
An MDE Approach to Software Process Tailoring

Julio A. Hurtado Alegría
Computer Science Dept.

Universidad de Chile
IDIS Research Group
University of Cauca

jhurtado@dcc.uchile.cl

María Cecilia Bastarrica
Computer Science Dept.

Universidad de Chile
cecilia@dcc.uchile.cl

Alcides Quispe
Computer Science Dept.

Universidad de Chile
aquispe@dcc.uchile.cl

Sergio F. Ochoa
Computer Science Dept.

Universidad de Chile
sochoa@dcc.uchile.cl

ABSTRACT
Defining organizational processes is essential for enhancing
maturity. However the best process depends on the partic-
ularities of each project. Typically a process engineer de-
fines a specific process for each project in an ad-hoc fashion,
which is expensive, unrepeatable and error prone. Trying
to deal with this challenge we propose a model-based ap-
proach to software process tailoring that generates project
specific processes based on the organizational process and
the project context. The approach is systematic, repeatable
and it does not depend on the people using it. The proposal
has been applied for tailoring the Requirements Engineer-
ing process of a medium size company. The obtained results
were validated by process engineers of the company. Pro-
cesses obtained using the proposed approach matched the
ones used in the company for planned contexts and also
they were reasonable for non-expected situations.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software pro-
cess models

General Terms
Management, Reliability

Keywords
Software process lines, tailoring, model-driven engineering

1. INTRODUCTION
Different software development life cycles suggest specific

activities to be carried out in a particular order, from tra-
ditional models such as the Waterfall, to more modern ones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0580-8/11/05 ...$10.00.

such as RUP, Scrum or XP. Moreover, if a company aims
to certify or evaluate its software development process, it
should be rigorously defined as prescribed by most popular
models and standards as CMMI-Dev and ISO/IEC 12207.
This organizational process definition always requires an
enormous effort and it still needs to be adapted to satisfy the
specific characteristics of different project situations [22].

There is no unique software process since appropriate-
ness depends on various organizational, project and product
characteristics, and what is even worse, all these character-
istics evolve continuously. A one-size fits-all approach does
not work for software development [14]. Each project has its
own characteristics and requires a particular range of tech-
niques and strategies [21], and selecting a set of practices
and integrating them into a coherent process should also be
aligned with the business context [9]. In their process im-
provement approach, Dorr et al. suggest that the right set of
practices for a project can be better found if we understand
the context of the company [13]. Based on these findings
we follow the idea that each project context should dictate
the definition of the process that best fits it. Moreover, the
particular process applied should not vary dramatically from
one project to the other, so that process knowledge acquired
by the development team could be reused.

Tailoring is the process through which a general software
process is configured for adapting it to a project’s particu-
larities [28]. Empirical studies show that process tailoring
is difficult because it involves intensive knowledge genera-
tion and deployment [30] and it is also time consuming [24].
Moreover, the knowledge necessary for a good tailoring may
be lost from one project to the following one. Therefore, the
tailoring process is unrepeatable and difficult to evolve.

Model-driven engineering (MDE) [31] is a software devel-
opment approach in which abstract models are defined and
systematically transformed into more concrete models, and
eventually into source code. This approach promotes reuse
through a generative strategy. MDE can also be used in
software process engineering [7]: using transformations as
instantiation strategies [19].

In this paper we propose an approach for automatically
tailoring organizational processes to particular project con-
texts, based on MDE techniques so that appropriate pro-
cesses are achieved rapidly and with little effort. Tailoring
is implemented by means of a model transformation whose
inputs are the organizational process model including vari-

Figure 1: A generative strategy for process tailoring

abilities and a model of the project context, and whose out-
put is the context-adapted process, as shown in Fig. 1. We
formalize metamodels and implement transformation rules
using ATL (Atlas Transformation Language).

Using the proposed approach, this paper formalizes the
requirements engineering (RE) process that has been used
and evolved for several years in a medium size software
company. The process considers variation points accord-
ing to different context attributes including the knowledge
about the application domain (high, medium or low), the
project type (development, extension or reengineering) and
size (small, medium or large), among others. Combining the
values these attributes may take, we would need different
particular processes. The paper formalizes the general RE
process including its planned variability, and it shows how a
model transformation is actually able to yield the particular
process to be followed in each specific context. We were also
able to achieve appropriate processes by combining tailoring
rules for unanticipated settings.

The rest of the paper is structured as follows. Section 2
presents some related work. In Sect. 3 we describe the tai-
loring process and the involved models and transformations.
The application of the tailoring technique for the case of RE
is presented in Sect. 4. Finally, Sect. 5 presents the conclu-
sions and future work.

2. RELATED WORK
There are several diverse approaches to tailoring processes.

The assamble approach [12] enables the implementation of
tailoring decisions about deleting and merging process ele-
ments. These works use formalisms that turn process tailor-
ing a very complex task in practice.

The situational method engineering (SME) aproach fo-
cuses on project specific method construction [29]. During
the organizational process definition, an adaptable structure
and a guide for process tailoring by situational knowledge is
defined [1]. Nevertheless, in most cases the effort for tai-
loring the process is huge, especially when an assembly ap-
proach is carried out at tailoring time [22]. This is a big
problem because process tailoring normally is the responsi-
bility of the project manager, but requires the experience
and knlowledge of the software process engineer, so a suit-
able separation beetween their roles is not achieved [4].

Some processes as the Unified Process use an adjustment
guide approach where tailoring rules are defined as recom-
mendations to adapt phases, iterations and disciplines ac-

cording to project specific situations. This was the approach
originally followed in the company where we validated our
proposed MDE tailoring approach.

Agile methods such as XP use an auto-adaptable approach
where a project and team-adapted process results as an
emergent entity from a set of principles, values and practices.
Other processes as Crystal Methodology follow a template
based approach, where a methodology family with four mem-
bers: Clear, Yellow, Orange and Red is defined. Commer-
cial processes such as Rational Unified Process, use a frame-
work based approach or configuration approach [5], where
a general process is defined and a specific configuration is
created for each specific project. The framework strategy
makes the process model large and complex, and process
engineering knowledge is required to produce a valid con-
figuration, whereas in the template strategy it is difficult
to define the adequate set of templates for satisfying each
specific project [8].

A recovery tailoring approach has been proposed using
case based reasoning [15, 36] and neural networks [27]. In
these cases, tailoring is based on an incremental set of pre-
viously tailored processes, so the benefits are achieved after
various processes have been adapted. The main difficulties
in this approach is the set up cost required and the non
planned change and evolution of various processes, instead
of just one.

Killisperger [19] proposes an instantiation based approach.
Because the industry has few processes formalized up to the
enactment level, this approach may result in little benefit in
practice.

Provided that software processes can be considered as
software too [26], a Software Process Line (SPrL) can be
considered as a special Software Product Line (SPL) in the
software process engineering domain. SPrL share common
features and exhibit variability [33]. Consequently, a SPrL
is an ideal way to define, tailor and evolve a set of related
processes as it is established by the works on process varibil-
ity representation [32], SPrL architectures [35], process do-
main analysis [24], and SPrL scoping [3]. A SPrL approach
facilitates planned reuse, while classic tailoring re-actively
integrates unanticipated variability in the process model [3].

Our work proposes a MDE tailoring strategy as a produc-
tion strategy of project-specific process models in the con-
text of a SPrL. We use the MDE tailoring strategy using as
input an organizational process model with variabilities and
a specific context model. The context of the software process
has gained importance, but it has been usually represented
informally. Armbrust et al. [2] define three dimensions to
define the characteristics in the SPrL scope definition: prod-
uct, project and process. The COCOMO II model [6] de-
fines a set of attributes and dimensions to estimate a project,
that are useful for representing context models too. The In-
cremental Commitment Model Process [20] defines a set of
patterns for rapid-fielding using contextualized information.
However, these contexts are specific to a process, organiza-
tion or research issue. In order to help organizations deter-
mining their relevant dimensions and context attributes we
have defined a Software Process Context Metamodel follow-
ing the initial ideas presented in [16]. The process model
variability is represented using a process feature model sim-
ilar to software features [11] and implemented as a SPEM
2.0 process. So, the MDE Strategy helps achieving a separa-
tion between the process modeling stakeholders and process

Figure 2: Experimental SPEM (eSPEM) highlighting where variability is specified

enactment (project) stakeholders [4] and hides the complex-
ity by intensively reusing tailoring knowledge. Furthermore,
the MDE tailoring strategy provides a way to cost-efficiently
instantiate a general process model into project-specific pro-
cess models where the project manager should only provide
a definition of a specific situation.

3. TAILORING THE SOFTWARE PROCESS
Defining an organizational software process is necessary if

a company wants to improve its development process, and
completely required in order to achieve an evaluation or cer-
tification such as CMMI or ISO/IEC 12207. Although defin-
ing and documenting the process demands an important ef-
fort, a general process is still not appropriate for all projects,
even within the same organization. Moreover, an organiza-
tion that usually develops certain type of projects using a
particular process, may eventually get engaged in a differ-
ent type of project, and thus the processes that have always
worked fine become inadequate. Defining a customized pro-
cess for each project is too expensive due to the amount of
resources from the project itself it would consume. Having
a set of predefined processes for a series of different contexts
implies a high maintenance cost, and still does not assure to
cover all possible contexts. Therefore, tailoring the organi-
zational process seems to be a good trade-off.

We first define the models and metamodels involved in the
proposed tailoring approach, and then the ATL transforma-
tions that implement the tailoring process are presented. Fi-
nally a brief description of the implemented tool is included.

3.1 Models
The organizational process is defined as a SPEM 2.0 pro-

cess model including variabilities. A context model is de-
fined to express each one of the posible contexts. The project
specific context is defined as a configuration of a context
model. The context adapted process is a SPEM 2.0 process
model with variabilities resolved.

3.1.1 Organizational Process Model
Process models are defined using SPEM 2.0 [25], the OMG

standard for process modeling. Actually we use eSPEM, a
subset of SPEM 2.0 that is enough for our experimental
purposes.

SPEM 2.0 provides some primitives for specifying variabil-
ity as shown in Fig. 2. A SPEM compliant complete pro-
cess model is modeled as a Method Plug-in including Pro-
cess Elements and their linked Method Content Elements.
Method Content Elements specifically correspond to Task
Definitions having Work Product Definitions as input and
output, and performed by (or participate with) Role Def-
initions. An Activity is a Work Breakdown Element and
a Work Definition that define basic work units within a
Process as well as a Process itself. An Activity supports
the nesting and logical grouping of related Breakdown Ele-
ments forming breakdown structures. The concrete break-
down structure defined in an Activity can be reused by an-
other Activity via the used Activity association which allows
the second Activity to reuse its complete sub-structure. So,
Role Use, Task Use and Work Product Use are Work Break-
down Elements that refer to activity-specific occurrences of
the respective Method Content Element. A Variability Ele-
ment is a SPEM element that can be modified or extended
by other Variability Element of the same kind according to
a Variability Type (extends, replaces, contributes, extends-
replace). So, each Method Content Element (TaskDefinition,
RoleDefinition and WorkProductDefinition) and the Activ-
ity meta-classes are Variability Elements.

We use Variability Elements to implement alternatives
(labeled with an alternative symbol similar to that used in
feature models). A set of alternatives can be defined from
the same Variability Element (maybe abstract). So, when
a Process Element is linked to the Variability Element, one
of these alternatives could be selected. For example a Task
Use can be linked to one of many available and consistent
Task Definitions. Additionally, each Work Breakdown Ele-

Figure 3: Software Process Context Metamodel - SPCM

ment can be considered as optional or not according to the
isOptional attribute. Optional elements are labeled with a
circle.

Following a general approach for specifying variability in
Domain Engineering, we use Feature Models [11] to formal-
ize process variability at a high level of abstraction. We
consider software process features as special kinds of soft-
ware features, such as process properties (life cycle type,
maturity level, etc.), method elements (method fragments),
process elements (process components, process fragments),
process with method elements (chunks) and method plug-
in elements (reusable components, processes and configura-
tions). We use the feature model proposed by Czarnecki [11],
but using SPEM 2.0 stereotypes.

3.1.2 Context Model
The context of a project may vary according to different

project variables along specific dimensions such as: size, du-
ration, complexity, development team size, knowledge about
the application domain, or familiarity with the technology
involved. Formalizing these characteristics as a model en-
ables us to automatically tailor the organizational process
according to them. We have defined SPCM (Software Pro-
cess Context Metamodel) for defining the context model for
each project (see Fig. 3).

SPCM is based on three basic concepts: ContextAttribute,
Dimension and ContextAttributeConfiguration. Every ele-
ment in SPCM extends a ContextElement that has a name
and a description. A ContextAttribute represents a relevant
characteristic of the process context required for tailoring.
The ContextAttribute includes a priority (used when a trade-
off between context attributes is required) and it can take
one of a set of values defined as ContextAttributeValue. An
example of a ContextAttribute is the Project Size. Context-
AttributeValue represents a type for qualifying a ContextAt-
tribute. Examples of ContextAttributeValues for Size Con-
textAttribute are the ContextAttributeValues {Small, Medi-
um, Large}. Dimension represents a collection of related
ContextAttributes. A Dimension eases the separation of
concerns applied to ContextAttributes. An example of Di-
mension is Team dimension, referring to team attributes

such as team size or team capabilities. A Context is repre-
sented as a collection of Dimensions. A Context represents
the whole context model. To represent possible specific pro-
cess contexts, Context Configurations can be defined from
the context model. A ContextConfiguration is a collection of
ContextAttributeConfiguration that is set to one of the possi-
ble ContextAttributeValues for ContextAttribute. Therefore,
a ContextAttributeConfiguration is associated to a Contex-
tAttribute and to one unique ContextAttributeValue. An ex-
ample of a ContextAttributeConfiguration is the ProjectSize-
Configuration for a small project, where its ContextAttribute
is Project Size and the AttributeValue associated is “Small”.

3.1.3 Project Adapted Process Model
The project adapted process model also conforms to SPEM

2.0 metamodel, but it cannot have variabilities, so all vari-
abilities identified as part of the organizational process model
are resolved by the tailoring transformation.

3.2 Tailoring by Model Transformation
We use ATL [18], a declarative language, for defining the

tailoring transformation rules. Thus, rules about tailoring
the general process model according to the values of different
context dimensions can be composed incrementally. In this
way we can configure new process models through a genera-
tive strategy by recombining partial tailoring transformation
rules, and thus reusing the knowledge they embody.

In this MDE approach, the project manager should only
provide the characteristics of the particular project at hand,
and a process specifically adapted to the project is auto-
matically generated. Thus, all and only the required roles,
activities and work products will be present in the adapted
process, and no extra work would be required. Therefore,
the adapted process is more efficient, and the tailoring pro-
cess is more reliable as well.

The tailoring transformation is endogenous [10] because
its output conforms to the same metamodel as the input.
However, it is not in place since we want to preserve the
organizational process model for future configurations. We

Figure 4: ATL Tailoring Transformation

use ATLCopier1 as a basic template, and we modify it so
that only those elements whose rules evaluate to true are
actually copied to the target model.

Matched rules constitute the core of an ATL declarative
transformation since they allow us to specify: (i) which tar-
get elements should be generated for each source element,
and (ii) how generated elements are initialized from the
matched source elements. In our tailoring rules we make de-
cisions for identified variation points in the process model.
Each variation point has an associated helper called from the
matched rule. Figure 4 shows rule TaskUse. The source pat-
tern MM!TaskUse is defined after the keyword from, mean-
ing that the rule will generate target elements for each source
element matching the pattern. In order to select only those
source elements that are relevant for the specific project, an
extra condition is added: an Optionality rule implemented
as a helper function. When this rule returns false, the el-
ement needs to be removed from the process. Attribute
initialization uses the values in the source process model el-
ement. However, and provided that we use eSPEM variabil-
ity mechanisms, a process element (e.g. TaskUse) could be
linked to several variants of method elements (e.g. Task Def-
inition). Therefore, we define an AlternativeTailoringRule
as a rule that returns the selected method element accord-
ing to the helper rule. The AlternativeTailoringRule chooses
the most suitable TaskDefinition variant, according to the
Domain Knowledge Value in the context. If there were more
variability points, a conjunction of rules would be applied,
also specifying priorities to make trade-offs.

3.3 Tool Implementation
The tool implementation was developed in Eclipse Model-

ing Framework - EMF 3.42 and the ATL plug-in 2.03. Meta-

1ATL Transformation Zoo. http://www.eclipse.org/-
m2m/atl/atlTrnsformations/
2EMF website http://download.eclipse.org/tools/emf
3ATL website http://www.eclipse.org/downloads/

models were defined as ecore metamodels in EMF and the
transformations were implemented as ATL rules. Models
were implemented as instances of defined metamodels and
edited using Exeed (Extended EMF Editor), the reflective
editor of EMF. We are currently implementing a plug-in
to incorporate the rule transformation-based tailoring ap-
proach into EPF. SPEM is being implemented as eSPEM,
the experimental version including only the main elements
for supporting our approach.

4. TAILORING A REAL WORLD REQUIRE-
MENTS ENGINEERING PROCESS

We have formalized the general requirements engineering
process used by a medium size Chilean software company.
This company has provided its organizational process as part
of the Tutelkán project [34] and it is publicly available 4.

For illustrating our tailoring approach we took the re-
quirements engineering process, along with its adaptation
guidelines. These guidelines indicate that certain artifacts
should or should not be included as part of the adapted
process, according to certain context values. In this way,
there are a series of predefined project types such as large
development, small development, maintenance or incident.
We show how our approach is able to automatically produce
the expected process for these project types. We also show
how we are also able to produce an appropriate process for
an unexpected context as a maintenance without documen-
tation available. All these results have been analyzed and
validated by the company’s process engineer.

4.1 Organizational Process Model
In the general requirements engineering process we can

identify two main components that are executed asynchro-
nously: Requirements Development and Requirements Man-

4Tutelkán: http://www.tutelkan.org.

Figure 5: Requirements Development

agement. Figure 6 shows the process formalization in the
tool.

Figure 6: Requirements Engineering Process

Requirements Development is depicted in Fig. 5. Here
the process may take two different forms depending on the
development stage. In the Inception stage, this process
is formed by two parallel and optional activities: Problem
Analysis and Environment Specification. In all other stages,
this process is formed by three parallel activities: Require-
ments Specification, Requirements Analysis and Validation
and Early Change Management ; only the latter is optional.
Also the Problem Analysis is formed by the Preliminary
Analysis and the Project and Problem Scope Definition, and
this latter one is also optional.

Requirements Management consists of Requirements Un-
derstanding, Requirements Commitment, and then in paral-
lel Requirements Tracking and Requirements Change Man-
agement, as shown in Fig. 7. The Requirements Understand-
ing process is illustrated in Fig. 8. It is formed by three
tasks: Identify Requirements Providers, Requirements Re-
view and Ensuring Common Requirements Understanding.

Figure 7: Requirements Management

Notice that the Identify Requirements Providers is marked
as optional. In this case, the task will only be carried out if
the project is a new development.

All optionalities in the process can be summarized in a
Process Feature Model [11] as shown in Fig.9.

4.2 Context Model
The general requirements engineering process model pre-

sented in the previous section is applied in different kinds of
projects. Several dimensions and attributes have been iden-
tified as relevant by the company for characterizing projects.
Figure 10 shows the context model. The Domain dimension
has three attributes: Application Domain, Development En-
vironment and Source of Documentation. The first two may
be either known or unknown, and the last one may exist,
not exist, or there may be an expert who may provide infor-
mation. Similarly, the Team dimension has two attributes:
Team Size and Team Expertise, each one with their corre-
sponding values. The Management dimension has five at-
tributes: Project Type, Provider, Business, Customer Type
and Project Duration.

(a) (b)

Figure 9: (a) Requirements Development and (b) Requirements Management Feature Models

Figure 8: Requirements Understanding

Figure 10: Context Model

The second column in Tab. 1 describes the values of the
context variables for a new development within an unknown
application domain, whose documentation does not exist,
where the development environment and costumer type are
unknown, the provider is in house, and the duration is small.
In this case the tailored process expected would include all
the optional tasks, roles and work products as it is the most
complex situation.

Table 1: Two project contexts
Context Novel Simple
attribute Development Maintenance

Project type New Corrective
development Maintenance

Application Unknown Known
domain
Documentation Does not exist Exist
Provider In-house In-house
Development Unknown Known
environment
Customer type Unknown Known
Project Small Medium
durantion

On the other hand, the third column in Tab. 1 describes
a simple maintenance corrective project, where the appli-
cation domain, the development environment and the cos-
tumer type are known, the documentation exists, the provider
is in house and the duration is medium. In this case a
much simpler process is expected to be applied. Figure 11
shows both the Requirements Development and the Require-
ments Understanding activities where some optional tasks
have been removed from the context adapted process.

4.3 Tailoring Transformation
The tailoring transformation takes the general require-

ments process and a particular context model, and auto-
matically yields a context adapted process. To this end par-
ticular rules are provided so that, according to particular
values in the context dimensions, decisions could be made
about all variation points identified as part of the Feature
Model. Table 2 shows some of the directions included in the

Figure 11: Req. Development and Req. Under-
standing for a simple Maintenance project

original adaptation guideline that were taken as a starting
point for building the transformation rules.

Table 2: Adaptation guidelines
Context Value Action
attribute

Project type Maintenance Problem and Project Scope
Enhancement Definition Task is required

Project type Maintenance Early Change Management
Correction Activity is not required

Provider In house Problem and Project Scope
Definition Task could be
required

Provider Outsource Problem and Project Scope
Definition Task is required

Source of Does not exist Environment Specification
Documentation could be required
Source of Exist no action is suggested
Documentation

It is clear from the table that most common contexts
are described and there is no ambiguity about the expected
adapted process. For example, for Maintenance-Correction
project type, the Early Change Management Activity is
never required. However, there are certain combinations
of attribute values that are not defined. For example, for
Provider in house, the Problem and Project Scope Defini-
tion Task could be required or not depending on the values of
other attributes, but it is not clearly established. There are
still other situations, like that happening when the Source
of Documentation exists, where there is no clear action to
be taken. Moreover, there are situations (not shown in the
table) where the action to be taken does not only depend
on the value of one attribute, and if there are two or more
attribute values that yield contradictory actions, priorities
should be established. In these cases, there is an evident
need to rely on a tool that is able to make an appropriate
decision by combining partial decisions about different val-
ues in the context. In this way evolvability is also achieved
since partial rules could be adjusted over time without af-
fecting others.

Figure 12 shows an abstract tree of conditions on at-
tribute values for determining the inclusion of the Environ-
ment Specification activity and the following code shows the
ATL implementation of the rule.

–Rule 2 - Environment Specification Activity selection
helper def:activityRule2(elementName:String) : Boolean =

if (elementName = ’Environment Specification’) then
if (thisModule.getValue(’Project Type’) = ’Incidents’) then

false
else

if ((thisModule.getValue(’Project Type’) =
’New Development’) or

(thisModule.getValue(’Project Type’) =
’Maintenance-Enhancement’) then true

else
if (thisModule.getValue(’Source of Documentation’)

<> ’Exist’) then true
else false
endif

endif
endif

else true
endif

Figure 12: Attribute values for selecting the Envi-
ronment Specification activity

Let us now consider the case where we have a project
context similar to that in the corrective maintenance (third
column in Tab. 1), but now considering that the project does
not have documentation available. Clearly this is a different
case and there is no definition within the adaptation Tab. 2
that indicates the decisions to be made. In this case we
configure the project context as shown in Tab. 3, and we
apply the rules, in particular Rule 2 just presented.

Table 3: Maintenance without documentation
Context attribute Attribute value

Project type Corrective Maintenance
Application domain Kknown
Documentation Does not exist
Provider In-house
Development environment Known
Customer type Known
Project durantion Medium

The obtained process will include the Environment Spec-
ification that was previously not included provided that the
rule indicates that it needs to be included whenever the doc-
umentation is not available (see Fig. 13). According to the
process engineer, this is the expected result even though it
was not explicitly stated in the adaptation guidelines.

The MDE-based strategy was evaluated in a four-hour
workshop including business, process and project manage-
ment people from the company. In this workshop the techni-
cal work and a demo of the solution were presented including
solutions of past projects and new possible project charac-
terizations. Every possible adapted process was efficiently

Figure 13: Requirements Development process in the
case of non existent documentation

generated and collectively evaluated with the process engi-
neer of the host company. The results indicate the gener-
ated processes were correct and suitable for each particular
project context.

The organizational process was assumed to be already for-
malized, as well as the adaptation guidelines. The effort
involved in generating the formalized organizational process
with variabilities was low since it consisted in identifying the
process elements affected by the adaptation. Writing the
rules was more time consuming mainly because of the in-
herent ambiguity in the adaptation guidelines. Defining the
context model took some time and creativity, but defining
a particular context only takes a couple of seconds. There-
fore, the return of investment will become more clear as more
projects are executed.

5. CONCLUSIONS AND FUTURE WORK
This article proposes a MDE-based strategy for automat-

ically generating processes by tailoring a general process ap-
plying a set of transformation rules defined during the or-
ganizational process specification. This technique has the
potential to improve the project’s productivity and quality,
as well as the resulting software products. Provided that the
adapted process will include all process elements that are
required for the particular project context, no extra work
will be needed and only the essentially required effort and
resources will be spent. In addition, high quality work prod-
ucts can be expected, because the process is adjusted with
this goal in each particular project context. Since this tai-
loring process is automatic and it applies already validated
transformations, it is expected to achieve a reduction of the
tuning time and cost, and also fewer adaptation errors.

The case study presented in this paper showed that it is
possible to apply tailoring transformations built for adapt-
ing a general RE process to different project contexts in a
planned manner. Being able to validate the transformations
for particular known cases has given us confidence on their
validity for the general case. Therefore, whenever unantici-
pated scenarios happen, a combination of already built (and
potentially already validated as well) tailoring transforma-
tions can be applied; and as a consequence, an appropriate
context adapted processes can be obtained quickly and eas-
ily. The experience has allowed us to conclude that: (1) our

technique is an effective tool to achieve process tailoring and
(2) the approach is useful and practical because it was easily
implementable by the process group. However, (3) the pro-
totypical tool must be more usable, in particular to define
the transformation rules. Additionally, process engineers at
the company suggested that the triplet (Context Configura-
tion, Tailored Process and Results) could be saved in order
to empirically validate and improve the context model and
the tailoring decisions.

We are currently experimenting with this approach in ten
other Chilean software companies as part of ADAPTE, a
large government funded project. Because of the relevance of
the quality of the models in our approach, we have advanced
some work designing an analysis framework based on process
blueprints [17].

Acknowledgemets
This work has been partly funded by project Fondef D09I1171
of Conicyt, Chile. The work of Julio Hurtado and Alcides
Quispe has been also partly funded by NIC, Chile.

6. REFERENCES
[1] A. Aharoni and I. Reinhartz-Berger. A Domain

Engineering Approach for Situational Method
Engineering. In Proceedings of the 27th International
Conference on Conceptual Modeling, ER’08, pages
455–468. Springer-Verlag, 2008.

[2] O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch,
H. Nakao, and A. Ocampo. Scoping software process
models: initial concepts and experience from defining
space standards. In ICSP’08: Proceedings
International Conference on Software Process: Making
globally distributed software development a success
story, pages 160–172, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch,
H. Nakao, and A. Ocampo. Scoping software process
lines. Software Process: Improvement and Practice,
14(3):181–197, 2009.

[4] X. Bai, L. Huang, and H. Zhang. On scoping
stakeholders and artifacts in software process. In
Münch et al. [23], pages 39–51.

[5] N. Belkhatir and J. Estublier. Supporting reuse and
configuration for large scale software process models.
In Software Process Workshop, 1996. Process Support
of Software Product Lines., Proceedings of the 10th
International, pages 35–39, 1996.

[6] B. W. Boehm, B. Clark, E. Horowitz, J. C. Westland,
R. J. Madachy, and R. W. Selby. Cost Models for
Future Software Life Cycle Processes: COCOMO 2.0.
Annals of Software Engineering, 1:57–94, 1995.

[7] E. Breton and J. Bézivin. Model driven process
engineering. In Computer Software and Applications
Conf., 2001. COMPSAC 2001, pages 225–230, 2001.

[8] D. W. Bustard and F. Keenan. Strategies for systems
analysis: Groundwork for process tailoring. In
Proceedings of the 12th IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’05), pages 357–362,
Washington DC, USA, 2005. IEEE Computer Society.

[9] M. A. Cusumano, A. MacCormack, C. F. Kemerer,
and W. B. Crandall. Critical Decisions in Software

Development: Updating the State of the Practice.
IEEE Software, 26(5):84–87, 2009.

[10] K. Czarnecki and S. Helsen. Feature-based Survey of
Model Transformation Approaches. IBM Systems
Journal, 45(3):621–645, 2006.

[11] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[12] F. Dai and T. Li. Tailoring software evolution process.
In 8th ACIS Int. Conf. on Software Engineering,
Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2007., volume 2,
pages 782–787, 2007.

[13] J. Dörr, S. Adam, M. Eisenbarth, and M. Ehresmann.
Implementing Requirements Engineering Processes:
Using Cooperative Self-Assessment and Improvement.
IEEE Software, 25(3):71–77, 2008.

[14] D. Firesmith. Creating a Project-Specific
Requirements Engineering Process. Journal of Object
Technology, 3(5):31–44, 2004.

[15] S. Henninger and K. Baumgarten. A Case-Based
Approach to Tailoring Software Processes. In 4th
International Conference on Case-Based Reasoning,
ICCBR 2001, volume 2080 of LNCS, pages 249–262.
Springer, 2001.

[16] J. A. Hurtado and C. Bastarrica. Process Model
Tailoring as a Mean for Process Knowledge Reuse. In
2nd Workshop on Knowledge Reuse, KREUSE, Falls
Church, Virginia, USA., September 2009.

[17] J. A. Hurtado, A. Lagos, A. Bergel, and M. C.
Bastarrica. Software Process Model Blueprints. In
Münch et al. [23], pages 273–284.

[18] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and
P. Valduriez. ATL: a QVT-like Transformation
Language. In Companion to the 21th Annual ACM
SIGPLAN Conf. on OOPSLA’2006, pages 719–720.
ACM, 2006.

[19] P. Killisperger, M. Stumptner, G. Peters,
G. Grossmann, and T. Stückl. Meta Model Based
Architecture for Software Process Instantiation. In
Trustworthy Software Development Processes,
International Conference on Software Process, ICSP
2009, LNCS 5543, pages 63–74, 2009.

[20] S. Koolmanojwong and B. W. Boehm. The
Incremental Commitment Model Process Patterns for
Rapid-Fielding Projects. In Münch et al. [23], pages
150–162.

[21] P. A. Laplante and C. J. Neill. Opinion: The Demise
of the Waterfall Model Is Imminent. ACM Queue,
1(10):10–15, 2004.

[22] I. Mirbel and J. Ralyté. Situational method
engineering: combining assembly-based and
roadmap-driven approaches. Requirements
Engineering, 11(1):58–78, 2006.

[23] J. Münch, Y. Yang, and W. Schäfer, editors. New
Modeling Concepts for Today’s Software Processes,
International Conference on Software Process, ICSP
2010, Paderborn, Germany, July 8-9, 2010.
Proceedings, volume 6195 of LNCS. Springer, 2010.

[24] A. Ocampo, F. Bella, and J. Münch. Software process
commonality analysis. Software Process: Improvement
and Practice, 10(3):273–285, 2005.

[25] OMG. Software Process Engineering Metamodel
SPEM 2.0 OMG Beta Specification. Technical Report
ptc/07-11-01, OMG, 2007.

[26] L. J. Osterweil. Software Processes Are Software Too.
In 9th International Conference on Software
Engineering, ICSE’1987, pages 2–13, 1987.

[27] S. Park, H. Na, and V. Sugumaran. A semi-automated
filtering technique for software process tailoring using
neural network. Expert Systems with Applications,
30:179–189, 2006.

[28] O. Pedreira, M. Piattini, M. R. Luaces, and N. R.
Brisaboa. A systematic review of software process
tailoring. SIGSOFT Softw. Eng. Notes, 32(3):1–6,
2007.

[29] J. Ralyté, R. Deneckére, and C. Roll. Towards a
generic model for situational method engineering. In
CAiSE 2003, LNCS 2681, pages 95–110.
Springer-Verlag, 2003.

[30] C. Rolland. Method engineering: State-of-the-art
survey and research proposal. In Proceeding of the
2009 conference on New Trends in Software
Methodologies, Tools and Techniques, pages 3–21,
Amsterdam, The Netherlands, 2009. IOS Press.

[31] D. C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[32] B. I. Simidchieva, L. A. Clarke, and L. J. Osterweil.
Representing process variation with a process family.
In Q. Wang, D. Pfahl, and D. M. Raffo, editors,
International Conference on Software Process,
ICSP’2007, volume 4470 of LNCS, pages 109–120.
Springer, 2007.

[33] S. M. Sutton and L. J. Osterweil. Product families and
process families. In ISPW ’96: Proceedings of the 10th
International Software Process Workshop, page 109,
Washington, DC, USA, 1996. IEEE Computer Society.

[34] G. Valdés, H. Astudillo, M. Visconti, and C. López.
The Tutelkán SPI Framework for Small Settings: A
Methodology Transfer Vehicle. In Proceedings of the
17th EuroSPI, volume 99, pages 142–152, Grenoble,
France, September 2010. Communications in
Computer and Information Science.

[35] H. Washizaki. Building software process line
architectures from bottom up. In J. Münch and
M. Vierimaa, editors, Product-Focused Software
Process Improvement, LNCS, pages 415–421. Springer,
2006.

[36] P. Xu. Knowledge support in software process
tailoring. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, HICSS
’05, 2005.

	Introduction
	Related Work
	Tailoring the Software Process
	Models
	Organizational Process Model
	Context Model
	Project Adapted Process Model

	Tailoring by Model Transformation
	Tool Implementation

	Tailoring a Real World Requirements Engineering Process
	Organizational Process Model
	Context Model
	Tailoring Transformation

	Conclusions and Future Work
	References

