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Xmipp is a specialized software package for image processing in electron microscopy, and that is mainly
focused on 3D reconstruction of macromolecules through single-particles analysis. In this article we pres-
ent Xmipp 3.0, a major release which introduces several improvements and new developments over the
previous version. A central improvement is the concept of a project that stores the entire processing
workflow from data import to final results. It is now possible to monitor, reproduce and restart all com-
puting tasks as well as graphically explore the complete set of interrelated tasks associated to a given
project. Other graphical tools have also been improved such as data visualization, particle picking and
parameter ‘‘wizards’’ that allow the visual selection of some key parameters. Many standard image for-
mats are transparently supported for input/output from all programs. Additionally, results have been
standardized, facilitating the interoperation between different Xmipp programs. Finally, as a result of a
large code refactoring, the underlying C++ libraries are better suited for future developments and all code
has been optimized. Xmipp is an open-source package that is freely available for download from: http://
xmipp.cnb.csic.es.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

From the beginning, image processing and software develop-
ment have been fundamental parts of electron microscopy (EM)
studies of macromolecular structures. In 1996, the Journal of Struc-
tural Biology dedicated a special issue to software tools in the field
(Carragher and Smith, 1996). Some of the papers published in that
issue are among the most cited works of the journal (Smith and
Carragher, 2008). In this issue, several software packages used by
the EM community were reviewed, such as SPIDER (Frank et al.,
1996), IMAGIC (van Heel et al., 1996), MRC (Crowther et al.,
1996), EM (Hegerl, 1996), PFT (Baker and Cheng, 1996), Suprim
(Schroeter and Bretaudiere, 1996), MDPP (Smith and Gottesman,
1996) and Xmipp (X-Windows-based microscopy image process-
ing package) (Marabini et al., 1996). Most of these packages are
still in use today, and have been improved over the years. Some
new packages have also been developed during the last decades,
including EMAN (Ludtke et al., 1999; Tang et al., 2007), IPLT
(Philippsen et al., 2003) and Bsoft (Heymann and Belnap, 2007).
Initially, Xmipp was a set of individual programs written in
ANSI-C that included some visualization tools based on the X11
graphics library. It was designed originally for single-particles
analysis, but it also included some tools for working with 2D crys-
tals. Simplicity and portability were the main features of the pack-
age. While relatively small, Xmipp provided a broad variety of
methods for classification, ranging from neural networks (Marabini
and Carazo, 1994) to fuzzy multivariate statistical analysis (Carazo
et al., 1990). Several reconstruction algorithms, such as weighted
back-projection (WBP) and arithmetic methods (ART with blobs
(Marabini et al., 1998)) were implemented as part of the package.
The file formats used were compatible with SPIDER, facilitating
interaction with this well known package. Xmipp was conceived
as a development framework that could easily incorporate new
methodological advances developed by other groups. Except for
some tasks involving a graphical interface, the processing at that
time was originally performed by running individual programs
for each task and then manually connecting the results.

In 2004, the second major release of Xmipp (Xmipp 2.0) was de-
scribed by Sorzano et al. (2004). The package was completely
rewritten in C++, and included improved data structures and func-
tions, as well as new algorithms and methods. The main processing
workflow (from image acquisition to 3D reconstruction) still re-
quired the execution of individual programs. However, the use of
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Qt, a higher level graphics library (Eng, 1996), improved visualiza-
tion tools such as particle picking or image rendering. Additionally,
the computational overhead needed to run many time-consuming
algorithms was reduced through parallelization with Message
Passing Interface (MPI) library.

Another milestone in Xmipp development was the release of
version 2.4, which was distinguished mainly by the introduction
of a set of computational protocols (Scheres et al., 2008) and sev-
eral new methods, such as the ability to classify based on maxi-
mum likelihood (Scheres et al., 2005, 2007b) and to estimate the
contrast transfer function (CTF) (Velázquez-Muriel et al., 2003).
The protocols, which summarized the expertise of the Xmipp
community, were implemented as Python scripts containing input
parameters and code needed for program execution. Another
interesting and useful feature of the protocols was the ability to
automate the creation of a graphical user interface (GUI) for
launching batch processes.

Although Xmipp 2.4 was a major advance, Xmipp still contained
several limitations that would require a deep reorganization of the
code to resolve them. We began to address these limitations 2
years ago when we began work on a new version of Xmipp. The
culmination of that work was the release of Xmipp 3.0. The
primary improvements in this version are:

� A Project management tool was created to improve the data pro-
cessing workflow by offering traceability and reproducibility
through the management of protocol runs and individual pro-
cessing steps stored in a project database.
� Graphical interfaces are now more powerful and flexible. Project

and protocol GUIs facilitate the monitoring and launching of
tasks. Some ‘‘wizards’’ have been included for the selection of
important parameters. Data visualization and particle picking
have been significantly improved.
� Image formats support has been extended to cover most of the

formats used in the field, such as: spider, mrc, imagic, tiff, jpeg,
dm3, ser, spe, em and pif. Internal implementation of the data
model is independent of the image format used.
� Standardization of results allows for better interaction between

different Xmipp programs as well as communication with
external applications. A metadata structure was implemented
to handle different types of information using a SQL engine
and input/output from/to text files.

2. Project management

In Xmipp 2.4 there was no clear concept of a project. While
there was a folder with a set of Python scripts (protocols) for each
type of execution, there was no formal relationship among the
scripts. In Xmipp 3.0 we have organized the processing workflow
into projects (as other packages in the field do), composed of pro-
tocol runs. A run is an execution of a protocol, with specific values
as input parameters. All workflow information is stored in a project
database. The project database is contained in a single binary file
thanks to the use of an embedded SQL library that does not require
any server setup. This database only contains information about
protocol executions and its size does not increase significantly as
the project gets larger, since images are not part of the database.

Previously, the execution was protocol-oriented: the user
launched Python scripts to perform the required operations. Com-
munication between different protocols was achieved manually,
which required that the user know what output files were needed
as input for the next protocol. There was also no way to track
workflows (that is, which protocols where executed and in which
order). In Xmipp 3.0, protocols are still implemented in Python,
but the individual processing steps (e.g., functions and program
execution) are saved in a database. This approach allows the user
to easily monitor the progress of a run, restart it from a specific
point and validate that the expected results were obtained; if
expected results were not obtained, the entire execution can be la-
beled as ‘‘failed’’. To save computing time, if a protocol is restarted
with different parameters, only those steps affected by the new
parameters will be executed.

Moreover, results have been standardized to allow some input
parameters to refer to the output of another protocol; in this
way, the user does not need to know what files are required from
one protocol to another. Additionally, the protocol results are
better defined, facilitating the intercommunication between pro-
tocols. For example, all protocols that produce 2D classes should
generate two metadata files (classes.xmd and images.xmd)
that contain the assignment parameters of each image to each
class. A clear advantage of this approach is that other protocols
that need a classification result as input can use these files with-
out knowledge of which protocol produced them. As long as new
classification protocols produce files with the specified structure,
they can be integrated into the general workflow with no other
changes.

Projects can be easily ported to other computers by simply
copying the project folder. After a project is copied into a new com-
puter, all unfinished runs can be restarted. This can be particularly
useful for running interactive protocols on your local computer and
then moving the project to a computing cluster for more computa-
tionally intensive protocols, such as classification or reconstruc-
tion. The ability to easily move projects also facilitates sharing
with collaborators. Xmipp is the only additional requirement for
running a project on a target computer.

2.1. General processing workflow

While the general processing workflow of Xmipp 3.0 is very
similar to the one implemented in Xmipp 2.4 and described in de-
tail in Scheres et al. (2008), the processing has been improved with
knowledge gained during the last several years. The Xmipp 3.0
workflow starts by importing the micrographs, together with some
information about imaging conditions (see Fig. 1). After import, a
screening is performed to check that micrographs do not exhibit
astigmatism or drift. Micrographs can also be downsampled to
accelerate further calculations.

Particle coordinates are picked from micrographs and later
used for particle extraction. Particles selection should be done
first in manual-supervised mode and then completely automated.
Some operations can be applied during extraction, such as filter-
ing and contrast inversion. After extraction, particle images are
stored in a gallery. Particles are sorted according to a Z-score
(Scheres, 2010; Sorzano et al., 2013) to identify possible outliers
such as wrongly picked particles. The user may also directly im-
port a set of particle images and skip all steps preceding particles
extraction.

The extracted images can be used as input for 2D classification
algorithms to detect possible heterogeneities from contamination
or conformational changes. Images can be discarded and not con-
sidered in subsequent steps. If micrographs were taken as tilt-
pairs, an initial volume can be generated using the random conical
tilt method (RCT) (Radermacher et al., 1987). The initial volume
(obtained by RCT or provided by the user) can be refined by projec-
tion matching. Finally, 3D heterogeneity can be handled by ML3D,
MLF3D (Scheres et al., 2007a,b) or a multireference projection
matching approach.

The main differences between this workflow and the one pre-
sented in Scheres et al. (2008) are:

� After CTF computation, a GUI helps users to decide which
micrographs should be kept. Several criteria are provided for



Fig. 1. A generalized Xmipp 3.0 processing workflow. The protocols developed may
be divided into (1) micrograph acquisition and preprocessing, (2) particle picking
and extraction, (3) 2D alignment and classification and (4) 3D alignment and
reconstruction. Input and output data are shown in yellow, while operations are in
blue.
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micrograph selection such as: astigmatism, resolution, fitting to
the CTF model, etc.
� Data maybe be processed at different resolution in different

steps of the workflow.
� Automatic particle picking is available in the main workflow.
� After particle extraction, users can discard bad images using a

GUI based on similarity criteria.
� A new 2D classification algorithm (CL2D) has been

incorporated.
� A new 3D classification algorithm has been added (multirefer-

ence projection matching).
2.2. Project GUI

The main project GUI was designed to easily visualize project
information and simplify workflow management (see Fig. 2A). It
is divided into three main panels: (1) the left panel, which contains
buttons to open each group of protocols, (2) the right-top panel
labeled ‘‘History’’, which displays different runs and their name,
status and modification time, and (3) the right-bottom panel
labeled ‘‘Details’’, which contains summary information for the se-
lected run. There are two buttons between panels 2 and 3: Ana-
lyze Results and Output Files. The first launches some
visualization tools to inspect results of the selected protocol run.
The second opens the three standard logs files (out, error and
log) associated with the run. These files are useful for detailed
monitoring of the underlying task executions because they contain
the command line program calls and their output. In short, while
the intent of the project GUI is to hide all non-essential information
from the user, we also provide direct access to this information.
Moreover, all processing tasks started from the GUI can also be
launched from command line.

The list of protocol runs displayed in the ‘‘History’’ panel can
also be managed as an interactive graph (see Fig. 3). In this view
the user can access the same functionality as in the list view (i.e.,
create, duplicate, edit and delete runs) but with a better visual
representation of the project workflow. Boxes represent protocol
runs (their colors indicate different run states) and the connecting
lines indicate dependencies between the runs.

Each protocol contains a header with input parameters that is
parsed for automatic GUI generation (see Fig. 2B). All protocol GUIs
contain a comment box, where annotations about the run can be
made. The parallelization section is also common to all protocols
and can be used to set the number of threads or MPI processes.
In this section, the user can also choose to launch the process in
a queue system or execute the process immediately. Different
queue systems can be configured easily in Xmipp 3.0. This need
only be configured once and, after that, users will no longer need
to create submission scripts.

An important tool related to project and protocols is a special-
ized file browser (see Fig. 2D), that provides more functionality
than a standard file browser, such as recognition of EM specific file
formats, object previews and integration with external tools. The
specialized browser has been used as a base for the development
of other GUIs called ‘‘wizards’’, which are integrated in protocol
forms. Some critical parameters can produce poor results if
wrongly selected, however, wasting user and computation time.
The basic idea behind the wizards is to provide an additional GUI
to assists the user with critical parameter selection. For example,
the wizard shown in Fig. 2C helps the user select high and low fre-
quencies for CTF estimation.

The Getting Started section of Xmipp’s website (http://
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/GettingStarted) describes
some of the graphical interfaces in more detail. Video tutorials
demonstrating how to use the different wizards are provided at
http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/Tutorials#Video_
Demos.
2.3. Visualization tools

A key program used for data visualization is xmipp_show,
which displays metadata files (in a table view), individual images,
volumes or stacks. In Fig. 4A a volume is displayed slice by slice in
the Z-direction. This program is highly configurable and, users can
choose what columns to display, preview an image in a column or
perform many other operations on metadata, such as adding,
removing or searching. It is also possible to open external
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Fig. 2. Xmipp project graphical interfaces. (A) The main project GUI; left panel contains buttons to open protocol groups as well as parameter form; right-top panel contains a
list of all runs, their state and modification date; right-bottom panel contains a brief summary of the selected run. (B) Example of an automatically generated protocol GUI. (C)
Helper wizard to select low and high frequencies for CTF estimation. (D) Specialized file browser recognizing EM file formats and displaying an object preview.

Fig. 3. Detailed view of the interactive workflow graph. This alternative represen-
tation can be selected from the main project GUI. Each box represents a protocol
run. Colors are used to differentiate runs status in the following way: green for
successfully finished, red for failed, light blue for saved, light yellow for aborted and
yellow for currently running. The lines indicate the dependencies between runs. In
this example, the user imported two sets of micrographs and used different
parameters for some steps. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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visualization tools such as ImageJ (Abramoff et al., 2004) or
Chimera (Pettersen et al., 2004). For example, Fig. 4B displays the
same volume as Fig. 4A but opened in Chimera through
xmipp_show. In Fig. 4C a customized view of a metadata file (after
micrograph screening) is displayed. In this example, some columns
are displayed with a preview and some headers have been
renamed.

Some tasks required the development of very specific GUIs to
enhance the final user experience. For example, the particle picking
interface was developed from scratch, it is now better organized
and easier to use. The general interface for particle picking is
displayed in Fig. 5. Fig. 5A displays a selected micrograph with
particle markers, while Fig. 5B displays the list of micrographs in
the main control window. Several filters can be applied from the
main menu to improve micrograph visualization and to help with
particle selection (see Fig. 5C).
2.4. Programs

As in previous versions, Xmipp 3.0 contains several command-
line utility programs, that are designed to perform specific tasks.
We have carefully rewritten all of these programs using a common
library that enables sharing of important functionality. There are a
number of advantages to this design, such as allowing each pro-
gram to define its own input parameters, that can be validated
automatically and used to generate a GUI.

By default, if a user types a program name without arguments, a
usage message is printed in the console. Program xmipp_apropos
allows for querying the database to search for desired programs by
name or keywords related to their function (e.g., Fourier filter,
reconstruction, sampling). There are some common parameters
for all programs such as –more, where advanced options are



Fig. 4. Data visualization tools. (A) xmipp_show tool rendering a volume slice by slice in the Z-direction. (B) The same volume shown in A opened from xmipp_show with
Chimera as an external tool. (C) Another configuration of xmipp_show for displaying data in table view with some image previews.
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described, and –gui, which launches the program GUI. Programs
have been organized into groups and named so that program’s
function can be deduced from its name.

3. Software

From a computer engineering point of view, Xmipp has gone
through a major transformation that includes the following: (1)
the level of abstraction has increased, allowing for a clear separa-
tion between file formats and the data model, (2) the protocols
have changed from spawning new processes (Xmipp programs)
to using, in many cases, direct calls to C++ routines through a bind-
ing layer, (3) the introduction of projects provides traceability and
reproducibility, and (4) the implementation of threads and MPI
parallelization as a centralized library promotes code reuse and
leverages established design patterns.

3.1. Data model

There are two common types of data in EM: binary
(micrographs, images, volumes, stacks) and meta-information
(coordinates, class assignments, alignment parameters, etc.). In
Xmipp 2.4 a tight relationship existed between the data model
(how data are represented in memory and handled by programs)
and the file format (how data are stored on the hard disk). A con-
sequence of this design was support of only one file format. This
approach was problematic for users working with other EM
formats, because it required extra work to convert data at the
beginning and end of Xmipp processing. Additionally, disk space
was wasted because users usually needed several copies of the
same image data set in different formats.

To address this problem, we completely redesigned the data
model and implemented new input/output (I/O) functions. Binary
data is handled through the Image class, which contains a four
dimensional array (gray scaled 2D and 3D objects in stacks) and
a set of vectors (one per object) of label-value pairs (as a general-
ized header). This new design made it possible to implement sev-
eral I/O routines that read data from different formats (see Table 1).
Another enhancement is the ability to handle very large files
mapped to disk instead of loading them into memory. When read-
ing images, three options are available: (1) load them into memory,
(2) map them to disk and, (3) map them to disk if they do not fit in
physical memory. It is up to the developer to choose which option
to use for each specific program.



Fig. 5. Particle picker graphical interface. (A) Micrograph display with marks for all selected particles. (B) Management window, containing a list of all micrographs and some
other options. (C) Example of a contrast adjustment that can be made to improve micrograph visualization.

Table 1
Image formats supported by Xmipp 3.0.

Extension Filetype Read/write Image Volume Stack Data types

raw# Raw files without header info R x x All
spi,xmp,vol,stk Spider R/W x x x float, cfloat
mrc,map,mrcs Medical Research Council R/W x x x uint8, int16, float, cfloat
hed/img Imagic R/W x x uint8, int16, float
inf/raw Xmipp raw format R/W x x (u)int8, (u)int16, float
tiff TIFF R/W x x uint8, uint16, uint32, float
jpg Jpeg R/W x uint8
dm3 Digital Micrograph R x x int8, (u)int16, (u)int32, float, double
ser TIA (Tecnai imaging and analysis) R x x (u)int8, (u)int16, (u)int32, float, double, cfloat, cdouble
spe Princeton Instrument CCD camera R x uint16
em EM Software Package R x x int8, int16, int32, float, cfloat, cdouble
pif Portable Image Format for EM R x x x int8, int16, int32, float, cfloat
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Important changes have also been made with respect to meta-
information. Conceptually, Xmipp 2.4 metadata were tables of
numbers (implemented as arrays of doubles) that were stored in
disk as SPIDER document files. This approach was very rigid since
it only allowed numeric values while the meaning of the values
strongly relied on the order of columns.

On the other hand, Xmipp 3.0 metadata are tables in which dif-
ferent data types (number, string, or vector) may be assigned to
each column. In this way, all columns are defined and used consis-
tently by all Xmipp programs. Furthermore, the MetaData class
provides functions to operate with big datasets while hiding to
developers the internal implementation. Indeed, the implementa-
tion uses a SQL embedded library (Sqlite3) that allows to perform
faster searches and complex queries. One advantage of this embed-
ded library is that there is no need to install or maintain a SQL ser-
ver. From the internal representation we have implemented
functions to read/write metadata as STAR text files, Sqlite3 binary
files or XML files. The STAR format is used by default for program
outputs within the project workflow. This decision was based on
two main reasons: first, users normally operate with text files
and view/edit results with text editors instead of dealing with dat-
abases; second, a text format is a simple way to achieve integration
with external programs.

Examples of how to use the Image and MetaData classes are
available at: http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/Image
and http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/MetaData,
respectively.

3.2. Project implementation

Project information is maintained in a simple Sqlite3 database
composed of a small number of tables. The most important tables
are runs and steps, which store the project’s protocol runs and the
individual steps of each run, respectively. This database is stored in
a Sqlite3 file inside the project folder and does not contains any re-
sult files from program executions.

Before a protocol can run, it first defines a list of steps (Python
functions that are usually wrapping program calls) that are stored
in the database. These steps are compared with previous execution
(if it exists), to determine at which step the protocol should restart
(due to the use of different input parameters or result files), if nec-
essary. This approach saves computing time by skipping all un-
changed steps and executing needed steps only. Because of this
level of granularity, the progress of each protocol run can be easily
monitored. The individual steps can also be defined as ‘‘parallel’’
and executed concurrently, allowing for parallelization both at
the program and protocol level.

The input of some protocols may be another protocol run, or
individual files produced previously. Because we keep track of
all these dependencies, the project workflow graph can be
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dynamically generated. This graph allows users to check on per-
formed operations and the relationships between them (see Fig. 3).

3.3. Python and Java bindings

We have added bindings for Python and Java, which are widely
used languages in scientific computing. These bindings allow ac-
cess to a large number of functions, classes and programs from
these two languages without compromising performance. Bindings
were designed as light interface layers that contain only the code
needed to perform the communication between both sides. This
approach avoids code duplication, which can be more difficult to
maintain. We also maintained similar syntax whenever possible.

These layers allows fast prototyping and access to Xmipp 3.0
core functionality for code written in Python or Java. We used
these bindings in the development of some components of the
Xmipp 3.0 package. For example, the protocols and main project
GUI were implemented in Python and make extensive use of
Python bindings. Other visualization tools were written in Java
with the ImageJ library and rely on the Java binding for image
manipulation.

3.4. Parallelization

Image processing operations in Single Particle Analysis (EM-
SPA) involves many tens or hundreds of thousands of images and
requires a large amount of computing resources. Therefore, parallel
computing is often a necessary tool in EM-SPA for reasons of com-
putational overhead. In general, parallel programs splits the work
to be done by data or by instructions. A simple parallelization ap-
proach (and most likely the most common in EM-SPA) is to split
the data across many parallel processes. In this case, some opera-
tions are performed simultaneously on several subsets of images.

Parallelization can be performed at two levels: (1) using
threads, which are lightweight processes that share memory, and
(2) by running different processes, possibly on different computers,
that communicate over a network. We have developed several
tools to facilitate the use of both threads and MPI processes. For
example, the ParallelTaskDistributor class handles dynamic
distribution of tasks. This class has no knowledge of the specific
task performed (processing an image, operating in a volume slice
or any other operation). So, in many contexts, where a task distri-
bution process is needed, ParallelTaskDistributor can be
used to avoid repeating the logic of distributing tasks. On the other
hand, creation of POSIX threads usually requires writing similar
lines of setup code. The ThreadManager class make the use of
threads easy; it also has the ability to reuse threads for computing
several functions without the need to destroy and create them
every time.

A detailed explanation of the parallel API implementation and
philosophy is available at http://xmipp.cnb.csic.es/twiki/bin/view/
Xmipp/ParallelProgramming.

3.5. New methods

Xmipp is the framework where our new methods were tested
and are now available to users. In the following section we discuss
some of the new algorithms included in the package since the pub-
lication of Scheres et al. (2008).

In Sorzano et al. (2009b) it was proposed an automatic particle
picking algorithm based on some particle features and supervised
learning. This approach was improved in Abrishami et al. (2013)
with the use of two support vector machine (SVM) classifiers in
combination with several rotational invariant features and statisti-
cal properties for particle selection. The algorithm is now faster
and provides better results than in the previous implementation.
Another important addition is a 2D classification method based
on hierarchical clustering (Sorzano et al., 2010). This algorithm
uses both correntropy and correlation as similarity measures; it
also includes criteria for the definition of the clusters appropriate
for classes with small differences in their signal-to-noise ratio
(SNR).

Moreover, a fast and automated algorithm for CTF estimation
developed by Vargas et al. (2013) has been implemented in Xmipp
3.0. This method is based on the Spiral Phase Transform and it does
not require an initial defocus or amplitude contrast estimate. This
new approach is approximately an order of magnitude faster than
existing solutions (Mindell and Grigorieff, 2003; Sorzano et al.,
2007) in cases where a large defocus searching range of [0.5,10]
lm is used. At the same time, it provides defocus and astigmatism
estimates at accuracies comparable to well established methods
(Mindell and Grigorieff, 2003; Sorzano et al., 2007).

Despite Xmipp focus on SPA, it also includes tools that are rel-
evant to other EM applications. Some Xmipp algorithms such as
ART, WBP or align_tilt_series (Sorzano et al., 2009a) have been
ported to Java in TomoJ (Messaoudi et al., 2007) for EM tomogra-
phy. Xmipp also includes a maximum likelihood algorithm for
subtomogram averaging described in Scheres et al. (2009). For Soft
X-ray tomography we introduced an accurate image formation
model (Oton et al., 2012) for the generation of X-ray pseudo-
projections. This new model provides a better understanding of
the X-ray projection process and will, in the near future, be the
base of development of specialized reconstruction algorithms.
3.6. Installation

Xmipp 3.0 is distributed as free software and can be down-
loaded from: http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/New-
Download. While a GUI has been created for Xmipp 3.0
compilation and installation, it can also be compiled and installed
from the command line. In this way, the package may be used in
environments that lack a graphical interface.

The software can be installed from binaries or compiled from
source code. It was tested with several Linux distributions and
the MacOS. A complete list of supported platforms and installation
instructions can be found here: http://xmipp.cnb.csic.es/twiki/bin/
view/Xmipp/HowToInstall.

Xmipp 3.0 smoothly integrates with cluster environments
through the configuration fileXMIPP_DIR/protocols/config_launch.
py. Once this file is setup, users do not need to directly interact
with system queues because jobs can be launched from the GUI.
At present, Xmipp can only launch jobs in the same system where
the project is stored. We are working to allow remote execution in
future releases. Instructions on how to configure this file are
available at http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/How
ToInstall#Make_a_job_submission_template_s.
4. Conclusions

The development of Xmipp 3.0 was based on over 5 years of
accumulated user experience since the previous major release.
During this time, Xmipp users have solved and deposited more
than one hundred new structures in the Electron Microscopy Data
Bank (Lawson et al., 2011).

This new release constitutes a complete package re-engineer-
ing, that enhances the user experience while providing detailed
tracking of the image processing workflow. Better interfaces and
graphical tools enable navigation through the different steps of
the process and provide direct control of key parameters. Users
no longer need to be concerned with different file formats, because
Xmipp 3.0 transparently handles many of the formats used in the
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EM field. To improve information management, the concept of a
‘‘project’’ was developed and given a central role in the natural
management of all processing associated with a given data set.
The complete history of all actions performed can be tracked and
visualized in an interactive graph.

The last decade has witnessed the development of key ap-
proaches for handling large data sets in the quest for higher reso-
lution reconstructions. Most of these new methods represent
important computing challenges. As a consequence, it is necessary
to pay close attention to the management of computational re-
sources. To this end, Xmipp 3.0 provides detailed job monitoring
and permits the use of batch queues. Furthermore, the libraries
contain several tools for quick development of parallel algorithms,
using both multithreading and multiprocessors. In short, the pack-
age is now better prepared to manage complex workflows and
computational resources. It is also a more compact and robust soft-
ware platform, capable of adapting to future developments of
increasingly demanding approaches.
Acknowledgments

The authors would like to acknowledge all former Xmipp devel-
opers who made contributions to the package during the past sev-
eral years. We also acknowledge financial support from the
Comunidad de Madrid through grant CAM (S2010/BMD- 2305),
the NSF through Grant 1114901; the Spanish Ministry of Economy
and Competitiveness through Grants AIC-A-2011-0638 and
BIO2010-16566. ‘‘Juan de la Cierva’’ postdoctoral grants with refer-
ences JCI-2011-10185 and JCI-2010- 07594, and predoctoral grants
with references BES-2011-044096 and JAEPre_09_01717. C.O.S.
Sorzano is a recipient of a Ramón y Cajal fellowship. This work
was partially funded by Instruct, which is part of the European
Strategy Forum on Research Infrastructures (ESFRI) and supported
by national member subscriptions.
References

Abramoff, M.D., Magelhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ.
Biophotonics Int. 11, 36–42.

Abrishami, V., Zaldívar-Peraza, A., de la Rosa-Trevín, J.M., Vargas, J., Otón, J., et al.,
2013. A pattern matching approach to the automatic selection of particles from
low-contrast electron micrographs. Bioinformatics 29, 2460–2468.

Baker, T.S., Cheng, R.H., 1996. A model-based approach for determining orientations
of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol.
116, 120–130.

Carazo, J.M., Rivera, F.F., Zapata, E.L., Radermacher, M., Frank, J., 1990. Fuzzy sets-
based classification of electron microscopy images of biological
macromolecules with an application to ribosomal particles. J. Microsc. 157,
187–203.

Carragher, B., Smith, P.R., 1996. Advances in computational image processing for
microscopy. J. Struct. Biol. 116, 2–8.

Crowther, R.A., Henderson, R., Smith, J.M., 1996. MRC image processing programs. J.
Struct. Biol. 116, 9–16.

Eng, E., 1996. Qt GUI Toolkit: porting graphics to multiple platforms using a GUI
toolkit. Linux J. 1996. Article No. 2. URL: http://dl.acm.org/
citation.cfm?id=326464&CFID=250746326&CFTOKEN=69585403.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., et al., 1996. SPIDER and WEB:
processing and visualization of images in 3D electron microscopy and related
fields. J. Struct. Biol. 116, 190–199.

van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R., Schatz, M., 1996. A new
generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.

Hegerl, R., 1996. The EM program package: a platform for image processing in
biological electron microscopy. J. Struct. Biol. 116, 30–34.

Heymann, B., Belnap, D., 2007. Bsoft: image processing and molecular modeling for
electron microscopy. J. Struct. Biol. 157, 3–18.

Lawson, C.L., Baker, M.L., Best, C., Bi, C., Dougherty, M., et al., 2011. Emdatabank.org:
unified data resource for cryoem. Nucleic Acids Res. 39, D456–D464.
Ludtke, S.J., Baldwin, P.R., Chiu, W., 1999. EMAN: semiautomated software for high-
resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.

Marabini, R., Carazo, J.M., 1994. Pattern recognition and classification of images of
biological macromolecules using artificial neural networks. Biophys. J. 66,
1804–1814.

Marabini, R., Herman, G.T., Carazo, J.M., 1998. 3D reconstruction in electron
microscopy using ART with smooth spherically symmetric volume elements
(blobs). Ultramicroscopy 72, 53–65.

Marabini, R., Masegosa, I.M., San Martín, M.C., Marco, S., Fernández, J.J., et al., 1996.
Xmipp: an image processing package for electron microscopy. J. Struct. Biol.
116, 237–240.

Messaoudi, C., Boudier, T., Sorzano, C.O.S., Marco, S., 2007. Tomoj: software for
multiple-axis tomography. BMC Bioinf. 8, 288.

Mindell, J.A., Grigorieff, N., 2003. Accurate determination of local defocus and
specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347.

Oton, J., Sorzano, C.O.S., Pereiro, E., Cuenca-Alba, J., Navarro, R., et al., 2012. Image
formation in cellular x-ray microscopy. J. Struct. Biol. 178, 29–37.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., et al., 2004.
UCSF chimera – a visualization system for exploratory research and analysis. J.
Comput. Chem. 25, 1605–1612.

Philippsen, A., Schenk, A.D., Stahlberg, H., Engel, A., 2003. IPLT – image processing
library and toolkit for the electron microscopy community. J. Struct. Biol. 144,
4–12.

Radermacher, M., Wagenknecht, T., Verschoor, A., Frank, J., 1987. Three-
Dimensional reconstruction from a single-exposure, random conical tilt series
applied to the 50s ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–
136.

Scheres, S., Núñez-Ramírez, R., Gómez-Llorente, Y., San Martín, C., Eggermont, P.P.B.,
et al., 2007a. Modeling experimental image formation for likelihood-based
classification of electron microscopy data. Structure 15, 1167–1177.

Scheres, S.H., Melero, R., Valle, M., Carazo, J.M., 2009. Averaging of electron
subtomograms and random conical tilt reconstructions through likelihood
optimization. Structure 17, 1563–1572.

Scheres, S.H.W., 2010. Classification of structural heterogeneity by maximum-
likelihood methods. Methods Enzymol. 482, 295–320.

Scheres, S.H.W., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P.B., et al., 2007b.
Disentangling conformational states of macromolecules in 3D-EM through
likelihood optimization. Nat. Methods 4, 27–29.

Scheres, S.H.W., Núñez-Ramírez, R., Sorzano, C.O.S., Carazo, J.M., Marabini, R., 2008.
Image processing for electron microscopy single-particle analysis using Xmipp.
Nat. Protoc. 3, 977–990.

Scheres, S.H.W., Valle, M., Núñez, R., Sorzano, C.O.S., Marabini, R., et al., 2005.
Maximum-likelihood multi-reference refinement for electron microscopy
images. J. Mol. Biol. 348, 139–149.

Schroeter, J.P., Bretaudiere, J.P., 1996. Suprim: easily modified image processing
software. J. Struct. Biol. 116, 131–137.

Smith, P.R., Gottesman, S.M., 1996. The micrograph data processing program. J.
Struct. Biol. 116, 35–40, URL: http://dx.doi.org/10.1006/jsbi.1996.0007,
doi:10.1006/jsbi.1996.0007.

Smith, R., Carragher, B., 2008. Software tools for molecular microscopy. J. Struct.
Biol. 163, 224–228.

Sorzano, C.O.S., Bilbao-Castro, J.R., Shkolnisky, Y., Alcorlo, M., Melero, R., et al., 2010.
A clustering approach to multireference alignment of single-particle projections
in electron microscopy. J. Struct. Biol. 171, 197–206.

Sorzano, C.O.S., de la Rosa Trevín, J.M., Otón, J., Vega, J.J., Cuenca, J., et al., 2013.
Semiautomatic, high-throughput, high-resolution protocol for three-
dimensional reconstruction of single particles in electron microscopy.
Methods Mol. Biol. 950, 171–193.

Sorzano, C.O.S., Jonic, S., Núñez-Ramírez, R., Boisset, N., Carazo, J.M., 2007. Fast,
robust and accurate determination of transmission electron microscopy
contrast transfer function. J. Struct. Biol. 160, 249–262.

Sorzano, C.O.S., Marabini, R., Velázquez-Muriel, J., Bilbao-Castro, J.R., Scheres,
S.H.W., et al., 2004. XMIPP: a new generation of an open-source image
processing package for electron microscopy. J. Struct. Biol. 148, 194–204.

Sorzano, C.O.S., Messaoudi, C., Eibauer, M., Bilbao-Castro, J.R., Hegerl, R., Nickell, S.,
Marco, S., Carazo, J.M., 2009a. Marker-free image registration of electron
tomography tilt-series. BMC Bioinf. 10, 124.

Sorzano, C.O.S., Recarte, E., Alcorlo, M., Bilbao-Castro, J.R., San-Martín, C., et al.,
2009b. Automatic particle selection from electron micrographs using machine
learning techniques. J. Struct. Biol. 167, 252–260.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., Ludtke, S.J., 2007.
Eman2: an extensible image processing suite for electron microscopy. J. Struct.
Biol. 157, 38–46, URL: http://dx.doi.org/10.1016/j.jsb.2006.05.009.

Vargas, J., Otón, J., Marabini, R., Jonic, S., de la Rosa-Trevín, J.M., et al., 2013.
FASTDEF: fast defocus and astigmatism estimation for high-throughput
transmission electron microscopy. J. Struct. Biol. 181, 136–148.

Velázquez-Muriel, J.A., Sorzano, C.O.S., Fernández, J.J., Carazo, J.M., 2003. A method
for estimating the CTF in electron microscopy based on ARMA models and
parameter adjusting. Ultramicroscopy 96, 17–35.

http://refhub.elsevier.com/S1047-8477(13)00256-6/h0005
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0005
http://refhub.elsevier.com/S1047-8477(13)00256-6/j0005
http://refhub.elsevier.com/S1047-8477(13)00256-6/j0005
http://refhub.elsevier.com/S1047-8477(13)00256-6/j0005
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0010
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0010
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0010
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0015
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0015
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0015
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0015
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0020
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0020
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0025
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0025
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0030
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0030
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0030
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0035
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0035
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0035
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0040
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0040
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0045
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0045
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0050
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0050
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0055
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0055
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0060
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0060
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0065
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0065
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0065
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0070
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0070
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0070
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0075
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0075
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0075
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0080
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0080
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0085
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0085
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0090
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0090
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0095
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0095
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0095
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0100
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0100
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0100
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0105
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0105
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0105
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0105
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0110
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0110
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0110
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0115
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0115
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0115
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0120
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0120
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0125
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0125
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0125
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0130
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0130
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0130
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0135
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0135
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0135
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0140
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0140
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0145
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0145
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0145
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0150
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0150
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0155
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0155
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0155
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0160
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0160
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0160
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0160
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0165
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0165
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0165
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0170
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0170
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0170
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0175
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0175
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0175
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0180
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0180
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0180
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0185
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0185
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0185
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0190
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0190
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0190
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0195
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0195
http://refhub.elsevier.com/S1047-8477(13)00256-6/h0195

	Xmipp 3.0: An improved software suite for image processing in electron microscopy
	1 Introduction
	2 Project management
	2.1 General processing workflow
	2.2 Project GUI
	2.3 Visualization tools
	2.4 Programs

	3 Software
	3.1 Data model
	3.2 Project implementation
	3.3 Python and Java bindings
	3.4 Parallelization
	3.5 New methods
	3.6 Installation

	4 Conclusions
	Acknowledgments
	References


