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a b s t r a c t

A novel and simple approach based on transformation using neural networks is proposed in this paper

to model the inverse behavior of hysteresis. In this approach, a continuous transformation is used to

construct an elementary inverse hysteresis operator (EIHO), which can extract the change tendency of

inverse hysteresis. Then based on the EIHO, an expanded input space is constructed to transform the

multi-valued mapping of inverse hysteresis into a one-to-one mapping. Based on the constructed

expanded input space, a neural network is employed to approximate the inverse hysteresis. Both

experiment and simulation are implemented to validate the effectiveness of the proposed approach.

These results indicate that the proposed approach has derived satisfactory modeling performance.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that hysteresis is a non-differentiable non-
linearity with multi-valued mapping. Usually, hysteresis exists in
physical systems such as magnetic suspensions, bearings, piezo-
electric actuators, etc. The presence of hysteresis often severely
limits system performance, giving rise to undesirable inaccuracy,
oscillations, or even leading to instability for closed-loop control
systems.

The existent compensation methods for hysteresis usually
depend upon the inverse models based technique. However, the
inverse model based compensation often requires accurate
inverse model for hysteresis. Several inverse hysteresis models
have been proposed in past several years, e.g. Kuhnen [1]
constructed inverse hysteresis model based on modified PI
operator. Hu and Ben Mrad [2] proposed a discrete-time com-
pensation algorithm for hysteresis based on first-order reversal
functions. Tan and Bennani [3] developed Preisach-type inverse
hysteresis model using field-programmable gate arrays.

Note that neural networks have many advantages in nonli-
nearity identification, such as: self-learning, associative memory,
high speed sought optimization solution, etc. In past decade,
neural networks (NN) have been successfully used in many fields,
including the modeling of hysteresis, e.g. Zhao et al. [4], Zhao and
Tan [5], Ma et al. [6] and Dong et al. [7] model hysteresis using
neural networks. However, neural networks based method has

been seldom found in the literatures on the inverse hysteresis
model so far. Zao et al. proposed a neural network based inverse
hysteresis model in Ref. [8]. However, the precision of the inverse
model may not be guaranteed when it is used to model backlash
inverse hysteresis. Thus, looking for a method to model the
inverse hysteresis with multi-loop using neural networks is a
real challenge.

It has been proven that traditional approach of neural
networks cannot approximate the nonlinear with multi-value
mapping. An elementary inverse hysteresis operator (EIHO) is
constructed using continuous transformation approach in this
paper. The EIHO extracts the basic change trend of inverse
hysteresis. Then based on the EIHO, an expanded input space is
constructed. Based on the constructed expanded input space, a
neural network is employed to approximate the inverse hyster-
esis. The inverse hysteresis model is tested with a set of real data
and simulation.

2. Construction of the elementary inverse hysteresis
operator (EIHO)

The elementary inverse hysteresis operator (EIHO) adopts the
continuous transformation approach to build one-to-one map-
ping between the input and the output of hysteresis. The basic
idea is that when an extremum of input occurs, a new coordinate
system is constructed. Then in the new coordinate system, a
motion point moves along a regular curve, such as inversion of a
monotone conic, and produces a branch of main or minor loops.
By continuously transforming, an arbitrary number of inverse
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hysteresis minor loops can be obtained so that an elementary
inverse hysteresis operator (EIHO) can be constructed.

A plane of Cartesian coordinate system (e.g., point o, x–y,
Fig. 1) that is called major coordinate system is constructed.
When an input extremum occurs, another coordinate system
(e.g., point i, xi–yi, Fig. 1) is constructed to form the corresponding
ith minor coordinate system. Let the motion point move along a
monotone curve under the minor coordinate to produce a branch
of minor loops, so does every extremum point. The monotone
curve is used to replace each branch of the minor and the major
loops. The equation of coordinate transformation is described
below [9]

xðtÞ

yðtÞ

" #
¼

cosyi �sinyi

sinyi cosyi

" #
x0ðtÞ

y0ðtÞ

" #
þ

xiðtÞ

yiðtÞ

" #
ð1Þ

where xi(t) and yi(t) are the ith input extremum and the corre-
sponding calculated output, respectively. It is also the original
point of the ith minor coordinate system. x0(t) and y0(t) are the
input and the calculated output under the ith minor coordinate
system. On the other hand, x(t) and y(t) are the actual input and
the calculated output under the major coordinate system. yi is the
transformation angle of the ith minor coordinate system to the
major coordinate system. Notice that the above calculated output
values are computed via suitably selected curve equations. Here it
is supposed to have the following assumption to obtain this
conclusion:

Assumption 1. Suppose the input is a smoothly periodical signal,
and there are no continuously uniform maxima and minima pairs
in a cycle.

Fig. 2 shows the corresponding situation excluded by
Assumption 1. The mapped inverse hysteresis curve of the two
continuously uniform maxima and minima pairs (bounded by
dotted lines) are completely superposed into two minor loops. In
this situation, it cannot be found that the relation between the
input and output is a one-to-one mapping.

The inversion of monotone conic is adopted as the monotone
curve in this paper. Therefore, the proposed EIHO f(x) is defined as

f ðxÞ ¼
f ðxeÞþa½x�xe�

1=2 _x40,

f ðxeÞ�a½xe�x�1=2 _xo0:

(
ð2Þ

where x is the current input, f(x) is the current output, a (a40) is
the coefficient of the inverse conic, xe is the dominant extremum

adjacent to the current input x. f(xe) is the output of the EIHO
when the input is xe.

The EIHO extracts the elementary information of inverse
hysteresis, such as ascending, turning and descending. The output
of the EIHO and the input of the inverse hysteresis are used as the
input signals of a common neural network (NN) so that the
expanded input space can be constructed. Based on the con-
structed expanded input space, a neural network can be used to
approximate inverse hysteresis.

3. EIHO-based neural network model

A three-layer neural network with two inputs and one output
is used to model inverse hysteresis. The output of the EIHO and
x(t) are used as the input fed to NN. The block diagram is shown in
Fig. 3. The traditional approach of neural networks can only
approximate the nonlinear functions with one-to-one or multi-
to-one mapping [10]. In the following, it will be proved that the
relation between the input space (x(t), f[x(t)]) and the output
space (IH[x(t)]) of NN is a continuous one-to-one mapping.

Lemma 1. Let x(t)AC(R), where R¼{t9�NotoN} and C(R) are

the sets of continuous functions on R. For the different time instants t1

and t2 (t1at2), x(t1)¼x(t2) but it leads to f[x(t1)]a f[x(t2)].

Proof. Considering the segment x(t) decreases monotonically,
Eq. (2) becomes

f ðxÞ ¼ fdeðxÞ ¼ f ðxeÞ�a½xe�x�1=2 a40 ð3Þ

where fde(x) is the decreasing segment of the function, xe is the
maximum extremum of the input, whilst

f ðxÞ ¼ finðxÞ ¼ f ðxeÞþa½x�xe�
1=2 a40 ð4Þ

denotes the increasing segment of the function. In this case, xe is
the minimum extremum of the input. Since

dfinðxÞ

dx
¼

a

2
ffiffiffiffiffiffiffiffiffiffiffi
x�xe
p 40 ð5Þ

and

dfdeðxÞ

dx
¼

a

2
ffiffiffiffiffiffiffiffiffiffiffi
xe�x
p 40 ð6Þ

Therefore, fin(x) and fde(x) are monotonic.

It is noted that t1at2 and x(t1)¼x(t2) in Fig. 4. xe1 and xe2 are,

respectively, the dominant extrema of x(t1) and x(t2). According to

Eq. (3)

f ½xðt1Þ� ¼ f ðxe1Þ�a1½xe1�xðt1Þ�
1=2 ð7Þ
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Fig. 1. Coordinate transformation.
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Fig. 2. Excluded time-varying input signal.
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Fig. 3. EIHO-based neural network model.
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Fig. 4. Time-varying input signal.

L. Ma et al. / Physica B 406 (2011) 4109–41144110



Author's personal copy

and

f ðxe2Þ ¼ f ðxe1Þ�a1ðxe1�xe2Þ
1=2

ð8Þ

Based on Eq. (4), it yields

f ½xðt2Þ� ¼ f ðxe2Þþa2½xðt2Þ�xe2�
1=2 ¼ f ðxe1Þ�a1ðxe1�xe2Þ

1=2
þa2½xðt2Þ�xe2�

1=2

ð9Þ

Furthermore,

f ½xðt1Þ��f ½xðt2Þ� ¼ f ðxe1Þ�a1½xe1�xðt1Þ�
1=2�f ðxe1Þ

þa1ðxe1�xe2Þ
1=2
�a2½xðt2Þ�xe2�

1=2

¼ a1ðxe1�xe2Þ
1=2
�a1½xe1�xðt1Þ�

1=2�a2½xðt2Þ�xe2�
1=2

ð10Þ

Since x(t1)¼x(t2), Eq. (10) becomes

f ½xðt1Þ��f ½xðt2Þ� ¼ a1ðxe1�xe2Þ
1=2
�a1½xe1�xðt1Þ�

1=2�a2½xðt1Þ�xe2�
1=2a0

ð11Þ

Thus, for two particular time instants t1 and t2 (t1at2), even

though x(t1)¼x(t2), f[x(t1)]af[x(t2)] since their dominant extrema

are different.

Remark 1. IH[ � ] is defined as the output of inverse hysteresis.
When f(x) and IH[ � ] are fed with the same input x(t), the curve of
f[x(t)] exhibits similarity to that of IH[ � ] such as ascending,
turning and descending. (Fig. 5).

In the following, an example is provided to illustrate this
similarity. It is known that the sum of a number of backlash
operators can be used to construct a backlash hysteresis. Suppose
a backlash hysteresis is constructed by 10 backlash operators with
the values of the deadband width evenly distributed within (0.5, 5).
The input fed into the hysteresis is x(t)¼2 sin(3t)þ3 sin(0.5t). The
output and input of the backlash hysteresis are, respectively, used as
the input and output of the inverse backlash hysteresis. The plot of
the proposed EIHO (solid) and the corresponding inverse hysteresis
curve (dashed) are shown in Fig. 6. It can be seen that the proposed
EIHO can extract the main feature of the inverse hysteresis if it is fed
with the same input as that of the inverse hysteresis.

Remark 2. Since x(t1)¼x(t2), where x(t1) and x(t2) are not the
extrema, and f[x(t1)]a f[x(t2)], then the coordinate (x(t), f[x(t)]) is
uniquely corresponding to inverse hysteresis IH[x(t)].

Lemma 2. If there exist two time instants t1 and t2, also t1at2, such

that f[x(t1)]� f[x(t2)]-0, then x(t1)�x(t2)-0.

Proof. Considering

fin½xðt1Þ��fin½xðt2Þ�

xðt1Þ�xðt2Þ
¼ k, kAð0,þ1Þ ð12Þ

Then

xðt1Þ�xðt2Þ ¼
fin½xðt1Þ��fin½xðt2Þ�

k
ð13Þ

It is clear that if fin[x(t1)]� fin[x(t2)]-0, then x(t1)�x(t2)-0.

Similarly, it can be obtained that if fde[x(t1)]� fde[x(t2)]-0, then

x(t1)�x(t2)-0.

Theorem 1. For any inverse hysteresis, there exists a continuous

one-to-one mapping ! : R2-R, such that IH[x(t)]¼! (x(t), f[x(t)]).

Proof. First, it is proved that ! is a one-to-one mapping.

In terms of Lemma 1, if there exist two different time instant
t1 and t2, then

ðxðt1Þ,f ½xðt1Þ�Þaðxðt2Þ,f ½xðt2Þ�Þ ð14Þ

Therefore, the coordinate (x(t),f[x(t)]) is uniquely correspond-
ing to inverse hysteresis IH[x(t)], that is to say, ! is a one-to-one
mapping.

Next, it will be proved that ! is a continuous mapping.
In terms of Ref. [11],

xðt1Þ�xðt2Þ-0) f ½xðt1Þ��f ½xðt2Þ�-0 ð15Þ

Then, considering Lemma 2,

f ½xðt1Þ��f ½xðt2Þ�-0) xðt1Þ�xðt2Þ-0
) IH½xðt1Þ��IH½xðt2Þ�-0 ð16Þ

Therefore, it can be concluded that there exists a continuous
one-to-one mapping ! : R2-R such that IH[x(t)]¼ ! (x(t), f[x(t)]).

Remark 3. Theorem 1 indicates that the proposed EIHO can
transform the multi-valued mapping of inverse hysteresis into a
continuous one-to-one mapping.

It is well known that any continuous one-to-one mapping can
be approximated to arbitrary accuracy on a compact set using a
three-layer neural network (NN) that contains a sufficient num-
ber of hidden layer neurons and data [12–14]. The NN consists of I

input nodes, hidden layer J neurons and output layer K neurons.
With all the NN weights collected into matrices VT and WT, the
NN equation with linear output activation function may be
written in terms of vectors as

Y ¼WTsðVT XÞ ð17Þ

xx

f

f

x

f(x)

xo

Fig. 5. Input signal–output signal of EIHO.
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Fig. 6. Comparison between the plot of EIHO (solid, ai¼1) and inverse hysteresis

curve (dashed).
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where VT
¼[vij]

T and WT
¼[wjk]T are the first-to-second layer

interconnection weight matrix and the second-to the third layer
interconnection weight matrix, respectively, where i¼1, 2,y,I;
j¼1, 2,y,J; k¼1, 2,y,K; X¼[x1, x2,y,xI]; Y¼[y1, y2,y,yK]T. The
scalar function s( � ) is a sigmoidal activation function of the
hidden layer neurons.

4. Calculation of ai in EIHO

Suppose that all ai’s are equal to 1 in Fig. 6. In fact, the more
precise the matched EIHO is, the more accurate the approximated
result is derived. The precision is not guaranteed if ai¼1 in each
modeling procedure. Therefore, it is necessary to propose a new
method to calculate ai. The adequate real data that is used to train
neural network to calculate ai is employed for computation.

Suppose that x(ti) and y(ti) are, respectively, the ith input
extremum and the corresponding output; x(tiþ1) and y(tiþ1) are,
respectively, the (iþ1)-th input extremum and the corresponding
output. According to Eq. (2),

yðtiþ1Þ ¼
yðtiÞþai½xðtiþ1Þ�xðtiÞ�

2 if xðtiþ1Þ4xðtiÞ

yðtiÞ�ai½xðtiþ1Þ�xðtiÞ�
2 if xðtiþ1ÞoxðtiÞ

(
ð18Þ

Thus,

ai ¼

yðtiþ 1Þ�yðtiÞ

½xðtiþ 1Þ�xðtiÞ�
2 if xðtiþ1Þ4xðtiÞ

yðtiÞ�yðtiþ 1Þ

½xðtiþ 1Þ�xðtiÞ�
2 if xðtiþ1ÞoxðtiÞ

8><
>: ð19Þ

where ai is the parameter of ith parabola.

5. Implementation of EIHO-based NN model

In the following, two examples are presented. In these examples,
the conjugate gradient algorithm with Powell–Beale restarted
method is used to train the neural network, so as to improve the
convergent rate and the performance of the neural model.

5.1. Experimental example

In this example, the proposed method is applied to the
modeling of a set of real data measured from a piezoelectric
actuator PZT-753.21C, made by PI Company. The actuator has a
nominal expansion of 0–25 mm (x(t)) under an input voltage of
0–100 V (IH[x(t)]), with a 1000 Hz sampling frequency.

A three-layer feed-forward neural network is used to approx-
imate the real data. The sigmoid function and linear function are,
respectively, used as activation function in the hidden layer and
output layer. Two thousand three hundred and one pairs of
measured data are implemented. The proposed EIHO-based NN
model is used to approximate it.

It is found that the neural network derives the best results
when the number of hidden neurons becomes 152. Therefore, the
architecture of neural network used in this example consists of
2 input neurons, 152 hidden neurons and 1 output neuron. After
319 epochs, the training procedure is finished. Fig. 7 illustrates
the result of model validation. The MSE is 5.0360e�005. Fig. 8
shows the model validation error.

Moreover, the model based on the method given in Ref. [8] is
used to approximate the real data. It is found that the network
derives the best results when the number of hidden neurons
becomes 82. After 520 epochs, the training procedure is finished.
Fig. 9 illustrates the result of model validation. The MSE is
1.0254e�004. Fig. 10 shows the model validation error.
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Fig. 7. Comparison between the EHIO-based NN prediction (dashed) and the real

data (solid).
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Fig. 8. EHIO-based NN model validation error for the real data.
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By comparing the result of the proposed model with that of
the model using the method given in Ref. [8], it shows that the
proposed model has obtained better performance.

5.2. Simulation

It is known that the sum of a number of backlash operators can
be used to construct a backlash hysteresis. The backlash operator
is given by

_yi ¼

_xiðtÞ _xi40,yiðtÞ ¼ xiðtÞ�
1
2 di,

_xiðtÞ _xio0,yiðtÞ ¼ xiðtÞþ
1
2 di,

0 otherwise :

8><
>: ð20Þ

Thus, a backlash hysteresis is given as follows:

H½xðtÞ� ¼
XN

i ¼ 1

yi ð21Þ

where N is number of backlash operator, x(t) and H[x(t)] are input
and output of the backlash hysteresis, xi and yi are input and
output of the ith backlash operator, di is dead-band width of the
ith backlash operator, i¼1, 2,y,N, where N is a positive integer.
The constructed backlash hysteresis is shown as Fig. 11.

In this example, the backlash hysteresis consists of 15 backlash
operators. The dead-band width values evenly distributed in [1/6,
15/6]. All the initial outputs are set to zero. The input is
x(t)¼4 sin(0.5t)þ2 sin(3t). The output and input of the backlash
hysteresis are, respectively, used as the input and output of the
inverse backlash hysteresis.

A three-layer feed-forward neural network is used to approx-
imate the inverse backlash hysteresis. The sigmoid function and
linear function are, respectively, used as activation function in the
hidden layer and output layer.

It is found that the neural network derives the best results
when the number of hidden neurons becomes 168. Therefore, the
architecture of neural network used in this example consists of
2 input neurons, 168 hidden neurons and 1 output neuron. After
1504 epochs, the training procedure is finished. Fig. 12 illustrates
the result of model validation. The MSE is 0.001737. Fig. 13 shows
the corresponding model validation error.

In addition, the model based on the method given in Ref. [8] is
used to approximate the inverse backlash hysteresis for compar-
ison as well. It is found that the network derives the best results
when the number of hidden neurons becomes 169. After 1624
epochs, the training procedure is finished. Fig. 14 illustrates the
result of model validation. The MSE is 0.003867. Fig. 15 shows the
model validation error.

On comparing the result of the proposed model validation
with that of the model based on the method given in Ref. [8], it
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Fig. 10. Model validation error for the real data based on the method given in

Ref. [8].
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Fig. 11. Block diagram of backlash hysteresis.
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Fig. 13. EHIO-based NN model validation error for the inverse backlash hysteresis.
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illustrates that the proposed model can approximate the inverse
backlash hysteresis better than the model based on the method
given in Ref. [8].

The above-stated examples show that the proposed method is
promising for modeling inverse hysteresis.

6. Conclusion

In this paper, an EIHO-based NN inverse hysteresis model is
proposed. The EIHO constructs a one-to-one mapping relation
between the input space and the output space of inverse hyster-
esis, and therefore, theoretically the EIHO-based NN model can
approximate any inverse hysteresis whose input signals satisfy
Assumption 1. Both experimental results and simulation validate
the effectiveness of the proposed modeling method.
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