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Abstract

We describe a new solver for mixed integer nonlinear programs (MINLPs)that imple-

ments a linearization-based algorithm in a branch-and-cut framework. The framework

includes cutting planes, primal heuristics, and other well-known techniquesfor solving

mixed integer linear programs (MILPs). The solver FilMINT (Filter-Mixed INTeger op-

timizer) combines the MINTO branch-and-cut framework for MILP with filterSQP used

to solve the nonlinear programs that arise as subproblems in the algorithm. In contrast to

the traditional outer-approximation algorithm, the algorithm implemented by FilMINT

avoids the complete solution of master MILPs by adding new linearizations at open

nodes of the branch-and-bound tree whenever an integer solution is found. We present

detailed computational experiments that show the benefit of introducing advanced MILP

techniques into such a framework. Further, we demonstrate how to use the framework

to add and manage linearizations that arise in the algorithm. Comparisons to existing

solvers for MINLPs are presented, highlighting the effectiveness of FilMINT.
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1 Introduction

Recently, researchers have expressed renewed interest in developing efficient solvers for
mixed integer nonlinear programming (MINLP) problems. This interest is motivated by the
rich collection of important applications that can be modeled as MINLPs, including nuclear
core reload problems (Quist et al. [1998]), cyclic scheduling (Jain and Grossmann [1998]),
trimloss optimization in the paper industry (Harjunkoski et al. [1988]), synthesis problems
(Kocis and Grossmann [1988]), and layout problems (Castilloet al. [2005]). MINLP prob-
lems are conveniently expressed as

zMINLP = minimize f(x, y)

subject to gj(x, y) ≤ 0, j = 1, . . . ,m, (MINLP)

x ∈ X, y ∈ Y ∩ Z
p,

wheref, gj are twice continuously differentiable functions, andx andy are continuous and
discrete variables, respectively:

X
def
= {x | x ∈ R

n, Dx ≤ d},

Y
def
= {y | y ∈ R

p, Ay ≤ a, yl ≤ y ≤ yu}.

In this paper we concentrate on the case wheref, gj are convex. The case wheref andgj

are nonconvex or where nonlinear equality constraints are present is beyond the scope of the
present paper. We note, however, that our techniques can be applied as a heuristic in such
cases, or can form the basis of more sophisticated deterministic techniques based on convex
underestimators (Tawarmalani and Sahinidis [2002]).

Methods for the solution of (MINLP) include the branch-and-bound method (Dakin
[1965], Gupta and Ravindran [1985]), branch-and-cut (Stubbs and Mehrotra [2002]), outer
approximation (Duran and Grossman [1986]), generalized Benders decomposition (Geoffrion
[1972]), the extended cutting plane method (Westerlund andPettersson [1995]), and LP/NLP-
based branch and bound (Quesada and Grossmann [1992]). We refer the reader to Grossmann
[2002] for a recent survey of solution techniques for MINLP problems.

Our aim is to provide a solver that is capable of solving MINLPs at a cost that is a small
multiple of the cost of a comparable mixed integer linear program (MILP). In our view, the
algorithm most likely to achieve this goal is LP/NLP-based branch and bound (LP/NLP-BB).
This method is similar to outer approximation; but instead of solving an alternating sequence
of MILP master problems and nonlinear programming (NLP) subproblems, it interrupts the
solution of the MILP master whenever a new integer assignment is found, and solves an
NLP subproblem. The solution of this subproblem provides new outer approximations that
are added to the master MILP, and the solution of the updated MILP master continues.
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Our solver exploits recent advances in nonlinear programming and mixed integer linear
programming to develop an efficient implementation of LP/NLP-BB. Our work is motivated
by the observation of Leyffer [1993] that a simplistic implementation of this algorithm often
outperforms nonlinear branch and bound and outer approximation by an order of magnitude.
Despite this clear advantage, however, there has been no implementation of LP/NLP-BB
until the recent independent work by Bonami et al. [2005] and this paper.

Our implementation, called FilMINT, is built on top of the mixed integer programming
solver MINTO (Nemhauser et al. [1994]). By using MINTO’s branch-and-cut framework,
we are able to exploit a range of modern MILP features, such asenhanced branching and
node selection rules, primal heuristics, preprocessing, and cut generation routines. To solve
the NLP subproblems, we use filterSQP (Fletcher and Leyffer [2002], Fletcher et al. [2002]),
an active set solver with warm-starting capabilities that can take advantage of good initial
primal and dual iterates.

Recently Bonami et al. [2005] have also developed a solver for MINLPs called Bonmin.
While the two solvers share many of the same charateristics, our work differs from that of
Bonami et al. [2005] in a number of significant ways. First, thesolver Bonmin is truly a
hybrid between a branch-and-bound solver based on nonlinear relaxations and one based on
polyhedral outer approximations. FilMINT implements solely the LP/NLP-BB algorithm,
because MINTO’s branch-and-cut framework restricts us to obtaining lower bounds only
from the solution of alinear program. Another important distinction between Bonmin and
FilMINT is the frequency with which linearizations are created and the management of the
linearizations. MINTO’s suite of advanced integer programming techniques is also different
from that of CBC (Forrest [2004]), which is the MILP framework on which Bonmin is based.
Specifically, MINTO and CBC’s branching and node selection rules are different, MINTO
has an advanced preprocessing engine, and different classes of cutting planes are employed
by each solver. The last important distinction is FilMINT’suse of an active set solver, which
allows us to exploit warm-starting techniques that are not readily available for the interior-
point code IPOPT (Ẅachter and Biegler [2006]) that is used in Bonami et al. [2005].

The paper is organized as follows. In the remainder of this section, we formally re-
view the LP/NLP-based branch-and-bound algorithm, describe its implementation within
MINTO’s branch-and-cut framework, and outline the computational setup for our experi-
ments. In Section 2, we report a set of careful experiments that show the effect of modern
MIP techniques on an LP/NLP-based algorithm. In Section 3 weconsider several ways to
create and manage the linearizations generated in the algorithm. In Section 4 we show how
the NLP solutions can be exploited, and in Section 5 we compare our solver to other MINLP
solvers.
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1.1 LP/NLP-based Branch and Bound

In this section we formally define the underlying algorithm.LP/NLP-BB is a clever exten-
sion of outer approximation, which solves an alternating sequence of NLP subproblems and
MILP master problems. The NLP subproblem (NLP(yk)) is obtained by fixing the integer
variables atyk, and the MILP master problem accumulates linearizations (outer approxima-
tions) from the solution of (NLP(yk)).

LP/NLP-BB avoids solving multiple MILP master problems by interrupting the MILP
tree search whenever an integer feasible solution is found to solve the NLP subproblem
(NLP(yk)). The outer approximations from (NLP(yk)) are then used to update the MILP
master, and the MILP tree search continues. Thus, instead ofsolving a sequence of MILPs,
only a single MILP tree search is required.

To precisely define LP/NLP-BB and our subsequent enhancements, we first make some
definitions. We characterize a node(l, u, η̂) of the branch-and-bound search tree by bounds
{(l, u)} enforced on the integer variablesy and the objective valuêη. Given bounds(l, u) on
y, we define the NLP relaxation of MINLP as

zNLPR(l,u) = minimize f(x, y)

subject to gj(x, y) ≤ 0 j = 1, . . . ,m, (NLPR(l, u))

x ∈ X, y ∈ Y,

l ≤ y ≤ u.

If l ≤ yl andu ≥ yu, then the optimal objective function valuezNLPR(l,u) of (NLPR(l, u))
provides a lower bound on (MINLP); otherwise it provides a lower bound for the subtree
whose parent node is{(l, u)}. In general, the solution to (NLPR(l, u)) yields one or more
nonintegral values for the integer variablesy.

The NLP subproblem for a fixedy (sayyk) is defined as

zNLP(yk ) = minimize f(x, yk)

subject to gj(x, yk) ≤ 0 j = 1, . . . ,m, (NLP(yk))

x ∈ X.

If (NLP(yk)) is feasible, then it provides an upper bound to the problem(MINLP). If
(NLP(yk)) is infeasible, then the NLP solver detects the infeasibility and returns the solution
to some feasibility problem for fixedyk. The form of the feasibility problem (NLPF(yk))
that is solved by filterSQP is

minimize
m

∑

j=1

wj|gj(x, yk)|, (NLPF(yk))

subject tox ∈ X.
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This problem can be interpreted as the minimization of a scaled `1 norm of the constraint
violation.

From the solution to (NLP(yk)) or (NLPF(yk)), we can derive valid linear inequalities for
(MINLP). The convexity of the nonlinear functions imply that the linearizations about any
point (xk, yk)) form an outer approximation (OA) of the feasible set and underestimate the
objective function. Specifically, if we introduce a dummy variableη in order to replace the
objective by a constraint, that isminimize η subject to η ≥ f(x, y), then the inequalities
(OA(xk, yk)) are valid for MINLP:

f(xk, yk) + ∇f(xk, yk)T

[

x − xk

y − yk

]

≤ η

(OA(xk, yk))

gj(x
k, yk) + ∇gj(x

k, yk)T

[

x − xk

y − yk

]

≤ 0 j = 1, . . . ,m.

The inequalities (OA(xk, yk)) are used to create a master MILP. Given a set of points
K = {(x0, y0), (x1, y1), . . . , (x|K|, y|K|}, we form the outer approximation master problem
as

zMP(K) = minimize η

subject to f(xk, yk) + ∇f(xk, yk)T

[

x − xk

y − yk

]

≤ η ∀(xk, yk) ∈ K (MP(K))

gj(x
k, yk) + ∇gj(x

k, yk)T

[

x − xk

y − yk

]

≤ 0 ∀(xk, yk) ∈ K j = 1, . . . ,m

x ∈ X, y ∈ Y ∩ Z
p.

If K in (MP(K)) containsall integer points inY ∩ Z
p, and a constraint qualification holds,

thenzMINLP = zMP(K) (Fletcher and Leyffer [1994], Bonami et al. [2005]).
LP/NLP-BB relies on solving the continuous relaxation to (MP(K)) and enforcing inte-

grality of they variables by branching. We label this problem as CMP(K, l, u).

minimize η

subject to f(xk, yk) + ∇f(xk, yk)T

[

x − xk

y − yk

]

≤ η ∀(xk, yk) ∈ K (CMP(K, l, u))

gj(x
k, yk) + ∇gj(x

k, yk)T

[

x − xk

y − yk

]

≤ 0 ∀(xk, yk) ∈ K j = 1, . . . ,m

x ∈ X, y ∈ Y, l ≤ y ≤ u
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The main algorithm underlying our work, LP/NLP-BB, is now formally stated in pseudo-
code form in Algorithm 1.1.

Solve NLPR(yl, yu) and let(η̂0, x0, y0) be its solution (initialize)
if NLPR(yl, yu) is infeasiblethen

Stop. MINLP is infeasible
else
K ← {(x0, y0)},L ← {(yl, yu, η̂0)}, UB ← ∞

end if
while L 6= ∅ do

Select and remove node(lk, uk, η̂k) fromL (select)
Solve CMP(K, lk, uk) and let(η̂k, x̂, yk) be its solution. (evaluate)
if CMP(K, lk, uk) is infeasibleOR η̂k ≥ UB then

Do nothing.
else if yk ∈ Z

p then
Solve NLP(yk). (update master)
if NLP(yk) is feasiblethen

UB ← min{UB, zNLP(yk )}

Remove all nodes inL whose parent objective valuêηk ≥ UB. (fathom)
Let (xk, yk) be solution to NLP(yk)

else
Let (xk, yk) be solution to NLPF(yk)

end if
K ← K ∪ {(xk, yk)}. Go To (evaluate).

else
Selectb such thatyk

b 6∈ Z. (branch)
ûb ← byk

b c, ûj ← uk
j ∀j 6= b

l̂b ← dyk
b e, l̂j ← lkj ∀j 6= b

L ← L ∪ {(lk, û, η̂k)} ∪ {(l̂, uk, η̂k)}

end if
end while

Algorithm 1.1: LP/NLP-BB algorithm.

1.2 Implementation within the MINTO Framework

FilMINT is built on top of MINTO’s branch-and-cut framework, using filterSQP to solve the
NLP subproblems. MINTO providesuser application functionsthrough which the user can
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implement a customized branch-and-cut algorithm, and FilMINT is written entirely within
these user application functions. No changes are necessaryto the core MINTO library in
order to implement the LP/NLP-BB algorithm. MINTO can be usedwith any LP solver that
has the capability to modify and resolve linear programs andinterpret their solutions. In our
experiments, we use theClp LP solver that is called through itsOsiSolverInterface .
Both Clp and theOsiSolverInterface are open-source tools available from COIN-
OR:http://www.coin-or.org .

FilMINT obtains problem information from AMPL’s ASL interface (Fourer et al. [1993],
Gay [1997]). ASL also provides the user with gradient and Hessian information for nonlinear
functions, which are required by the NLP solver and are used to compute the linearizations
(OA(xk, yk)) required for LP/NLP-BB. FilMINT’s NLP solver, filterSQP, isa sequential
quadratic programming (SQP) method that employs a filter to promote global convergence
from remote starting points. A significant advantage of using an active-set SQP method in
this context is that the method can readily take advantage ofgood starting points. We use
as the starting point the solution of corresponding the LP node, namely,(η̂k, x̂, yk). Another
advantage of using filterSQP for implementing (LP/NLP-BB) is that filterSQP contains an
automatric restoration phase that enables it to detect infeasible subproblems reliably and
efficiently. The user need not create and solve the feasibility problem (NLPF(yk)) explicitly.
Instead, filterSQP returns the solution of (NLPF(yk)) automatically.

Figure 1 shows a flowchart of the LP/NLP-BB algorithm and the MINTO application
functions used by FilMINT. We note that, for the sake of simplicity, the figure does not show
all the details of the algorithm.

The MINTO user application functions used by FilMINT areappl mps, appl feasible ,
appl primal , andappl constraints . A brief description of FilMINT’s use of these
functions is stated next.

• appl mps. The MINLP instance is read.

• appl feasible. This user application function allows the user to verify that a solution to
the active formulation satisfying the integrality conditions is feasible. When we gen-
erate an integral solutionyk for the master problem, the NLP subproblem (NLP(yk)) is
solved, and its solution provides an upper bound and a new setof outer approximation
cuts.

• appl constraints. This function allows the user to generate violated constraints. The
solution of (NLP(yk)) or (NLPF(yk)) in appl feasible generates new lineariza-
tions. These are stored and added to the master problem (CMP(K, l, u)) by this method.
This function is also used to implement NLP solves at fractional LP solutions, an en-
hancement that will be explained in more detail later.

http://www.coin-or.org
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Set up Problem

   (appl_mps)

Solve LP

(appl_feas)
int feasible ?

is

best primal ?
is

(appl_primal)

Update Primal

Constraints ?
Add

Branch

(appl_cons)
Add Constraints

N

N

N

Y

Y

Y

Figure 1: MINTO’s implementation of branch and cut along with application functions.



FilMINT: An Outer-Approximation-Based MINLP Solver 9

• appl primal. This function allows the user to communicate a new upper bound and
primal solution to MINTO, if the solve of (NLP(yk)) resulted in an improved feasible
solution to (MINLP).

1.3 Computational Setup and Base Case

In this section we describe the computational setup and provide an initial comparison of
LP/NLP-BB to a standard MINLP branch-and-bound solver. Our aim is to explore the use-
fulness of the wide range of MILP techniques that MINTO offers in the context of solving
MINLP problems. We believe that this study is of interest beyond the scope of LP/NLP-BB
and that it provides an indication of which MILP techniques are likely to be efficient in other
methods for solving MINLPs, such as branch and bound. We carry out a set of carefully
constructed computational experiments to discover the salient features of a MILP solver that
have the biggest impact on solving MINLPs.

The test problems have been collected from the GAMS collection of MINLP problems
(Bussieck et al. [2003]), the MacMINLP collection of test problems (Leyffer [2003]), and
the collection on the website of IBM-CMU research group (Sawaya et al. [2006]). Since
FilMINT accepts only AMPL as input, all GAMS models were converted into AMPL for-
mat. The test suite comprises 246 convex problems covering awide range of applications,
including cyclic scheduling problems, trimloss problems,synthesis problems, and layout
problems.

The experiments have been run on a Beowulf cluster of computers at Lehigh University.
The Beowulf cluster consists of 120 nodes of 64-bit AMD Opteron microprocessors. Each
of the nodes has a CPU clockspeed of 1.8 GHz, and 2 GB RAM and runs on Fedore Core
2 operating system. All of the codes we tested were compiled by using the GNU (vXXX)
suite of C, C++, and FORTRAN compilers.

The test suite of convex problems have been categorized as easy, moderate, or hard, based
on the time taken using MINLP-BB, a nonlinear branch-and-bound solver (Leyffer [1998]),
to solve these problems. The easy convex problems take less than one minute to solve.
Moderate convex problems take between one minute to one hourto solve. The hard convex
problems are not solved in one hour. Experiments have been conducted by running the test
problems using FilMINT (with various features set on or off)for a time limit of four hours.
We create performance profiles (see Dolan and Moré [2002]) to summarize and compare the
runs on the same test suite using different solvers and options. For the easy and moderate
problems, we use solution time as a metric for the profiles. For the hard instances, however,
the optimal solution is often not achieved (or even known). For these instances, we use a
scaled solution value as the solver metric. We define the scaled solution value of solvers on
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instancei as

ρs
i = 1 +

zs
i − z∗i
z∗i

,

wherezs
i is the best solution value obtained by solvers on instancei, andz∗i is the best

known solution value for instancei. The performance profile therefore indicates the quality
of the solution found by a solver within four hours of CPU time.

We start by benchmarking a straightforward implementationof LP/NLP-BB (Algorithm 1.1)
against MINLP-BB. The version does not use any of MINTO’s advanced MILP features,
such as primal heuristics, cuts, and preprocessing, and uses only maximum fractional branch-
ing and a best-bound node selection strategy. This setup is similar to the LP/NLP-BB solver
implemented by Leyffer [1993]. We refer to this version of FilMINT as thevanilla version.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

vanilla
MINLP-BB

Figure 2: Performance profile comparing vanilla and MINLP-BBfor easy convex instances.

The performance profiles in Figures 2–4 compare the performance of vanilla with MINLP-
BB. The profiles for easy convex instances show only a small difference between FilMINT
and MINLP-BB, and we drop these problem instances from the remainder of our comparison
(detailed results are available from the authors on request). The results for the moderate prob-
lems show a significant improvement of LP/NLP-BB compared to MINLP-BB. The results
for the hard instances, however, show that this simplistic implementation of LP/NLP-BB is
not competitive with the nonlinear branch-and-bound method for hard problems. This obser-
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Figure 3: Performance profile comparing vanilla and MINLP-BBfor moderate convex in-
stances.
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Figure 4: Performance profile comparing vanilla and MINLP-BBfor hard convex instances.
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vation motivates us to explore the use of advanced MIP features that can easily be switched
on with MINTO.

The remainder of our computational experiment is divided into two parts. In the first part,
we explore the effect of various MIP features such as cuttingplanes, heuristics, branching
and node selection rules, and preprocessing. By turning on each feature individually, we ob-
tain an indication of which MIP techniques have the biggest impact. The IP features that are
found to work well in this part are then included in an intermediate version (calledvanIP).
In the second part, we build on this improved version of LP/NLP-BB by adding features
that affect the generation and management of cuts and outer approximations. Each addi-
tional feature that appears to improve the performance is now included in turn. Finally, we
benchmark FilMINT against to two MINLP solvers, namely, MINLP-BB (Leyffer [1998])
and BONMIN (Bonami et al. [2005]).

2 Exploiting the MILP Framework

In this section we explore the benefits of now-standard MIP features such as cutting planes,
heuristics, branching and node selection rules, and preprocessing. We conduct careful exper-
iments to assess the impact of these features on the solutionof the MINLP problem (MINLP)
and the OA master MILP (MP(K)).

2.1 Cutting Planes and Preprocessing for the Master Problem

Cutting planes have become an important tool in solving mixedinteger programs. Cuts
are generated either independently of any problem structure (Gomory’s mixed integer cuts,
mixed integer rounding) or by using some special local structure in the problem (knapsack
covers, implication cuts, clique inequalities, flow covers, generalized upper-bound (GUB)
covers, etc.) FilMINT uses the cut generation routines of MINTO to strengthen the formu-
lation and cut off the fractional solution. After a linear program is solved and a fractional
solution is obtained, MINTO tries to exclude these solutions by searching the implication
and clique table for violated inequalities and by searchingfor violated lifted knapsack cov-
ers, violated lifted GUB covers, and violated lifted simplegeneralized flow covers. Lifted
knapsack covers are derived from pure 0-1 constraints. Lifted GUB cover inequalities have
the same form but are derived from a structure consisting of asingle knapsack constraint and
a set of nonoverlapping generalized upper-bound constraints.

Another important technique for solving MILPs is preprocessing. Preprocessing tech-
niques try to reduce the size of coefficients and the bounds onvariables. They also help
to identify infeasibility, redundancy, and fix variables. Primal preprocessing on the master
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Figure 5: Performance profile showing the effect of MILP cutsand preprocessing for mod-
erate convex instances.
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Figure 6: Performance profile showing the effect of MILP cutsand preprocessing for hard
convex instances.
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problem (MP(K)) can help reduce the size of the problem and make it simpler to solve.
Problems that contain special structure, such as knapsack inequalities or clique inequalities,
can be solved much more efficiently by using preprocessing techniques. Unfortunately, dual
preprocessing of the master problem is likely to be invalid for the (MINLP) problem.

Figures 5–6 show the performance profiles for the runs with cutting planes turned on (la-
beled “MILPcuts”), and with preprocessing turned on (labeled “prep”). Both are compared
to the vanilla implementation of LP/NLP-BB. The graphs show that both cutting planes and
preprocessing provide similar improvements over the vanilla implementation and help in
solving MINLPs, though the performance gains are relatively moderate. We also observe
that cutting planes play a more important role as the integrality in the model increases.

2.2 Primal Heuristics

Primal heuristics aim to find good, but not necessarily optimal, solutions quickly. A good
solution obtained in the beginning of the search procedure in the branch-and-cut framework
reduces the number of nodes that need to be evaluated and the time to solve the problem. For
hard MILP problems, even a good feasible solution might be difficult to obtain. Although
there are several heuristics for specific classes of problems, they are not very useful in a
general-purpose black-box MILP solver. Some of the primal heuristics that can be used for
solving a general MILP include rounding, fixing- and diving-based heuristics, local branch-
ing, and relaxation induced neighbourhood search (RINS). MINTO uses a rounding-based
heuristic to get feasible solutions. It also uses a fixing anddiving-based primal heuristic to
obtain feasible solutions quickly. MINTO also allows the user to have a certain control of
the heuristic behavior through a set of parameters affecting the visit of the branching tree,
the frequency of application of the internal heuristics, and so forth.

The solution obtained by the primal heuristic, sayyk, is used by FilMINT to fix the
integer/binary variables and solve (NLP(yk)). An optimal solution to (NLP(yk)) provides a
valid upper bound for the original problem as well as for the MILP formulation at the node.
For hard MINLP problems, getting a feasible solution is important because it enables us to
create new NLP subproblems that generate new linearizations to tighten the formulation.

The impact of turning on primal heuristics is shown by the performance profiles in Fig-
ures 7–8. The label “primal-heuristics” refers to the solver with primal heuristics turned on.
We see that primal heuristics have a big impact on the solution scheme of the (MINLP) prob-
lem, especially for the hard convex instances. We explain this performance gain by the fact
that primal heuristics generate more integer solutions andtherefore have a greater impact on
the performance metric we have chosen for the harder problems.
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Figure 7: Performance profile showing the effect of primal heuristics for moderate convex
instances.
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Figure 8: Performance profile showing the effect of primal heuristics for hard convex in-
stances.
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2.3 Branching and Node Selection Rules

Another advantage of building FilMINT within the MINTO framework is that it provides
us with the same branching and node selection rules that MINTO provides. A branching
scheme is specified by two rules: a branching variable selection rule and a node selection
rule. The branching rules available are maximum fractionality (e0), penalty based (e1),
strong branching (e2), pseudo-cost based (e3), adaptive (e4), and SOS branching (e5). The
different node selection rules are best bound (E0), depth first (E1), best projection (E2), best
estimate (E3), and adaptive (E4). We note that integer feasible solutions are more likely to
be found deeper in the tree. Extensive computational experiments have been done to find
good branching and node selection rules. Since the effectiveness of branching and node
selection depends on the structure of the problem, some branching scheme is better for some
problem classes, while some other is better for others. However, the branching rules that
are of interest include maximum fractionality (e0), strong-branching (e2), and pseudo-cost
based (e3). The node selection rules that are investigated in more details include best bound
(E0), depth first (E1), best estimate (E3), and the adaptive rule (E4).Vanilla, by default, uses
maximum fractional branching and the best-bound node selection strategy.
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Figure 9: Performance profile comparing different branching rules for moderate convex
instances.

The results of the computational experiments for differentbranching rules are shown in
Figures 9–10. The results show that pseudo-cost branching outperforms all other rules. The
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Figure 10: Performance profile comparing different branching rules for hard convex in-
stances.

performance gains are quite stunning, but not unexpected, given the experience with maxi-
mum fractional and pseudo-cost branching in MILP (Linderoth and Savelsbergh [1997]).

The results of the experiments dealing with node selection are given in Figures 11–12.
Here, the adaptive node selection rule gives the biggest improvement compared to the vanilla
version, followed closely by the node selection rule based on best estimates. The perfor-
mance gains in terms for the moderate problem instances is quite small, but the improvement
for the hard problems is significant.

2.4 Summary of MIP Features

The computational experiments in this stage helped us to identify features in the MILP
framework that can be used to solve the (MINLP) problem more effectively. Based on our
experiments, we include MINTO’s cutting planes, preprocessing, primal heuristics, pseudo-
cost-based branching, and MINTO’s adaptive node selectionstrategy as part of the default
solver for the next stage of experiments. Figures 13–14 showthe cumulative effect of turning
on all these MILP-based features.

The label “vanIP” refers to the solver with these features turned on. The solver vanIP
clearly outperforms a standard LP/NLP-BB solver (vanilla). The most significant improve-
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Figure 11: Performance profile comparing different node selection rules for moderate con-
vex instances.
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Figure 12: Performance profile comparing different node selection rules for hard convex
instances.
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ment was found to be from better branching rules and node selection strategies. It is notewor-
thy that other branching rules and node selection strategies can be used by filMINT, which
may be important for certain problem instances.

In Section 5 we compare the vanilla solver andvanIP with MINLP-BB and BONMIN,
as well as with the final FilMINT default solver. In the next section, we consider different
methods for dealing with linearization generation and management.

3 Linearization Generation and Management

The linearizations (OA(xk, yk)) are obtained by using gradient information from the solution
of a NLP subproblem at point(xk, yk). We note that linearizations approximate the nonlin-
ear, convex, feasible region as defined in the problem (MINLP). In contrast, cutting planes
in the MILP framework approximate the convex hull of integerpoints in the problem. We
think of linearizations in our solution scheme in the same way as cutting planes. We add
linearizations with the aim of tightening the formulation and improving the lower bounds.
Linearizations are obtained in different ways in our framework and are explained in greater
detail in this section.

Linearization management in FilMINT is parametrized in terms of parameters that con-
trol the frequency and the number of cuts added at the given stage of the tree search. Such an
approach is akin to the way cutting planes are handled in any generic MILP solver, including
MINTO. We handle cutting planes obtained from the MILP framework and those obtained
from the nonlinear functions in the same way, adding information about the nonlinearity and
integrality in the problem, while trying to draw a fine balance so as to use these cuts effec-
tively. To see how good our cuts are and whether the cut management helps, we run a careful
set of experiments to demonstrate the effectiveness of the approach. We next explain the
different ways of adding and managing linearizations that we have explored.

3.1 Adding Only Violated Linearizations

When linearizations are obtained from the solution of an NLP subproblem, we do not add
all of them directly to the master problem. Instead, we checkwhether the linearizations are
violated by the optimal LP solution at that node and add only the violated linearizations. This
approach keeps the size of the formulation manageable, which improves the solution time
for each LP. Figures 13–14 show the impact of adding only violated linearizations. The label
“violated” refers to the solver with violated cuts turned on, on top of the solvervanIP. The
plots show that adding only violated cuts can result in a moderate improvement to the solver.
We include this feature in the next round of experiments, dealing with other linearization
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related schemes.
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Figure 13: Performance profile comparing vanilla with solver vanIP and the effect of vio-
lated cuts for moderate convex instances.

3.2 Managing Linearizations and Other Inequalities

Having too many linearizations or other inequalities clearly can be inefficient. A large num-
ber of linearizations make the LP problem bulky and significantly increase the solution time
and the storage requirements. A larger number of linearizations also increases the potential
for encountering degeneracy and may further increase the number of pivots taken by the LP
solver. The problem size can be reduced by temporarily removing the inactive constraints
from the formulation. We therefore attempt to manage the linearizations added to the master
problem by turning on MINTO’s row management feature.

MINTO monitors the values of the dual variables at the end of every iteration to see
whether the corresponding global constraint is active. If the dual variable for a constraint is
zero, implying that the constraint is inactive, for a few iterations, then MINTO deactivates
the constraint and puts it back in its cut pool. If these constraint become violated later, they
are added back to the active formulation. MINTO has an environment variable, MIOCUT-
DELBND, which indicates the number of consecutive iterations a constraint can be inactive
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Figure 14: Performance profile comparing vanilla with solver vanIP and the effect of vio-
lated cuts for hard convex instances.

in the active formulation before it is removed. After conducting a few small-scale experi-
ments, we set the value of MIOCUTDELBND to 15

Figures 15–16 show the impact of turning on MINTO’s row management with MIO-
CUTDELBND set to 15. The label “row-mgmt” refers to the solver with MINTO’s row
management turned on, on top of the solver,violated. Turning on row management for
moderate problems results in a huge improvement in the solution times. For hard problems
in the test suite, we see that for74% of the problems row management gives a better solution,
compared to only60% for the solver violated. The improvement of row management for the
hard problems is not as dramatic. We expect that this is largely due to the different metric
that we use to measure success (namely, closeness to the bestinteger solution). We include
row management in the next round of experiments.

3.3 Generating Linearizations at Fractional LP Solution

A disadvantage of the LP/NLP-BB approach is that linearizations are generated only from
the solution of the NLP subproblem fixed at an integer solution, yk. As long as no integer
LP solution is found by the branch-and-cut procedure, no nonlinear information in terms of
linearizations is added to the master problem.
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Figure 15: Performance profile showing the effect of row management for moderate convex
instances.
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Figure 16: Performance profile showing the effect of row management for hard convex
instances.
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We believe that it is important to add nonlinear informationas early as possible to the
MILP master problem to help the solver make better branchingdecisions and to find better
MINLP feasible solutions earlier. There are two ways to achieve this goal. The first is to
apply primal heuristics as discussed in Section 2.2, and thesecond is to generate linearization
from fractional integer variables. Thus, we solve NLP subproblems with variables fixed at
the fractional LP solutionyk and generate linearizations at the solution of this NLP. The
linearizations obtained in this case are the same as (OA(xk, yk)) except that the values of
the integer variablesyk are no longer integral. We note that these linearizations are valid
because the problem is convex. However, we cannot use the solution of the NLP subproblem
to update the upper bound for the problem.
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Figure 17: Effect of adding linearization by using fractional LP solution for moderate convex
instances.

Figures 17–18 show the impact of adding linearizations obtained by using a fractional
LP solution. The label “fixfrac” refers to this solver built on top of the solverrow-mgmt.
The profiles show that this procedure helps the solution scheme for the problems in our test
suite. We next explain the cut generation parameters that weuse to control the cut generation
procedure.

We note that some of the linearizations generated are more effective if added at an early
stage of the tree enumeration, whereas some are better if added at a later stage. By man-
aging the cut generation procedure intelligently, one can achieve significant benefits from
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Figure 18: Effect of adding linearization by using fractional LP solution for hard convex
instances.

these linearizations. We deal with the linearization generation procedure in the same way
as cutting planes in a MILP framework. Cut generation is parametrized in terms of two
important parameters. The first,α, is the tail factor that decides how many rounds of lin-
earization generation should be done at the current node. The second,κ, is the skip factor
that decides how many nodes to skip before invoking the cut generation procedure. The tail
factor decides whether the LP solution improves enough so asto justify another round of cut
generation at that node. To calculate the tail factor, we compare the current LP solution with
the previous few LP solutions (typically three) and see whether we are improving the lower
bounds enough. The percentage improvement in the lower bounds also depends on the depth
of the tree. Based on our experimental results, we setα to 10 for the first 1,000 nodes that
are enumerated, and 50 for the later nodes.

The skip factor also depends on the depth of the tree enumeration. We feel that cuts added
in the early stage of the enumeration are more effective in reducing the gap and helping
reduce the search tree. Therefore, we keep the skip factor much smaller at an early stage
and increase the skip factor as we go deeper down the tree. Based on experiments, we set
κ to 10 for the first 100 nodes, and 100 for the later nodes. We have tried to fine-tune these
parameters so that the cut generation procedure works well on a large set of problems on
average. We also have an upper limit on the number of linearizations that are generated at a
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particular round of cut generation.

3.4 Obtaining Extended Cutting-Plane-Based Linearizations

Solving NLP subproblems typically takes more time than solving LP relaxations. Thus,
we consider generating additional linearizations at fractional solutions of the LP relaxation,
because the necessary gradient and function evaluations are relatively cheap and the lin-
earizations can still tighten the master problem. This procedure is similar to the extended
cutting plane method by Westerlund and Pettersson [1995]. Figures 19–20 show the impact
of adding extended-cutting-plane-based linearizations.The label “ecp” refers to the solver
with ECP-based linearizations on top of the solverfixfrac. Our results show that ECP-based
linearizations do not fare well on average. We are investigating this situatiuon further by
trying different cut generation schemes.
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Figure 19: Performance profile of ECP- and GBD-based cuts for moderate convex instances.

3.5 Obtaining Benders-Cut-Based Linearization

Another approach to managing the size of the LP relaxation issuggested by the fact that a
single Benders cut is a relaxation of the corresponding outerapproximation cuts. Summing
the objective linearizations and the constraint linearizations weighted with the optimal NLP
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Figure 20: Performance profile of ECP- and GBD-based cuts for hard convex instances.

multipliersµk yields the Benders cut:

η ≥ f(xk, yk) + (∇yf(xk, yk)T + (µk)T∇yg(xk, yk))T (y − yk).

This cut can be simplified by observing that the term

∇yf(xk, yk)T + (µk)T∇yg(xk, yk) = γk

corresponds to the NLP multiplierγk corresponding to fixing the integer variablesy = yk in
(NLP(yk)). Clearly, the Benders cut is weaker than the outer approximations; on the other
hand, it compressesm + 1 linear inequalities into a single cut.

Figures 19–20 show the impact of adding Benders-cut-based linearizations. The label
“gbd” refers to the solver with GBD-based linearizations on top ofthe solverfixfrac. We
see that Benders cuts do well for problems in the moderate set.However, they do not fare
well for hard problems. In the future, we will investigate other uses of Benders cuts to make
them work better for hard problems.

4 Exploiting the Solution of NLP Relaxation

The branch-and-bound algorithm for problem (MINLP) solvesa sequence of NLP relax-
ations (NLPR(l, u)) at the nodes. The solution of the NLP relaxation at a node provides
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valuable information that can be used in the LP/NLP-BB as well. As mentioned, we solve
an NLP relaxation at the root node to obtain initial linearizations to tighten the master for-
mulation (MP(K)).

Solving a relaxed NLP subproblem at any node helps us to get tighter bounds for the
MINLP problem at that node. Since solving the relaxation of the NLP may take considerable
execution time, we solve it only occasionally, say after every k nodes in the branch-and-cut
tree.

The solution of the relaxed NLP subproblem, being tighter, can be used to prune the
node if it is greater than the best-known upper bound. We notethat solving NLP relaxations
at every node makes the algorithm behave like a nonlinear branch-and-bound algorithm.
This provides us with an algorithm that integrates the approach of a classical branch and
bound algorithm with that of a classical LP/NLP branch-and-bound algorithm. We solve the
NLP relaxations every 10 nodes in our experiments. Figures 21–22 show the impact of this
approach. The label “nlpr ” refers to the solver with the addition of NLP relaxations ontop
of the solver fixfrac. Even though the improvement is only marginal, we include this method
as part of our default settings for FilMINT.
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Figure 21: Effect of solving NLP relaxations for moderate convex instances.
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Figure 22: Effect of solving NLP relaxations for hard convexinstances.

5 Analysis of Computational Experiments

Based on the first stage of experiments, we include as part of the default solver MINTO’s
cutting planes, preprocessing, primal heuristics, pseudo-cost-based branching, and adaptive
node selection strategy. The computational experiments inthe second stage helped us to
identify linearization-based methods and generation schemes that solve the problems in our
test suite more efficiently. Based on the experiments, we include as part of the default solver
violated cuts, row management, and methods dealing with solving NLP at fractional LP solu-
tion and solving (NLPR(l, u)) problems at certain nodes. We also identify some parameters
dealing with linearization generation.

Figures 23–24 compare the progress made by the solver to thatof the default version,
vanilla. The label “filmint” now refers to the final default settings for our solver. We observe
that the largest improvement comes from adding the IP features to the vanilla LP/NLP-BB
method. We also observe a significant improvement using MINTO’s row management.

We have compared FilMINT to a nonlinear branch-and-bound based solver, MINLP-
BB (Leyffer [1998]), and the hybrid version of bonmin (Bonami et al. [2005]). Because
FilMINT is developed within a branch-and-cut framework, itprovides flexibility for re-
searching different classes of cuts that can benefit the solution scheme. MINLP-BB also
uses the same NLP solver, filterSQP, for solving NLP problems. Therefore, the comparison
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shows how the two methodologies work. We choose BONMIN for thecomparison because
of its similarities to our framework. This comparison will also show the effect of using
a different IP and NLP solver (BONMIN uses an interior-point method). MINLP-BB and
BONMIN are run for the same set of instances for the same time (four hours). The hybrid
algorithm of BONMIN was run with the default hybrid settings.The performance profile
(see Figures 23–24) shows that FilMINT is an order of magnitude faster on average than
MINLP-BB, and 2-4 times faster than BONMIN for the moderate convex problems. For
the hard convex problems, FilMINT outperforms BONMIN, and both solvers are orders of
magnitude better than MINLP-BB.
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Figure 23: Performance profile comparing FilMINT with MINLP-BB and BONMIN for
moderate convex instances.

6 Conclusions

To solve MINLP problems, we introduce a new solver, FilMINT,based on an LP/NLP
methodology in a branch-and-cut framework. We investigatenew ways of adding and man-
aging linearizations and show their effectiveness in solving MINLP problems. By carefully
choosing MILP and linearization-based features, and by using existing software components,
we show how a framework such as the one proposed may be used to derive a flexible and
powerful methodology to solve hard convex MINLP problems. The framework provides a
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Figure 24: Performance profile comparing FilMINT with MINLP-BB and BONMIN for
hard convex instances.

means to further investigate cutting planes that can be useful in solving the problems much
faster. We compare our solver to two existing MINLP solvers and improve on both on aver-
age by a factor of 2-4.
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