
Computer Networks 43 (2003) 227–245

www.elsevier.com/locate/comnet
Exploiting the efficiency and fairness potential of
AIMD-based congestion avoidance and control

Adrian Lahanas a, Vassilis Tsaoussidis a,b,*

a College of Computer Science, Northeastern University, Boston, MA 02115, USA
b Department of Electrical and Computer Engineering, Democritos University of Thrace, Xanthi 67100, Greece

Received 30 April 2002; received in revised form 20 March 2003; accepted 20 March 2003

Responsible Editor: S.S. Lam
Abstract

Additive increase multiplicative decrease (AIMD) is the dominant algorithm for congestion avoidance and control in

the Internet. The major goal of AIMD is to achieve fairness and efficiency in allocating resources. In the context of

packet networks, AIMD attains its goal partially. We exploit here a property of AIMD-based data sources to share

common knowledge, yet in a distributed manner; we use this as our departing point to achieve better efficiency and

faster convergence to fairness.

Our control model is based on the assumptions of the original AIMD algorithm; we show that both efficiency and

fairness of AIMD can be improved. We call our approach AIMD with fast convergence (AIMD-FC). We present

experimental results with TCP that match the expectations of our theoretical analysis.

� 2003 Elsevier B.V. All rights reserved.

Keywords: TCP; AIMD; Congestion control; Fairness; Efficiency
1. Introduction

One of the most challenging problems in packet

networks is resource management. The complexity

of multiplexing is accentuated by the variability of

packet sizes, resource heterogeneity, protocol au-
tonomy and management anarchy. Consequently,

the dynamics of packet networks are frequently
* Corresponding author. Address: College of Computer

Science, Northeastern University, Boston, MA 02115, USA.

Tel.: +1-617-373-8169; fax: +1-617-373-5121.

E-mail addresses: ladrian@ccs.neu.edu (A. Lahanas),

vtsaoussi@ee.duth.gr, vassilis@ccs.neu.edu (V. Tsaoussidis).

1389-1286/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S1389-1286(03)00269-X
associated with a chaotic behavior. In this context,

congestion avoidance and control is a vital func-

tion of packet networks.

An important characteristic of packet networks

is the lack of centralized control and the dominant

presence of decentralized authorities (end hosts)
that are capable of making decisions pertaining to

allocation of resources. Although theoretically all

senders are entitled to an ad libitum resource uti-

lization due to lack of a management authority,

practically, they are bound by scarce bandwidth

resources or high user contention. Therefore,

fairness and efficiency are becoming naturally the

major design goals of any congestion avoidance
and control function.
ed.

mail to: ladrian@ccs.neu.edu

228 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
Internet applications are currently governed by

the rules of additive increase multiplicative de-

crease (AIMD), an algorithm proposed by Chiu

and Jain in [1] as the most efficient approach to

resource management. Jacobson in [2] exploited

experimentally the mechanism�s potential in TCP
[3], integrating AIMD with transmission tactics

suitable for congestion avoidance and control.

Since then, the algorithm became the major com-

ponent of TCPs [2] congestion avoidance and

control and, in turn, it signified an operational

point for the Internet. According to AIMD prin-

ciples, congestion should trigger a drastic response

from the senders (multiplicative decrease) to avoid
a congestive collapse, a major concern in packet

networks of the last decade. However, the algo-

rithm is designed to be responsive to other net-

work dynamics such as fluctuations of bandwidth

availability, and to system characteristics such as

the end system autonomy. The former is managed

by a continuous probing mechanism through ad-

ditive increase and the latter is managed by en-
forcing common behavioral rules to entities that

make decisions, namely the data sources.

The goal of each sender is to operate indepen-

dently but nevertheless to adjust its rate (or win-

dow) in a manner that the total bandwidth of the

network will be expended fairly and effectively.

From its algorithmic perspective the above prob-

lem is challenging because the distributed entities
(sources) do not have any prior or present

knowledge of the other entities� states; nor do they

know the system�s capacity and the number of

competitors. Hence, the goal of fairness and effi-

ciency appears initially difficult to attain. How-

ever, since the system is entitled to a prescribed

responsive behavior and the entities agree on

common transmission tactics (additive increase
when bandwidth is available or multiplicative de-

crease otherwise), convergence 1 to fairness be-

comes feasible. We show here that this pattern of
1 Convergence to fairness should be perceived in this paper

as the procedure which enables different flows that consume

different amount of resources each, to balance their resource

usage.
behavior contains information that has not been

exploited exhaustively in [1].

However, our motivation on the problem is not

purely the algorithmic challenge but mainly the

mechanism�s potential in packet networks. In this

context, we note that the description of the above
system matches the major properties of packet

networks. Consider for example a number of TCP

flows m that compete for a limited bandwidth B.
The flows� data rates are gradually increasing (ad-

ditive increase) and the network eventually be-

comes congested. The network signals the senders

about the change of state (from ‘‘available’’ to

‘‘congested’’) and the senders reduce their rate
multiplicatively. The ensuing phase of additive in-

crease leads again naturally to congestion and the

cycle goes on for as long as the applications have

data to send. Indeed, this behavior of TCP con-

forms 2 to the rules and principles described in [1].

The objective of this behavior is to control the

fairness/efficiency tradeoff effectively. That is, the

system should allow the active flows to share
the channel�s bandwidth. The real question there-

fore, is how to maximize bandwidth utilization

and allocate resources fairly. If the protocol win-

dows could grow sufficiently large, bandwidth will

be wasted during convergence; convergence here is

associated with a multiplicative rate decrease at

half the previous window.

By and large, fairness and efficiency (i.e.,
bandwidth utilization) involve a tradeoff which

AIMD attempts to control. For example, an easy

way to improve utilization could be to apply a

more conservative multiplicative decrease; how-

ever, this will cause the system to reach an equi-

librium at a later stage, thus degrading fairness.

We present an improvement of the AIMD algo-

rithm that impacts positively both efficiency and
fairness: efficiency is improved up to 14% and

fairness is achieved faster and smoother. However,

our contribution does not lie in a new algorithm

but rather in an optimization of AIMD during the

convergence procedure that enables the algorithm

to converge faster and achieve higher efficiency.
2 Some TCP operations do not strictly follow the AIMD

scheme. We discuss them in Section 5.

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 229
We call our approach additive increase multipli-

cative decrease with fast convergence (AIMD-FC).

In the Section 2 we outline the system parame-

ters and metrics that enable a theoretical analysis of

the problem in the context of packet networks, and

we discuss the results of [1]. In Section 3 we present
our proposal and provide proofs for our claims

algebraically. In Section 4 we extend the modifi-

cations further trying to exploit the system�s po-

tential to the maximum extent possible. We also

investigate the potential of alternative schemes

from the perspective of the dynamics of real net-

works. We demonstrate the impact of the proposed

algorithm on standard TCP in Section 5 where we
also present the results from experiments with

TCP. In Section 6 we discuss other potential ap-

proaches as well as their practical impact. Finally,

in Section 7 we highlight some derived conclusions.
2. System model

Our system�s model is initially characterized by

a synchronous generation of responses, in con-

gruity with [1]. The system response is 1 when

bandwidth is available and 0 when bandwidth is

exhausted. The instruction to the system entities

(sources) is to increase or decrease their data rate,

respectively. Note that in real networks, the re-

sponsive behavior of the system is not adminis-
tered by any centralized authority with additional

knowledge of the network dynamics––it is simply a

packet drop due to congestion that naturally

happens when bandwidth is exceeded. Fig. 1 de-

scribes the model assumed here and is based on the

assumptions of [1].
ΣUser 2

User 1
1

Network

XΣ >=
goal

User m
m

w

w

y/n

?

Fig. 1. A control system model of m users sharing a network

[1].
The system has m users (flows) and the instanta-

neous throughput for the ith flow iswi. The system�s
goal is to operate at an optimal pointXgoal. Note that

this point is not necessarily the bandwidth B since

throughput might decrease before we reach B. We

assume that responses are synchronous and conse-
quently the duration of RTTs is common 3 for all

flows. Hence, the sources respond uniformly by

decreasing their windows in response to a 0 signal;

they increase their windows by one in response to a

signal of 1. We use the notation aI for the additive
increase factor and bD for the multiplicative de-

crease factor. In the standard AIMD scheme which

is also used in TCP, aI is 1 and bD is 1=2.
The limitations of the system are derived from

the dynamics of packet networks: bandwidth B is

limited; Each flow is not aware of the throughput

rates (window sizes) of other flows; Each flow is not

aware of the number of competitors in the channel;

no flow is aware of the size of bandwidth B.
In the context of our system behavior we define

the following measurement units:
A cycle is the phase starting immediately after a

system response 0 and ending at the next event of

congestion when the system response is again 0.

Hence, a cycle includes exactly one multiplicative

decrease phase and involves a number of steps

through additive increase.

A step reflects each window adjustment towards

convergence in response to a system instruction (0 or
1). Hence, a step during additive increase involves

an increment of one (aI ¼ 1) resource unit (i.e.

packet) per flow, and each increase step involves m
packets more than the previous step (m is also the

number of flows). In the context of our system, the

number of steps matches the number of RTTs.

The convergence behavior of a two flow AIMD

system is depicted by vectors in a 2-dimensional
space oscillating around the efficiency line in Fig.

2. Upon each multiplicative decrease, the two

windows x1 and x2 move closer to the fairness line

(x1 ¼ x2). More details on the convergence of

AIMD can be found in [1].
3 The impact of these assumptions has been evaluated in the

Internet for several years. We use TCP simulations similarly in

the present work.

x + x = W x =
 x

x

Efficiency Line

Window of flow f1

Window of flow f2

x + k

x + kx

Bandwidth Limit Line

1 1

2

2

1

2
1

2

Fig. 2. Vectorial representation of two-flow convergence to

fairness. The figure is based on [1]. A point on the quadrant

between axes represent the sum of the windows. �k� denotes the
length of the projection of the vector on the x and y axis. W is

the value of Xgoal in terms of packets.

6 Practically, it can happen that x2 ’ x1 in which case the

230 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
2.1. A pseudocode for AIMD

Based on Fig. 2 we will make a numerical pre-

sentation of that convergence behavior and design

a possible pseudocode for the AIMD algorithm.

Assume a two-flow system with bandwidth B
(or Xgoal) and let W ¼ B=MSS (where maximum
segment size (MSS) is the packet size) be the

maximum number of packets that the system can

transmit per step or RTT. Let the flows f1 and f2
have x1 and x2 initial resources 4 (x1; x2 2 N), 5

respectively (see Fig. 2). Without loss of generality,

we assume that x1 < x2 and x1 þ x2 < W (W coin-

cides with the bandwidth limit line in Fig. 2). A

simple convergence scenario follows:

Flow f1 Flow f2
x1 x2
x1 þ 1 x2 þ 1

x1 þ 1þ 1 x2 þ 1þ 1

x1 þ 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k1

x2 þ 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k1
4 In the context of TCP this is the congestion window [2].
5 The example is based on the assumption that the window

value is an integer and there is a minimum divisible unit (i.e., a

packet, a segment, or a byte).
P
ðwþ kÞPXgoal State : x1 þ x2 þ 2k1 PW

Action : Multiplicative Decrease

x1þk1
2

x2þk1
2

x1
2
þ k1

2
þ 1 x2

2
þ k1

2
þ 1

x1
2
þ k1

2
þ 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k2

x2
2
þ k1

2
þ 1þ � � � þ 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k2P
ðwþ kÞPXgoal State :

x1
2
þ x2

2
þ k1 þ 2k2 PW

Action :Multiplicative Decrease

x1
4
þ k1

4
þ k2

2
x2
4
þ k1

4
þ k2

2

..

. ..
.

x1
2lg x2
þ k1

2lg x2
þ k2

2
lgx
2
þ � � � þ kj

x2
2lg x2
þ k1

2lg x2
þ k2

2
lgx
2
þ � � � þ kj

It can be seen from this numerical example that

two flows running the AIMD algorithm will con-

verge to fairness after 1þ lg x2 cycles (the unknown
terms x1=21þlg x2 and x2=21þlg x2 become practically

insignificant). 6 In general, if the multiplicative de-

crease parameter is bD ¼ 1=b and x1 and x2 are the
initial windows of two flows then these flows will

converge to fairness in logb ðmaxðx1; x2ÞÞ þ 1 cycles 7

or OðW logb W Þ steps because of the linear increase.
Based on the above example, below we present

a pseudocode for AIMD algorithm and an exam-

ple of a distributed algorithm for an AIMD-based

system of m flows. A new feature of this pseudo-

code is that it distinguishes the amount by which
the window of the flow has increased during ad-

ditive increase phase. We symbolize this amount as

�k� and it can be easily noticed in Fig. 2 and in the

above example. Resources consumed by the flows

(i.e. congestion window) are represented by the

vector/tuple (w1;w2; . . . ;wm), where the ith element

of the vector represents the congestion window of

flow i. Note that the AIMD-System�s pseudocode
difference of the unknown terms is insignificant. Alternatively,

we consider the case where x2 � x1 or vice versa. In this case

multiplicative decrease will be executed several more times (i.e.

logbðx2Þ þ 1 cycles) which leads again to an insignificant

difference. Also note that the windows of the corresponding

flows take only integer values.
7 Recall that a cycle consists of several additive increase steps

and one multiplicative decrease step.

8 Due to the system dynamics of continuous adjustments

even after fairness has been achieved, the term ‘‘steady state’’ is

avoided.

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 231
is used to describe the system behavior and is not

executed by one single entity.

AIMD(w)
1 k 0

2 while (feedback is 1)

3 process(wþ k)
4 k k þ aI
5 end

6 w bDðwþ kÞ
7 return w
END

AIMD-Systemððx1; x2; . . . ; xmÞ;m; nÞ
1 forall i ¼ 1 to m do

2 wi xi
3 end

4 for j ¼ 1 to n do

5 forall i ¼ 1 to m do
6 wi AIMDðwiÞ
7 end forall

8 end

9 return (w1;w2; . . . ;wm)

END

We use the following notation:

xi Initial window of flow i
k Resources consumed by additive increase

w The value of the window immediately af-

ter the multiplicative decrease

wþ k Current window of a flow (kP 0)

n Integer. Represents the number of cycles
towards convergence

m Integer. Represents the number of flows

aI The additive increase rate (aI ¼ 1)

bD The multiplicative decrease ratio (bD ¼
1=2)

The function �process(wþ k)� can perform any

transport protocol related function (e.g. transmit

wþ k bytes/packets/segments). The AIMD-based
system converges to fairness when the elements of

the returned tuple (w1;w2; . . . ;wm) become equal.

Based on that observation, we define fairness in

the context of the present work.

Definition 1. A system of m flows Sðf1; f2; . . . ; fmÞ,
where fi is the flow i and wi is its corresponding

instantaneous throughput, converges to fairness in
n cycles if w1;w2; . . . ;wm become equal exactly at

the nth cycle.
The proof of the AIMD pseudocode follows

from the numerical convergence example shown

previously.

2.2. Observations on the dynamics of AIMD

Extending the above discussion, we highlight

four observations and we arrive at one conclusion

that constitutes the foundation of the present work:

1. When the flows f1 and f2 are in additive increase

phase they move parallel to the 45� axis

(x1 ¼ x2) or fairness line; during that phase,

equal amount of system resources is being allo-
cated to the flows. This amount (�k�) is a public

or common knowledge (i.e., it is known to every

flow in the system) [4].

2. Both the initial windows and the amount of sys-

tem resources (k) that has been fairly allocated

during additive increase are affected by multipli-

cative decrease. That is, the original AIMD

scheme calls for adjustments of the current win-
dows––not the initial windows. Note that the

manipulation of the initial (and unknown) win-

dows is the real target for achieving fairness.

3. The distance between the bandwidth limit line

and the efficiency line when the system is in

equilibrium 8 depends only on the multiplica-

tive decrease factor [1]. The closer the efficiency

line to the bandwidth limit line, the higher the
bandwidth utilization of the algorithm [1]. In

general, when the decrease factor is bD ¼ 1=b
the bandwidth utilization is

bþ 1

2b
: ð1Þ

4. Two algorithms may need the same number of

cycles to converge to fairness: for example,

two variants of AIMD with different additive

increase rate but the same multiplicative de-

crease ratio. In such case, the number of steps

determines the relative efficiency of the algo-
rithm to converge to fairness. In the context

of packet networks, this is associated with the

232 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
frequency at which we meet the bandwidth limit

line and adjust backwards.

Practically, fairness is achieved with AIMD

gradually by releasing (through multiplicative ad-
justments of the windows) the (unknown to other

flows) initial resources x1 and x2; during the addi-

tive increase phase the flows increase their resource

consumption uniformly.
3. AIMD-fast convergence algorithm

3.1. AIMD-FC goals and metrics

The question of efficiency is associated with the

utilized bandwidth; at a first glance, the system

dynamics suggest that the higher the oscillation the

less the utilization. It also appears 9 that the higher

the oscillation, the faster we approach fairness.

Some recent versions of AIMD-based algorithms
[5–7] attempt to take advantage of this property.

More precisely, it has been observed that stream-

ing applications could benefit from modest oscil-

lations since these reflect the smoothness of

adjusting the transmission rate backwards. Such

protocols are characterized as TCP-friendly be-

cause they consume the same amount of band-

width as TCPð1; 1=2Þ does [8]. However, an
undesirable property of these algorithms is that, a

system of TCP-friendly flows reaches equilibrium

later than AIMD. For example, a system where all

flows use the GAIMD [5] algorithm with b ¼ 8=7,
(bD ¼ 1=b) converges to fairness in OðW log1:14 W Þ
steps, where W is the capacity of the system in

terms of packets; the SIMD [7] system with

bD ¼ 15=16 converges in OðW log1:06 W Þ steps; the
SQRT [6] system with b ¼ 1=ð1

ffiffiffiffiffiffiffiffiffiffi
1=W

p
Þ, con-

verges in OðW 2Þ; so does the IIAD [6]. The per-

formance of AIMD algorithm (with parameters

aI ¼ 1 and bD ¼ 1=2) and in general of TCP is

studied in [9,10]. In terms of throughput, the per-

formance of TCP is ðMSS=RTTÞð3=4ÞW [10],

which implies 75% bandwidth utilization when the
9 Both statements have been made initially in [1].
system is in equilibrium, or in terms of a periodic
packet loss probability p the average throughput is

MSS

RTT

C1ffiffiffi
p
p ð2Þ

where C1 ¼
ffiffiffiffiffiffiffiffi
3=2

p
[10]. Several congestion control

algorithms, along with an analysis of their con-

vergence behavior are discussed in [11].

Although system utilization is a well-defined

metric, it cannot characterize a congestion control
algorithm�s performance alone. From our per-

spective, such an algorithm needs to be evaluated in

three more aspects. The first represents the ques-

tion whether the algorithm converges or not. The

second characterizes the speed to reach conver-

gence and is frequently called responsiveness [1].

The third involves the question whether the level of

window oscillations is high during the convergence
procedure. This is commonly called smoothness [1].

Therefore, the metrics that we use to evaluate

the performance of the algorithms are defined as

follows:

Efficiency which is the average flows� through-
put per step (or RTT) when the system is in

equilibrium over the system theoretical through-

put.
Responsiveness which is measured by the num-

ber of steps (or RTTs) to reach an equilibrium (i.e.

to equate the windows).

Smoothness is reflected by the magnitude of the

oscillations during multiplicative decrease.

The modifications presented here do not favor

efficiency at the cost of fairness; nor do they favor

smoothness at the cost of responsiveness, or vice
versa. Therefore, we do not attempt here to bal-

ance trade of aI and bD within the frame of TCP

limitations (i.e. efficiency) and application re-

quirements (i.e. smoothness) but instead we at-

tempt to improve efficiency of TCP without
degrading its fairness potential. In this context, the

goal of the present work is in marked distinction

with the TCP-friendly protocols which take an
application-centric perspective, since they favor

smoothness at the expense of responsiveness in

order to satisfy the requirements of multimedia

applications without damaging TCP flows. Indeed,

the properties we exploit here can be beneficial for

TCP-friendly protocols as well.

2n 2n 22 2

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 233
3.2. AIMD-FC

The rationale of AIMD-FC is based on the four

observations of Section 2.2. During additive in-

crease the system resources are both well-known
and fairly allocated. Hence, at the phase of mul-

tiplicative decrease these resources need not be

affected.

Assume that two flows (Flow f1 and Flow f2)
at time t enter the system with windows x1 and x2
(x1 < x2 and x1 þ x2 < W ––see Fig. 2). The flows

start consuming resources (additively) from the

system and at time t þ dt, the system notifies the
flows to release resources (x1 þ x2 þ 2k PW).

Since both flows f1 and f2 evolve with the same

additive increase parameter, from time t to time

t þ dt they consume exactly k resource units,

each. When the system resources are exhausted

the flows essentially release resources (i.e. multi-

plicative decrease) from the initial windows x1
and x2 which were allocated unfairly. So, our
algorithm suggests to decrease multiplicatively (to

half the previous size) the windows x1 and x2
alone.

The algorithm of an AIMD-FC-based system

can be described as follows:

AIMD-FC(w)
1 k 0
2 while (feedback is 1)

3 process(wþ k)
4 k k þ aI
5 end

6 w bDðwÞ þ k
7 return w
END

AIMD-FC-Systemððx1; x2; . . . ; xmÞ;m; nÞ
1 forall i ¼ 1 to m do

2 wi xi
3 end

4 for j ¼ 1 to n do

5 forall i ¼ 1 to m do

6 wi AIMD-FC(wi)

7 end forall
8 end

9 return (w1;w2; . . . ;wmÞ
END
It is becoming apparent that the distinctive

difference of AIMD and AIMD-FC is centered on

the portion of the congestion window that is af-

fected by multiplicative decrease. We call this

portion decrease window.

Definition 2. Decrease window is that portion of

the congestion window that is multiplied by the

decrease coefficient bD. Example: w is the decrease

window and ðwþ kÞ is the congestion window,

respectively, of AIMD-FC; ðwþ kÞ is both the

decrease window and the congestion window of

AIMD function.
3.3. Correctness, efficiency and system limitations

3.3.1. Correctness

Theorem 1 (AIMD-FC convergence theorem).

Let x1, x2 (x1; x2 2 N) denote the initial states of
resources/windows of two flows and n (n 2 N ; n > 0)
the number of cycles completed towards convergence
to fairness.

If AIMD-Systemððx1; x2Þ; 2; nÞ converges to
fairness, then AIMD-FC-Systemððx1; x2Þ; 2; nÞ con-
verges to fairness.
Proof by contraction. We prove the correctness for

two flows, but it can be generalized for many flows

similarly. Let n be such that AIMD-Sys-
temððx1; x2Þ; 2; nÞ converges to fairness in exactly n
cycles and assume that AIMD-FC-Sys-

temððx1; x2Þ; 2; nÞ does not converge after n cycles.

Unrolling the window values returned by AIMD-

FC after n cycles we have

w1 ¼
x1
2n
þ k1
2n
1
þ � � � þ kn
1

22
þ kn; ð3Þ

w2 ¼
x2
2n
þ k1
2n
1
þ � � � þ kn
1

22
þ kn: ð4Þ
Performing the same unrolling for the windows

returned by AIMD algorithm we will have

/1 ¼
x1 þ k1 þ � � � þ kn
1 þ kn

; ð5Þ

Window

Decrease

W
2/3W

W/ 30

Congestion window (packets)

time (RTT)

Space
Additive Increase

1

2/3 W

W

Fig. 3. AIMD-FC window evolution under periodic loss. Each

cycle delivers ð2
3
W Þð1

3
W Þ þ 1

2
ð1
3
W Þ2 ¼ 1=p packets and takes

W =3 round trip times.

234 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
/2 ¼
x2
2n
þ k1
2n
þ � � � þ kn
1

22
þ kn

2
: ð6Þ

The terms on the right of x1- and x2-fractions of

both series are equal. AIMD-System converges to
fairness if and only if x1=2n and x2=2n are insig-

nificant to the total sum of /1 and /2 (we consider

this to happen when nP 1þ lgðmaxðx1; x2ÞÞ). That
is, if AIMD-FC-Systemððx1; x2Þ; 2; nÞ has not con-
verged after n cycles then the fractions x1=2n and

x2=2n have a considerable value. Consequently, the

x1- and x2-fractions of AIMD series (i.e. /1 and /2

series) have a considerable value. This contradicts
the hypothesis that AIMD-Systemððx1; x2Þ; 2; nÞ
converges in n cycles. �

From Theorem 1 we conclude that the AIMD-

FC algorithm converges to fairness in OðlgW Þ
cycles or OðW lgW Þ steps, where W is the system�s
capacity in packets.
3.3.2. Efficiency of AIMD-FC

In Fig. 3 we present the window evolution of

AIMD-FC algorithm and below we calculate its

average throughput (per step or RTT). First we

calculate the minimum value of congestion win-

dow.

Assume a single-flow system with bandwidth B
and let W be the the system�s capacity in packets.
Let w ¼ yW be the decrease window for this flow.

After the multiplicative decrease (i.e. when

wþ kPW), ðy=2ÞW resources will be released 10

and is evident that ðy=2ÞW will be allocated again

during additive increase (i.e. k ¼ ðy=2ÞW). So,

wþ k ¼ yW þ ðy=2ÞW ¼ W which implies that

y ¼ 2
3
. Hence, the decrease window (and the

minimum congestion window) value will be 2
3
W

and the additive increase space will be 1
3
W (see

Fig. 3).

Using the same method of AIMD analysis in

[10], but based on the window evolution of Fig. 3,

the average throughput (per RTT) of this AIMD-

FC flow is
10 From the definition of the algorithm.
MSS

RTT

5

6
W ð7Þ

or, in terms of a periodic packet loss probability p
the average throughput of this flow is

MSS

RTT

C2ffiffiffi
p
p where C2 ¼

ffiffiffi
5

2

r
: ð8Þ

The efficiency of AIMD-FC is 8% higher than the

efficiency of AIMD.
3.3.3. Smoothness

In the above paragraph we saw that the con-

gestion window oscillation margin is ½2
3
W ;W
. Ob-

viously, the relative smoothness of AIMD-FC is

increased by 33%.
3.3.4. Responsiveness

One important observation of the authors in

[1] is that the smoothness and responsiveness of

AIMD are in inverse proportion (they depend

only on the increase aI and decrease bD parame-

ters). This observation still holds for AIMD-FC.

Comparatively, responsiveness of AIMD-FC, im-

proves.

Theorem 2 (AIMD-FC responsiveness theorem).

Let x1, x2 (x1; x2 2 N ; 0 < x1 < x2) denote the initial
states of resources/windows of two flows, n
(n 2 N ; n > 0) the number of cycles in which AIMD-
Systemððx1; x2Þ; 2; nÞ converges to fairness, and let p
(pP n) denote the number of additive increase steps
needed by AIMD-Systemððx1; x2Þ; 2; nÞ to converge
to fairness.

11 That is, during the time the second cycle starts and up to

the last step of the second cycle.

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 235
If AIMD-Systemððx1; x2Þ; 2; nÞ converges to fair-
ness in p steps, then AIMD-FC-Systemððx1;x2Þ;2;nÞ
converges in strictly less than p
 ðn
 1Þ steps.

Proof by induction. Induction statement: For every

cycle j (j > 1), AIMD-FC involves at least one
additive increase step less than AIMD.

Basis step. After the second cycle (j ¼ 2)

AIMD-FC gains at least one step towards con-

vergence.

Let two flows have initial windows x1 and x2
such that 0 < x1 < x2 and x1 þ x2 < W . Unrolling

the series generated by each algorithm we estimate

the gain of AIMD-FC after each exponential de-
crease. The letters ki and k0i represent the resources
allocated during the additive increase phase.

During each additive increase step, the two flows

increase their resource consumption by 2aI or 2

units (aI ¼ 1). After k1 steps
P
ðwþ kÞPXgoal is

satisfied by both algorithms.

P
ðwþ kÞ ðAIMDÞ

P
ðwþ kÞðAIMD-FCÞ

x1 þ x2 þ 2k1 PW x1 þ x2 þ 2k1 PW

P
ðwþ kÞ state after multiplicative decrease

c1 ¼ x1
2
þ x2

2
þ k1 P W

2
x1
2
þ x2

2
þ 2k1 > c1

There is no gain in the first cycle (i.e. j ¼ 1). Both

algorithms start with the same initial values and
reach the same limit. Second cycle (j ¼ 2):

X
ðwþ kÞðAIMDÞ: c1 ¼

x1
2
þ x2

2
þ k1 P

W
2

X
ðwþ kÞðAIMD-FCÞ: c1 <

x1
2
þ x2

2
þ 2k1 < W

k2 and k02 resources are consumed during additive

increase.
P
ðwþ kÞ State:

AIMD:
x1
2
þ x2

2
þ k1 þ 2k2 PW

AIMD-FC:
x1
2
þ x2

2
þ 2k1 þ 2k02 PW

Since c1 < x1=2þ x2=2þ 2k1 < W , the number of
additive increase steps with AIMD-FC at the sec-
ond cycle is less than the number of increase steps

with AIMD. So k02 < k2. This means that during

the second cycle, AIMD-FC requires at least one

increase step less than AIMD prior to decreas-

ing. 11

Inductive step. If AIMD-FC gains one step to-

wards convergence at cycle j (j > 2), then it gains a

step also at the cycle jþ 1.

Let

x1
2j
þ x2

2j
þ k1
2j
1
þ k2
2j
2
þ � � � þ kj
1|ffl{zffl}

wj
1

þ2kj PW

and

x1
2j
þ x2

2j
þ k1
2j
1
þ k2
2j
2
þ � � � þ 2k0j
1|ffl{zffl}

w0j
1

þ2k0j PW

be the
P
ðwþ kÞ state of the AIMD and AIMD-

FC flows, respectively, prior to the jth decrease.

From the induction hypothesis the following re-

lations which represent the sum of the windows
after the multiplicative decrease are true:

AIMD: cj ¼
wj
1

2
þ kj P

W
2

ð9Þ

AIMD-FC: cj <
w0j
1
2
þ 2k0j < W ð10Þ

During the increase phase, each flow will in-

crease its resource consumption until kjþ1 and k0jþ1,
at which point the system feedback is changed to 0.P
ðwþ kÞ becomes

AIMD AIMD-FC
wj
1
2
þ kj þ 2kjþ1 PW

w0j
1
2
þ 2kj þ 2k0jþ1 PW

ð11Þ

Eqs. (9)–(11) imply that k0jþ1 < kjþ1. So, AIMD-FC

gains a step also during the jþ 1 cycle.

236 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
The system needs n ¼ 1þ lgðmaxðx1; x2ÞÞ cycles
to converge to fairness. The minimum gain of

AIMD-FC algorithm is at least n
 1 steps. �

Since smoothness of AIMD-FC improves by
1
6
W (i.e., �2

3
W
 1

2
W �––see Section 3.3.3) it can be

proved further that the responsiveness gain of

AIMD-FC during each cycle is 1
6
W steps.

Combining Theorems 1 and 2 we conclude that,

with parameters 1 and 1=2, AIMD-FC has higher

responsiveness than AIMD.
3.3.5. Algorithm limitations

Here we consider those cases where the AIMD-
FC algorithm cannot be applied. For example, the

AIMD itself can not be applied when the window

is equal to one byte/segment/packet.

Consider a single flow system as that of Fig. 3.

The decrease window of this flow is w and assume

that prior to congestion k � aI resources were al-

located in additive increase. Therefore, wþ k�
aI PW . The ensuing phase of multiplicative de-
crease will produce a reduction of resource utili-

zation at

w w
2
þ k � aI: ð12Þ

AIMD-FC can only be applied if

wP 2aI: ð13Þ
4. AIMD-FC+ convergence algorithm

4.1. Convergence lemma

AIMD-FC increases the bandwidth utilization

of AIMD from 3=4 to 5=6. However, the efficiency
boundaries of AIMD have not yet been exploited.

We are interested in this problem from a per-

spective where fairness plays a pivotal role.

Placing side by side the multiplicative decrease

functions of AIMD and AIMD-FC: 12
12 Additive increase functions are the same.
AIMD: w 1=2ðwþ kÞ ð14Þ

AIMD-FC: w 1=2ðwÞ þ k

which is equivalent to

1=2ðwþ kÞ þ ð1=2Þk
ð15Þ

We notice that AIMD-FC augments its window
by a well-known factor: 1

2
k. This improves its

fairness and efficiency and suggests that aug-

menting the windows after multiplicative decrease,

by a well-known increase factor, leads to enhanced

efficiency and fairness. Hence, a natural question

of practical importance is how far can we adjust

the window upwards. We need to determine the

appropriate value, which will not violate the con-
straints of congestion avoidance nor the condi-

tions of equilibrium.

Strict requirement for this scheme to work is the

presence of ‘‘common knowledge’’ for all the

current flows; the value k in our case. Practical

requirement is to avoid an increase which will

cause immediate congestion. Recall that in AIMD-

FC the window decrease is given by the formula
w ðw=2Þ þ k (where k is the additive increase

value) and in equilibrium, w=2 ¼ k. Hence, a hard

boundary for the extra value in search is half the

maximum decrease window: w=2. Below we for-

malize the above intuition and present a new al-

gorithm that improves the efficiency and fairness

of AIMD-FC.
Lemma 3 (Convergence lemma). Let x1, x2
(x1; x2 2 N ; 0 < x1 < x2) denote the initial states of
resources/windows of two flows, n (n 2 N ; n > 0) the
number of cycles in which AIMD-FC-System
ððx1; x2Þ; 2; nÞ converges to fairness; let n0 be an in-
teger (1 � n0 � n); let ð/1, /2Þ AIMD-FC-Sys-
temððx1; x2Þ; 2; n0Þ be the output of an AIMD-FC
system, and let q be integer (q < /2=2).

Then AIMD-FC-Systemðð/1 þ q;/2 þ qÞ; 2; n

n0Þ converges.
Proof. Expressing /1 and /2 as two series we

have

/1 ¼
x1
2n0
þ k1
2n0
1

þ k2
2n0
2

þ � � � þ kn0 ¼
x1
2n0
þ j;

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 237
/2 ¼
x2
2m
þ k1
2n0
1

þ k2
2n0
2

þ � � � þ kn0 ¼
x2
2n0
þ j:

Unrolling the windows returned after n
 n0 cycles
by AIMD-FC-Systemðð/1 þ q;/2 þ qÞ; 2; n
 n0Þ
we have the series

w1 ¼
x1

2n02n
n0
þ j
2n
n0

þ q
2n
n0

þ k01
2n
n0
1

þ � � � þ k0n
n0

¼ x1
2n
þ j
2n
n0

þ q
2n
n0

þ k01
2n
n0
1

þ � � � þ k0n
n0 ;

w2 ¼
x2

2n02n
n0
þ j
2n
n0

þ q
2n
n0

þ k01
2n
n0
1

þ � � � þ k0n
n0

¼ x2
2n
þ j
2n
n0

þ q
2n
n0

þ k01
2n
n0
1

þ � � � þ k0n
n0 :
AIMD-FC-Systemðð/1 þ q;/2 þ qÞ; 2; n
 n0Þ con-
verges if w1 ¼ w2. This is true only if
x1=2n ’ x2=2n ’ 0, which is, in turn, true since

AIMD-FC-Systemððx1; x2Þ; 2; nÞ converges. �

Corollary 4. After every multiplicative decrease
phase all the windows of the flows participating in a
system can be adjusted upward by q resource units
each. If q is less than half the maximum decrease
window, the number of cycles required for AIMD-
FC to converge will not be affected.

If we assume that q units can be added to the

window of every AIMD-FC flow after each

multiplicative decrease, the minimum value of the

window will be �wþ q�. Furthermore, q > 0 im-

plies ðwþ qÞ > 2
3
W (recall that wP 2

3
W in

AIMD-FC). Based on the above corollary we
describe an algorithm (AIMD-FC+) that im-

proves the efficiency, smoothness and fairness of

AIMD-FC.
4.2. AIMD-FC+

Our problem is to determine the amount of

resources that could be added to the congestion
windows after multiplicative decrease. According

to the observation above, this needs to be less than

half the maximum decrease window in the system;
otherwise, an equilibrium will not be reached. The

challenging part of this problem is hidden behind

the distributed nature of our system: the par-

ticipating flows do not know what the maximum

decrease window is. However, they do have addi-

tional resources to utilize for this purpose albeit
these will not lead the system utilization to the

theoretical boundary. One such common and well-

known resource is the bandwidth allocated during

additive increase.

Let wj be the decrease window of an AIMD-FC

flow at the beginning of cycle j and assume that

after kj steps congestion occurs in the network. In

the next cycle wjþ1 wj=2þ kj. In equilibrium
kj ¼ wj=2 and kj is a common knowledge in the

system. Adding resources from kj into wjþ1 does

not preserve the congestion avoidance property of

the algorithm. Imagine a scenario where the sys-

tem is in equilibrium and flows leave the system.

The system will be still in equilibrium but

kj > wj=2. If we add resources from kj to wjþ1 the

sum of the windows in the system might exceed the
system threshold (i.e.,

P
ðwjþ1 þ kjÞPXgoal).

Therefore, a good source of common knowledge is

wj. We know that wj wj
1=2þ kj
1 and

kj
1 < wj; consequently kj
1=2 < wj=2. So kj
1=2
satisfies both our requirements for less than half

the maximum decrease window and for a well-

known amount of resources. We incorporate the

new functionality in AIMD-FC+ function pre-
sented below. The additional notation used in this

section is listed below.

wj The window at the beginning of cycle j
dw Variable that records the decrease window

of AIMD-FC+

f ðqÞ f : N ! N ; 0 � f ðqÞ � q=2. From the

above discussion, q ¼ kj
2

AIMD-FC+(w, dw, q)
1 k 0

2 while (feedback is 1)

3 process(wþ k)

4 k k þ aI
5 end

6 dw 1
2
dwþ ðwþ k
 dwÞ

7 w dwþ f ðqÞ
8 return (w, dw, k)
END

2/3W

7/9W

minimum window

time (RTT)

congestion window (packets)

Window
Decrease

(w + q)

Space
Additive Increase

W

1

Fig. 4. AIMD-FC+ window evolution under periodic loss.

Each cycle delivers ð7
9
BÞð2

9
BÞ þ 1

2
ð2
9
BÞ2 ¼ 1=p packets and takes

2
9
W round trip times.

238 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
AIMD-FC+Systemððx1; x2; . . . ; xmÞ;m; nÞ
1 local variables: dw; k
2 forall i ¼ 1 to m do

3 k 0

4 wi xi
5 dw xi
6 end forall

7 for j ¼ 1 to n do

8 forall i ¼ 1 to m
9 (wi; dw; kÞ AIMD-FC+(wi; dw; k)
10 end forall

11 end

12 return (w1;w2; . . . ;wm)
END

4.2.1. Correctness

Since w dwþ f ðqÞ and q is well known and

the same for every flow and f ðqÞ � dw, it suffices

to prove that

If AIMD-FC-Systemððx1; x2Þ; 2; nÞ converges to
fairness, then, after n cycles of AIMD-FC+System,
dw1¼ dw2.

The dw value of a single flow at cycle j (j < n) is
dwj ¼ dwj
1

2
þ ðwj
1 þ k
 dwj
1Þ

¼ dwj
1

2
þ fdwj
1 þ f ðqj
2Þ þ k
 dwj
1g

¼ dwj
1

2
þ k þ f ðqj
2Þ:

Since k and f ðqj
2Þ are fairly allocated and well

known to every flow, the correctness of the

AIMD-FC+ follows from Corollary 4.

4.2.2. Efficiency of AIMD-FC+

The minimum value of congestion window of

AIMD-FC+ is �dwþ f ðqÞ�. By estimating dw and

f ðqÞ first, we compute the average throughput per
RTT of AIMD-FC+ (Fig. 4).

Assume a single-flow system: after k additive

increase steps the congestion window ðwþ kÞ will
reach the maximum value W . If we assume

�wþ k
 dw ¼ k þ f ðqÞ� to be the increase of

AIMD-FC+ (line 6), then dw ¼ 2
3
W (in Section

3.3.2 we have shown that an algorithm that de-

creases according to the formula 1
2
wþ k has de-

crease window 2
3
W and increase space 1

3
W). The
decrease window has the same value as in AIMD-
FC.

Under the same conditions, let qj
1 be the

number of additive increase steps of the last cycle

and assume �/ ¼ W
 dw ¼ 1
3
W � to be the increase

space above dw value of AIMD-FC+ (according

to the above assumption). The (real) additive in-

crease during the cycle jþ 1 would be

qjþ1 ¼ /
 f ðqj
1Þ (this is from the definition of
the algorithm). If f ðqÞ ¼ 1

2
q (see Section 4.2) it can

be shown that f ðqÞ ¼ 1
3
/ ¼ 1

9
W ; the proof follows

with similar arguments as the proof in Section

3.3.2. This means that �dwþ f ðqÞ� value (or wþ q
in Fig. 4) is equal to 7

9
W .

From the window evolution of AIMD-FC+

(Fig. 4), the average throughput (per RTT) of the

flow is

MSS

RTT

8

9
W ð16Þ

which implies 88.9% efficiency.

4.2.3. Responsiveness and smoothness

Theorem 2 in Section 3.3.4 shows that an in-

herent property of adding a fixed value to all the

flows� windows in the system is that both respon-

siveness and smoothness improve. In essence, any
non-zero value of f ðqÞ reduces the number of steps

per cycle. In a similar manner that we showed

AIMD-FC smoothness and responsiveness we can

show that for every value f ðqÞ that we add,

smoothness is improved by f ðqÞ=W and respon-

siveness increases by at least n
 1 steps (n is the

number of cycles that the protocol converges).

.....

.

RED/Drop-Tail
4 ms 4 ms

17 ms

FTP Senders FTP Receivers

Queue Size = (Delay x Bandwidth)
TCP Buffer size = 10000 pkts

Fig. 5. Multiple flows experimental set-up for AIMD evalua-

tion.

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 239
5. Experiments with TCP

We have incorporated the AIMD-FC and

AIMD-FC+ algorithms 13 into TCP [3] and have

validated its performance on NS-2 [13]. TCP
controls the sending rate by a parameter called

congestion window [2]. When resources are avail-

able TCP increases the congestion window by one
MSS; upon congestion and in the presence of three

duplicate acknowledgments, TCP multiplies the

congestion window by a factor of 1/2 (this TCP is

also known as TCPð1; 1=2Þ). Recall that in the

absence of errors the average long term efficiency
of the AIMD mechanism of TCP is 75% [10].

The TCP version of choice in our experiments

was TCP-SACK [14]. Due to its Fast Recovery

and its capability for multiple retransmissions

within one RTT, this version matches better the

assumptions of our theoretical work. However,

there is an additional component in TCPs con-

gestion control, namely the timeout mechanism;
and there is an additional component in the initial

window expansion phase, namely, the Slow Start

mechanism.

In the experiments we consider a simple net-

work topology (see Fig. 5) with homogeneous

flows where all links have the same bandwidth and

routers use Droptail and RED [15] queue man-

agement (configured both on the bottleneck link
and in the access links), devoid of pricing models,

fair-queuing disciplines or quality of service

mechanisms. Simply we consider an Internet in-

frastructure based on the end-to-end design argu-

ment [16]. In this work we do neither consider the

co-existence of AIMD flows with AIMD-FC

flows. Stability of the network and fairness issues

that come up when protocols have diverse or even
greedy (but responsible) congestion avoidance

mechanisms is discussed in [17].

In this topology, multiple flows share a high-

bandwidth bottleneck link; the fair-share (the

Delay�Bandwidth share per flow) was set rela-

tively high in order to provide the environment for

the algorithms to exploit their potential. For ex-

ample, AIMD is not activated when the fair share
13 A detailed technical report can be found in [12].
is only one packet, or otherwise when contention is

too high and bandwidth is limited, efficiency is not

really an issue.

We evaluate three distinct scenarios: Our first

scenario is characterized by stationarity in terms of

the number of participating flows. The scenario

matches well the theoretical assumptions. We

study comparatively the behavior of the algo-
rithms and we present experiments with both de-

fault and RED gateways. Our second scenario

involves progressive contention due to periodic

increase of the number of flows. The subject mat-

ter we investigate with this experiment is the

mechanism�s potential for efficient congestion

avoidance and control, i.e., not only its conver-

gence behavior. In our third experiment we eval-
uate the system�s responsiveness: bandwidth

becomes available and protocols ought to dem-

onstrate capabilities to consume the available re-

source fast. Both our second and third experiments

aim at alleviating reasonable concerns regarding

the algorithm�s behavior in dynamic (and hence

more realistic) environments. We note that our

experiments do not cover the whole spectrum of
experimental evaluation, which can be a subject of

study in its own right; we provide here substantial

evidence on the algorithm�s practical impact, along

with our theoretical perspective. Further experi-

mental studies may be driven by specific network

and flow characteristics, or protocol, application

and device properties.

A TCP flow runs at each end node and an FTP
application generates the traffic for each source.

The TCP buffer size was set large enough so that

it can exceed the delay bandwidth product of

the network. The rest of TCP parameters are

the default ns2 [13] parameters. The task of the

application is to send data for 60 s. For both

64 128 256 516 1024
Number of Flows.

65

70

75

P
ac

ke
t

R
ec

ei
ve

d
x

10
0,

00
0 SACK

SACK-FC
SACK-FC+

Fig. 7. Goodput performance of TCP-SACK with AIMD,

AIMD-FC and AIMD-FC+ on a 1 Gbps link and Droptail

gateway.

2 4 8 16 32 64 128
Number of Flows.

0.80

0.85

0.90

F
ai

rn
es

s
In

de
x

SACK
SACK-FC
SACK-Omega

Fig. 8. Fairness with the 100 Mbps link and Droptail gateway.

240 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
RED and Droptail policies the queue buffers were

set equal to the Delay�Bandwidth product. The

RED minimum drop threshold was set to ð1=3Þ
and the maximum drop threshold was set to ð2=3Þ
of the RED buffer size. The rest of the RED

parameters are the default ns2 [13] parameters.
We measured the number of packets that arrive

at the receivers; since the time of the experiments is

fixed we report this number as Goodput in the

figures (average of 30 experiments with minimal

statistical deviation). Goodput is a metric for the

system efficiency. In line with our theoretical

findings and in order to measure the convergence

behavior of the participating flows, we use the
Fairness Index used in [18]

F ðgÞ ¼ ð
P

giÞ2

nð
P

g2i Þ
ð17Þ

where gi is the goodput achieved by each flow.

5.1. Stationary environment

The experiments with NS-2 simulator counter-

sign the potential of AIMD-FC/FC+ in TCP. Fig.

6 shows that Goodput is improved up to 5% for a

small number of flows (high fair-share; e.g. 2, 4, 8

flows) and Fig. 7 shows the same improvement

when the fair-share is high. When the number of

flows increases, there is still improvement but there
is also a tendency to approach the goodput of

AIMD-based TCP. When the fair-share is getting
2 4 8 16 32 64 128
Number of Flows.

60

65

70

75

P
ac

ke
t

R
ec

ei
ve

d
x

10
,0

00

SACK
SACK-FC
SACK-FC+

Fig. 6. Goodput performance of TCP-SACK with AIMD,

AIMD-FC and AIMD-FC+ on a 100 Mbps link and Droptail

gateway.
rather small, the goodput performance of the two

algorithms is balanced. Note that this is an ex-

pected result. When the number of competing

flows increases, efficiency is not really an issue.

Fig. 8 shows the fairness of the protocols. In

accordance with our expectations that rise from
the second theorem, the fast convergence algo-

rithms achieve better results on fairness.

Figs. 9 and 10 show the results from experi-

ments over a 100 Mbps link where each node is

connected to the back-bone through a RED

gateway [15]. The Goodput of the system is shown

in Fig. 9. The experimental results match the the-

oretical performance albeit the conditions of the
experiment do not exactly match the assumptions

of the control system in Section 2. Although,

2 4 8 16 32 64 128
Number of Flows.

50

55

60

65

70

75

P
ac

ke
t

R
ec

ei
ve

d
x

10
,0

00

SACK
SACK-FC
SACK-FC+

Fig. 9. Goodput performance of TCP-SACK with AIMD,

AIMD-FC and AIMD-FC+ on a 100 Mbps link and RED

gateway.

2 4 8 16 32 64 128
Number of Flows.

0.90

0.92

0.94

0.96

Fa
ir

ne
ss

 I
nd

ex

SACK
SACK-FC
SACK-FC+

Fig. 10. Fairness with the 100 Mbps link and RED gateway.

30 60 90 120
Number of Flows.

16

17

18

P
ac

ke
t

R
ec

ei
ve

d
x

10
,0

00

SACK
SACK-FC
SACK-FC+

Fig. 11. Goodput performance of TCP-SACK with AIMD,

AIMD-FC and AIMD-FC+ on a 100 Mbps link and a RED

gateway. 30 flows join the system every 15 s.

30 60 90 120
Number of Flows.

0.88

0.90

0.92

0.94

F
ai

rn
es

s
In

de
x

(%
) SACK

SACK-FC
SACK-FC+

Fig. 12. Fairness with a 100 Mbps link and a RED gateway. 30

flows join the system every 15 s.

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 241
comparatively, RED does not outperform Drop-

tail in Goodput, the relative performance gains of
AIMD-FC and AIMD-FC+ are apparent. Fair-

ness of the system (Fig. 10) appears to be im-

proved with RED gateways. The relative fairness

performance of the three algorithms with TCP

gains further significance since it confirms practi-

cally our assertion that the improvement on effi-

ciency does not come at the cost of fairness.

5.2. Graduated contention increase

In addition to the above simulations where the

number of flows is constant during the experiment,

we evaluate the performance of the algorithms with

graduated contention increase; there, new flows
enter the system periodically. Figs. 11 and 12 out-

line the performance of the protocols under this

scenario. At time 0.0, 30 nodes start to send data to

their peers; 30 more nodes join the network every

15 s (up to a total of 120 nodes). The goodput of the
system (total goodput of the flows) over a 15 s time

interval is presented in Fig. 11. Fig. 12 presents the

corresponding results of fairness.

The major contribution of this experiment is not

to highlight the gain of AIMD-FC but rather to

confirm experimentally that the new approach does

not exhibit any conflicting behavior with the con-

gestion control mechanisms of TCP. The combined
results of efficiency and fairness suggest that it�s
potential for congestion avoidance remains high.

120 90 60 30
Number of Flows.

0.90

0.92

0.94

F
ai

rn
es

s
In

de
x

(%
) SACK

SACK-FC
SACK-FC+

Fig. 14. Fairness with the 100 Mbps link and a RED gateway.

30 flows leave the system every 15 s.

242 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
5.3. Graduated bandwidth increase

We observe the system and flow behavior under

network conditions of graduated availability of

bandwidth (Figs. 13 and 14). We note that increase
is not a consequence of bandwidth provisioning

but instead, of flow duration. That is, some flows

complete their task and, periodically, leave the

system, making available space to existing flows to

consume more bandwidth. Clearly, the dominant

factor for that target is the number of steps re-

quired for the flows to reach their fairshare. In

other terms, protocol responsiveness to conditions
of rapid bandwidth availability is the real issue

with this experiment.

Both charts below reveal a clear-cut advantage

for AIMD-FC and AIMD-FC+. What is not ex-

actly clear from the experiments is the specific

conditions that favor AIMD-FC over AIMD-

FC+. The Goodput performance with minimal

contention (i.e., small number of competing flows)
indicate the extent at which extra amount of re-

sources may be exploited with AIMD schemes;

when the number of participating flows increases,

the available extra resource space per flow does

not translate into extra packets (MSS) and hence,

the difference is not reflected on protocol Good-

put. Driven by the same argument, an interesting

conclusion can be drawn from the results of fair-
ness. Occasionally, as in the case of 60 flows in Fig.

14, some flows may be able to exploit that extra
120 90 60 30
Number of Flows.

16

17

18

P
ac

ke
t

R
ec

ei
ve

d
x

10
,0

00

SACK
SACK-FC
SACK-FC+

Fig. 13. Goodput performance of TCP-SACK with AIMD,

AIMD-FC and AIMD-FC+ on a 100 Mbps link and a RED

gateway. 30 flows leave the system every 15 s.
amount of available resource due to a timeout of
some TCP senders. Although that behavior is not

captured by the protocol Goodput, it is captured

indeed by the Protocol Fairness: AIMD-FC per-

forms better than AIMD-FC+ in this occasion.
6. Discussion

We have emphasized our packet-network per-

spective of AIMD. That is, practically, our po-

tential solutions need to be applicable in this

context. It is notable, however, that, from the al-

gorithmic perspective, further changes can be

made to approach more effectively the target of

efficiency and fairness. For example, at the second

cycle towards convergence our system has m flows
with a common property: they have all increased

their windows by k1 packets. It is hence not un-

reasonable to expect that all sources could adjust

their windows to k1, reaching fairness in a single

cycle. Furthermore, the sources could maintain

their additive behavior until the next cycle. Again,

all sources would have been growing similarly, at a

level k2, where they reach their maximum efficiency
(i.e. all flows have windows w ¼ k1 þ k2). That is,
our scenario involves a one-cycle convergence to

fairness and a two-cycle convergence to efficiency

with a success rate 100% and without a need for

continuous adjustments. However, the assump-

tions made here do not hold in packet networks, or

more precisely, further modifications are needed in

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 243
order for them to form a functional system. A first

concern is the system�s inability to accept new

flows when the system reaches a equilibrium. Of

course, an algorithm can be made to allow for

small oscillations so that new flows will find some

space to grow. Then, upon a system�s feedback, all
flows will be needed to re-initiate the convergence

procedure. A second concern is that a system in

equilibrium will not be able to exploit the extra

bandwidth that may become available when some

flows complete their task (i.e. leave the system).

Finally, when new flows enter the system at a point

where other flows have converged to fairness 14

but have not yet reached efficiency they will not
share common information. That is, while the old

group of flows attempts to converge to efficiency,

the new group will attempt to converge to fairness.

However, the system�s capacity will be exhausted;

at their second cycle, the new flows will not have

much opportunity to exploit new bandwidth, nor

will the old flows release some of their resources. It

is therefore necessary the participating flows to
release resources uniformly every time there is a

drop; a two-cycle procedure that is associated with

two distinct tactics (i.e. adjust to k1 or adjust to

k1 þ k2) cannot work. Although this discussion

requires further analysis, and an immediate solu-

tion is not apparent, we note that we do not con-

sider this direction of research unreasonable.

We also note that in the context of AIMD-FC+
a new type of tradeoff is developed: the more we

approach the bandwidth line, the less space we

leave for new incoming flows. This tradeoff is not

associated with the dynamics of the algorithm but

rather with the dynamics of the network. The

impact is expected to be rather small since a packet

drop due to increasing contention will signal the

end of the equilibrium and re-initiate the conver-
gence procedure.

By the same token, AIMD-FC properties apply

not only for better utilization. For example, the
14 Notably, this pattern of arrivals can happen with the

original algorithm and the algorithms presented above. How-

ever, in that case, the multiplicative decrease plays also the role

of a corrective procedure. The number of steps that has been

wrongly ‘‘recorded’’ as a common fair-share, is being refreshed

at every cycle.
multiplicative decrease factor can be selected so that

it will approximate the bandwidth of standardTCP;

obviously, this will lead to a TCP protocol with

enhanced capability to reach an equilibrium faster,

i.e. a responsive TCP. Similarly, TCP-friendly

protocols can be made to reach equilibrium faster.
Note that TCP-friendly protocols are designed to

share bandwidth fairly with standard TCP; how-

ever, they degrade a system�s ability to reach an

equilibrium fast [19]. In addition, TCP-friendly

protocols grab more bandwidth when bandwidth is

in demand (i.e. during congestion––see also [20])

unlike TCP with AIMD-FC which adjusts back-

wards more rapidly during congestion. Indeed, the
properties of AIMD-FC can be used to indicate the

latitudes within which the tradeoff of responsive-

ness and smoothness is amenable to further refine-

ment and deployment. Beyond that, TCP with

AIMD-FC can be deployed in the exact form that is

presented here. Recently, several versions of TCP

co-exist in the Internet since they are integrated in

different operating systems. It is worthnoting the
example of TCP-SACK which co-exists with TCP-

Tahoe; although SACK is far more aggressive than

Tahoe, it has seen a rapid deployment due to its

enhanced sophistication and the low-cost of de-

ployment (e.g. no router modification is needed).

Finally, a requirement for our system is to

provide feedback upon congestion. Modern net-

works have implemented more sophisticated
mechanisms to provide feedback to the transport

layer. Such examples are RED gateways [15] and

ECN-capable routers [21]. Although a Droptail

Router seems to satisfy better the system as-

sumption of synchronous feedback, our experi-

mental results with RED were encouraging. The

collaborative potential of our algorithm with the

functionality of devices such as RED and its
variants can be further investigated.
7. Conclusion

We have shown that the potential of AIMD has

not been fully exploited. We presented a modifi-

cation and demonstrated the corresponding per-
formance improvement, in the context of packet

networks. In comparison with recent proposals,

244 A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245
AIMD-FC has two distinctive properties (i) it does

not favor one performance characteristic at the

expense of another, and (ii) it does not damage the

capability of the algorithm to deal with congestion

avoidance.

We have tested the performance of AIMD-FC/
FC+ with TCP. The results reveal a great potential

of AIMD-FC/FC+ for packet networks. Further

analysis will be done for more complex systems,

more metrics may be defined, and more experi-

mental results will follow the present work. We

note that AIMD-FC/FC+ is compatible, in prin-

ciple, with the original AIMD algorithm. The re-

quired modifications are minor, yet the service
improvement for applications that use TCP could

be significant. However, since AIMD is not re-

stricted to any specific protocol, the modifications

proposed here can be practically useful to other

protocols that apply congestion avoidance and

control but require increased smoothness and re-

sponsiveness.
References

[1] D. Chiu, R. Jain, Analysis of the increase/decrease algo-

rithms for congestion avoidance in computer networks,

Computer Networks and ISDN 17 (1) (1989) 1–14.

[2] V. Jacobson, Congestion avoidance and control, in:

Proceedings of ACM SIGCOMM�88, 1988, pp. 314–329.
[3] J. Postel, Transmission Control Protocol, RFC 793.

[4] J. Halpern, Y. Moses, Knowledge and common knowledge

in a distributed environment, Journal of the ACM 37 (3)

(1990) 549–587.

[5] Y. Yang, S. Lam, General AIMD congestion control, in:

Proceedings of the IEEE International Conference on

Network Protocols, 2000.

[6] D. Bansal, H. Balakrishnan, Binomial congestion control

algorithms, in: Proceedings of IEEE INFOCOM�01, 2001,
pp. 631–640.

[7] S. Jin, L. Guo, I. Matta, A. Bestavros, TCP-friendly SIMD

congestion control and its convergence behavior, in:

Proceedings of ICNP�2001, 2001.
[8] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling

TCP throughput: A simple model and its empirical

validation, in: Proceedings of ACM SIGCOMM, 1998.

[9] S. Floyd, K. Fall, Promoting the use of end-to-end

congestion control in the internet, IEEE/ACM Transac-

tions on Networking 7 (4) (1999) 458–472.

[10] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic

behavior of the TCP congestion avoidance algorithm,

ACM Computer Communication Review 27 (1997) 20–26.
[11] R. Karp, E. Koutsoupias, C. Papadimitriou, S. Shenker,

Optimization problems in congestion control, in: IEEE

Symposium on Foundations of Computer Science, 2000,

pp. 66–74.

[12] A. Lahanas, V. Tsaoussidis, Exploiting the efficiency and

fairness potential of AIMD-based congestion avoidance

and control, Tech. Rep. NU-CCS-02-04, Web Page: http://

www.ccs.neu.edu/~ladrian, April 2002.

[13] The Network Simulator––NS-2, Tech. rep., Web Page:

http://www.isi.edu/nsnam/ns/.Version2.1b7a,October2000.

[14] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP

Selective Acknowledgment Options, RFC 2018.

[15] S. Floyd, V. Jacobson, Random early detection gateways

for congestion avoidance, IEEE/ACM Transactions on

Networking 1 (4) (1993) 397–413.

[16] J.H. Saltzer, D. Reed, D. Clark, End-to-end arguments in

system design, ACM Transactions on Computer Systems 2

(4) (1984) 277–288.

[17] A. Akella, S. Seshan, R. Karp, S. Shenker, C. Papadimi-

triou, Selfish behavior and stability of the Internet: a game-

theoretic analysis of TCP, in: ACM SIGCOMM, 2002.

[18] R. Jain, D.M. Chiu, H. Hawe, A quantitative measure of

fairness and discrimination for resource allocation in

shared systems, Tech. Rep. DEC-TR-301, Digital Equip-

ment Corporation, 1984.

[19] C. Zhang, V. Tsaoussidis, The interrelation of TCP

responsiveness and smoothness in heterogeneous networks,

in: Proceedings of the 7th IEEE Symposium on Computers

and Communications, ISCC, 2002.

[20] M. Vojnovic, J. Boudec, On the long-run behavior of

equation-based rate control, in: ACM SIGCOMM, 2002.

[21] K. Ramakrishnan, S. Floyd, A Proposal to add Explicit

Congestion Notification (ECN) to IP, RFC 2481.
Adrian Lahanas received his B.Sc. de-
gree in Computer science from Uni-
versity of Cyprus (1993–1997).
Currently he is Ph.D. student at
Northeastern University, and is ex-
pected to graduate in June 2003. His
interests are transport protocols over
wired/wireless networks.
Vassilis Tsaoussidis specializes in Net-
work Protocols, QoS and Mobile
Computing. He is currently with the
Engineering Department of Democri-
tos University, Greece. Vassilis was a
faculty member of the Computer Sci-
ence Department of SUNY Stony
Brook (1998–2000) and Northeastern
University (2000–2003). He is an edi-
tor for Wiley�s journal of Wireless
Communication and Mobile Comput-
ing, and a committee member of IN-
FOCOM, ISCC, ICCCN, GlobeCom

http://www.ccs.neu.edu/~ladrian
http://www.ccs.neu.edu/~ladrian
http://www.isi.edu/nsnam/ns/

A. Lahanas, V. Tsaoussidis / Computer Networks 43 (2003) 227–245 245
etc. He has chaired the conference on Internet Computing 2002
and the Workshop on Wired/Wireless Internet Communica-
tions; he has was also the guest editor of three journal special
issues on Internetworking protocols, performance evaluation
and wireless computing. Vassilis has published over 50 papers
and supervised 2 doctoral theses and several master projects.

	Exploiting the efficiency and fairness potential of AIMD-based congestion avoidance and control
	Introduction
	System model
	A pseudocode for AIMD
	Observations on the dynamics of AIMD

	AIMD-fast convergence algorithm
	AIMD-FC goals and metrics
	AIMD-FC
	Correctness, efficiency and system limitations
	Correctness
	Efficiency of AIMD-FC
	Smoothness
	Responsiveness
	Algorithm limitations

	AIMD-FC+ convergence algorithm
	Convergence lemma
	AIMD-FC+
	Correctness
	Efficiency of AIMD-FC+
	Responsiveness and smoothness

	Experiments with TCP
	Stationary environment
	Graduated contention increase
	Graduated bandwidth increase

	Discussion
	Conclusion
	References

