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ABSTRACT

The Model Driven Architecture (MDA) proposes model trans-
formations to obtain an executable model from a platform
independent model. Unless one uses an interpreter the com-
mon executable model of an application is specified in some
programming language. To obtain such an implementation
of a model automatically is the task of code generation in
MDA-Tools. In this paper we present a modelbased ap-
proach to this task. It uses explicitly modelled intermediate
data and makes use of code templates for the final transfor-
mation into pieces of text.

1. INTRODUCTION

CASE-Tools which implement operational semantics do com-
monly provide either an interpreter or a code generation
component to make use of this semantics. In this paper
we discuss a concept for such code generation component.
The general task of code generation is to transform an ab-
stract syntax graph (ASG) into one or more programming
language files. These are compiled (if applicable) and exe-
cuted to operationalize the specification in the CASE-Tool
afterwards.

Our approach to code generation in Fujaba [2] uses Velocity
Templates [1] to generate source code in the final step. See
Figure 7 for example template code.

To choose the templates to be applied and to supply the tem-

plate instantiation with parameters an intermediate layer of
tokens was introduced. These tokens are created by analysing
the ASG elements, for which code should be generated. This

enables sorting, optimizations and extensions to work with

explicit object structures without altering the ASG of the

specification.

1.1 Example

As a simple example we want to show a part of the code gen-
eration for a simple graph transformation rule throughout
this paper. Generating code for Fujaba’s graph transfor-
mation rules is one of the core requirements that must be
fulfilled by a code generation for Fujaba. The mapping from
graph transformations to java code in general is described
in [7].

Christian Schneider

SE, Universitat Kassel

Wilhelmshdher Allee 73
34121 Kassel

cschneid@uni-kassel.de

Carsten Reckord
SE, Universitat Kassel
Wilhelmshdher Allee 73
34121 Kassel

creckord@uni-kassel.de

A::dolt (parameter: A): Void

?

parameter > children | child B
V\F,{mer Aneigyaurs
partner :B

V
®

Figure 1: Fujaba rule diagram as an example

The example can be described as follows (cf. Figure 1): The
object parameter is passed to the rule as method parameter,
the child object can be found over a link called children.
Additionally an object named partner exists. This can be
found by navigating along the link neighbours from object
child. Alternatively it can be found over the partner link
starting at parameter. In this case the object child can
be found by navigating along the neighbours from object
partner. The rule does not change the object graph (graph-
theoretically spoken: RHS equals LHS).

2. CONCEPT

The code generation was split into several subtasks which
will be described in detail in the following subsections 2.1 to
2.4. A brief overview is given by Figure 2.

optimization

sorting / structuring

Figure 2: Subtasks of the code generation with ini-
tial and resulting data
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2.1 Creating Tokens (decomposition)

The first task is to create atomic operation tokens for each
syntax-graph element. The same kind of syntax-graph ele-
ments can cause different tokens to be created, because of
their different attribute values or context. Additionally a
single syntax-graph element usually results in multiple to-
kens. Each token represents an code fragment that should
be generated.

The result of the token creation task is a set of tokens which
are usually referring each other in several ways (so forming
a graph of tokens).

Spoken in terms of our example a token of type CheckBound-
Operation is created to check if the object parameter is
bound. For each link a token of type CheckLinkOperation
is created for each direction the link can be traversed. Fig-
ure 3 shows the two resulting CheckLinkOperations for the
child link (the direction is defined by the subject link).
Tokens for the other two links are created accordingly (not
shown). As the bound attribute (not displayed in Figure 3)
of the child object is false, the generated code must search
for the object. Therefore a token of type SearchOperation
is created for each link leading to the object. In addition to
the SearchOperation along the child link shown in Figure
3, another SearchOperation for the child object is created
for the neighbours link and two more for the two links con-
nected to the partner object. There is no SearchOperation
for the parameter object as it is bound.

Most of the operations require one or more of the involved
objects to be matched before they can be performed. These
prerequisite objects are specified with needs links from the
tokens. For example, CheckLinkOperation t3 needs Objects
ol and o2 to check the link between them.

v v
v v v
01:UMLObject 11:UMLLink 02:UMLObject

"parameter" "children” "child"
A
12:UMLLink 03:UMLObject 13:UMLLink
"partner" "partner" "neighbours"

Figure 3: Exemplary tokens (grey) for the transfor-
mation rule seen in Figure 1

2.2 Sorting and Structuring

In most cases translating the generated token graph into
code directly is difficult. It is easier to first sort and structure
the tokens to get a token graph that better reflects possible
operational dependencies among tokens. The transforma-
tions necessary to structure the tokens depend on the kind
of syntax graph the tokens are derived from. Tokens from

class diagrams usually need little to no further structuring.
Behavioral diagrams on the other hand usually require the
token graph to be structured and brought into a hierarchical
form that is later mirrored in the hierarchical block structure
of the generated code.

We will focus on the structuring of Fujaba’s rule diagrams,
but similar transformations can be used to structure the
token graphs of other behavioral diagrams. A detailed ex-
planation of rule diagrams used in Fujaba can be found in
[7]. To generate code for a rule diagram, a search plan -
an operational form of the diagram - has to be found, that
defines how to match the LHS of the rule and how to per-
form the graph transformation. Since in general many valid
search plans exist for a rule diagram, it is also important to
find an efficient one, which will be discussed in section 2.3.

In [7] Ziundorf describes a basic method to find a search
plan and create code directly from the rule diagram. We
will now present a method to find a search plan through
transformation of the token graph and will then use the
found search plan for the template based code generation.

One problem in finding a valid search plan is to decide
which tokens are to be used, because usually not all of
the generated tokens are needed in a search plan. For ex-
ample, the objects child and partner in the example of
Figure 1 can both be reached by a SearchOperation di-
rectly from parameter. In that case a SearchOperation
between child and partner is not needed and instead a
CheckLinkOperation can be performed for the neighbours
link.

The other problem is to sort the used tokens correctly such
that all prerequisites of an operation are already matched
when the operation is to be performed. In our example an
alternative search plan could reach the partner object by
first finding the child from parameter and then matching
partner from child over the neighbours edge.

Our search plan is a tree structure with ordered child lists,
which will be interpreted in a depth-first manner in the rest
of the code generation process. Tokens depending on other
tokens due to prerequisite objects are located in the subtree
below the tokens they depend on, ensuring that all prereq-
uisites are matched when using depth-first traversal.

Transforming the token graph into this search tree is fairly
simple:

1. Add a new temporary root node to the LHS graph of
the rule diagram and connect all bound objects of the
LHS to it. Find a spanning tree starting at this node
(using the links as edges).

2. For all edges in the spanning tree the SearchOperation
towards the child is added to the search tree. Its parent
is the SearchOperation that finds its sole prerequisite
object or the root node if the prerequisite object is
bound (cf. Figure 3: t2 finds 02 and has ol as its
prerequisite).

3. For all links not in the spanning tree a CheckLink-
Operation will be added in the next step. Discard
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Figure 4: Search plan with partially added Check-
Operation

all other Search- and CheckLinkOperations (cf. Fig-
ure 3: Only one of the three operations t2-t4 for the
children link will be in the final search plan).

4. Successively add all CheckOperations to the search
tree as follows:

(a) Add the CheckOperation as child to a Search-
Operation that matches one of its prerequisites

(b) Find a SearchOperation for another of its prereq-
uisites. Find the first common ancestor of the two
SearchOperations and move the subtree with the
CheckOperation from the common ancestor to
the new SearchOperation. This is possible be-
cause siblings in the tree are independent of each
other.

(c) Repeat for all prerequisites.

5. Add the tokens for the RHS as children of the root
node, adhering to the order of object and link destruc-
tion, creation and collaborations

The search tree to match all unbound objects in our exam-
ple consists of two SearchOperations matching the child
and partner object. Additionally a CheckLinkOperation
for the remaining link not used for the search is required.
Figure 4 shows the search tree with the CheckLinkOperation
for the neighbours link added below the first of the two
SearchOperations for its prerequisites as described in step
4.1.

Now the tree has to be modified to get the CheckLinkOpera-
tion below the other SearchOperation, too, as described in
step 4.2. Therefore the subtree starting at SearchOperation
t5 and containing the CheckLinkOperation is moved below
SearchOperation t5. Since the CheckLinkOperation has no
further prerequisites it is now correctly added to the search
plan. The resulting, final search plan is shown in Figure 5.

To support easy extensibility, the creation of the token tree
is realized with a handler chain similar to the chain of re-
sponsibility pattern. The search plan is successively built by
the handlers in the chain. The first handler receives the set
of available tokens and the empty root node of the tree to be
built. Each following handler receives the remaining unused
tokens and the tree from the previous handler, restructures
or incorporating new tokens into the tree and passes it on.
This way, handling of new tokens can be added fairly easy,
even though in most cases this will not be necessary because
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Figure 5: Final Search plan for our example

generic handlers exist that can deal with most tokens based
solely on their prerequisites, which is usually sufficient.

2.3 Optimization

An important quality feature of the generated code is its
runtime efficiency. Therefore we want to find, among the
valid search plans, the one that results in the best runtime
cost.

The most optimization potential can be leveraged from the
selection of the SearchOperations used in the initial search
tree. Obviously following a to-one link is cheaper than
checking multiple objects via a to-many link. Given a cost
model for the tokens, a good solution can therefore be found
easily by finding a minimal spanning tree to build the initial
search tree.

Additionally, fast operations (like link checks) should be per-
formed as early as their prerequisites allow to find invalid
matches early and thus avoid further expensive searches.
Therefore, when moving a subtree as described in the tree
generation process above, its tokens should afterwards be
propagated towards the common ancestor as far as their
prerequisites allow or until only cheaper tokens are on their
path to the common ancestor.

Finally, with the exception of tokens from the RHS of the
graph, siblings in the tree are independent from each other.
Therefore, subtrees with a low runtime cost relative to the
number of tokens in the subtree can be moved to the front
of the ordered child lists, again allowing for earlier detection
of invalid matches at a lower total cost.

All optimization steps can be easily realized as handlers in
the handler chain. The cost model for the tokens is realized
as a separate chain of responsibility that can be accessed by
all the handlers. For link operations an additional model
for the average payload of the referenced link is maintained,
separating access costs for the different link types (sorted,
ordered, hashed etc.) from the typical number of objects
reachable by the link.

In the current implementation the cost and payload models
give a static cost estimation, only. They can however be
easily extended to e.g. take statistical information gathered
from execution on typical data into account.

2.4 Code writing
After having optimized the set of tokens, we are finally able
to generate code for them The class responsible for this is
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Figure 6: Class diagram for code writing

called CodeWritingEngine. It has a list of CodeWriters
which implements the chain of responsibility design pattern
to allow extension, cf. figure 6.

The token tree is visited inorder. Every visited token for
which we want to generate code is then passed to the chain,
so that the code writer responsible can generate code for
the token. This is usually done by an instance of class
TemplateCodeWriter. This code writer opens the velocity
template with the name specified by its templateName at-
tribute and passes the token and additionally needed infor-
mation as context to the velocity template engine. This
additional information also includes the code generated for
all the children of the token in the tokens hierarchy. Then
the velocity engine is used to generate the code.

If e.g. a token of type ObjectAssignmentOperation is vis-
ited, it is passed to the chain. The object of type Object-
LifecycleCodeWriter is responsible for such tokens, so it
will initialize the template which is shown in Figure 7. The
ObjectLifecycleCodeWriter will look up the UMLObject
which is refered by the token and pass it as object param-
eter when executing the template. In the template in lines
1 to 3 some local variables are set (the name and type of
the object and whether or not it is optional. In lines 4-6 the
$tmpName variable is set depending on whether a type cast
is needed or not. In line 9 the object is finally bound. The
following lines preform a type check if a type cast is needed.

3. MODELBASED TESTING

Testing the correctness of generated code is generally a hard
task. To test code generation, one would start with an arbi-
trary syntax element in some context and generate code for
it. Just comparing the generated code with the expected one
would not give a good test criteria: if the code is indented a
different way or somehow refactored (different code but same
semantics), a test failure would nonetheless be reported. We
made the experience that in this case the developer tends to
believe that the new code is correct and just overwrites the
expected code with the code generated by his new code gen-
eration. This way the test would of course execute successful
again but possible bugs would have been ignored.

It would be more useful if one could test whether or not
the generated code has the expected behaviour. For code

1 #set( Sname = Sobject.ObjectName )
2 #set( Stype = Sobject.ObjectType )
3 #set( Soptional = S$Sobject.isOptional() )
4 #if ( StypeCast )
5 #set ( StmpName = fujaba__TmpObject )
6 f#else
7 #set ( StmpName = Sname )
8 #end
9 $tmpName = S$source ;
10 #if ( StypeCast )
11 ensure correct type and really bound
12 #if ( Soptional
13 if ( $tmpName )
14 {
15 $name = (Stype) S$tmpName ;
16 }
17 f#else
18 JavaSDM.ensure ( $tmpName instanceof S$type ) ;
19 Sname = (S$type) S$tmpName ;
20 #end
21 #end

Figure 7: Example template that generates Java
code for binding an object

which is compiled afterwards, like e.g. our java code, a first
hint whether or not the code may be correct is given by the
compiler. If the compiler quits with errors, the code is not
correct. But obviously this is not a sufficent test criteria.

Our idea is then to run the generated code and test the
results. We do this at model level using bootstrapping. To
test our java code generation, we use the following approach:

e Structural code, like class definitions, method and at-
tribute declaration, is tested by hand written JUnit
tests. Code generation for class definitions for instance
is tested using the java compiler, for the most part,
which is invoked by a unit test.

e Code generation for method calls within activities is
tested by hand written tests as well. In this simple case
this is done by comparing the code with the expected
one.

e Additional syntax elements of Fujaba’s rule diagrams
are tested using the modelbased testing approach de-
scribed in the following paragraph.

The idea of the modelbased testing approach is to model
JUnit tests in Fujaba. For these tests code is generated
using the code generation to be tested. The tests are then
executed using the JUnit framework. The tests should check
the behaviour of the generated code by using just the axioms
already tested by the hand written tests described above. In
more detail, this is done the following way:

e A test class extending the TestCase class, provided by
the JUnit framework, is modeled in Fujaba.

e Within this class, a unit test, which checks whether or
not constraints are interpreted the correct way, can be
modeled. This test makes use of method calls, only,
which are already tested.



e Assuming that the code generation for constraints does
work, what means that the previous test executes suc-
cessfully, new tests can be modeled which make use of
constraints. Such test are tests for the activity dia-
gram parts (sequences, loops, branches).

e On top of this, tests can be modeled, which check addi-
tional constructs (creation of objects and links, check-
ing of links, destruction of objects and links...).

e Code for the test modeled in Fujaba is generated us-
ing the new code generation and the JUnit tests are
executed.

Figure 8 shows the method body for the test method which
checks the code generation for to-one link checks. In the first
activity two objects are created. The next activity should
(if code generation works) check that there is a link between
these two objects. If a link is found by the generated code,
this is obviously not the desired behaviour (as there is no
link between these objects) and a JUnit failure is reported.
Otherwise such a link is created and checked for again. If
this executes successfully, the generated code has the de-
sired behaviour. The test finishes successfully. That means,
if certain parts of the code generation (creation of objects
and links as well as sequences of activities and branching)
do work, the test in figure 8 checks whether or not code
generation for to-one link checking works.

CodeGenTest::test5CheckLinkToOne (): Void
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Figure 8: Test method for to-one link checks

4. BOOTSTRAPPING

As Fujaba offers a full-featuered model transforamtion lan-
guage, it would be a good proove of concept if we model
Fujaba with Fujaba itself. Such process is called bootstrap-

ping.

As all parts described above are modeled in Fujaba, boot-
strapping Fujaba is finally possible at least for Fujaba’s code
generation. Till now, not all features of Fujaba are imple-
mented within the new code generation (e.g. support for

multi links is still missing). So the bootstrapping process
is not yet complete. As soon as we have added these miss-
ing features, it would be possible to generate code for the
specification in Fujaba using a code generation which was
generated by Fujaba itself. This way, it should be possi-
ble for a code generation to generate its own code. This
bootstrapping is planed for near future using the following
process:

If a complete version of the code generation is available:

e Generate code for the new version using the previous
code generation.

Execute the JUnit tests as described in chapter 3.

Generate code for the new version using itself.

Execute the JUnit tests against this code generation.

Generate code from the specification again to ensure,
that the generated code equals the one generated be-
fore.

5. RELATED WORK

Zindorf describes in [6] how the graph transformations of
PROGRES [3] can be split into operations in an operation
graph. Then he discusses how to find a search plan (a se-
quence of search operations) in the operation graph. The
search plan is optimized using a given cost model. The
decomposition described in chapter 2.1 as well as the op-
timization in chapter 2.3 uses similar techniques.

In [5] Varr6 et al. describe a method to find cost efficient
search plans from statistical data gathered on typical in-
stance models at design time. Then they propose an adap-
tive approach that generates multiple search plans and se-
lects the best one at runtime based on statistical evaluation
of the current instance model. This approach could be easily
incorporated into our current approach since the cost model
is well-prepared for more elaborate analysis and the statis-
tical data could easily be gathered by preparing the velocity
templates accordingly.

In [7] the transformation from Fujaba’s rule diagrams to java
code is described. The proposed java code is the basis for
our templates discussed in chapter 2.4. A short algorithm
for code generation is also stated. Our approach uses a more
elaborated algorithm since the algorithm in [7] does not cre-
ate an intermediate model and only applies few optimization
strategies.

The MoTMoT approach [4] also uses a template-based ap-
proach to generate code from transformations specified in
Fujaba’s model transformation language. But unlike Fu-
jaba, MoTMoT does not offer an editor to create story dia-
grams, but provides a UML 1.4 profile which uses annotated
UML class diagrams and annotated UML activity diagrams
to model rule diagrams. This way, story diagrams can be
drawn with every UML 1.4 compliant editor, like Together,
MagicDraw or Poseidon. However, the MoTMoT approach
also lacks an intermediate model and elaborated optimiza-
tion techniques.



6. CONCLUSIONS AND FUTURE WORK

The model-based approach to code generation described in
this paper has shown to be very flexible, easy to implement
and simple to use. We managed to avoid dependencies to
the target textual language in the generator model. All tar-
get language elements are expressed in the templates. Only
the basic language paradigm (imperative) and some struc-
tural information (class, method, declaration hierarchy) is
implicitly contained in the implementation.

We expect, introducing new imperative output languages
will be possible very quickly. However, this causes creation
of multiple similar template files. This tends to increase
maintenance cost as behavioral changes in a template must
be reflected for all generated langauges. In opposition to
that the amount of template code is very low for a single
language, compared to the code that was neccessary in the
previous Fujaba code generation (more than factor 3).

As the complete code generation model (without templates)
is modelled with Fujaba itself this approach paves the way
to bootstrapping Fujaba - generating Fujaba with Fujaba.
But as well as completing the code generation to support
all syntax elements of Fujaba, bootstrapping is still future
work.

From the optimizations described in section 2.3, only the
minimal spanning tree approach is currently in use. The
other methods remain to be implemented. Another area of
future work is the optimization based on statistical execu-
tion data.

We expect, that the currently implemented transformations,
that are used to generate and alter the intermediate data,
can be inverted quite easily (except for omitted tokens).
This makes us confident that reverse engineering of the gen-
erated code to obtain the original model again should be
achieved with low cost. Singly the inversion of templates
still requires some research work.
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