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Abstract—We investigate the optimal performance of dense
sensor networks by studying the joint source–channel coding
problem. There are N uniformly spaced sensor nodes sampling
noiselessly a one-dimensional spatial random process over an
interval [0; U0]. The overall goal of the sensor network is for the
sensor nodes to code and transmit the measurement samples
to a collector node over a cooperative multiple-access channel
with noisy feedback, and for the collector node to reconstruct
the entire random process with minimum expected distortion.
We provide separation-based lower and upper bounds for the
minimum achievable expected distortion when the underlying
random process is Gaussian. When the Gaussian random process
satisfies some general conditions, such as the eigenvalues of its
Karhunen–Loeve expansion decrease roughly inverse polynomi-
ally in order x, i.e., the kth eigenvalue is roughly k�x, we evaluate
the lower and upper bounds explicitly, and show that they are of
the same order for a wide range of power constraints. Thus, for
these random processes, under these power constraints, we show
that the minimum achievable expected distortion decreases as
(logNP (N))1�x, where P (N) is the sum power constraint on the
sensor nodes. Further, we show that the achievability scheme that
achieves the lower bound on the distortion is a separation-based
scheme that is composed of multiterminal rate-distortion coding
and amplify-and-forward channel coding. Therefore, we conclude
that separation is order-optimal for the dense Gaussian sensor
network scenario under consideration, when the underlying
random process satisfies some general conditions.

Index Terms—Cooperation, correlation, scaling laws, sensor net-
works, separation principle.

I. INTRODUCTION

WITH the recent advances in the hardware technology,
small cheap nodes with sensing, computing and com-

munication capabilities have become available. In practical ap-
plications, it is possible to deploy a large number of these nodes
to sense the environment. In this paper, we investigate the op-
timal performance of a dense sensor network by studying the
joint source–channel coding problem. The sensor network is
composed of sensors, where is very large, and a single
collector node. Each sensor node has the capability of taking
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Fig. 1. Sensor network.

noiseless samples from an underlying random process. Each
node in the sensor network is equipped with one transmit and
one receive antenna to transmit and receive signals through the
wireless medium, i.e., all nodes hear a linear combination of
the signals transmitted by all other nodes at that time instant.
The overall goal of the sensor network is to take measurements
from an underlying random process , , code
and transmit those measured samples to a collector node, which
wishes to reconstruct the entire random process with as little
distortion as possible; see Fig. 1. Due to the small distances be-
tween the sensor nodes and the correlation in the measured data,
the underlying sensor samples are correlated, and due to the ex-
istence of receive antennas at the sensor nodes and a transmit
antenna at the collector node, the communication channel is a
Gaussian cooperative multiple-access channel with noisy feed-
back. We investigate the minimum achievable expected distor-
tion and a corresponding achievability scheme when the under-
lying random process is Gaussian.

Following the seminal paper of Gupta and Kumar [3], which
showed that multihop wireless ad hoc networks, where users
transmit independent data and utilize single-user coding, de-
coding, and forwarding techniques, do not scale successfully,
Scaglione and Servetto [4] investigated the scalability of the
sensor networks. Sensor networks, where the observed data is
correlated, may scale successfully for two reasons: first, the cor-
relation among the sampled data increases with the increasing
number of nodes and, hence, the amount of information the net-
work needs to carry does not increase as fast as in ad hoc wire-
less networks; and second, correlated data facilitates coopera-
tion, and may increase the information-carrying capacity of the
network. The goal of the sensor network in [4] was that each
sensor reconstructs the data measured by all of the sensors using
sensor broadcasting. In this paper, we focus on the case where
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the reconstruction is required only at the collector node. Also, in
this paper, the task is not the reconstruction of the data the sen-
sors measured, but the reconstruction of the underlying random
process.

Marco et al. [5] is the first paper to formulate the sensor net-
work problem considered here, where there is a single collector
node which wishes to reconstruct the random process; see also
[6]. The channel model used in [5] was similar to that used in [3],
and is interference limited. The sensor encoders were limited
to scalar quantization with entropy-rate coding. It was shown
that the system performance becomes asymptotically poor as the
number of sensors grows, i.e., the sensor network under consid-
eration does not scale successfully.

El Gamal [7] studied the same problem as in [5], but re-
moved the constraint that the channel model is interference lim-
ited. By modeling the channel as a cooperative Gaussian mul-
tiple-access channel, [7] showed that all spatially band-limited
Gaussian processes can be estimated at the collector node, sub-
ject to any nonzero constraint on the mean squared distortion,
i.e., the sensor network scales successfully. In this paper, we
study the minimum achievable expected distortion for space-
limited, and thus, not band-limited, random processes, and we
show the rate at which the minimum achievable expected distor-
tion decreases to zero as the number of nodes increases. Also,
in [7], it is assumed that the channel gains between the nodes
are decreasing functions of the distance between them, without
enforcing any upper bounds. This implies that, when the sen-
sors are placed very densely, the channel gains between nearby
sensors become unboundedly large. This physically impossible
situation arises because although the channel model used in
[7] is valid only in the far field of the transmitter, it is used
for all distances. Although we adopted this channel model in
[1], an earlier conference version of this work where the un-
derlying random process was Gauss–Markov, we have changed
the channel model to a more realistic one in this paper (and [2],
the conference version of this work), where we assume that the
channel gains decrease with distance, however, they are lower
and upper bounded. The difference in the channel models in [1]
and here (and [2]), does not affect our conclusion, i.e., in both
cases, we are able to find achievable schemes that achieve the
lower bound on the distortion in the order sense. However, it
affects the achievability scheme itself; in [1], the achievability
scheme is based on the basic idea of decode-and-forward as
the channel model allows a significant number of nodes to be
able to decode successfully the signal transmitted by a node,
whereas the achievability scheme here (and [2]) is based on
the basic idea of amplify-and-forward, where due to the lower
and upper bounds on the channel gains, a sufficient amount of
beamforming effect is achieved through the amplify-and-for-
ward scheme.

Kashyap et al. [8] studied the source coding part of the
problem investigated in this paper. The paper showed that
for any distortion constraint that is independent of , the
difference between the rate achievable by distributed source
coding and the rate achievable by centralized source coding is
bounded by a constant, independent of . Though we study a
joint source–channel coding problem, both our converse and
achievability proofs are separation-based, and thus, we show a

similar result: in the source coding part we show that the ratio
between the rate achievable by distributed source coding and
the rate achievable by centralized source coding is bounded
by a constant, independent of . In contrast to [8], where
the distortion constraint is independent of , we allow the
distortion to go to zero as a function of . Moreover, [8] deals
with stationary Gaussian random processes, while we allow
for nonstationarity of the underlying random process. It is not
immediately evident whether the methods in [8] apply in the
scenario considered in this paper.

Neuhoff and Pradhan [9] studied the source-coding part of
the problem investigated in this paper by allowing the random
process to be unbounded in space. The sensors are densely as
well as widely distributed. In this case, results from Grenander
and Szego [10] were used. However, for the case of a finite in-
terval, as considered in this paper, such results cannot be used.

Gastpar and Vetterli [11] studied the case where the sensors
observe a noisy version of a linear combination of Gaussian
random variables which all have the same variance, code, and
transmit those observations to a collector node, and the collector
node reconstructs the random variables. In [11], the expected
distortion achieved by applying separation-based approaches
was shown to be order worse than the lower bound on the min-
imum achievable expected distortion. In this paper, we study the
case where the data of interest at the collector node is not a fi-
nite number of random variables, but a random process, which,
using Karhunen–Loeve expansion, can be shown to be equiva-
lent to a set of infinitely many random variables with varying
variances. We assume that the sensors are able to take noiseless
samples, but that each sensor observes only its own sample. Our
upper bound on the minimum achievable distortion is also de-
veloped by using a separation-based approach, but it is shown
to be of the same order as the lower bound, for a wide range of
power constraints, for random processes that satisfy some gen-
eral conditions.

From an information-theoretic point of view, our problem
is a joint source–channel coding problem for lossy commu-
nication of correlated sources over a cooperative Gaussian
multiple-access channel with noisy feedback. The simpler
problem of lossless reconstruction of correlated sources over a
multiple-access channel without cooperation or feedback still
remains open [12]–[15]. Therefore, a direct and closed-form
expression for the distortion seems unlikely to be obtained,
and, consequently, we resort to developing lower and upper
bounds. We first provide lower and upper bounds for the min-
imum achievable expected distortion for arbitrary Gaussian
random processes whose Karhunen–Loeve expansion exists.
Then, we focus on the case where the Gaussian random process
also satisfies some general conditions, such as the eigenvalues
of its Karhunen–Loeve expansion decreases roughly inverse
polynomially in order , i.e., the th eigenvalue is roughly

. For these random processes, we evaluate the lower and
upper bounds explicitly, and show that they are of the same
order, for a wide range of power constraints. Thus, for these
random processes, under a wide range of power constraints, we
determine an order-optimal achievability scheme, and identify
the minimum achievable expected distortion as a function of
the number of nodes and the sum power constraint. We show
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that the minimum achievable expected distortion decreases to
zero at the rate of , where is the sum
power constraint on the sensor nodes. Our achievability scheme
is separation-based: each sensor node first performs multiter-
minal source coding [16], then, performs channel coding, and
utilizes the cooperative nature of the wireless medium through
the amplify-and-forward scheme [17]. In multiuser information
theory, generally speaking, the separation principle does not
hold. However, in our case, we have found a scheme which is
separation based, and is order-optimal.

II. SYSTEM MODEL

The collector node wishes to reconstruct a random process
, for , where denotes the spatial position;
is assumed to be Gaussian with zero-mean and a contin-

uous autocorrelation function . The sensor nodes are
placed on a straight line at positions

, and observe samples

(1)

For simplicity and to avoid irregular cases, we assume that the
sensors are equally spaced, i.e.,

(2)

The distortion measure is the squared error

(3)

Each sensor node and the collector node, denoted as node
, is equipped with one transmit and one receive antenna. To

simplify the presentation, from now until Section VII, we will
assume that the collector node does not use its transmit antenna,
and thus, there is no feedback in the system. We will allow the
collector node to use its transmit antenna and provide feedback
to the sensor nodes in Section VII, and show that the results
of the previous sections remain unchanged. The transmissions
through the wireless medium are time slotted. The channel is
assumed to be memoryless between the time slots. At any time
instant, let denote the signal transmitted by node , and
denote the signal received at node . Let denote the channel
gain from node to node . Then, the received signal at node
can be written as

(4)

where is a vector of independent and identically
distributed (i.i.d.), zero-mean, unit-variance Gaussian random
variables. Therefore, the channel model of the network is such
that all nodes hear a linear combination of the signals trans-
mitted by all other nodes at that time instant. We assume that
the channel gain is bounded, i.e.,

(5)

where and are positive constants independent of . This
model is very general and should be satisfied very easily. By the

conservation of energy, , and since all nodes are within
finite distances of each other, the channel gains should be lower
bounded as well.

We assume that all sensors share the sum power constraint
. The two most interesting cases for are
, where each sensor has its individual power constraint

, and , where the sum power constraint is
a constant and does not depend on the number of sensor
nodes. In the latter case, when more and more sensor nodes are
deployed, the individual power of each sensor node decreases
as . Our goal is to determine the scheme that achieves
the minimum achievable expected distortion

(6)

at the collector node for a given sum power constraint ,
and also to determine the rate at which this distortion goes to
zero as a function of the number of sensor nodes and the sum
power constraint.

Next, we give a more precise definition of our problem.
Each sensor node observes a sample of a sequence of spatial
random processes i.i.d. in time, where index
denotes time, denotes the spatial position, and is the block
length of the sequence of random processes, and also the delay
parameter, which may be a function of , the number of sensor
nodes. For now, we assume that channel uses are allowed for

realizations of the random process; the case where we allow
the number of channel uses and the number of realizations to
differ will be treated in Section VII. At time instant , sensor
node transmits

(7)

i.e., after waiting time slots to obtain a block of observations,
the sensor node transmits, at time , a signal that is a func-
tion of its observations of the entire block of random process
samples and also the signal it received before time . We are
interested in the performance in the information-theoretic sense
and, hence, we allow the delay to be arbitrarily large. By the
assumption of sum power constraint, we have

(8)

The collector node reconstructs the random process as

(9)

For fixed encoding functions of the nodes

and the decoding function of the collector node , the achieved
expected distortion is

(10)
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and we are interested in the smallest achievable expected dis-
tortion over all encoding and decoding functions where is al-
lowed to be arbitrarily large.

In this paper, our purpose is to understand the behavior of
the minimum achievable expected distortion when the number
of sensor nodes is very large. We introduce the big- , big- ,
and big- notations. We say that is , and is , if
there exist constants and , such that for
all ; we say that is if is both and

. All logarithms are defined with respect to base , and
denotes the largest integer smaller than or equal to . and

denote the th element and the Euclidean norm of vector
, respectively. denotes the spectral norm of matrix ,

which is defined as the square root of the largest eigenvalue of
matrix [18].

III. A CLASS OF GAUSSIAN RANDOM PROCESSES

For a Gaussian random process with a continuous au-
tocorrelation function, we perform the Karhunen–Loeve expan-
sion [19]

(11)

to obtain the ordered eigenvalues , and the corre-
sponding set of orthonormal eigenfunctions

.
Let be the set of Gaussian random processes on with

continuous autocorrelation functions, that satisfy the following
conditions.

1. There exist nonnegative constants , , and nonnegative
integers , , , and two sequences of numbers

and defined as

(12)

and

(13)

for some constant , such that

(14)

The condition that is without loss of generality, be-
cause for all continuous autocorrelations, the eigenvalues
decrease faster than .

2. In addition to continuity, satisfies the Lipschitz
condition of order , i.e., there exists a constant

such that

(15)

for all .
3. For , the function and the function

as a function of satisfy the following con-

dition: there exist positive constants , , , ,
, , and nonnegative constant , independent of ,

such that

(16)

and

(17)

for all .
The reasons why these conditions are needed for the explicit

evaluation of the lower and upper bounds on the minimum
achievable expected distortion will be clear from the proofs.
Here, we provide some intuition as to why they are needed.
Condition 1 states that we consider random processes that have
eigenvalues which decrease at a rate of approximately .
The rate of decrease in the eigenvalues is an indication of how
the randomness of the random process is distributed upon the
eigenfunctions. For example, a small means that the random-
ness is distributed rather evenly upon all eigenfunctions, while
a large means that the randomness is mostly concentrated
upon a subset of eigenfunctions. Thus, the minimum achievable
expected distortion depends crucially on the rate of decrease
parameter . The lower (upper ) bound on the eigenvalues in
(14) will be used to calculate the lower (upper ) bound on the
minimum achievable expected distortion. Conditions 2 and 3
are needed because instead of the random process itself that
is of interest to the collector node, the collector node, at best,
can know only the sampled values of the random process. How
well the entire process can be approximated from its samples is
of great importance in obtaining quantitative results. Lipschitz
conditions describe the quality of this approximation well. By
Condition 3, we require the variation in the eigenfunction to
be no faster than . We note that the well-known trigonometric
basis satisfies this condition.

We also note that our conditions are quite general. Many
random processes satisfy these conditions, including the
Gauss–Markov process, Brownian motion process, centered
Brownian bridge, etc. For example, a Gauss–Markov process,
also known as the Ornstein–Uhlenbeck process [20], [21],
is defined as a random process that is stationary, Gaussian,
Markovian, and continuous in probability. It is known that the
autocorrelation function of this process is [22]–[24]

(18)

The Karhunen–Loeve expansion of the Gauss–Markov process
yields the eigenfunctions

(19)
where are the corresponding eigenvalues and are
positive constants chosen such that the eigenfunctions
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have unit energy. It can be shown that may be bounded
as

(20)

where is defined as

(21)

with , and is defined as

. (22)

Thus, we observe that the Gauss–Markov process satisfies the
conditions defined in this section with , , and

. In fact, in a preliminary conference version
of our work [1], we focused specifically on the Gauss–Markov
process and presented results similar to those here. We also note,
as discussed in the Introduction, that the channel model in [1]
is somewhat different than here, and therefore the order-optimal
achievability schemes in [1] and here are different.

The lower and upper bounds on the minimum achievable
expected distortion will be calculated using and

, respectively. Some properties of and
which will be used in later proofs are stated in

Lemmas A.1 and A.2 and proved in Appendix I-A.

IV. A LOWER BOUND ON THE ACHIEVABLE DISTORTION

A. Arbitrary Gaussian Random Processes

A lower bound is obtained by assuming that all of the sensor
nodes know the random process exactly, i.e., ,
and the sensor network forms an -transmit -receive antenna
point-to-point system to transmit the random process to the
collector node. Let be the capacity of this point-to-point
system in nats per channel use and be the distortion–rate
function of the random process [25]. In this point-to-point
system, the separation principle holds, and therefore

(23)

To evaluate , we first find the distortion–rate function
of [25, Sec. 4.5] as

(24)

and

(25)

where is an intermediate variable used to describe the distor-
tion–rate function. The distortion–rate function charac-
terizes the minimum achievable expected distortion when we
use nats per source realization to describe the random process.

Next, we find , the capacity of the -transmit -receive
antenna point-to-point system [26] as

nats/channel use (26)

To see how changes with , using (26) and (5), we can
lower and upper bound as

(27)
For arbitrary Gaussian random processes, a lower bound on the
minimum achievable expected distortion is

(28)

B. The Class of Gaussian Random Processes in

Next, we evaluate for the class of Gaussian random
processes in . Based on the structure of the eigenvalues in (12)
and (14), and the properties of in Lemma A.1 in Ap-
pendix I-A, the rate–distortion function of the random process
satisfies the following lemma.

Lemma 4.1: For Gaussian random processes in , for any
constant , we have

(29)

(30)

when is small enough.

A proof of Lemma 4.1 is provided in Appendix I-B. Using
Lemma 4.1, and recognizing the facts that is a nonde-
creasing function of , and is a strictly decreasing function
of when , i.e., its inverse function exists when is
large enough, we have the next theorem which presents a lower
bound for the distortion–rate function of the random process.

Theorem 4.1: For Gaussian random processes in , for any
constant , we have

(31)

when is large enough.

We will divide our discussion into two separate cases based
on the sum power constraint . For the first case, is
such that

(32)

The cases and are included in
satisfying (32). From (27), we see that in this case

increases monotonically in . Hence, when is large enough,
will be large enough such that Theorem 4.1 holds. Hence,

for any constant , a lower bound on the minimum
achievable expected distortion is

(33)
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when is large enough. Hence, when sum power constraint
satisfies (32), the minimum achievable distortion is

(34)

For the second case, is such that (32) is not satisfied. In
this case, is either a constant independent of or goes to
zero as goes to infinity. The minimum achievable distortion
does not go to zero with increasing .

Therefore, for all possible sum power constraints , the
minimum achievable distortion is

(35)

When the sum power constraint grows almost expo-
nentially with the number of nodes, the lower bound on the
minimum achievable expected distortion in (35) decreases in-
verse polynomially with . Even though this provides excellent
distortion performance, it is impractical since sensor nodes are
low-energy devices and it is often difficult, if not impossible, to
replenish their batteries. When the sum power constraint
is such that (32) is not satisfied, the transmission power is so
low that the communication channels between the sensors and
the collector node are as if they did not exist. From (35), the
lower bound on the estimation error in this case is on the order
of , which is equivalent to the collector node blindly estimating

for all . Even though the consumed sum
power is very low in this case, the performance of the
sensor network is unacceptable; even the lower bound on the
minimum achievable expected distortion does not decrease to
zero with the increasing number of nodes. For practically mean-
ingful sum power values, including the cases of
and , the lower bound on the minimum achievable
expected distortion in (35) decays to zero at the rate of

(36)

V. AN UPPER BOUND ON THE ACHIEVABLE DISTORTION

A. Arbitrary Gaussian Random Processes

Any distortion found by using any achievability scheme will
serve as an upper bound for the minimum achievable expected
distortion. We consider the following separation-based achiev-
able scheme. First, we perform multiterminal rate–distortion
coding at all sensor nodes using [16, Theorem 1]. After ob-
taining the indices of the rate–distortion codes, we transmit the
indices as independent messages using the amplify-and-forward
method introduced in [17]. The distortion obtained using this
scheme will be denoted as .

First, we determine an achievable rate region for the commu-
nication channel from the sensor nodes to the collector node.
The channel by its nature is a multiple-access channel with po-
tential cooperation between the transmitters. The capacity re-
gion for this channel is not known. We get an achievable rate
region for this channel by using the idea presented in [17].

Theorem 5.1: When the sum power constraint is such
that there exists an where

(37)

for any constant , the following rate region is achiev-
able:

nats/channel use (38)

where is the rate achievable from sensor to the collector
node, is a positive constant independent of

(39)

when is large enough. Otherwise, the sum rate is bounded by
a nonnegative constant as .

A proof of Theorem 5.1 is provided in Appendix I-C. The-
orem 5.1 shows that when the sum power constraint is such that
(37) is satisfied, the achievable rate increases with . Further-
more, the achievable rate is the same as the upper bound on the
achievable sum rate in (26) order-wise. Otherwise, the achiev-
able sum rate is either a positive constant or decreases to zero,
which will result in poor estimation performance at the collector
node. The achievability scheme proposed in the proof of The-
orem 5.1 incurs a delay that is proportional to the number of
sensor nodes. From a practical point of view, it is desirable to
have achievability schemes that perform better in terms of the
latency. In this paper, we propose an achievability scheme that
meets the lower bound order-wise, and leave the issue of devel-
oping better achievability schemes to future work.

Since the achievable rate region developed above is only char-
acterized by the sum rate constraint, in the source coding part,
for a fixed distortion constraint, we only need to characterize the
achievable sum rate, rather than the achievable rate region. We
apply [16, Theorem 1], generalized to sensor nodes in [27,
Theorem 1], to obtain an achievable sum rate–distortion point.
The achievability scheme is an indirect version of the achiev-
ability scheme developed by Berger and Tung [28].

Theorem 5.2: For all Gaussian random processes, the fol-
lowing sum rate and distortion are achievable:

(40)

(41)

where is a column vector of size , with its th element

being , is defined as

(42)
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i.e., the th element of is ,

and are the eigenvalues of .

A proof of Theorem 5.2 is provided in Appendix I-D.
We further evaluate in the next lemma.

Lemma 5.1: For all Gaussian random processes, we have

(43)

where , , and are defined as

(44)

and

(45)
and

(46)

respectively.

A proof of Lemma 5.1 is provided in Appendix I-E.
Lemma 5.1 tells us that the expected distortion achieved by
using the separation-based scheme is upper bounded by the
sum of three types of distortion. The first two types of dis-
tortion, and , have nothing to do with the rate and
only depend on how well the samples approximate the entire
random process. The third distortion, , depends on the
rate through variable .

The function is a strictly decreasing function of
, thus, the inverse function exists, which we will denote as

. Let us define as the composition of the two
functions and , i.e.,

(47)

An upper bound on the minimum achievable distortion, i.e., the
achievable distortion by the separation-based scheme described
above, is

(48)

where is defined in (38).
We will perform this calculation when the underlying random

process is in .

B. The Class of Gaussian Random Processes in

We analyze the three types of distortion in (43) for Gaussian
random processes in . We will focus on and in
Lemma 5.2, and on in Lemma 5.3.

Lemma 5.2: For Gaussian random processes in , we have

(49)

(50)

A proof of Lemma 5.2 is provided in Appendix I-F. The re-
sult depends crucially on Condition 2 in the definition of in
Section III, i.e., the smoothness of the autocorrelation function

. Note that since , both and
decrease to zero inverse polynomially as goes to infinity.

It remains to calculate the functions and for
random processes in . To do so, we need some properties
of which are stated in Lemmas A.3 and A.4 and
proved in Appendix I-G. Lemma A.3 is of great importance, as
it serves as a tool to link to , which is used
in the derivation of the lower bound in Section IV, through the
lower and upper bounds and . Armed with the

properties of , , and in Lemmas A.1–A.4 in Appen-
dices I-A and I-G, we can show the following lemma. First, we
define two sequences and , which are functions of ,
that satisfy

(51)

Lemma 5.3: For Gaussian random processes in , for any
constant , lower and upper bounds for the function

are

(52)

and an upper bound for the function is

(53)

for and large enough.

A proof of Lemma 5.3 is provided in Appendix I-H. The proof
of Lemma 5.3 uses Conditions 1, 2, and 3 in Section III. Let us
define a sequence , which is a function of , that satisfies

(54)

Combining (43), (49), (50), (52), and (53), we have the fol-
lowing theorem.

Theorem 5.3: For Gaussian random processes in , for any
constant , the achievable distortion–rate function

is upper bounded shown in (55) at the top of the fol-
lowing page, for in the interval of

(56)

when is large enough.



LIU AND ULUKUS: SCALING LAWS FOR DENSE GAUSSIAN SENSOR NETWORKS AND THE ORDER OPTIMALITY OF SEPARATION 3661

(55)

A proof of Theorem 5.3 is provided in Appendix I-I. This
theorem shows that when is in the interval (56), the achievable
distortion–rate function is the same as the lower bound on the
distortion–rate function in (31) order-wise.

Theorem 5.4: For Gaussian random processes in , when the
sum power constraint satisfies (37) and

(57)

an upper bound on the minimum achievable expected distor-
tion, or equivalently, the achievable rate in the separation-based
scheme, is as shown in (58) and (59) at the bottom of the page,
when is large enough.

A proof of Theorem 5.4 is provided in Appendix I-J. The-
orem 5.4 implies that, when the sum power constraint satisfies
(37) and (57), the minimum achievable expected distortion is

(60)

For the interesting cases of and
, the upper bound on the minimum achievable expected dis-

tortion decays to zero at the rate of

(61)

When the sum power constraint is such that (37) is not satisfied,
an upper bound on the minimum achievable expected distortion
is .

VI. COMPARISON OF THE LOWER AND UPPER BOUNDS FOR

GAUSSIAN RANDOM PROCESSES IN

A. Order-Wise Comparison of Lower and Upper Bounds

In this section, we compare the lower bound in (35) and the
upper bound in (60). When the sum power constraint is large,
i.e., is so large that (57) is not satisfied, our methods in
finding the upper bound do not apply. Even though our lower
bound in (35) is valid, we have not shown whether the lower
and upper bounds meet. However, in this case, is larger

than , and this region of sum power con-
straint is not of practical interest.

When the sum power constraint is medium, i.e., is

in the wide range of to , our
lower and upper bounds do meet and the minimum achievable
expected distortion is

(62)

One possible order-optimal achievability scheme is a sepa-
ration-based scheme, which uses distributed rate–distortion
coding as described in [16] and optimal single-user channel
coding with amplify-and-forward method as described in [17].
In fact, when the sum power constraint is medium, as shown in
(31) and (55), lower and upper bounds on the distortion–rate
function and coincide order-wise. In addition,
as shown in (27) and (38), the lower and upper bounds on
the achievable sum rate, and coincide order-wise as
well. The practically interesting cases of
and fall into this region of medium sum power
constraint. In both cases, the minimum achievable expected
distortion decreases to zero at the rate of

(63)

Hence, the sum power constraint performs as well
as “order-wise,” and therefore, in practice we
may prefer to choose . In fact, we can decrease the
sum power constraint to and the minimum
achievable distortion will still decrease to zero at the rate in (63).

When the sum power constraint is small, i.e., ranges
from to , our lower and upper bounds do not meet.
Our lower bound in (35) decreases to zero as but
our upper bound is a nonzero constant. The main discrepancy
between our lower and upper bounds comes from the gap be-
tween the lower and upper bounds on the sum capacities
and for a cooperative multiple-access channel. In fact, when
the sum power constraint is small, as shown in (31) and (55),
lower and upper bounds on the distortion–rate function
and still coincide order-wise. This sum power constraint
region should be of practical interest, because in this region,
the sum power constraint is quite low, and yet the lower bound
on the distortion is of the same order as one would obtain with
any which increases polynomially with . Hence, from
the lower bound, it seems that this region potentially has good
performance. However, our separation-based upper bound does

(58)

(59)
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not meet the lower bound, and whether the lower bound can be
achieved remains an open problem.

When the sum power constraint is very small, i.e., is
less than , our lower and upper bounds meet and the min-
imum achievable expected distortion is a constant that does not
decrease to zero with increasing . This case is not of practical
interest because of the unacceptable distortion.

In the case of Gauss–Markov random process, we have
and . Inserting these values into the
above results, we see that in the medium sum power constraint

region, i.e., is in the wide range of to , the
minimum achievable expected distortion is

(64)

For the Gauss–Markov random process, in the cases of
and , the minimum achievable expected

distortion decreases to zero at the rate of

(65)

The conclusions in (64) and (65) were derived in [1] under a
different channel assumption. For the channel assumption in [1],
the order-optimal achievability scheme was determined to be a
decode-and-forward based scheme. The range of medium power
constraints was shown to be slightly larger in [1], i.e.,

in the range of to , and this is because it was
specifically derived for the Gauss–Markov process, instead of
general Gaussian random processes as in this work.

B. Comparison of the Constants in the Lower and Upper
Bounds

Though the lower and upper bounds meet order-wise in a
wide range of sum power constraints, the constants in front of
them are different and we aim to compare these constants for
various sum power constraints in this section.

Combining (33) and (59), when satisfies (37) and (57),
the minimum distortion satisfies (66), shown at the bottom
of the page. Note that can be made as close to as possible
for large enough . Let be the ratio of the constant in
the lower bound and the constant in the upper bound when is
large enough. Then

(67)

Here, is a parameter of the underlying Gaussian random
process and depends on the sum power constraint of the
sensor nodes . It is straightforward to see that since from
(39), , is a monotonically decreasing function
of for a fixed . Hence, we conclude that the constants in front
of the lower and upper bounds differ more as gets large. Since

is an indication of how concentrated the randomness of the
random process is, this means that the more evenly distributed
the randomness, the more the constants in the lower and upper
bounds meet. For a fixed underlying random process, i.e., for a
fixed , is a decreasing function of . This means that
the less the sum power constraint we have, the more different
the constants will be.

In the Gauss–Markov random process and .
When and , the ratio of the two
constants is

(68)

When , , the ratio of the two
constants is

(69)

For example, when , the ratio of the con-
stants is

(70)

VII. FURTHER REMARKS

We have shown that the minimum achievable expected dis-
tortion behaves order-wise as

(71)

Due to the order-optimality of separation, this result can be gen-
eralized straightforwardly to several other scenarios.

The result in (71) still holds when we allow the collector
node to use its transmit antenna with an arbitrary power con-
straint. The collector node, using its transmit antenna, can send
some form of feedback to the sensor nodes. However, the lower
bound on the minimum distortion remains unchanged in this
case, because in deriving our lower bound, we assumed that all
sensor nodes know the entire random process, thus, forming a

(66)
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point-to-point system. In a point-to-point system, feedback, per-
fect or not, does not change the capacity. Meanwhile, our upper
bound is still valid, as in this achievable scheme, we choose not
to utilize the feedback link. Hence, our result in (71) remains
valid.

The result in (71) still holds when we allow channel uses
per realization of the random process, where is a constant
independent of . This is because both lower and upper bounds
are derived using separation-based schemes. The minimum
achievable distortion still behaves as (71), and the number
will only affect the constant in front. Due to the same reasoning,
the minimum achievable distortion behaves as (71) when we
allow multiple transmit and receive antennas at each node, as
long as the number of antennas on each node is a constant,
independent of .

The assumption of the polynomial decay of the eigenvalues
plays a key role for the separation principle to hold order-wise.
For example, when the eigenvalues decrease exponentially, i.e.,
the th eigenvalue is roughly , the distortion rate function
of the lower bound is

(72)

Thus, in the lower bound, the distortion goes to zero almost ex-
ponentially with the rate , as opposed to the polynomial de-
crease in as in (31). It can be shown, using the exact same
proof techniques as those used in Section V-B, that the achiev-
able distortion–rate function is the same order as (72), for a wide
range of sum power constraints. However, in the channel coding
part, the converse and the achievability of the sum rate meet
only order-wise, i.e., the lower and upper bounds on the sum
rate are of the form and where

. The difference in the constants in the lower and upper
bounds on the sum rate will cause an order difference in the
distortion, i.e., is strictly

of a larger order than for
. Hence, when the underlying random process is such

that the eigenvalues decrease exponentially, the separation prin-
ciple does not hold, even order-wise. This agrees with the ob-
servation made in Section VI-B that the constants in front of the
lower and upper bounds differ more as gets large.

For simplicity, we have considered only one-dimensional spa-
tial random processes. We expect the generalization to two-di-
mensional random fields to be straightforward, but nonetheless
tedious. Our results do not generalize straightforwardly when
the samples that the sensor nodes obtain are subject to noise.
Since the lower bound of assuming all sensors know the entire
random process would remain the same with or without noise,
the lower bound becomes too loose. Hence, the optimal perfor-
mance under the noisy sensor scenario remains open.

VIII. CONCLUSION

In this paper, we investigated the performance of dense
sensor networks by studying the joint source–channel coding
problem. We provided separation-based lower and upper
bounds for the minimum achievable expected distortion when
the underlying random process is Gaussian. When the random
process satisfies some general conditions, such as polynomial

decrease rate of the ordered eigenvalues of the random process,
i.e., the th eigenvalue is roughly , we evaluated the lower
and upper bounds explicitly, and showed that they are both
of order for a wide range of sum power con-

straints ranging from to . In
the most interesting cases, when the sum power constraint is
a constant or grows linearly with , the minimum achievable
expected distortion decreases to zero at the rate of .
For random processes that satisfy these general conditions,
under these power constraints, we have found an order-optimal
scheme that is separation-based, and is composed of distributed
rate–distortion coding [16] and amplify-and-forward channel
coding [17].

APPENDIX I

A. Some Properties of and

In this subsection, we provide two lemmas which characterize
some properties of and , defined in (12) and
(13), which will be useful in deriving our main results.

Lemma A.1: For any constant , we have

(73)

and

(74)

when is small enough.

Lemma A.2: For any constant , we have

(75)

and

(76)

when is small enough.

1) Proof of Lemma A.1: We will first prove (73).

(77)

(78)

(79)
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where (77) is true when is small enough, more specifically,

when . We have (78) because of the
inequality

(80)

and (79) is true when is small enough, i.e., for any ,
there exists a such that when , (79) is
true.

Next, we will prove (74). See (81)–(85) at the bottom of the
page, where (81) is true when is small enough, more specif-

ically, when , and (83) follows by using
Stirling’s approximation

(86)

Equation (84) follows because is a constant, independent of
, defined as

(87)

and (85) is true when is small enough, i.e., for any ,
there exists a such that when , (85) is
true.

Therefore, for any , (73) and (74) hold when is
small enough.

2) Proof of Lemma A.2: We will first prove (75).

(88)

(89)

(90)

where (88) follows when is small enough, more specifically,

when . In obtaining (89) we used

(91)

and (90) follows when is small enough, i.e., for any ,
there exists a such that when , (90) is
true.

Next, we will prove (76). See (92)–(97) at the top of the fol-
lowing page, where (92) is true when is small enough, more

specifically, when . We have (93) because

(98)

for all between and , and when is
small enough such that

(99)

We have (95) because we defined

(100)

(81)

(82)

(83)

(84)

(85)
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(92)

(93)

(94)

(95)

(96)

(97)

We used Stirling’s approximation

(101)

to obtain (96), and (97) follows when is small enough, i.e.,
for any , there exists a such that when

, (97) is true.
Therefore, for any , (75) and (76) hold when is

small enough.

B. Proof of Lemma 4.1

For any , when is small enough, the results of
Lemma A.1 hold.

From (24), we have

(102)

(103)

(104)

(105)

where in (103) we have used the definition of sequence
in (12) and the observation in (14). Equation (104) follows
when is small enough, more specifically, when

and . Equation (105) follows from (74) in
Lemma A.1.

From (25), we have

(106)

(107)

(108)

(109)

(110)

where in (107) we have used the definition of sequence
in (12) and the observation in (14). Equation (108) follows
when is small enough, more specifically, when and

. Equation (109) follows from (73) in
Lemma A.1. Equation (110) is true for small enough , i.e.,
for any , there exists a such that when

, (110) is true.
Therefore, for any , (29) and (30) hold when is

small enough.



3666 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

C. Proof of Theorem 5.1

We will show that each sensor node can achieve a rate of
, while the other sensor nodes have rate zero, then by the

time sharing argument [29] we can achieve the rate region of

(111)

We will consider the transmission of the data of node . All
other sensor nodes have no data to transmit and are helping
with the communication between sensor node and the collector
node. Node codes its message using capacity-achieving single-
user coding techniques with codeword length . Each codeword
symbol requires two time slots. In the first time slot, node trans-
mits its codeword symbol using power . All other nodes
remain silent, and receive a noisy version of node ’s transmitted
signal. The collector node ignores its received signal, which is
suboptimal but eases calculation and does not affect the scaling
law of the achievable rate. In the second time slot, all sensor
nodes, except node , amplify and forward what they have re-
ceived in the previous time slot to the collector node using a
sum power constraint . The collector node, after time
slots, decodes using capacity-achieving single-user decoding
techniques. The scheme described satisfies the sum power con-
straint of . Now, we calculate the rate achievable with this
scheme. In the first time slot, sensor node receives

(112)

and in the second time slot, sensor node transmits

(113)

(114)

where is the scaling coefficient of node when it amplifies
the signal it received from node . In order to satisfy the sum
power constraints, have to satisfy

(115)
The collector node receives

(116)

(117)

Therefore, the achievable rate is

(118)

where we have because we used two time slots to transmit
one codeword symbol. We choose

(119)

where, in order to satisfy the power constraint, the constant
must satisfy

(120)
We can choose as

(121)

Thus, from (118), a lower bound on the achievable rate is

(122)

Clearly, rate can be achievable by any node . We have

(123)

(124)

where the last step follows when is large enough such that
.

When is such that

(125)

for any , we have

(126)

(127)

(128)

for large enough, i.e., there exists , such that when
, (126) and (128) are true.

When is such that

(129)

and is a number that satisfies , fix some small
, there exists an such that when ,

we have

(130)
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Hence, when , for any

(131)

(132)

where the last step follows when is large enough,
i.e., when there exists an , such that when

, (132) is true.
When is such that

(133)

and there exists a constant , such that

(134)

we have for

(135)

(136)

(137)

(138)

where the last step follows from

(139)

when is large enough, i.e., there exists an , such
that when , (135), (136), and (139) are true, and
therefore, (138) is true.

Thus, combining all possible cases of , we see that
when is such that there exists a constant , such that

(140)

for any , the following rate from sensor node
to the collector node is achievable:

(141)

where constant is

(142)

when is large enough.
Since the achievable rate is achievable for any sensor ,

by a time sharing argument, the region

(143)

is achievable.

For all other , from (124), we see that the achievable
sum rate approaches a positive constant or zero as goes to
infinity.

D. Proof of Theorem 5.2

We restate the generalization of [16, Theorem 1], which ap-
peared in [27, Theorem 1] for sensor nodes below. This pro-
vides us with an achievable sum rate–distortion point, since the
sum rate constraint is always tight [27].

Theorem A.1: [16], [17] A rate–distortion sum rate
and distortion are achievable if there exist random variables

with

(144)

and an estimator function

(145)

such that

(146)

(147)

where random variables are defined as ,
.

We obtain an achievable rate–distortion point when we
specify the relationship between as

(148)

where , , are i.i.d. Gaussian random vari-
ables with zero-mean and variance and independent of ev-
erything else. Here, we can adjust to achieve various feasible
rate–distortion points [16].

We choose the minimum mean-square error (MMSE) esti-
mator to estimate from observations . Hence, the
achieved distortion is

(149)

The sum rate required to achieve this distortion is

(150)

(151)

where are the eigenvalues of .
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Next, let , , and, therefore,
. We define two functions of as

(152)

and

(153)

and by definition, sum rate and distortion are
achievable for an arbitrary Gaussian random process.

E. Proof of Lemma 5.1

Using the matrix inversion lemma [18]

(154)
we have

(155)

(156)

where we have defined and as the first and
second terms of the right-hand side of (155), respectively. We
continue evaluating .

(157)

(158)

where is defined as

(159)

for , and (158) follows based on the fact
that

(160)

where is the row vector whose th entry is and all other
entries are .

The eigenvalues of are

(161)

which are smaller than the corresponding eigenvalues of ,
i.e., . Thus, the third term in (158) is bounded by

(162)

To further upper bound the third term in (158), we write
(163)–(166) at the top of the following page, where is
defined in (44). Then, we have the third term in (158) upper
bounded by because of (162), (166), and the fact that

is nonnegative, i.e.,

(167)

Furthermore, we can see from (166) that

(168)

Now, we evaluate the second term in (158). Since

(169)

(170)

(171)

(172)
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(163)

(164)

(165)

(166)

Therefore, the second term in (158) is bounded by

(173)

where is defined in (45). Finally, the first term in (158)
can be written as

(174)

where the last step is by the definition of in (46). Hence,
for an arbitrary Gaussian random process, by (156), (158),
(167), (168), (173), and (174), we have shown that

(175)

F. Proof of Lemma 5.2

Using Condition 2 in Section III and the definition of ,
in (44), (45), we have

(176)

(177)

G. Some Properties of

Lemma A.3: For all Gaussian random processes in , let
be a sequence of numbers that satisfies

(178)

(179)

(180)

Then, for each such that , there exists an eigen-
value , different for each , of such that

(181)

for some and some positive integer , both independent
of and , when is large enough.

Lemma A.3 shows that the convergence of to is not

uniform, and the approximation of using is accurate
only when and . When the condi-
tions of Lemma A.3 are satisfied, we label the that satisfies
(181) to be for . The remaining
eigenvalues of will be labeled according to the order from
large to small.

Lemma A.4: For all Gaussian random processes in , let
two sequences and satisfy (51). Then, for any constant

, we have

(182)

when and is large enough.

Lemma A.4 shows that the sum of the eigenvalues that do

not converge to for is the same
order as

as calculated in (75).

1) Proof of Lemma A.3: Due to the rather lengthy nature
of this proof, here, we present the major steps and leave some
of the details out. A complete proof can be found in [30].

By definition, for any satisfies

(183)
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We rewrite the right-hand-side of (183) by

(184)

where is defined as

(185)

Using (183) and (184), we have for any

(186)

Let us define vector of length of by defining its th

element to be and vector of length of

by defining its th element to be , we have
in matrix form

(187)

The links between the eigenvalues of and the eigenvalues
of , i.e., the ’s, will be determined using (187).

To do this, we first bound three quantities , ,

for and .

Now, we analyze the norm of . From the definition of
in (185), and the fact that the random process sat-

isfies Condition 3 in Section III, we have

(188)

Thus, the norm of vector is bounded by

(189)

Now, we will calculate the norm of vector . We write

(190)

where is defined as

(191)

We first upper bound , for . Let be
defined as

(192)

Then, by the mean value theorem on interval , we have
that there exists a , such that

(193)

Hence, using Condition 3 in Section III, we have

(194)

Thus

(195)

Using (16) and (195), we have for any

(196)

The approximation error satisfies

(197)

(198)

(199)

where (197) follows from (196), and (199) is due to the fact that
satisfies (178) and (179), for a fixed constant that

satisfies , there exists an integer , such that
for

(200)
Finally, by the definition of , we have

(201)

where (201) follows from (190). From (199), we have

(202)

Next, we show that based on the orthogonality of the eigen-
functions of , the sampled version ’s are almost or-
thogonal. Using (16) and (195), we have

(203)
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Let and be two different integers, that belong to
. Then, we have

(204)

Then, we have (205)–(207) at the bottom of the page, where
(205) follows from (203), (207) follows when is large enough
due to the fact that satisfies (178), i.e., there exists an
integer such that when , (207) is true. The right-
hand side of (207) converges to zero as goes to infinity due
to the fact that satisfies (179). We have

(208)

(209)

which means that vectors and become more orthog-
onal as gets larger.

Now, we are ready to establish the link between the eigen-
values of and . From (187), we have

(210)

(211)

Thus, we have

(212)

(213)

(214)

where (214) follows by defining as

(215)

Hence, for , there exists an eigenvalue
of such that

(216)

when is large enough.
For , if we label the that satis-

fies (216) to be , then when for different ’s are suffi-
ciently close; more specifically

(217)
and , though labeled differently, might be the

same eigenvalue of , which is undesirable. If we relax
the minimum distance of , we will be able to
eliminate this problem. Thus, we will next show that for

, there exists an eigenvalue of
, different for each , such that

(218)

when is large enough, where we define
and the constant as the largest root of

the following second-order equation:

(219)

It can be checked that both roots of the preceding equation are
real, and the largest root is a positive constant, strictly larger
than , that is a function of and .

First, let us define a cluster of ’s. We say that ’s are a
cluster, where with no loss of generality, we may label these ’s

, if

(220)

Note here that whether the ’s are in a cluster depends on .
By using Condition 1 in Section III and the fact that
satisfies (178) and (180), it can be shown that for large enough

, the size of a cluster is at most , which is a finite number.
Let the eigenvalues and the corresponding eigenvectors of

be and , , with arbitrary

(205)

(206)

(207)
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labeling of the eigenvalues and eigenvectors. Following from
(187), we have

(221)

We take the norm squared on both sides, and due to the orthog-
onality of eigenvectors , we have

(222)

and we also have

(223)

Let be a cluster, and from previous ar-
guments, we know . Furthermore, we are only interested
in the first eigenvalues, and therefore

. We will prove this by contradiction. Suppose that only
number of ’s are within distance

(224)

from any of the , with , we
will show that there is a contradiction, and therefore, we can
conclude that our assumption that number of ’s are
within distance (224) from any of the is not
correct.

Let us label the that are within distance (224) from any
of the . Before we
dive into the details, let us first explain the basic idea of the
proof. form the basis of a -dimensional
subspace. On the other hand, are almost
orthogonal, according to (209), and roughly form the basis of a

-dimensional subspace. Since all other ’s, for
, are farther than distance (224) away, by Wedin’s

theorem in perturbation theory [31], the angle between and
the subspace is small, for all . But this is not
possible, since is strictly smaller than . Now, we proceed with
the rigorous proof.

Note that because we have already proved (216). Based
on (214), the distance in (224) satisfies

(225)
Then, based on (222), we have

(226)

Hence, we have

(227)

Together with (223), we have

(228)

Since the form a complete set of orthonormal basis in ,
we can write as

(229)

where is orthogonal to , for . From
(228) and (229), we have

(230)

(231)

Furthermore, by using (209), (202), (231), and the fact that
satisfies (179), for , we

have

(232)

when is large enough.
Let us define matrix to be of dimension , with the

th component being , and define vectors , , and
to be column vectors of length , with the th element being

, , and , respectively. Then,
by (229), we have

(233)

thus, we have

(234)

We start by evaluating , which is equal to the inverse of
the smallest eigenvalue of . From the definition of matrix

, we have

(235)

where is an diagonal matrix with the th diag-
onal element being , and is an
matrix with zero diagonals and th element being
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, when . The absolute dif-
ference between the smallest eigenvalue of and is
upper bounded by [31]. The smallest eigenvalue of is

(236)

(237)

where (236) follows from (230), and (237) follows from (202)
when since . We can upper
bound the spectral norm of matrix , i.e., , by the Frobe-
nius norm of , i.e.,

(238)

(239)

(240)

(241)

where (239) follows from (232). Hence, we may conclude that

(242)

where the right-hand side is a positive number, by the definition
of . Next, we evaluate .

(243)

(244)

(245)

(246)

(247)

(248)

where (245) follows from (231), and (246) follows from (202)
when since . Finally, we evaluate

.

(249)

(250)

(251)

(252)

where (250) follows from (209) when .
Following from (234), using (248), (252) and (242), we have

(253)

(254)

(255)

where (254) follows when is large enough, due to the fact
that satisfies (179), i.e., there exists an integer , such
that when

(256)

and (254) is true, and (255) follows from the definition of by
(219). Hence, when is large enough, we have a contradiction
with (228). Therefore, we conclude that there must be at least

eigenvalues of within distance (224) away from any of
the clustered ’s, furthermore, from the definition of a cluster
in (220), there must be at least eigenvalues within distance

(257)

which is less than or equal to

(258)

away from all of the clustered ’s. We pick eigenvalues of
which are within distance (258) and arbitrarily pair each

clustered with one of the eigenvalues. These eigenvalues will
not be paired with any other because all other clusters of s
are at least distance apart from this cluster.

Finally, by letting

(259)

we have the desired results when is large enough. Note that
is a positive integer and is a positive constant, independent

of and .

2) Proof of Lemma A.4: In the proof of Lemma A.4, we
will need results from Lemma A.2 and A.3. Thus, we will first



3674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

prove that under the condition of Lemma A.4, the results of
Lemma A.2 and A.3 apply. Since

(260)

for any , when is large enough, is small
enough, which means that the result of Lemma A.2 is valid.
Now we show that the result of Lemma A.3 is also true. Let

. Because of

(261)

we have (179) and (180). Because of (260) and the fact that
, we have (178).

Hence, for any , the result of
Lemma A.3 applies because

(262)

and is large enough.
Now, we will use the result of Lemma A.2 and A.3 to prove

Lemma A.4. From the properties of the Karhunen–Loeve ex-
pansion, we know that

(263)

Thus, for any constant , we have

(264)

(265)

(266)

where we have used (75) in Lemma A.2 to obtain (266).
From the definition of matrix , we have

(267)
Thus

(268)

(269)

(270)

(271)

(272)

where (269) follows by Lemma A.3. We have used (266) to
obtain (270), and Condition 2 in Section III to obtain (271).
Equation (272) holds when is large enough, because ,
and satisfies (51). Therefore, for any , (182) holds
for when is large enough.

H. Proof of Lemma 5.3

Since the condition of Lemma 5.3 is the same as Lemma A.4,
the results of Lemmas A.2–A.4 hold. By the same argument as
Lemma A.2, Lemma A.1 holds as well.

We first prove (52). Since satisfies

(273)

when is large enough such that

(274)

we can provide an upper bound on by splitting the sum
of variables into two parts

(275)

For any , we start with the first term in (275). See
(276)–(279) at the top of the following page, where (276) fol-
lows from Lemma A.3, (277) follows because the derivative of
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(276)

(277)

(278)

(279)

the function is bounded by for , and the
observation in (14), (278) follows because of (76) in Lemma
A.2. Equation (279) holds when is large enough, because

, and satisfies (51).
Now, we will study the second term of (275).

(280)

(281)

where in obtaining (280) and (281), we have used the fact that
and (182) in Lemma A.4, respectively.

We combine the results of (279) and (281) and obtain

(282)

Using similar methods, and Lemma A.1 in place of Lemma A.2,
we may also lower bound as

(283)

For full details, please see [30].
Now we evaluate for large enough and

, and prove (53).

(284)

(285)

(286)

(287)

(288)

where (285) follows because of the same reason as (275), and
(286) follows because of the fact that for ,

, and (287) follows from (182) of Lemma A.4, (288)
follows because , and goes to zero as goes to
infinity. Therefore, for any , (52) and (53) are true
for when is large enough.

I. Proof of Theorem 5.3

Note that (52) implies that

(289)

for large enough and in the interval of

(290)

From the definition of in (47), we have (291)–(294) at
the top of the following page, where (292) follows from (43),
(293) follows because of (53), (294) follows from (49), (50),
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(291)

(292)

(293)

(294)

(289), and the fact that in (56) implies that is in (290), and
when is in (290), is in . When is in (56),
we have that the third term in (294) is much larger than the sum
of the first and second terms when is large enough due to the
fact that

(295)

Therefore, for , (55) is true for in the interval of
(56) when is large enough.

J. Proof of Theorem 5.4

Pick the sequences and as

(296)

Then, because satisfies (37) and (57), satisfies (54),
and satisfies (51). According to (38), we have the achiev-
able rate in the interval of (56), and thus, when is large
enough, Theorem 5.3 applies. Therefore, when satisfies
(37) and (57), for any , (59) holds when is large
enough.
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