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Abstract—With the emergence of wireless sensor networks,
an enabling communication technology for distributed real-time
systems, we face the critical challenge of meeting the end-to-end
deadlines of real-time flows. This paper presents Real-time Flow
Scheduling (RFS), a novel conflict-free real-time transmission
scheduling approach for periodic real-time flows in wireless
sensor networks. In contrast to existing transmission scheduling
algorithms that ignore interference between transmissions or pre-
vent spatial reuse within the same channel, RFS supports spatial
reuse through a novel interference-aware transmission schedul-
ing. While recent work on conflict-free transmission scheduling
focused on specialized communication patterns such as queries
and converge cast, RFS is designed for peer-to-peer real-time
flows with arbitrary inter-flow interference. Moreover, RFS has
three salient that make it particularly suitable for real-time
systems: First, RFS includes a real-time schedulability analysis
that accounts for interference between real-time flows. Second,
RFS improves reliability by incorporating retransmissions in a
flexible scheduling scheme. Finally, RFS enhances scalability by
dividing the network into neighborhoods and provides real-time
performance for flows crossing multiple neighborhoods through
a novel application of the Release Guard protocol. RFS was
evaluated through simulations based on the traces collected
from an indoor wireless sensor network testbed. Compared to
a traditional TDMA protocol, RFS reduces flow latencies by up
to 2.5 times, while improving the real-time capacity by as much
as 3.9 times.

I. INTRODUCTION

Recent years have seen the adoption of wireless sensor net-
works (WSNs) as communication infrastructure for distributed
real-time applications such as industrial process monitoring
and control, structural health monitoring, and patient monitor-
ing. These applications require real-time communication over
multi-hop WSNs. While significant advances towards this goal
have been made, existing solutions usually falls short in one
(or more of) the following aspects:

• Existing results are often derived for simplified communi-
cation workloads such as converge-cast [1]–[3] or query
services [4] where data is routed from sensors to a single
base station. While this leads to elegant solutions, it also
limits the applicability of these protocols. For example, in
contrast to current centralized architectures in which all
communication goes through one or a few gateways, to
achieve higher scalability, the next generation of indus-
trial process monitoring and control will require multiple
control loops to be established between arbitrary sensors
and actuators using real-time flows.

• Existing solutions often adopt unrealistic interference
models or ignore interference [1]–[3]. For example, Wire-
lessHART – a standard for sensor-actuator networks –
prohibits concurrent packet transmissions within the same
channel. As a result, the scale of existing WirelessHART
networks is limited.

• Effective real-time solutions must also ensure reliable
data delivery to end-points under variable workloads and
network dynamics. This is difficult since packet retrans-
missions must be integrated effectively during scheduling
and real-time analysis.

• The computation of transmissions schedules is often
performed in a centralized fashion [1], [4]. This approach
limits both system scalability as well as the capability of
a system to adapt to workload and network dynamics.

In this paper, we adopt a flexible communication model in
which real-time flows may be established between arbitrary
sources and destinations. Packets pertaining to the same flow
are transmitted periodically at known rates and deadlines,
potentially over multiple hops. Flows are a flexible communi-
cation primitive that is familiar to network programmers who
commonly reason about network systems in terms of flows
that are established between sources and destinations.

Under this flexible model, in this paper we propose Real-
time Flow Scheduling (RFS) a novel transmission scheduling
technique for flows and associated schedulability analysis.
Classical TDMA protocols address the demands of random-
ized workloads by constructing fixed schedules that are dif-
ficult to adapt in response to workload changes. In sharp
contrast, RFS is optimized for scheduling flows by taking
advantage of their temporal properties and precedence con-
straints. The precedence constraints of flows are the result
of hop-by-hop forwarding that requires a sender to receive a
packet before forwarding it. Moreover, RFS dispenses with
the construction of fixed schedules and determines the trans-
missions that may be executed concurrently dynamically. In
addition, RFS has the following salient features:

Real-time analysis for rich workloads: We derived an anal-
ysis for computing the response time of flows with static
priorities. This analysis enables us to support real-time com-
munication in a wider range of WSN systems. The analysis
features a novel dynamic programming approach that bounds
the maximum interference between flows even when they have
arbitrary sources and destinations or inter-flow interference.



Interference-awareness: In contrast to schedulability algo-
rithms and analysis for WirelessHART, RFS facilitates spatial
reuse to support higher data rates. RFS features a generic
interference model that allows for interference to be modeled
both as graphs and based on Signal-to-Noise plus Interference
(SNIR) measurements. Recently, a number of protocols for
assessing interference have been proposed [5]–[7]. RFS may
be integrated with these protocols to enable spatial reuse.

Reliability mechanism: In traditional TDMA protocols, re-
transmissions are not included in the schedule and are trig-
gered by the link layer. In RFS, we incorporate retransmissions
during the scheduling process to improve performance.

Distributed operation: RFS scales up by dividing the net-
work in neighborhoods: the state maintained by a node is
limited to its neighborhood. The real-time performance of
flows that crosses multiple neighborhoods is ensured through
the novel application of the Release Guard algorithm [8].

The remainder of the paper is organized as follows. In
Section II, we present the related work. The flow and network
models under which RFS operates are presented in Section
III. A centralized version of RFS is presented in Section IV.
The challenges of handling workload and network dynamics
are discussed in Section V. We present the design of the
distributed RFS is presented in Section VI. Simulation results
based on traces collected from a WSN testbed are included in
Section VII. Conclusions are presented in Section VIII.

II. RELATED WORK

Real-time communication protocols proposed for WSNs
can be categorized into contention-based or TDMA-based
approaches. Contention-based protocols usually support real-
time communication by manipulating the parameters of
CSMA/CA such as the initial back-off, contention window,
or sleep schedule [9]–[13]. Contention-based protocols may
be inappropriate for real-time systems that require predictable
performance due to the randomized back-off approach.

TDMA-based approaches are attractive for real-time com-
munication because they may provide predictable perfor-
mance. Several TDMA protocols that provide bounded com-
munication latencies have been proposed. These protocols
incorporate effective heuristics for reducing latencies and
improving real-time performance; however, a majority of
existing protocols do not support prioritization [3], [14]–[17]
which is essential for real-time communication. An example
of a protocol that supports prioritization is Implicit EDF
[18]. Implicit EDF divides a network into cells operating on
different frequencies to ensure that transmissions occurring in
different cells do not conflict. The protocols supports message
prioritization within cells but not across cells. In contrast, RFS
supports prioritization for multi-hop flows.

The adoption of the WirelessHART standard has renewed
the interest of the community in real-time communication
for WSNs. A number of scheduling protocols have been
proposed for effectively scheduling packet transmissions under
the WirelessHART model [1], [19], [20]. These solutions adopt
a centralized approach to the construction of transmission

schedules and do not support spatial reuses. As a result,
the scalability of such approaches is limited. RFS overcomes
these limitations by supporting spatial reuse and providing
mechanisms improving scalability.

Abdelzaher et. al. [21] proposed a sufficient condition for
determining the schedulability of real-time flows in WSNs.
The work provides insights into the theoretical limits of the
real-time capacity of multi-hop WSNs. However, the paper
assumes an ideal MAC and, as a result, the obtained results
may not be applied in practice. More realistic results have
been obtained in the simplified case when data is routed over
a shared routing tree. Most prominently, network calculus is
used in [2] to compute bounds on the latency of messages gen-
erated by sensors that form a cluster-tree topology. Similarly,
analyses for WirelessHART have been proposed [1], [20],
however they are derived under the simplifying assumption
that no packet transmissions may occur concurrently. The
real-time analysis presented in this paper handles the more
general case when spatial reuse is possible and flows may be
established between arbitrary end-points.

In prior work, we proposed RTQS [4] an approach for
support real-time collection through queries. The fundamental
difference between RFS and RTQS (and many of the pre-
viously discussed protocols) stems from the different com-
munication models they adopt. RTQS requires data to be
routed from sensors to a single base station over a shared
routing tree. In contrast, RFS supports more general workloads
resulting from concurrent real-time flows. The added flexibility
of flows violates the design assumptions of RTQS preventing
us from directly applying the previously developed techniques
to real-time flow scheduling. The focus of this paper is to
develop new transmission scheduling techniques and real-time
schedulability analysis for real-time flows. In addition, RFS
has three unique features. First, it adopts a generic interference
model which is sufficiently general to enable spatial reuse.
Second, it features a novel technique for ensuring reliability
by incorporating packet retransmissions during the scheduling
process. Finally, RFS supports real-time flows in large net-
works through the novel application of Release Guard.

III. SYSTEM MODEL

A. Flow Model

RFS adopts real-time flows as a communication primitive.
A flow i may be established between any source and des-
tination. Packets pertaining to the same flow are transmitted
periodically with a phase (i.e., start time) of φi and period Pi.
A deadline Di is associated with each flow. We refer to the
phase, the period, and the deadline of a flow as its temporal
properties. A static priority is associated with each flow and
used to provide differentiated service. For a flow i, a new flow
instance is released in the beginning of each period. We use
Ji,v to refer to the vth instance of flow i which is released at
ri,v = φi + v · Pi. For brevity, in the remaining of the paper
we will refer to a flow instance simply as an instance.

We do not require the programmer to specify all flows when
the system is started. The workload may be changed by adding



new flows, removing existing flows, or changing the priority
and the temporal properties of existing flows. RFS is designed
to handle these operations efficiently.

B. Network Model

A key challenge to the design of TDMA protocols is
to model interference accurately as to enable spatial reuse.
Recently, a number of interference models and protocols for
assessing interference have been proposed [5]–[7], [22]. Rather
than adopting any specific interference model, we define a
generic interference model that is sufficiently general to allow
for interference relations to be expressed as graphs [7] or based
on Signal-to-Noise plus Interference (SNIR) measurements
[5], [6], [22]. As a result, we decouple the problem of model-
ing and assessing interference from the problems of scheduling
real-time flows and analyzing their real-time performance.
This decoupling has two advantages. First, our scheduling
techniques and real-time analysis may be applied under a
multitude of interference models highlighting the generality of
the proposed methods. Second, as more accurate interference
models are developed, our techniques may be integrated with
them for improved performance.

The generic interference model defines an abstract interface
that is used during scheduling and analysis to reason about
interference. This interface supports two types of queries.
The interference model may be used to determine if a set
of concurrent transmissions conflict. A set of transmissions
conflict if at least one of the receivers cannot correctly decode
its packet due to interference. Additionally, we allow queries
for determining if a pair of transmissions (l1, l2) will conflict
when up to C arbitrary transmissions may be scheduled
concurrently. Essentially, this allows us to bound the worst-
case interference from a bounded number of transmissions on
l1 and l2. Next, we detail how this interface may be instantiated
when interference is expressed as graphs or based on SNIR.

Interference may be represented as a graph. Using this
model, two transmissions

−−→
AB and

−−→
CD are conflict-free (

−−→
AB ‖−−→

CD) and may be scheduled concurrently if (1) A, B, C, and D
are distinct and (2)

−−→
CB is not an edge in the graph. Similarly,−−→

CD ‖
−−→
AB, if

−−→
AD is not an edge in the graph. A set of

transmissions is conflict-free if all pairs of transmissions are
conflict-free. A limitation of the graph model is that inter-
ference is not cumulative: the conflict of two transmissions−−→
AB and

−−→
CD does not depend on the number of concurrent

transmissions. The examples presented in this paper use this
model due to the ease of representing interference as graphs.

Recent empirical studies show that SNIR-based interference
models that capture the cumulative nature of interference
are more accurate [5], [6]. According to this model, a set
of transmissions is conflict-free if the SNIR of all receivers
exceeds a threshold. Using SNIR model it is also possible to
determine if two transmissions remain conflict-free when up
to C arbitrary transmissions occur concurrently.

Methods for assessing interference relations can be classi-
fied as active or passive. Active methods use active probes
to collect signal strength measurements. These measurements

may be used to construct interference graphs [7] or to pre-
dict interference by constructing a mapping between packet
reception rate and SNIR [5], [6], [22]. A disadvantage of
active methods is that they introduce significant overhead due
to active probing. A recent protocol – Passive Interference
Measurement (PIM) [5] – reduces this overhead through pas-
sive interference measurements while identifying interference
with high accuracy. RFS may be integrated with any of the
above protocols to assess interference among nodes. It is
important to recognize that interference relations may change
over time. According, we assume that interference relations
are reassessed periodically.

IV. PROTOCOL DESIGN

RFS divides the problem of real-time flow scheduling into
two parts (see Figure 1). First, we consider the problem of
scheduling the transmissions of a single flow in isolation. RFS
will construct plans according to which all instances of a flow
are executed. A plan is the sequence of transmissions required
to deliver data from the flow’s source to its destination over
multiple hops. The planner accounts for unreliable links and
enforces the precedence constraints introduced by multi-hop
forwarding during the construction of plans.

Next, we consider the problem of scheduling multiple
flows concurrently. RFS’s dynamic scheduler executes multi-
ple flows concurrently based on their temporal properties and
the previously constructed plans. The scheduler dynamically
determines the transmissions that will be executed in each slot
such that no conflicting transmissions are scheduled in the
same slot and prioritization among flows is provided.

The division of the problem in two parts has several intrinsic
advantages: (1) RFS isolates the concerns of handling prece-
dence constraints and link unreliability (handled by the plan-
ner) from the concerns of handling interference and providing
prioritization (handled by the scheduler). (2) RFS separates
the process of constructing plans from their dynamic execution
allowing us to develop a computationally efficient scheduler.
(3) RFS executes flows dynamically based on their temporal
properties rather than constructing an explicit transmission
schedule. Therefore, flows may be added/removed without
reconstructing an explicit schedule.

RFS works as follows: (1) Any node may initiate the
creation of a new flow that has it as a source. The node first
checks whether an existing plan may be used to execute the
new flow. As discussed in Section IV-A, it is often possible
to reuse plans existing plans to execute new flows. When this
is not possible, the planner initiates the construction of a plan
for the new flow. (2) Next, admission control is performed on
the source to determine whether the new flow may be added
without any flows missing their deadlines. (3) At run-time, the
scheduler dynamically executes flows based on their plans and
temporal properties.

The remainder of the section is organized as follows. We
start by considering the problem of constructing plans that
account for unreliable links (see Section IV-A). Next, we
present the design and analysis of the centralized RFS (see
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Fig. 1. RFS has two key components: a planner and a scheduler

Section IV-B). Mechanisms for scaling RFS to larger networks
are presented in Section VI.

A. Plans

The plan of flow i is an ordered sequence of steps that
contains the transmissions necessary to forward a packet from
the source to the destination of flow i. A plan is a sequence of
steps such that: (1) a single transmission is assigned in each
step and (2) the order of transmissions respects the constraints
of hop-by-hop forwarding. All instances of a flow are executed
according the same plan. We use the following notations: Πi

denotes the plan of flow i, Πi[s] refers to the transmission
assigned to step s of Πi, and Li is the plan’s length. An
example of a plan is shown in Fig. 3.

In the case when links are perfect, a plan is the routing
path between the flow’s source and destination. However,
since all instances of a flow are executed according to the
same plan, plans must be stable over time, otherwise plans
would have to be reconstructed frequently. Unreliable links
are usually handled through Automatic Repeat reQuest (ARQ).
The ARQ mechanism automatically retransmits a packet that is
unacknowledged up to a maximum number of retransmissions.
Existing TDMA protocols do not coordinate their activity with
the link layer. As a result, retransmitted packets are usually
queued up for an additional TDMA frame until the sender is
scheduled to transmit. This introduces significant delays when
packets are retransmitted multiple times. An alternative is to
increase the slot size to allow for retransmissions. However,
since nodes are synchronized on slots boundaries, a TDMA
protocol is forced to treat all links uniformly. Overestimating
the number of retransmissions lowers throughput while under-
estimating it results in packet drops over low quality links.

RFS accounts for link unreliability by allowing a node to
be assigned to multiple steps. In contrast to ARQ, we allow
a maximum number of transmissions (MNT) to be specified
per link. A number of link estimators evaluate the quality
of a link using Expected Transmission Count (ETX) [23]. It
is tempting to use ETX as an estimate of MNT. However,
the ETX provided by the link layer estimates the average
MNT. To ensure that plans remain stable over time, we are
interested in estimating the worst-case MNT. The worst-case
MNT may be estimated using Jacobson’s algorithm [24]:
Jacobson’s algorithm computes both the average and standard
deviation of ETX and then combines the two components.

A B C D E F

H I

G

Fig. 2. Full and dashed lines denote communication interference edges

RFS may be integrated with existing routing mechanism
to construct flows. The flow’s source initiates the creation of
a flow. As a route from the flow’s source to its destination
is constructed, each node along the path includes their MNT
estimate. For example, a flow’s route may involve three
nodes A, B, C. When the MNT values for links (AB) and
(BC) are 2 and 1, the flow’s plan may reconstructed as:
(AB)(AB)(BC).

There are cases when it is possible to use reuse existing
plans. Consider the case when a node A wants to establish
a flow to B but there already is a flow that routes data from
an arbitrary source through A to B. In this case, rather than
constructing a new plan, A disseminates the part of the plan
involving transmissions from A to B. We expect that this
mechanism of reusing plans will effectively reduce of times
new flows are constructed.

B. Centralized Scheduler

In this section, we consider the development of the central-
ized scheduler. Our goal is to devise a scheduler that supports
high throughput and provides prioritization among flows. As
a starting point for our solution, we will present a Greedy
Scheduler (GS). Our analysis of GS’s operation shows that it
may prolong the response time of flows unnecessarily in some
cases. To address this limitation, we present the RFS scheduler
in Section IV-B3.

1) Greedy Scheduler (GS): At a high level, GS meets the
requirements of high throughput and prioritization as follows.
GS achieves high throughput by executing transmissions from
multiple instances in the same slot when they do not conflict.
If the execution of a low priority instance conflicts with the
execution of a high priority instance, GS provides prioritiza-
tion by suspending the low priority instance and executing the
high priority instance.

A GS scheduler is deployed on each node. The GS scheduler
maintains the following global state: the interference relations
among all nodes, the flow plans, and flow parameters. All
schedulers will independently perform the same transmissions
in each slot if the above state is consistent. A discussion of
how state is managed is deferred to Section V.

GS also maintains the following local state: a priority queue
that contains all released instances and a per-instance counter,
which indicates the step in the plan of an instance to be
executed next. The local state does not need to be shared with
other nodes. Let Jl,u.step be the step counter of instance Jl,u.
Instances in the priority queue are ordered according to their
flow priorities. The release times and flow IDs are used to
break ties among instances with the same priority.

GS determines a set of instances – the exec set – that
will be executed in each time slot s. The scheduler con-
siders each instance Jl in the release queue in decreasing
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F2 0 18 18 2 (Med) (AB) (BC) (CH)
F3 2 28 28 3 (Low) (AB) (BC) (CD) (DE) (EF) (FG)

Fig. 3. Scheduling example according to GS. The light gray squares indicate
the slots instances release times, the dark gray indicates slots in which a flow
is suspended, the empty slots indicate no transmissions.

order of priority. Jl is added to the exec set if it does not
conflict with any of the higher priority instances that are
already in the exec set. This is accomplished by querying the
generic interference model to determine if the transmissions
Πl[Jl.step] ∪ transmissions(exec) are conflict-free. If no
conflict is detected, Jl is added to the exec set; otherwise,
Jl is suspended. Multiple instances may be include in exec
when they do not conflict as to increase real-time capacity.

A key characteristic of GS is its operation during the
following scenario. Consider the case when in a slot s three
instances Jh, Jm, and Jl are released from a high priority flow
h, medium priority flow m, and low priority flow l. Suppose
that the following conflicts are present among the next-steps
of the three instances: Jm conflicts with Jh, Jl conflicts with
Jm, and Jl does not conflict with Jh. We call this algorithm
greedy because – in an attempt to maximize throughput –
it will execute Jh and Jl in the same slot since they do not
conflict. However, our analysis shows that this greedy decision
may increase the worst-case interference of flow m on l.

Consider the topology shown in Figure 2 in which three
flows are established. Fig. 3 shows the transmissions executed
in slots 0 – 16 by GS, when the three flows are executed
according to the parameters summarized in the figure. In slot
0, instances from F1 and F2 are released. The scheduler
determines that both instances may be added to the exec set
since the execution of the first steps in their respective plans
(which involve transmissions

−→
IF and

−−→
AB) do not conflict.

In slot 2, the scheduler adds the highest priority instance
to the exec set and then considers executing step 3 in the
plan of the medium priority instance concurrently. However,
this step involves transmission

−−→
CH , which conflicts with

−−→
ED

of the higher priority instance. To provide prioritization, the
scheduler will execute only the higher priority instance. In
slot 2, the first instance of F3 is released. The first step in
F3’s plan involves transmission

−−→
AB, which does not conflict

with the transmission
−−→
ED, which has already been added

to the exec set. Accordingly, GS executes the two instances
concurrently. This is an instance of the greedy choice we
previously discussed. The scheduler continues to construct the
schedule shown in the figure.

2) Real-time Analysis: The schedulability analysis is per-
formed to determine if a new flow may be admitted without
missing any deadlines. We assume that flow priorities are
static, deadlines do not exceed periods, and that the periods,

deadlines, and response times are measured in slots.
To compute the response time Rl of flow l, we construct

a recurrent equation similar to the one used in the response
time analysis for processor scheduling. GS will preempt the
execution of a lower priority instance when it conflicts with
the execution of a higher priority instance. Let Il,h be the
worst-case interference that an instance of flow l can suffer
due to an instance of a higher priority flow h. Instances from
flow h will interfere with l for at most dRl

Ph
e times. Thus, the

response time of flow l is:

Rl(n+ 1) = Ll +
∑

h∈hp(l)

⌈
Rl(n)

Ph

⌉
· Il,h (1)

where hp(l) is the set of flows with higher or equal priority to
l and Ll is the length of l’s plan. This equation can be solved
using the fixed-point algorithm used in [25].

The only difference between Equation 1 and that in [25] is
that the classical response-time analysis includes the worst-
case execution of a task whereas Equation 1 involves the
pair-wise interference of flows. However, the similarity to
classical response times is deceiving. The system we consider
differs significantly from a single processor; in flow scheduling
there are multiple radios that share a wireless medium with
complicated interference relations. These unique features of
flow scheduling are captured by the inter-flow interference
term, which we show how to calculate next.

As an aid to the interference calculation, we introduce the
concept of a conflict matrix (see Figure 4). A conflict matrix
Cl,h captures the conflicts between a high priority flow h and
low priority flow l. For each step in the plan of the high priority
flow h there is a column in the conflict matrix. Similarly, for
each step in the plan of the low priority flow l there is a row
in the conflict matrix. The ordering of the rows and columns
is the same as the ordering of the steps in the plans of the
two flows. The entries in the conflict matrix indicate whether
a pair of steps from the two flows may conflict. It is important
to note that other flows may be executing concurrently with
flows l and h. Accordingly, the matrix captures the worst-case
wireless interference that l and h may observe while being
executed concurrently with any other flow. This information
may be obtained from the generic interference model when the
maximum number of transmissions per slot is bounded. GS
may be modified to ensure that the number of transmissions
in a slot is bounded.

In order to compute the worst-case interference, it is neces-
sary to understand how GS executes the two instances based
on their conflict matrix Cl,h. As an example, let us consider the
conflict matrix in Fig. 4. Let c be the step counter of the higher
priority instance from h, and r be the step counter of the lower
priority instance from l. GS will execute the two instances by
avoiding the conflicts present in the conflict matrix. As the
instances are executed, the indices r and c are incremented
to indicate the progress towards completing their execution.
The execution of an instance completes when it reaches the
boundary of the matrix.
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Fig. 4. Conflict matrix of two flows established between nodes A and F
in topology shown in Fig. 2. An “x” indicates a conflict between a pair of
transmissions and “-” indicates no conflict between transmissions.

compute-interf(C, r, c, state):
1: if state[(r, c)] 6= ∅: return state[(r, c)]
2: if r = num rows or c = num cols: return 0
3: if C[r, c] = 0:
4: state[(r, c, 1)]= compute-interf(C, r + 1, c+ 1, state) //case 1
5: state[(r, c, 3)]= compute-interf(C, r + 1, c, state) //case 3
6: interf = max([state[(r, c, 1)], state(r, c, 3)])
7: else:
8: state[(r, c, 2)]= 1 + compute-interf(C, r, c+ 1, state) //case 2
9: state[(r, c, 3)]= compute-interf(C, r + 1, c, state) //case 3
10: interf = max([state[(r, c, 2)], state(r, c, 3)])
11: state[(r, c)] = interf
12: return interf

Fig. 5. Computing inter-flow interference using dynamic programming

Four cases may arise in the execution of the two instances.
Case 1: The low priority and the high priority instances are
executed concurrently. This occurs when there is no conflict
between steps r and c of the two flows i.e., Cl,h[r, c] = 0.
In this case, both r and c are incremented by one since both
instance executed a step in their plan. The concurrent execution
of instances may be visualized as lines parallel to the main
diagonal as indicated by the red solid line (see Fig. 4).
Case 2: GS suspends the low priority instance to prioritize
the execution of the higher priority instance. This case occurs
when Cl,h[r, c] = 1. In this case, the indices r remains fixed
while c is incremented by one as denoted by the horizontal
dotted blue. In this case, the execution of h interfered with
that of l for a slot.
Case 3: The low priority instance is executing while the higher
priority instance is suspended. This case occurs only if the
higher priority instance of h is suspended in order to give
priority to another instance with even higher priority than h.
Note that it is possible for this to occur regardless of the value
of Cl,h[r, c]. In this case, r is incremented by one while the
value of c remains the same. Executions of this type can be
visualized as a vertical line.
Case 4: GS suspends both instances in which case the values
of the two indices remain unchanged.

Based on the identified cases, an efficient algorithm for
computing the worst-case interference may be devised (see
Fig. 5). The algorithm takes as input the conflict matrix along
with a start position in the conflict matrix as specified by
indices r and c. The indicates r and c encode a possible
phasing of flows l and h. Starting from position (r, c) the
algorithm considers the execution of the instances according to
cases 1 – 3. The worst-case interference may be computed by
taking the maximum of the interferences of the three cases. It

scheduler(slot s):
1: released = released ∪ released-in-slot(s)
2: exec = ∅; suspend = ∅
3: for each Jl,u in released:
4: if interferes(Πl[Jl,u.step] ∪ transmissions(exec))= True:
5: will exec = False
6: else:
6: will exec = True
7: for each Jh,v in suspend:
8: if interferes({Πl[Jl,u.step],Πh[Jh,v.step]}, C = Ns - 2):
9: will exec = False; break
10: if will exec: exec = exec ∪ {Jl,u}
11: else: suspend = suspend ∪ {Jl,u}
12: if len(exec) = Ns: break

Fig. 6. The RFS scheduler

is important to note that each iteration in the algorithm, either
r, or c, or both, are incremented by one. The compute-interf
method terminates when r equals the number of rows or c
equals the number of columns. To ensure that computations are
not repeated, the compute-interf method stores the previously
computed worst-case interference in the state variable.

The problem of computing the worst-case interference ex-
hibits optimal substructure since the result at position (r, c) is
computed as the maximum interference computed at positions
(r + 1, c), (r + 1, c+ 1), and (r, c+ 1). The compute-interf
method is a dynamic program that takes advantage of the
structure of the interference between pairs of steps; the time
complexity of the algorithm is O(Ll × Lh).

The compute-interf algorithm completes the real-time anal-
ysis of GS. After computing the worst-case interference be-
tween any pair of flows (Il,h) the worst-case response time
of flow l may be computed according to Eq. 1. The presented
analysis advances the state-of-the art by bounding the response
time of real-time flows in the general case when flows may
be established between arbitrary end-points and interference
is captured in a generic and realistic manner.

3) RFS Scheduler: During the real-time analysis of GS,
we observed that its greedy choice may result in longer-than-
necessary worst-case interference. Consider the execution of
two instance Jl and Jh according to the trace that starts in the
upper left corner of Fig. 4. As we trace the execution of the
two instances by GS, we will be computing their interference
Il,h. GS starts by executing Jh for two steps while Jl is
suspended. This contributes two slots towards Il,h. For the
subsequent three steps, GS preempts the execution of Jh (when
it conflicts with an instance Jk that has higher priority than
Jh) and greedily executes Jl according to our trace. When Jh
is resumed, Jl is suspended until Jh completes its execution,
due to the conflicts present in the fourth row of the matrix.
This contributes 5 additional slots for a total of Il,h = 7 slots.

Interestingly, if Jl had not been greedily executed while Jh
was suspended, it would have suffered an interference of only
3 slots. This situation may be avoided in general by modifying
how the GS algorithm behaves in case 3. Accordingly, we
prohibit the execution of a lower priority instance whose
next step is Il.step if there is a higher priority instance h
such that the transmissions in the next step in each of their
plans conflict (i.e., when Πl[Il.step] 6‖ Πh[Ih.step]). With this
change, compute-interf is updated to compute RFS’s worst-



case interference by removing the greedy choice (line 5 and
9).

Figure 6 shows the pseudocode of the RFS scheduler. The
scheduler uses the generic interference model through the
interferes interface. Similar to GS, RFS maintains a released
queue containing all instances that are released. In each slot,
RFS considers all released instances in order of their priority
and determines the instances that will be executed (the exec
set) and the instances that will be suspended (the suspend
set). An instance Jl,u whose execute step is Jl,u.step will be
added to the exec set if three conditions are satisfied: (1) The
transmission Πl[Jl,u.step] will not conflict with any of the
transmissions of the instances previously added to the exec
set (line 4). (2) RFS avoids the greedy choice that leads to
increased worst-case interference i.e., no instance Jh,v in the
suspend set interferes with Jl,u (line 8). (3) The number of
transmissions per slot does not exceed Ns (line 12).

The time complexity of the operations performed per slot
by RFS is O(|released| × |suspend|). In practice, we expect
the time complexity to significantly lower since the size of the
exec set is constrained by Ns. The low computation overhead
of RFS enables us to determine the transmissions in each slot
dynamically even on resource constrained sensor nodes.

V. STATE MANAGEMENT

RFS requires nodes to maintain the following consistent
state: the flow parameters, the flow plans, and the interference
relations. Inconsistencies in this state would result in nodes
making executing conflicting transmissions in a slot. The state
is modeled as versioned vectors that may be created or updated
dynamically. To avoid the possibility of creating consisting
state, we partition the state such that a single node may modify
an object while the other nodes may read it. Accordingly, the
flow’s source may creates and updates the flow’s parameters.
Flow plans are stored as multiple objects such that each
sender involved in a plan may update its maximum number
of transmissions and the next hop. This provide us with the
flexibility of changing each step of the plan independently.

The state management of RFS needs to ensure that all nodes
have a consistent state. To this end RFS reserves a fraction of
the flows for state management. RFS leverages on existing
gossip protocols to maintain a consistent state efficiently.
Periodically, each node broadcasts beacons including the latest
version of the objects it stores. A node receiving a beacon may
detect if the sender has an object with an older version than
it has. In that case, the node will transmit the newest version
of the object. However, since beacons are broadcast, multiple
nodes may try to reply. To avoid collisions at the receiver, a
node will select a random delay before transmitting an update
and cancels its transmission if it overhears an update being
broadcast by its neighbor.

Network Dynamics: RFS handle network dynamics includ-
ing variations in link quality and interference through two
mechanisms. First, as previously discussed in Section IV-A,
RFS includes packet retransmissions during the construction of
plans. This mechanism allows RFS to recover fast to expected

variations in link quality and interference. However, significant
changes in network topology will infrequently require plans to
be reconstructed and interference relations to be reevaluated.
These events will result in objects updates which are dissem-
inated through the state management protocol.

Variable Workload: RFS may adapt to workload changes
involving the addition, removal, or changes in the temporal
properties of flows with ease. In contrast to traditional TDMA
protocols, these updates do not require the reconstruction
of a fixed transmission schedule. All that is required is for
the updated flow parameters to be disseminated to all nodes
through the state maintenance protocol.

VI. DISTRIBUTED SCHEDULER

The centralized scheduler may be used with reasonable
memory and communication overheads for networks with
diameters of 2 – 3 hops. To allow RFS to scale to larger
networks, we distribute RFS as follows. The key abstraction
of the distributed version of RFS is that of a neighbor-
hood. By controlling the neighborhood size RFS effectively
controls the memory and maintenance overhead: consistency
must be preserved only within a neighborhood. However, the
distributed RFS introduces three new challenges: (1) how
to group nodes in a neighborhood, (2) how to ensure flows
can be executed independently in each neighborhood without
collisions between transmissions in adjacent neighborhoods,
and (3) how to handle flows that cross multiple neighborhoods.

The grouping of nodes into neighborhoods occurs during a
bootstrapping phase. The developer is responsible for identify-
ing a number of nodes that will serve as network controllers.
A controller initiates the formation of its neighborhood by
constructing a routing tree having it as root. Each node is
associated to the controller to which it has the shortest path.

In order to decouple the execution of flows among neighbor-
hoods, we employ a two-level scheduling approach. To capture
the potential conflicts of transmissions between neighbor-
hoods, we construct an undirected neighborhood graph. The
vertices of the graph are the neighborhoods. Edges are added to
this graph such that if transmission

−−→
AB from a neighborhood

N1 conflicts with a transmission
−−→
CD from neighborhood N2,

an edge N1N2 is added. Traditional TDMA scheduling tech-
niques may be used to assign each neighborhood to transmit in
a non-conflicting time slot. In each time slot, neighborhoods
colored with the same color are executed. Within a slot, the
actual transmission is determined using RFS.

Of course, a flow can span multiple neighborhoods. For
example a flow, F (AB,BC) that spans two neighborhoods
may be split into F (AB) and F (BC), where F (AB) and
F (BC) may involve multiple hops. To minimize the memory
and maintenance overheads, the distributed version of RFS
executes flows F (AB) and F (BC) independently. However,
the lack of synchronization between flows can lead to poor
performance. For example, it is possible for flow F (BC) to be
released before flow F (AB) delivers the packet to B. In this
case, the packet will be queued at B (or even worse dropped)
until the next release of F (BC).



This problem is an instance of the classical phase synchro-
nization problem. To address this problem, a dynamic traffic
shaper based on the Release Guard (RG) protocol [8] can syn-
chronize the execution of flows across multiple neighborhoods.
Intuitively, the dynamic traffic shaper modifies the phasing of
flow F (BC) to reflect the worst-case response time of F (AB)
across its neighborhood. The dynamic traffic shaper operates
according to the following two rules. When the instance of
F (BC) is executed, if the packet from F (AB) is already in
B’s queue, then the next instance of F (BC) will be executed
at ri,u+1(BC) = ri,u(BC) + PF . In contrast, if the packet
from F (AB) arrives after F (BC) is released, the next instance
of F (BC) will be executed at ri,u+1(BC) = now+PF , where
now denotes the current slot. This case is called a phase shift.

A traditional TDMA protocol would have to reconstruct
its explicit schedule in order to account for a phase shift.
In contrast, RFS has the advantage of its dynamic executing
flows based on their temporal properties. Accordingly, in order
for RFS to accommodate a phase shift, it suffices to update
the nodes within the neighborhood experiencing the shift.
A phase shift may be implemented efficiently in RFS: the
updated phase must be disseminated to all nodes within the
neighborhood using RFS’s state maintenance protocol. Note
that phase updates do not require us to rerun the schedulability
analysis since they do not affect flow periods or deadlines.

Adapting the analysis of the centralized algorithm for the
distributed version is straightforward. First, RFS adapts the
RG protocol for its use. The modifications of the RG do not
affect its most important analytical property: the end-to-end
response time of a flow is the sum of the response times of
each subflow. Accordingly, the response time of an end-to-
end flow Ri is Ri =

∑
AB∈subflows(i)Ri(AB). The response

time of each subflow Ri(AB) is computed based on the real-
time analysis presented in Section IV-B2. To account for the
two-level scheduling, the obtained results are multiplied by the
number of colors necessary to color the neighborhood graph.

VII. SIMULATIONS

To create a realistic simulation environment, we developed a
discrete-event simulator that operates based on traces collected
from an indoor WSN testbed. The testbed is deployed in Bryan
Hall at Washington University in St Louis. The testbed consists
of 43 TelosB motes each equipped with a Chipcon CC2420
radio compliant with the IEEE 802.15.4 standard. The traces
were obtained by having each node in the testbed take turns
broadcasting a sequence of 50 packets with a transmission
power of 0 dBm. All nodes operated on a single channel
(channel 26 of IEEE 802.15.4). While the application transmits
packets as soon as possible, the MAC layer applied for each
transmission a randomized back-off uniformly distributed in
the interval [10 ms, 170 ms]. The batch of 50 packets takes
4.5 s on average to transmit. The remainder of the nodes
recorded the Received Signal Strength (RSS) of the packets
they receive. The short delay between the transmissions of
packet pertaining to the same batch allows us to capture the

Fig. 7. Communication links for the considered topology. Sinks for scenario
2 are colored in red.

short-term variability of RSS. Collecting four traces over three
consecutive days captured the long-term variability.

Received Signal Strength traces collected from the 43-node
testbed are used to configure the simulations. All simulation
results are obtained from the same topology. Figure 8 shows
the locations of the testbed nodes at Bryan Hall (a 34m ×
30m area). The network topology used in the simulations is
based on RSS traces collected from the testbed. We determine
the communication and interference links between nodes as
follows. A node A may communicate with a node B if node
B’s RSS average during A’s transmissions exceeds a threshold
of -85 dBm. Prior empirical studies have shown that links
with RSS above this threshold typically have high packet
reception rates [26]. Interference links are determined similarly
to the Radio Interference Detection (RID) protocol [7]. RID
models interference as a graph that is constructed as follows.
To determine whether the transmissions of other nodes can
interference with a communication link

−−→
AB, RID calculates

the Signal to Noise Plus Interference Ratio (SNIR) at node B
for each set of n senders (n = 3 in our setup) assuming they
transmit simultaneously as A transmits to B. For each set of
senders I(B), RID computes the SNIR at B when A and the
set of senders I(B) transmit simultaneously. The RSS of a
link is computed as the average of the four 50 packet batches
collected from the testbed. The RSS of missing packets is
overestimated to equal the receiver sensibility of CC2420 (-90
dBm). If the computed SNIR is below a threshold a link from
each node in I(B) to B is added as an interference link. The
SNIR threshold was set to 5 dB consistent with empirical stud-
ies that showed meeting this a threshold is usually sufficient
for correctly decoding packets in the presence of interference
[5], [22]. All RSS traces were collected when the testbed uses
a single channel (channel 26 of IEEE 802.15.4).

We configured the simulator to settings similar to Wire-
lessHART: a slot size of 10 ms and packets of 133 bytes.
A single packet is transmitted in each slot. Each data point
is the average of five runs; the 90% confidence intervals
are also plotted. The deadline of all flows was set equal to
their periods; the priority of a flow is assigned using Rate
Monotonic Scheduling.
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Fig. 8. Performance comparison under Scenario 1

For performance comparison, we implemented two base-
lines: NCR [27] and a TDMA protocol based on graph
coloring. We ran two versions of NCR: NCR-NF, which
splits bandwidth among interfering nodes evenly, and NCR-
WF, which splits bandwidth proportionally to the workload of
each node1. The graph-coloring TDMA (GC) uses a greedy
coloring strategy in which nodes are sorted according to
their degree in the interference graph and then assigned non-
conflicting colors within their two-hop neighborhood. We
chose this greedy coloring heuristic because it is known to
have a bounded worst-case performance. These protocols do
not provide prioritization and do not take advantage of the
properties of flows. Their performance is characteristic of
existing TDMA protocols.

We compare the performance of the protocols based on
four metrics: drop ratio, miss ratio, average flow latency, and
maximum flow latency. The drop ratio is the number of packets
received at the destination out of the transmitted packets. The
miss ratio is the number of packets which were either dropped
or missed the deadline out of the transmitted packet. We define
the network capacity to be the maximum throughput that a
protocol supports without dropping packets. Similarly, the real-
time capacity of a protocol is the maximum throughput that a
protocol supports without missing deadlines.

The simulation results focus on two scenarios, motivated by
our interest in supporting real-time communication for indus-
trial monitoring and control: a scenario where interfering flows
established between sensors and actuators and a data collection
scenario where data is collected from multiple sensors to
base stations. The simulation results highlight three aspects of
RFS. First, RFS significantly outperforms the baselines along
the considered metrics. Second, the data indicates that the
schedulability analysis presented in Section IV-B2 is correct
and the bounds are tight. Third, we evaluate the impact of
dividing the nodes into neighborhoods to facilitate scalability.

A. Peer-to-peer Flows Scenario

The first scenario is motivated by the need to support
real-time communication between sensors and actuators over
multiple hops. We establish four flows (F0, F1, F2, F3)
connecting the nodes located on the corners of the topology
that intersect in the middle of the topology. The rates of the
flows F0:F1:F2:F3 have the ratio 1:1.5:2.2:4.3. The workload

1In NCR-WF, nodes that do not generate or forward data will not be
allocated any slots.

is varied by increasing the rates of the flows while maintaining
the same ratios between the flow rates. This resulted in periods
(and deadlines) for F0 in the range of [50 ms, 840 ms]. The
rate of a flow is the product of the flows rate (in Hz) and the
packet size (in bits)2. The total rate is the sum of the rates of
all the flows.

Figure 8(a) plots the drop ratio as the rate of the flows is
increased. All curves follow a similar pattern: they start at
zero, remain at zero until the network capacity of the protocol
is exceeded, and then they increase sharply. GC and NCR-NF
had the lowest network capacity (i.e., started dropping packets
first). This is a result of the fact that both protocols allocate
bandwidth equally to interfering nodes, even when a node does
not have any packets to transmit. During the graph coloring,
GC required 32 colors allowing for a maximum bandwidth of:

1

32
·100 slot/s ·1 pkt/slot ·1064 bits/pkt = 3.325 kbps

Since NCR-NF approximates the behavior of GC, it achieves
comparable performance. In contrast, NCR-WF allocates slots
based on the bandwidth requirements of nodes, allocating no
slots to nodes that are not generating or forwarding data.
As a result, NCR-WF supported a total flow rate of 13.46
kbps. These results highlight the importance of allocating slots
proportionally to the bandwidth requirements of a node.

RFS achieved significantly higher performance than the
baselines. This show the importance of accounting for flow
properties during scheduling. Whereas the baselines started
dropping packets when the total rate was 13.46 kbps, RFS did
not drop packets until the total rate became 31.78 kbps, a 2.36
times increase in network capacity.

The difference between RFS and the baselines is even
more pronounced when we consider the miss-ratio metric (see
Figure 8(b)). The baselines miss packets even when the total
rate is relatively low. Two factors contributed to this result.
First, the baselines have long flow latencies, as indicated
by Figure 8(c). This is because, on average, a packet waits
for half the frame before it is forwarded to the next hop,
since the TDMA schedule was constructed without accounting
precedence constraints introduced by hop-by-hop forwarding.
In contrast, RFS uses this information, effectively aligning
the transmission of packets across multiple hops, leading to
latencies below 0.4 s when the total load is below RFS’s
31.78 kbps capacity (see Figure 8(d)). Event at the lowest

2Note that in the simulator, a single packet is transmitted in each slot.
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Fig. 9. Validation of schedulability analysis for Scenario 1

tested rate, NCR-WF has latencies as long as 1 seconds, a
factor of 2.5 difference. Second, the baselines do not provide
any prioritization between flows, whereas RFS provides dif-
ferentiated flow latencies.

We performed the schedulability analysis for all the sim-
ulated settings, which revealed that the analysis correctly
identified unschedulable workloads. To evaluate the tightness
of the schedulability analysis we plotted the maximum latency
per flow and their response times in Figure 9(a) and Figure
9(b). A few things are worth highlighting. The theoretical real-
time capacity is 21.9 kbps, 23.29% less than the empirically
observed real-time capacity of 28.55 kbps (when packets start
missing their respective deadlines). Note that even if we do
not operate the system beyond 21.9 kbps, RFS still provides
1.62 times higher network capacity than NCR-WF, the best
performing baseline.

B. Data Collection Scenario

The second scenario is motivated by our interest in sup-
porting the real-time collection of sensor data. Three nodes
were selected as base stations (see Figure 7) to which sensor
data was forwarded. We varied the workload by increasing
the number of sources that forwarded data. The sources were
selected as follows. When the number of sources is 1-2, the
sources were selected randomly from nodes that are 1 hop
away from the base station. When the number of sources
was increased to be between 3-4 and 5-6, the sources were
selected randomly out of the nodes that are 2 and 3 hops
from each base station, respectively. To model sensors with
different rates, three flows per source node were established,
with periods (and deadlines) of 640 ms, 1020 ms, and 2230 ms,
respectively.

Figure 10 plots the performance of the protocols in terms
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Fig. 10. Performance comparison under Scenario 2

of drop and miss ratios. As the workload is increased, the
protocols dropped or missed an increasing number of packets.
Similar to the previous setup, NCR-NF and GC achieved
the worst performance on both metrics. While NCR-WF per-
formed the best out of the baselines, it still dropped and missed
a significant number of packets, even in the case when a single
source generated 9.5 kbps. RFS significantly outperformed the
baselines. RFS was able to support four sources generating
38.2 kbps without dropping packets or missing deadlines, an
improvement of 3.97 times.

The point at which the workload of the second scenario
becomes unschedulable is plotted as vertical lines in Figure 10.
The schedulability analysis correctly identified the workloads
were unschedulable, since no packets missed their deadline
when the number of sources was 1 – 4. Our schedulability
analysis determined that the system with an aggregated work-
load of 38.2 kbps was schedulable.

C. Evaluation of Distributed RFS

The last experiment investigates the impact of the neigh-
borhood diameter on the performance of the distributed RFS.
We decided to evaluate the performance of the distributed
RFS under the first scenario, since it contains longer flows.
Accordingly, we divided RFS in neighborhoods of diameter
one, two, and three hops. The diameter of the network is
four hops and the results from the centralized algorithm are
obtained when all nodes belong to a single neighborhood.

Figure 11 plots the impact of increasing the neighborhood
size on the drop ratio and miss ratio of RFS. RFS using
three hop information achieved performance similar to the
centralized scheduler. This is due to the fact that the network
diameter is four hops, and in this case almost all nodes are
included in a single neighborhood. The RFS-2hop achieved
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Fig. 11. Impact of the neighborhood diameter on the distributed protocol

comparable performance with NCR-WF in terms of drop ratio.
However, the benefit of RFS is that it achieves a higher
real-time capacity by providing prioritization and employing
Release Guard to synchronize flows across neighborhoods. In
contrast, NCR-WF performance in terms of miss ratio was
even worse than RFS-1hop, highlighting the importance of
the mechanisms that we developed.

VIII. CONCLUSIONS

RFS is a novel transmission scheduling approach for exe-
cuting prioritized real-time flows in WSNs. RFS is designed to
address several key limitations of existing solutions: simplified
workload models, unrealistic interference models, variable link
quality, and limited scalability. Most prominently, RFS fea-
tures a novel response time analysis that accounts for arbitrary
inter-flow interferenceand is derived under a general workload
model in which flows may be established between arbitrary
sources and destinations. RFS scales by limiting the scope of
the state maintained by a node to its neighborhood. The real-
time performance of flows crossing multiple neighborhoods
is ensured through the novel application of Release Guard.
Simulation results based on traces collected from an actual
wireless sensor network testbed show that RFS reduces flow
latency by 2.5 times and provides improvements real-time
capacity as large as 3.9 times compared to classical TDMA
protocols. The results also suggest that the real-time capacity
determined using the schedulability analysis is only 30% lower
than the empirical real-time capacity.
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