of access rights. It would
then be possible to use N to modify capabilities from node N. The pro-
cess capability P, belonging to the node, could be changed using the
call create pid(N,pid,P, [send,kill]), creating a capability with the
access rights send and kill.

register module(N,Name,Mid) Registers the Mid in the node.

unregister module(N,Name) Unregisters the name.

49

