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Abstract

We describe a new solver for mixed integer nonlinear programs (MINttRg)imple-
ments a linearization-based algorithm in a branch-and-cut framework fraimework
includes cutting planes, primal heuristics, and other well-known technfqueslving
mixed integer linear programs (MILPs). The solver FiIMINT (Filter-MixedTéger op-
timizer) combines the MINTO branch-and-cut framework for MILP with fB&P used

to solve the nonlinear programs that arise as subproblems in the algorithamttast to

the traditional outer-approximation algorithm, the algorithm implemented by FilMINT
avoids the complete solution of master MILPs by adding new linearizationseat op
nodes of the branch-and-bound tree whenever an integer solutiomnd.fdVe present
detailed computational experiments that show the benefit of introducingeedILP
techniques into such a framework. Further, we demonstrate how to usathework

to add and manage linearizations that arise in the algorithm. Comparisons togexistin
solvers for MINLPs are presented, highlighting the effectivenessigiNT.
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1 Introduction

Recently, researchers have expressed renewed interestetopiag efficient solvers for
mixed integer nonlinear programming (MINLP) problems. Simterest is motivated by the
rich collection of important applications that can be medehs MINLPs, including nuclear
core reload problems (Quist et al. [1998]), cyclic schatwliJain and Grossmann [1998]),
trimloss optimization in the paper industry (Harjunkoskak [1988]), synthesis problems
(Kocis and Grossmann [1988]), and layout problems (Castlial. [2005]). MINLP prob-
lems are conveniently expressed as

ZvinLp = minimize  f(z,y)
subject to  g;(z,y) <0, j=1,...,m, (MINLP)
reX,yeYnNzp,

wheref, g; are twice continuously differentiable functions, andndy are continuous and
discrete variables, respectively:

Xd:ef{x|:1:€R",Dx§d},

Y E{ylyeR, Ay <ay' <y<y').
In this paper we concentrate on the case whfiete are convex. The case whefeandg;
are nonconvex or where nonlinear equality constraints eeggnt is beyond the scope of the
present paper. We note, however, that our techniques capgiedas a heuristic in such
cases, or can form the basis of more sophisticated detestioitechniques based on convex
underestimators (Tawarmalani and Sahinidis [2002]).

Methods for the solution of (MINLP) include the branch-amolind method (Dakin
[1965], Gupta and Ravindran [1985]), branch-and-cut (St Mehrotra [2002]), outer
approximation (Duran and Grossman [1986]), generalizediBesdecomposition (Geoffrion
[1972]), the extended cutting plane method (WesterlundRettersson [1995]), and LP/NLP-
based branch and bound (Quesada and Grossmann [1992)){enhexreader to Grossmann
[2002] for a recent survey of solution techniques for MINL®lgems.

Our aim is to provide a solver that is capable of solving MINL#R a cost that is a small
multiple of the cost of a comparable mixed integer lineargpaom (MILP). In our view, the
algorithm most likely to achieve this goal is LP/NLP-baseazh and bound (LP/NLP-BB).
This method is similar to outer approximation; but instefsladving an alternating sequence
of MILP master problems and nonlinear programming (NLP)psablems, it interrupts the
solution of the MILP master whenever a new integer assigmnsefound, and solves an
NLP subproblem. The solution of this subproblem provides nater approximations that
are added to the master MILP, and the solution of the updaté&€ Mhaster continues.
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Our solver exploits recent advances in nonlinear progrargrand mixed integer linear
programming to develop an efficient implementation of LPANBB. Our work is motivated
by the observation of Leyffer [1993] that a simplistic implentation of this algorithm often
outperforms nonlinear branch and bound and outer apprdiximby an order of magnitude.
Despite this clear advantage, however, there has been nenmaptation of LP/NLP-BB
until the recent independent work by Bonami et al. [2005] dnsl paper.

Our implementation, called FilMINT, is built on top of the xed integer programming
solver MINTO (Nemhauser et al. [1994]). By using MINTO’s bcairand-cut framework,
we are able to exploit a range of modern MILP features, suatnaanced branching and
node selection rules, primal heuristics, preprocessing cait generation routines. To solve
the NLP subproblems, we use filterSQP (Fletcher and Ley2f@02], Fletcher et al. [2002]),
an active set solver with warm-starting capabilities treat take advantage of good initial
primal and dual iterates.

Recently Bonami et al. [2005] have also developed a solver 1dtL¥s called Bonmin.
While the two solvers share many of the same charateristizsywork differs from that of
Bonami et al. [2005] in a number of significant ways. First, odver Bonmin is truly a
hybrid between a branch-and-bound solver based on nonlieleations and one based on
polyhedral outer approximations. FilMINT implements $plthe LP/NLP-BB algorithm,
because MINTO's branch-and-cut framework restricts ushiaiaing lower bounds only
from the solution of dinear program. Another important distinction between Bonmin and
FIIMINT is the frequency with which linearizations are cted and the management of the
linearizations. MINTQO’s suite of advanced integer prognaimg techniques is also different
from that of CBC (Forrest [2004]), which is the MILP framewonkwhich Bonmin is based.
Specifically, MINTO and CBC'’s branching and node selectiongaee different, MINTO
has an advanced preprocessing engine, and different slaksatting planes are employed
by each solver. The last important distinction is FiIMINT'se of an active set solver, which
allows us to exploit warm-starting techniques that are eatily available for the interior-
point code IPOPT (\Wchter and Biegler [2006]) that is used in Bonami et al. [2005].

The paper is organized as follows. In the remainder of thisia® we formally re-
view the LP/NLP-based branch-and-bound algorithm, descits implementation within
MINTO’s branch-and-cut framework, and outline the compatsl setup for our experi-
ments. In Section 2, we report a set of careful experimeriisshow the effect of modern
MIP techniques on an LP/NLP-based algorithm. In Section Iaresider several ways to
create and manage the linearizations generated in thedtalgodn Section 4 we show how
the NLP solutions can be exploited, and in Section 5 we coenpar solver to other MINLP
solvers.
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1.1 LP/NLP-based Branch and Bound

In this section we formally define the underlying algorithbi?/NLP-BB is a clever exten-
sion of outer approximation, which solves an alternatirgueace of NLP subproblems and
MILP master problems. The NLP subprobldm (NyPJ is obtained by fixing the integer
variables at/*, and the MILP master problem accumulates linearizationte(approxima-
tions) from the solution of (NLR()).

LP/NLP-BB avoids solving multiple MILP master problems byemupting the MILP
tree search whenever an integer feasible solution is foarsblve the NLP subproblem
(NLP(*)). The outer approximations from (NL$() are then used to update the MILP
master, and the MILP tree search continues. Thus, instesol\dihg a sequence of MILPs,
only a single MILP tree search is required.

To precisely define LP/NLP-BB and our subsequent enhancemeatfirst make some
definitions. We characterize a nofleu, ) of the branch-and-bound search tree by bounds
{(1,u)} enforced on the integer variablggnd the objective valug Given bounds/, «) on
y, we define the NLP relaxation of MINLP as

Znipr(l,u) = Minimize  f(z,y)
subject to g;(z,y) <0 j=1,...,m, (NLPR(, u))
re X,yey,
[<y<u.

If | < y"andu > y*, then the optimal objective function valug e, Of (NLPR(, u))
provides a lower bound on (MINLP); otherwise it provides aéo bound for the subtree

whose parent node i/, «)}. In general, the solution to (NLPR()) yields one or more
nonintegral values for the integer variables

The NLP subproblem for a fixeg (sayy*) is defined as
ZNLp(k) = Minimize  f(z, y")
subject to  gj(z,y") <0 j=1,...,m, (NLP(@»"))
reX.
If (NLP(3*)) is feasible, then it provides an upper bound to the prob(®HNLP). If
is infeasible, then the NLP solver detects the infeaigjtsiind returns the solution

to some feasibility problem for fixeg”. The form of the feasibility problem (NLPE())
that is solved by filterSQP is

minimize Z w;lg;(x,y")), (NLPF(@*))

j=1
subject tor € X.
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This problem can be interpreted as the minimization of aestgl norm of the constraint
violation.

From the solution to (NLR()) or (NLPF*)), we can derive valid linear inequalities for
(MINLP). The convexity of the nonlinear functions imply tithe linearizations about any
point (z*, y*)) form an outer approximation (OA) of the feasible set andanastimate the
objective function. Specifically, if we introduce a dummyriahlen in order to replace the
objective by a constraint, that isinimize 7 subject ton > f(x,y), then the inequalities

(OA(x, y)) are valid for MINLR:

Fla,y*) + V()T [ e ] <7

(OA(wk, yr))

a:—xk

ok <0 7=1,...,m.
Yy—uy

g;(x", ") + Vg, (2F, y")T [

The inequalities (OA(;, yx)) are used to create a master MILP. Given a set of points
K = {(2°¢%), (29", ..., (@* y*1} we form the outer approximation master problem
as

Zyp(fc) = IMinimize 7

Lk
subject to  f(z",y") + V f(a",4*)" [ i_ik ] <n V(' y*) e K (MP(K))
ok
g;(a*, ) + Vg, (z*, y*)T [ e ] <0 Y@ty ek j=1,...,m
y—y

reX,yeYNZr.

If ICin (MP(K)) containsall integer points inY” N Z?, and a constraint qualification holds,
thenzminee = zwe(k) (Fletcher and Leyffer [1994], Bonami et al. [2005]).

LP/NLP-BB relies on solving the continuous relaxation to (WP and enforcing inte-
grality of they variables by branching. We label this problem as CNIR(u).

minimize 7

.k
subject to f(a:’“,y%wf(x’“,ykﬂlx xk]ﬂ V(a*,y¥) € K (CMP(K, 1,u))
Yy—vy
-
gj<w’%y">+ng<w‘2yk>T[I fck]“ Vit g ek j=1,....m
y—y

reXyeY,l<y<u
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The main algorithm underlying our work, LP/NLP-BB, is now falty stated in pseudo-
code form in Algorithm 1.1.

Solve NLPRy!, y*) and let(7°, 2°,4°) be its solution (initialize)
if NLPR(y!, y*) is infeasiblethen
Stop. MINLP is infeasible
else
K — {(@"y")}, £ — {(y,y" i)}, UB — o0
end if
while £ # () do
Select and remove nod#, v*, 7*) from £ (select)
Solve CMRK, I*,u*) and let(r*, #, y*) be its solution. (evaluate)
if CMP(K, I*, u¥) is infeasibleO k > UB then
Do nothing.
elseif y, € Z” then
Solve NLRy*). (update master)
if NLP(y*) is feasiblethen
UB «— min{UB, 2y p(,+ }
Remove all nodes iff whose parent objective valuig > UB. (fathom)
Let (z*, *) be solution to NLPy*)
else
Let (=¥, y*) be solution to NLPF/*)
end if
K — KU{(z* y*)}. GoTo (evaluate).
else
Select) such thay} ¢ Z. (branch)
R R
L—LU {(l’“, L )} U{(l, uk, 7*)}
end if
end while

Algorithm 1.1: LP/NLP-BB algorithm.

1.2 Implementation within the MINTO Framework

FIIMINT is built on top of MINTO'’s branch-and-cut framewarksing filterSQP to solve the
NLP subproblems. MINTO providasser application functionthrough which the user can
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implement a customized branch-and-cut algorithm, and INIMis written entirely within
these user application functions. No changes are necesséng core MINTO library in
order to implement the LP/NLP-BB algorithm. MINTO can be useath any LP solver that
has the capability to modify and resolve linear programsiatetpret their solutions. In our
experiments, we use ti@&p LP solver that is called through i@siSolverinterface

Both Clp and theOsiSolverinterface are open-source tools available from COIN-
OR: http://www.coin-or.org

FiIMINT obtains problem information from AMPL's ASL inteatce (Fourer et al. [1993],
Gay [1997]). ASL also provides the user with gradient anddi#esinformation for nonlinear
functions, which are required by the NLP solver and are usampute the linearizations
required for LP/NLP-BB. FilMINT's NLP solver, filterSQP, ia sequential
guadratic programming (SQP) method that employs a filteréonpte global convergence
from remote starting points. A significant advantage of ggin active-set SQP method in
this context is that the method can readily take advantagmodl starting points. We use
as the starting point the solution of corresponding the Léeenaamely(n*, &, y*). Another
advantage of using filterSQP for implementing (LP/NLP-BB)hattfilterSQP contains an
automatric restoration phase that enables it to detecasitfee subproblems reliably and
efficiently. The user need not create and solve the feasipitoblem (NLPF(*)) explicitly.
Instead, filterSQP returns the solution of (NLBB] automatically.

Figure! 1 shows a flowchart of the LP/NLP-BB algorithm and theNWID application
functions used by FIIMINT. We note that, for the sake of siitip}, the figure does not show
all the details of the algorithm.

The MINTO user application functions used by FIIMINT agpl _mps, appl _feasible
appl _primal , andappl _constraints . A brief description of FIIMINT’s use of these
functions is stated next.

e appl_mps. The MINLP instance is read.

e appl_feasible. This user application function allows the user to verifytthaolution to
the active formulation satisfying the integrality condits is feasible. When we gen-
erate an integral solutiogt’ for the master problem, the NLP subproblem (Ni/PJ is
solved, and its solution provides an upper bound and a neof setter approximation
cuts.

e appl_constraints. This function allows the user to generate violated comgsaThe
solution of (NLP(*)) or (NLPF@")) in appl _feasible  generates new lineariza-
tions. These are stored and added to the master problem (CNIR{) by this method.
This function is also used to implement NLP solves at frald_P solutions, an en-
hancement that will be explained in more detail later.
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Set up Problem
(appl_mps)

|
|

\

Solve LP ]
Add Constraints

l (appl_cons)

\
is

int feasible ? N

(appl_feas) A Y

X

is N
best primal ? \

Constraints ?

Y

Update Primal
(appl_primal)

Branch

Figure 1: MINTO’s implementation of branch and cut alonghaapplication functions.
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e appl_primal. This function allows the user to communicate a new uppenti@and
primal solution to MINTO, if the solve of (NLR{)) resulted in an improved feasible
solution to (MINLP).

1.3 Computational Setup and Base Case

In this section we describe the computational setup andigecan initial comparison of
LP/NLP-BB to a standard MINLP branch-and-bound solver. Qurria to explore the use-
fulness of the wide range of MILP techniques that MINTO dffer the context of solving
MINLP problems. We believe that this study is of interestdmay the scope of LP/NLP-BB
and that it provides an indication of which MILP techniques l&kely to be efficient in other
methods for solving MINLPs, such as branch and bound. Wey @art a set of carefully
constructed computational experiments to discover thergdkatures of a MILP solver that
have the biggest impact on solving MINLPs.

The test problems have been collected from the GAMS cotleatf MINLP problems
(Bussieck et al. [2003]), the MacMINLP collection of test plems (Leyffer [2003]), and
the collection on the website of IBM-CMU research group (Saetyal. [2006]). Since
FiIMINT accepts only AMPL as input, all GAMS models were cented into AMPL for-
mat. The test suite comprises 246 convex problems covenmigi@range of applications,
including cyclic scheduling problems, trimloss probleragnthesis problems, and layout
problems.

The experiments have been run on a Beowulf cluster of compatdrehigh University.
The Beowulf cluster consists of 120 nodes of 64-bit AMD Optenticroprocessors. Each
of the nodes has a CPU clockspeed of 1.8 GHz, and 2 GB RAM and ruiRedaore Core
2 operating system. All of the codes we tested were compiedsing the GNU (vXXX)
suite of C, C++, and FORTRAN compilers.

The test suite of convex problems have been categorizedgpswaderate, or hard, based
on the time taken using MINLP-BB, a nonlinear branch-and-blasmiver (Leyffer [1998]),
to solve these problems. The easy convex problems takeHassone minute to solve.
Moderate convex problems take between one minute to onetb@aive. The hard convex
problems are not solved in one hour. Experiments have bewstucted by running the test
problems using FIIMINT (with various features set on or d&ffj a time limit of four hours.
We create performance profiles (see Dolan andéJ2002]) to summarize and compare the
runs on the same test suite using different solvers andrmptibor the easy and moderate
problems, we use solution time as a metric for the profiles tfi@hard instances, however,
the optimal solution is often not achieved (or even knownjr these instances, we use a
scaled solution value as the solver metric. We define thedaalution value of solveron
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instance as

pi=1+"—"

wherez{ is the best solution value obtained by sol¥eon instance;, andz’ is the best
known solution value for instande The performance profile therefore indicates the quality
of the solution found by a solver within four hours of CPU time.

We start by benchmarking a straightforward implementadifdcP/NLP-BB (Algorithm 1.1)
against MINLP-BB. The version does not use any of MINTO’s adeshMILP features,
such as primal heuristics, cuts, and preprocessing, aschagemaximum fractional branch-
ing and a best-bound node selection strategy. This setumilaisto the LP/NLP-BB solver
implemented by Leyffer [1993]. We refer to this version oMANT as thevanilla version.

0.8 - i
06} .
04 i

02} .

vanilla ——
MINLP-BB |

1 10 100

Figure 2: Performance profile comparing vanilla and MINLP-#BBeasy convex instances.

The performance profiles in Figures 2—4 compare the perfiocmaf vanilla with MINLP-
BB. The profiles for easy convex instances show only a smatmiffce between FiIMINT
and MINLP-BB, and we drop these problem instances from theiretaaof our comparison
(detailed results are available from the authors on reyjuEise results for the moderate prob-
lems show a significant improvement of LP/NLP-BB compared tblMP-BB. The results
for the hard instances, however, show that this simplistiglementation of LP/NLP-BB is
not competitive with the nonlinear branch-and-bound mefieo hard problems. This obser-
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1 T
0.8 B
0.6 | R
04 F B
0.2 i

vanilla ——
MINLP-BB
0 1
1 10 100

Figure 3: Performance profile comparing vanilla and MINLP-BBmoderate convex in-
stances.

0.8 4
0.6 | —
0.4 -f// -
0.2 —
vanilla ——
MINLP-BB
0 n

Figure 4: Performance profile comparing vanilla and MINLP4#BBhard convex instances.
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vation motivates us to explore the use of advanced MIP featilvat can easily be switched
on with MINTO.

The remainder of our computational experiment is divided fwo parts. In the first part,
we explore the effect of various MIP features such as cufilages, heuristics, branching
and node selection rules, and preprocessing. By turningamfeature individually, we ob-
tain an indication of which MIP techniques have the biggegtact. The IP features that are
found to work well in this part are then included in an intediage version (calledaniP).

In the second part, we build on this improved version of LFANBB by adding features
that affect the generation and management of cuts and oppeoxamations. Each addi-
tional feature that appears to improve the performancewsinoluded in turn. Finally, we
benchmark FIIMINT against to two MINLP solvers, namely, MIR-BB (Leyffer [1998])
and BONMIN (Bonami et al. [2005]).

2 Exploitingthe MILP Framework

In this section we explore the benefits of now-standard M#uiees such as cutting planes,
heuristics, branching and node selection rules, and pcepsing. We conduct careful exper-
iments to assess the impact of these features on the sobifitiee@ MINLP problem/(MINLP)
and the OA master MILP (MRQ)).

2.1 Cutting Planes and Preprocessing for the Master Problem

Cutting planes have become an important tool in solving mixeeger programs. Cuts
are generated either independently of any problem strei¢ttomory’s mixed integer cuts,
mixed integer rounding) or by using some special local stmecin the problem (knapsack
covers, implication cuts, clique inequalities, flow covegeneralized upper-bound (GUB)
covers, etc.) FIIMINT uses the cut generation routines oNWVID to strengthen the formu-
lation and cut off the fractional solution. After a linearogram is solved and a fractional
solution is obtained, MINTO tries to exclude these solwtitwy searching the implication
and clique table for violated inequalities and by searcHdamgiolated lifted knapsack cov-
ers, violated lifted GUB covers, and violated lifted simgleneralized flow covers. Lifted
knapsack covers are derived from pure 0-1 constraintsed.i@UB cover inequalities have
the same form but are derived from a structure consistingsofgle knapsack constraint and
a set of nonoverlapping generalized upper-bound constrain

Another important technique for solving MILPs is preprairg. Preprocessing tech-
niques try to reduce the size of coefficients and the boundgadables. They also help
to identify infeasibility, redundancy, and fix variablestirRal preprocessing on the master
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0.6 E

021 E

vanilla ——
MILPcuts

prep —_—

Figure 5: Performance profile showing the effect of MILP crnsl preprocessing for mod-
erate convex instances.

0.8 | E

0.6 - B

02 % 4

vanilla —+—
MILPcuts

prep —_—

Figure 6: Performance profile showing the effect of MILP cartsl preprocessing for hard
convex instances.
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problem (MP(C)) can help reduce the size of the problem and make it simplaolve.
Problems that contain special structure, such as knapsagkalities or clique inequalities,
can be solved much more efficiently by using preprocessiigiigues. Unfortunately, dual
preprocessing of the master problem is likely to be invadidtfie (MINLP) problem.

Figures 5-6 show the performance profiles for the runs wittinguplanes turned on (la-
beled ‘MILPcuts”), and with preprocessing turned on (labelgatép”). Both are compared
to the vanilla implementation of LP/NLP-BB. The graphs shoat thoth cutting planes and
preprocessing provide similar improvements over the lamhplementation and help in
solving MINLPs, though the performance gains are relagivebderate. We also observe
that cutting planes play a more important role as the intigiia the model increases.

2.2 Primal Heuristics

Primal heuristics aim to find good, but not necessarily oatjmolutions quickly. A good
solution obtained in the beginning of the search procedutkea branch-and-cut framework
reduces the number of nodes that need to be evaluated amchét®solve the problem. For
hard MILP problems, even a good feasible solution might Iffecdit to obtain. Although
there are several heuristics for specific classes of prahl¢iney are not very useful in a
general-purpose black-box MILP solver. Some of the pringairistics that can be used for
solving a general MILP include rounding, fixing- and divibgsed heuristics, local branch-
ing, and relaxation induced neighbourhood search (RINSNTMD uses a rounding-based
heuristic to get feasible solutions. It also uses a fixing dimohg-based primal heuristic to
obtain feasible solutions quickly. MINTO also allows theeuso have a certain control of
the heuristic behavior through a set of parameters affgdtia visit of the branching tree,
the frequency of application of the internal heuristics] aa forth.

The solution obtained by the primal heuristic, sgy is used by FiIMINT to fix the
integer/binary variables and solve (NPY). An optimal solution to (NLPg*)) provides a
valid upper bound for the original problem as well as for thieMformulation at the node.
For hard MINLP problems, getting a feasible solution is imaot because it enables us to
create new NLP subproblems that generate new linearizatmtighten the formulation.

The impact of turning on primal heuristics is shown by theg@enance profiles in Fig-
ures 7-8. The label “primal-heuristics” refers to the solwvéh primal heuristics turned on.
We see that primal heuristics have a big impact on the solstbeme of the (MINLP) prob-
lem, especially for the hard convex instances. We explaggérformance gain by the fact
that primal heuristics generate more integer solutionsl@ctfore have a greater impact on
the performance metric we have chosen for the harder prablem
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02} y

) vanilla ——
primal-heuristics

Figure 7: Performance profile showing the effect of primalrstics for moderate convex
instances.

0.8 ¥ b

0.6 § y

0.2 4

) vanilla ——
primal-heuristics

Figure 8: Performance profile showing the effect of primalristics for hard convex in-
stances.
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2.3 Branching and Node Selection Rules

Another advantage of building FIIMINT within the MINTO fraework is that it provides
us with the same branching and node selection rules that KdIfovides. A branching
scheme is specified by two rules: a branching variable sefeatile and a node selection
rule. The branching rules available are maximum fractibonge0), penalty based (el),
strong branching (e2), pseudo-cost based (e3), adapéyeged SOS branching (e5). The
different node selection rules are best bound (EO), degh(El1), best projection (E2), best
estimate (E3), and adaptive (E4). We note that integerlfasolutions are more likely to
be found deeper in the tree. Extensive computational exyeris have been done to find
good branching and node selection rules. Since the eféawss of branching and node
selection depends on the structure of the problem, somelirapscheme is better for some
problem classes, while some other is better for others. Meky¢he branching rules that
are of interest include maximum fractionality (e0), stréargnching (e2), and pseudo-cost
based (e3). The node selection rules that are investigat@die details include best bound
(EO), depth first (E1), best estimate (E3), and the adapiie(E4). Vanilla, by default, uses
maximum fractional branching and the best-bound node setestrategy.

1 T T

0.8 | —
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0.4 ¥ —
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e2
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Figure 9: Performance profile comparing different branghinles for moderate convex
instances.

The results of the computational experiments for diffef@ainching rules are shown in
Figures 9-10. The results show that pseudo-cost branchitpgidorms all other rules. The
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Figure 10: Performance profile comparing different branghiules for hard convex in-
stances.

performance gains are quite stunning, but not unexpecteeh ¢ghe experience with maxi-
mum fractional and pseudo-cost branching in MILP (Linderand Savelsbergh [1997]).

The results of the experiments dealing with node selectiergaven in Figures 11-12.
Here, the adaptive node selection rule gives the biggestivement compared to the vanilla
version, followed closely by the node selection rule basedyest estimates. The perfor-
mance gains in terms for the moderate problem instancestéssynall, but the improvement
for the hard problems is significant.

24 Summary of MIP Features

The computational experiments in this stage helped us totifgiefeatures in the MILP
framework that can be used to solve the (MINLP) problem mdfiectvely. Based on our
experiments, we include MINTO's cutting planes, preprsagg primal heuristics, pseudo-
cost-based branching, and MINTO’s adaptive node selesti@tegy as part of the default
solver for the next stage of experiments. Figures 13—-14 shewumulative effect of turning
on all these MILP-based features.
The label YanIP” refers to the solver with these features turned on. TheesolanIP

clearly outperforms a standard LP/NLP-BB solveartilla). The most significant improve-
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Figure 11: Performance profile comparing different nodec@n rules for moderate con-

vex instances.
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Figure 12: Performance profile comparing different nodedein rules for hard convex

instances.
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ment was found to be from better branching rules and nodets®iestrategies. It is notewor-
thy that other branching rules and node selection strategia be used by filMINT, which
may be important for certain problem instances.

In Section 5 we compare the vanilla solver arashIP with MINLP-BB and BONMIN,
as well as with the final FIIMINT default solver. In the nextten, we consider different
methods for dealing with linearization generation and nganagent.

3 Linearization Generation and Management

The linearizations (OA{, y.)) are obtained by using gradient information from the sohut
of a NLP subproblem at poirft-*, 4*). We note that linearizations approximate the nonlin-
ear, convex, feasible region as defined in the problem (MINLP contrast, cutting planes
in the MILP framework approximate the convex hull of integeints in the problem. We
think of linearizations in our solution scheme in the samg as cutting planes. We add
linearizations with the aim of tightening the formulationdaimproving the lower bounds.
Linearizations are obtained in different ways in our fraragnand are explained in greater
detail in this section.

Linearization management in FIIMINT is parametrized imtsrof parameters that con-
trol the frequency and the number of cuts added at the giegyesif the tree search. Such an
approach is akin to the way cutting planes are handled in angric MILP solver, including
MINTO. We handle cutting planes obtained from the MILP fravoek and those obtained
from the nonlinear functions in the same way, adding infaromeabout the nonlinearity and
integrality in the problem, while trying to draw a fine balargo as to use these cuts effec-
tively. To see how good our cuts are and whether the cut mamaggehelps, we run a careful
set of experiments to demonstrate the effectiveness ofgpeoach. We next explain the
different ways of adding and managing linearizations thatave explored.

3.1 Adding Only Violated Linearizations

When linearizations are obtained from the solution of an NuPpsoblem, we do not add
all of them directly to the master problem. Instead, we chelkk&ther the linearizations are
violated by the optimal LP solution at that node and add dmiolated linearizations. This
approach keeps the size of the formulation manageable hwimproves the solution time
for each LP. Figures 13—14 show the impact of adding onlyatéal linearizations. The label
“violated” refers to the solver with violated cuts turned on, on tophaf solvewvaniP. The

plots show that adding only violated cuts can result in a matgéamprovement to the solver.
We include this feature in the next round of experiments)idgavith other linearization
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related schemes.

vanilla ——
vanlP

Figure 13: Performance profile comparing vanilla with sol@nlP and the effect of vio-
lated cuts for moderate convex instances.

3.2 Managing Linearizations and Other Inequalities

Having too many linearizations or other inequalities digaan be inefficient. A large num-
ber of linearizations make the LP problem bulky and signifiaincrease the solution time
and the storage requirements. A larger number of linedizaialso increases the potential
for encountering degeneracy and may further increase tdeauof pivots taken by the LP
solver. The problem size can be reduced by temporarily remgawe inactive constraints
from the formulation. We therefore attempt to manage thedliizations added to the master
problem by turning on MINTO’s row management feature.

MINTO monitors the values of the dual variables at the endvefr iteration to see
whether the corresponding global constraint is activehdfdual variable for a constraint is
zero, implying that the constraint is inactive, for a fewagons, then MINTO deactivates
the constraint and puts it back in its cut pool. If these amist become violated later, they
are added back to the active formulation. MINTO has an enwrent variable, MIOCUT-
DELBND, which indicates the number of consecutive iteragiarconstraint can be inactive
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Figure 14: Performance profile comparing vanilla with solk@nIP and the effect of vio-
lated cuts for hard convex instances.

in the active formulation before it is removed. After conting a few small-scale experi-
ments, we set the value of MIOCUTDELBND to 15

Figures 15-16 show the impact of turning on MINTO’s row masragnt with MIO-
CUTDELBND set to 15. The labelrtbw-mgmt” refers to the solver with MINTO’s row
management turned on, on top of the solweolated. Turning on row management for
moderate problems results in a huge improvement in theisnltimes. For hard problems
in the test suite, we see that fot% of the problems row management gives a better solution,
compared to only0% for the solver violated. The improvement of row managementtfe
hard problems is not as dramatic. We expect that this is lladyee to the different metric
that we use to measure success (namely, closeness to thetegst solution). We include
row management in the next round of experiments.

3.3 Generating Linearizations at Fractional LP Solution

A disadvantage of the LP/NLP-BB approach is that lineartwegiare generated only from
the solution of the NLP subproblem fixed at an integer sofytié. As long as no integer

LP solution is found by the branch-and-cut procedure, ndinear information in terms of

linearizations is added to the master problem.
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Figure 15: Performance profile showing the effect of row nggmaent for moderate convex

instances.
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Figure 16: Performance profile showing the effect of row ngemaent for hard convex
instances.
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We believe that it is important to add nonlinear informatasiearly as possible to the
MILP master problem to help the solver make better branctexsions and to find better
MINLP feasible solutions earlier. There are two ways to aetithis goal. The first is to
apply primal heuristics as discussed in Section 2.2, angébend is to generate linearization
from fractional integer variables. Thus, we solve NLP sobpgms with variables fixed at
the fractional LP solution/* and generate linearizations at the solution of this NLP. The
linearizations obtained in this case are the same as£0D#{)) except that the values of
the integer variableg® are no longer integral. We note that these linearizatioasvalid
because the problem is convex. However, we cannot use thigosobf the NLP subproblem
to update the upper bound for the problem.

1 ———
//
0.8 - i

0.6 F —

0.4 ¥ E

row-mgmt —+—
fixfrac

Figure 17: Effect of adding linearization by using fractdhP solution for moderate convex
instances.

Figures 17-18 show the impact of adding linearizationsinbthby using a fractional
LP solution. The labelfixfrac” refers to this solver built on top of the solvesw-mgmt.
The profiles show that this procedure helps the solutionraehfer the problems in our test
suite. We next explain the cut generation parameters thaseo control the cut generation
procedure.

We note that some of the linearizations generated are mfwetigé if added at an early
stage of the tree enumeration, whereas some are betteratiadd later stage. By man-
aging the cut generation procedure intelligently, one aaneae significant benefits from
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Figure 18: Effect of adding linearization by using frac@bim.P solution for hard convex
instances.

these linearizations. We deal with the linearization gatien procedure in the same way
as cutting planes in a MILP framework. Cut generation is patamed in terms of two
important parameters. The first, is the tail factor that decides how many rounds of lin-
earization generation should be done at the current node.s&btondg, is the skip factor
that decides how many nodes to skip before invoking the cueiggion procedure. The tail
factor decides whether the LP solution improves enough sojastify another round of cut
generation at that node. To calculate the tail factor, wepamenthe current LP solution with
the previous few LP solutions (typically three) and see Whetve are improving the lower
bounds enough. The percentage improvement in the lowerdsalao depends on the depth
of the tree. Based on our experimental results, wexdet 10 for the first 1,000 nodes that
are enumerated, and 50 for the later nodes.

The skip factor also depends on the depth of the tree enumersle feel that cuts added
in the early stage of the enumeration are more effective diigimg the gap and helping
reduce the search tree. Therefore, we keep the skip factoh smaller at an early stage
and increase the skip factor as we go deeper down the treed Basexperiments, we set
r 10 10 for the first 100 nodes, and 100 for the later nodes. We traad to fine-tune these
parameters so that the cut generation procedure works wedl large set of problems on
average. We also have an upper limit on the number of ling@woizs that are generated at a
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particular round of cut generation.

3.4 Obtaining Extended Cutting-Plane-Based Linearizations

Solving NLP subproblems typically takes more time than isgh\LP relaxations. Thus,
we consider generating additional linearizations at fometl solutions of the LP relaxation,
because the necessary gradient and function evaluatienslatively cheap and the lin-
earizations can still tighten the master problem. This @doce is similar to the extended
cutting plane method by Westerlund and Pettersson [199§lirés 19—-20 show the impact
of adding extended-cutting-plane-based linearizatidiee label ‘ecp” refers to the solver
with ECP-based linearizations on top of the soffiefrac. Our results show that ECP-based
linearizations do not fare well on average. We are investigahis situatiuon further by
trying different cut generation schemes.

0.6

0.4 ¥

021

fixfrac —+—
ecp
ghd —»—

1 10 100

Figure 19: Performance profile of ECP- and GBD-based cuts folemate convex instances.

3.5 Obtaining Benders-Cut-Based L inearization

Another approach to managing the size of the LP relaxaticuggested by the fact that a
single Benders cut is a relaxation of the corresponding @gproximation cuts. Summing
the objective linearizations and the constraint linedidres weighted with the optimal NLP



26 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

0.8 —

04 f -

0.2 § —

fixfrac —+—
ecp
gbd —»—

Figure 20: Performance profile of ECP- and GBD-based cuts fat ¢tnvex instances.

multipliers ;/* yields the Benders cut:
n > (2" 4%) + (Vy f(a 6" + (1) Vy9(2", y") (v — o).
This cut can be simplified by observing that the term
Vo f (@, ")+ (1) Vg (2", y*) = A

corresponds to the NLP multipliet* corresponding to fixing the integer variablgs- v* in
(NLP(y*)). Clearly, the Benders cut is weaker than the outer apprdioms on the other
hand, it compresses + 1 linear inequalities into a single cut.

Figures 19-20 show the impact of adding Benders-cut-basedrizations. The label
“gbd” refers to the solver with GBD-based linearizations on topghaf solverfixfrac. We
see that Benders cuts do well for problems in the moderate-®tever, they do not fare
well for hard problems. In the future, we will investigatéet uses of Benders cuts to make
them work better for hard problems.

4 Exploiting the Solution of NL P Relaxation

The branch-and-bound algorithm for problem (MINLP) soleesequence of NLP relax-
ations (NLPR{, u)) at the nodes. The solution of the NLP relaxation at a nodiges
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valuable information that can be used in the LP/NLP-BB as.w&H mentioned, we solve
an NLP relaxation at the root node to obtain initial lineatians to tighten the master for-

mulation (MP(C)).

Solving a relaxed NLP subproblem at any node helps us to gieteti bounds for the
MINLP problem at that node. Since solving the relaxatiorheflNLP may take considerable
execution time, we solve it only occasionally, say aftemgvenodes in the branch-and-cut
tree.

The solution of the relaxed NLP subproblem, being tightan be used to prune the
node if it is greater than the best-known upper bound. We thatiesolving NLP relaxations
at every node makes the algorithm behave like a nonlinearchrand-bound algorithm.
This provides us with an algorithm that integrates the aggmoof a classical branch and
bound algorithm with that of a classical LP/NLP branch-&odnd algorithm. We solve the
NLP relaxations every 10 nodes in our experiments. Figuie®2 show the impact of this
approach. The labehlpr ” refers to the solver with the addition of NLP relaxationstop
of the solver fixfrac. Even though the improvement is onlygiraal, we include this method
as part of our default settings for FiIMINT.
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Figure 21: Effect of solving NLP relaxations for moderatewex instances.
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Figure 22: Effect of solving NLP relaxations for hard conwestances.

5 Analysis of Computational Experiments

Based on the first stage of experiments, we include as pareddefault solver MINTO’s
cutting planes, preprocessing, primal heuristics, ps@add-based branching, and adaptive
node selection strategy. The computational experimentsarsecond stage helped us to
identify linearization-based methods and generationreelsehat solve the problems in our
test suite more efficiently. Based on the experiments, waidecas part of the default solver
violated cuts, row management, and methods dealing wittrgpNLP at fractional LP solu-
tion and solving (NLPR( )) problems at certain nodes. We also identify some parasete
dealing with linearization generation.

Figures 23-24 compare the progress made by the solver toftlia¢ default version,
vanilla. The label filmint” now refers to the final default settings for our solver. Weeltve
that the largest improvement comes from adding the IP featta the vanilla LP/NLP-BB
method. We also observe a significant improvement using Ml Tow management.

We have compared FiIMINT to a nonlinear branch-and-boursktiasolver, MINLP-
BB (Leyffer [1998]), and the hybrid version of bonmin (Bonarhaé [2005]). Because
FiIMINT is developed within a branch-and-cut framework,pitovides flexibility for re-
searching different classes of cuts that can benefit thaigonlscheme. MINLP-BB also
uses the same NLP solver, filterSQP, for solving NLP problenherefore, the comparison
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shows how the two methodologies work. We choose BONMIN forcihiaparison because
of its similarities to our framework. This comparison wilsa show the effect of using
a different IP and NLP solver (BONMIN uses an interior-poirgthrod). MINLP-BB and
BONMIN are run for the same set of instances for the same tiog tiours). The hybrid
algorithm of BONMIN was run with the default hybrid setting§he performance profile
(see Figures 23-24) shows that FiIMINT is an order of magleittaster on average than
MINLP-BB, and 2-4 times faster than BONMIN for the moderate @anproblems. For
the hard convex problems, FiIMINT outperforms BONMIN, andisolvers are orders of
magnitude better than MINLP-BB.
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Figure 23: Performance profile comparing FIIMINT with MINLBB and BONMIN for
moderate convex instances.

6 Conclusions

To solve MINLP problems, we introduce a new solver, FilMINIgsed on an LP/NLP
methodology in a branch-and-cut framework. We investigaig ways of adding and man-
aging linearizations and show their effectiveness in sgf\WIINLP problems. By carefully
choosing MILP and linearization-based features, and byguskisting software components,
we show how a framework such as the one proposed may be usedive d flexible and
powerful methodology to solve hard convex MINLP problem$eTramework provides a
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Figure 24: Performance profile comparing FiIMINT with MINLBB and BONMIN for
hard convex instances.

means to further investigate cutting planes that can bailses$olving the problems much
faster. We compare our solver to two existing MINLP solvard anprove on both on aver-
age by a factor of 2-4.
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