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Abstract. It is state of the art to provide UML modeling by means of
class diagrams and code generation from there. But whereas drawing di-
agrams is most often well supported, code generation is limited in scope.
Association classes, multiplicities, aggregation and composition are not
correctly or not at all processed by most code generators. One reason
may be that the UML semantics is not formally defined in the UML
specification. As a result of that, associations are usually transformed
into code by using properties of the same type as the associated classes
or corresponding typed sets. This approach must fail although the UML2
Superstructure Specification considers association ends owned by a class
to be equal to a property of the owning class. In this paper, we describe
why associations should be implemented as classes when generating code
from class diagrams.
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1 Introduction

OMG’s Model Driven Architecture [18] is an approach to a Model Driven De-
velopment (MDD) process using the Unified Modeling Language (UML). MDD
concentrates on models, whereas code is generated from there. Only the qual-
ity of a model should influence the code’s quality, i. e. a highly detailed model
covering all aspects of an application should result in automatically generated
code with no necessity for adaptations. This ambition requires good code gener-
ation tools. But most code-generators produce code that does not cover all the
elements of the input model.

This situation is problematic: Models are the result of the analysis and design
phases and must conform to all requirements of a system and therefore, generated
code should cover the entire semantics of the model. Otherwise, the conformance
of the code to the model remains in the sole responsibility of the developer.
This entails more lines of hand-written code and is error prone. Furthermore,
the verification of a model is invalidated. Generated code should enforce all
constraints to be always held, as it is the case in modern database systems,
where foreign key definitions allow to define the rejection of the deletion of a
dataset if it would result in a violation of the underlying ER-Model.
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With regard to associations, both the UML specification [21] and code gen-
eration should be improved. We contribute to both in the following way:

– We shortly introduce the specification [21] of associations in Sect. 2 and show
its shortcomings.

– An evaluation of some code generators reveals, that only the code pattern
discussed in Sect. 3 is used for the implementation of associations.

– In Sect. 4 we point out, why this pattern is invalid and how it relates to
deficiencies of the UML specification [21].

– In Sect. 5, we discuss how another approach of translating associations con-
siders the characteristics of associations that are explained in Sect. 2.

The context of this work is the ActiveCharts project [23], which requires a
code generator for static structure modeled in UML 2 class diagrams. It is based
on the UML 2.1.2 Superstructure Specification [21]. Keywords of the UML as
well as class or instance names are written in italics. Instances of classes are
named with the class name in lowercase letters.

2 Associations at a Glance

In this section, we describe the concept of an association. We concentrate on
binary associations unless otherwise stated.

2.1 Elements of Associations

”An association specifies a semantic relationship that can occur between
typed instances. It has at least two ends represented by properties, each
of which is connected to the type of the end. (...) Each end represents
participation of instances of the classifier connected to the end in links
of the association.” [21, p. 39]

An association end may be adorned with a role name, a multiplicity, a property
string, a navigability and a visibility modifier. It may be owned by the association
itself or by the classifier connected to the opposite end of the association.

The UML provides no means of defining a uni-directional association. Relat-
ing a class A to a class B entails that both classes are related to each other and
associations therefore cannot be uni-directional.

”An association describes a set of tuples whose values refer to typed
instances. An instance of an association is called a link.” [21, p. 39]

However, the UML specification is general enough to allow both uni-directional
and bi-directional links. We write a bi-directional link for an association L be-
tween classes A and B as (a↔ b)L, a uni-directional link from a to b as (a→ b)L.
For brevity, the index L will be omitted when no confusion is possible. A refer-
ence on b held by a (in Java) is denoted by a→ref b.

Note that uni-directional links are not contradictory to bi-directional associ-
ations. A bi-directional association may be implemented by two uni-directional
links as long as they are consistent as defined in the following section.
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2.2 Consistency of Associations

A tuple (a, b) in an association L can be represented by a bi-directional link
(a ↔ b) or two uni-directional links (a → b) and (b → a). Note that the roles
of a and b may be chosen arbitrarily, but must be kept consistent for a given
association.

The consistency of unidirectional links for an association is assured when
∀a : A, b : B : (a→ b)⇔ (b→ a) holds.

2.3 Multiplicities at Association Ends

An essential feature of associations are multiplicities at association ends.

”A multiplicity is a definition of an inclusive interval of non-negative in-
tegers beginning with a lower bound and ending with a (possibly infinite)
upper bound.” [21, p. 94]

Multiplicities are used to determine how many instances of the associated classes
can or must be linked at a time.

2.4 Ownership of Association Ends

The UML specification defines that an association end may be owned by the
association itself or by a member end class.

Association ends are properties. Owning an association end means that the
property becomes a structural element of the owning classifier, and consequently,
part of the object’s state. Therefore, adding or removing a link will have an
impact on the object’s state in cases where the end is owned by a class. For ends
owned by associations, the same rules hold, but the impact is on the association.

The relation between the objects remains unaffected, but a directive where
to store links at runtime is made. Links may not appear in objects of classes,
that do not own the corresponding association end. So far, a correlation between
ownership of association ends and implementation of links (in particular where
links are to be stored) as suggested by Diskin and Dingel [8] is even mandatory.

2.5 Navigability of Association Ends

”Navigability means instances participating in links at runtime (instance
of an association) can be accessed efficiently from instances participating
in links at the other ends of the association.” [21, p. 41]

An association end is navigable when it is either a navigableOwnedEnd of the as-
sociation or an ownedAttribute of an end class. Otherwise, it is not navigable [21,
p. 39]. The specification does not claim that a non-navigable end must not be
accessed by opposite ends. It rather states that it may or may not. Accordingly it
is not necessary to store links directed in a non-navigable direction of an associ-
ation, however, it is not invalid to store them either. For an association between
A and B navigable from A to B, a link a : A→ b : B is sufficient.
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An informal convention whereby non-navigable ends are assumed to be owned
by the association whereas navigable ends are assumed to be owned by the
classifier at the opposite end is deprecated [21, p.43], but we find a dependency
when having a look at the inversion. A non-navigable end must be owned by the
association. If owned by the class via ownedAttribute, it is navigable.

2.6 Visibility of Association Ends

The visibility ”determines where the NamedElement appears within different
Namespaces within the overall model, and its accessibility” [21, p.98]

The specification allows to define a non-navigable end as public. Such an
end must be owned by the association (because it is non-navigable) but may
be accessed. However, a non-navigable end not necessarily grants access to the
opposite classifier. The effect of accessibility to a non-navigable end is unclear.

2.7 Aggregation Types of Association Ends

An association end has an aggregationType which may have one of the values
none, shared or composite. The values shared and composite may only appear
in binary associations and indicate a whole/part relationship. Aggregation is
transitive and may not be modeled in a cyclic way. An association end with
aggregationType composite

”indicates that the property is aggregated compositely, i. e., the compos-
ite object has responsibility for the existence and storage of the composed
objects (parts).” [21, p. 39]

This implies that the deletion of the composite entails the deletion of all of its
current parts.

2.8 Piecing It Together

The specification states that ”aggregation type, navigability, and end ownership
are orthogonal concepts,” [21, p. 43]. However, the concepts are not independent
since an association end owned by a class via ownedAttribute implies that this
association end is navigable.

Being non-navigable implies that the association end is owned by the associ-
ation via ownedEnd and must not be included in the subset navigableOwnedEnd.

The specification does not define where links are to be stored. This implies
that parts of links may not be stored at all if these parts are derivable from other
information. Diskin and Dingel [8] give a detailed discussion about that.

Figure 1 shows an association that is navigable from A to B. An instance
b : B does not need any information about which instances ai : A it is related to.
This information is derivable from the references stored in each ai. As these links
may be implemented in code by a static map<A,List<B>>, accessible through the
class A, the multiplicity constraint of the A-end can be satisfied. Each instance
b : B must not be contained in more than 10 lists, i. e. be referenced by more
than 10 ai : A.
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Fig. 1. An association navigable from A to B

3 Code Generation - State of the Art

We evaluated Altova umodel [3], ARTiSAN Studio [4], Borland Together [5],
ChangeVIsion Jude Professional [6], Gentleware Apollo [14], IBM Rational Soft-
ware Architect [16], No Magic MagicDraw [19], Sparx System Enterprise Archi-
tect [24] and Visual Paradigm for UML [27], which are linked in the UML vendor
directory [26] as well as EMF [9], Fujaba [11], Gentleware Poseidon [15] and Tele-
logic Rhapsody [25]. Code generation from UML class diagrams is supported
by all these tools, but the level of compliance to the UML specification varies
considerably. Having a closer look at associations, some insufficiencies become
evident.

3.1 Common Implementation of Associations

All evaluated tools generate code for associations by using attributes in the
member end classes. In the case of a binary association, each class obtains an
attribute that can store a reference to the opposite class.

3.2 Multiplicities at Association Ends

Except from Together [5], MagicDraw [19] and Enterprise Architect [24], upper
bounds of multiplicities are rudimentarily implemented. If it is greater than 1, the
attribute representing the association end is of a collection type. Thus, only two
states are identified, namely an upper bound that equals to 1 or one of a higher
value. None of the tools rejects a new link if the upper bound is violated. Looking
at lower bounds, the situation is even worse. They are completely omitted. A
compliant mapping of a lower bound to source code is more difficult than that
of an upper bound. Nevertheless, it is possible (see Akehurst et al. [2]).

3.3 Ownership of Association Ends

Only umodel [3] and MagicDraw [19] allow modeling the ownership of associa-
tion ends. However, all tools treat associations as if the association ends were
owned by the member end classes. This implies that non-navigable ends become
navigable, but the specification does not force non-navigable ends to be not ac-
cessible. Because ”(. . . ) an association end owned by a class is also an attribute”
[21, p. 45], the above outlined policy of association implementation is no con-
tradiction to the specification. Developers probably will not miss the feature of
modeling ownership, as it is not even discussed in most UML books that address
developers like UML2.0 - Das umfassende Handbuch [17] or UML 2 glasklar [22].
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3.4 Navigability of Association Ends

The lack of ownership representation in code leads to associations that are nav-
igable in both ways. It is common to omit the generation of an attribute in a
member end class if the opposite end is non-navigable. It is assumed that an
association where all ends are non-navigable will never appear in a model.

This assumption is problematic because non-navigable associations might be
useful in combination with association classes and therefore should be allowed
and translated to code.

By omitting the generation of an attribute, the ownership of a non-navigable
association end is considered (see Sect 2.5) as it is no feature of the classifier.

3.5 Visibility of Association Ends

The visibility of association ends is taken over to the generated attribute rep-
resenting the association end. As non-navigable ends are not implemented in
code, visibility for those ends is not taken into account. Thus, all implemented
association ends are supplied with the intended visibility.

Because a non-navigable end is not necessarily accessible, a visibility modifier
is not needed. We consider public visibility of an inaccessible feature useless.

3.6 Consistency of Associations

Many tools just provide the static structure for associations, i. e. the attribute
generation in the member end classes. When using those tools, managing the
association remains in the scope of the developers’ work.

However, Fujaba [11], Rhapsody [25] and EMF [9] generate code that allows
to add or remove instances from associations. These tools even implement the
consistency of associations:Whenever an instance a is referenced by an instance
b (i. e. b →ref a), the instance b calls a generated method in a passing itself as
a parameter. The instance a then obtains a reference to b (a→ref b) [10].

3.7 Aggregation and Composition

The situation regarding code generation for aggregate associations is staggering.
The evaluated tools do not consider the difference between ”plain” associations
and aggregations or compositions. A more detailed evaluation of the tools will
be published in a forthcoming paper. Akehurst et al. [2] evaluated a selection of
more tools describing nearly the same situation in 2006. As far as we know, the
situation has not substantially changed. In this regard, the modeling facilities
of the current tools allow the violation of UML semantics like having a part
included in multiple composites at a time. Probably, the reason for this is that a
composite cannot be implemented by the standard association implementation.
A discussion of this issue is given in Sect 5.5.
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3.8 Summary of State-of-the-Art Code Generators

The coverage of code generation ranges from preparing associations by gener-
ating adequate attribute definitions to sophisticated mechanisms that manage
association consistency at runtime.

However, as we will see in the following section, many deficiencies remain in
the common patterns of generated code for associations.

4 Why Do Common Code Generation Methods Fail?

There are two reasons why code generation as described in the previous section
fails. The first is that a mutual update of references requires association ends to
be visible to the opposite end, the second is that if for non-navigable ends no
attribute is generated in a member class, information of multiplicities may be
left out.

4.1 The Informally Defined Set of Links

The specification gives an informal definition of the set of tuples as follows:

”For an association with N ends, choose any N-1 ends and associate
specific instances with those ends. Then the collection of links of the
association that refer to these specific instances will identify a collection
of instances at the other end. The multiplicity of the association end
constrains the size of this collection.”[21, p. 40]

Fig. 2. A binary association

A formalization of the cited definition is given by Diskin and Dingel [8]. The
association shown in Fig. 2 defines tuples (ai, bj) and for each arbitrarily chosen
a : A, there must exist at least m and at most n tuples, for each arbitrarily
chosen b : B, at least s and at most t tuples must exist.

4.2 Implementation of Links by the Use of References

In general, a single reference cannot implement a link. However, two references
do as long as the following condition holds:
∀ ai : A↔ bj : B ∃ ai →ref bj ∧ ∃ bj →ref ai
This condition requires a mutual update of both references if a link is changed.

4.3 Dependency between Navigability and Visibility

Navigability requires efficient access to the opposite side of an association. In case
of a binary association with both ends navigable and owned by the member end
classes, both classifiers can access each other. The use of references as described
above suffices.
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Fig. 3. An association with two navigable ends, each of which has the VisibilityKind
public

A mechanism for satisfying the condition formulated in Sect. 4.2 is described
in [10]. It is based on the idea introduced in Sect 3.6. The code generated for class
A and the association in Fig. 3 looks like Listing 1, class B may be implemented
analogously. EMF [9], Fujaba [11] and Rhapsody [25] implement this pattern.

1 pub l i c c l a s s A{
2 p r i v a t e B b ;
3 pub l i c boolean setB (B va l u e ){
4 i f ( t h i s . b == va l u e ) r e t u r n f a l s e ;
5 B o ldVa lue = t h i s . b ;
6 t h i s . b = va l u e ;
7 i f ( o l dVa lue != n u l l )
8 o l dVa lue . setA ( n u l l ) ;
9 i f ( v a l u e != n u l l )

10 v a l u e . setA ( t h i s ) ;
11 r e t u r n t rue ;
12 }
13 pub l i c B getB ( ) { r e t u r n t h i s . b ; }
14 }

Listing 1. Implementation of mutual updates for links of an association

A problem is that if one (or both) association end(s) is (are) of private
visibility, one (or both) side(s) must not be allowed to update the links at the
opposite end [13]. The implementation of Fujaba [11] generates non-compilable
code when modeling an association with all ends defined private. EMF [9] and
Rhapsody [25] violate the visibility and define the attributes as public. It must
be considered that the Ecore-model of EMF [9] relates to the MOF [20] (see [1])
and not to the UML [21]. In the Essential MOF (EMOF) that only slightly differs
from the Ecore, associations are not defined. It is only possible to link a property
to another property called the opposite. EMF [9] thus implements the Ecore-
model correctly. However, tools claiming to be UML compliant must implement
associations, but all evaluated tools except from Fujaba [11] and Rhapsody [25]
do not generate code for associations as specified by the UML (see [21]) but in
the style of the MOF (see [20]).

In general, the problem can be formulated as follows:

Note 1. If an association is navigable in more than one direction, the visibility
of the navigable ends must allow the connected classifier to access this end.

4.4 Attributes, Associations and Links

As described in Sect 3.4, navigability is implemented by the suppression of at-
tribute generation for non-navigable ends. This technique follows a transforma-
tion of notations (which we term T1) defined in the specification as follows:
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”The attribute notation can be used for an association end owned by a
class, because an association end owned by a class is also an attribute.
This notation may be used in conjunction with the line-arrow notation
to make it perfectly clear that the attribute is also an association end.”
[21, p. 45]

Instead of ”may be used”, it should rather state ”can only be used in conjunction
with (. . . )”. A proper application of this transformation is discussed by Crane et
al. [7], where classes are enriched by attributes instead of replacing associations.

An analogous transformation from the attribute to the association notation
(which we term T2) is stated as follows:

”An attribute may also be shown using association notation, with no
adornments at the tail of the arrow (. . . )” [21, p. 56].

The item ”with no adornments” inhibits the explicit definition of multiplicities
and navigability which leads to a multiplicity of [1..1] and an undefined navi-
gability. T2 is supposed to be the inverse to T1 (for which we write T−11 and
T2 = T−11 must hold).

Note 2. In general, an association end owned by an end class is not equal to a
property. It is strongly required that the information about the association of
which the property is an end is not lost even if the opposite end is not navigable.

Note 3. The limitations forced for transformation of an attribute to an associa-
tion must be forced analogously for a transformation vice versa.

4.5 Links Defined by Attributes

Figure 4 shows two class diagrams. T1 allows the transformation from the left
to the right diagram, T2 allows the inversion. The multiplicity of the A-end
of the association is equal to the default of a multiplicity element 1, because a
multiplicity for this end cannot be modeled using the attribute notation. This
entails that every instance bi : B must be linked to an instance aj : A and
∀i1, i2 : i1 6= i2 ↔ j1 6= j2 ∧ i1 = i2 ↔ j1 = j2. Furthermore, we can see that an
instance b : B must not be referenced by more than one instance a : A at a time.
This is much more restrictive than the common view of attributes and the way
all code generators we evaluated generate code or implementors would write it.

Having a look at the metamodel, we consider the underlying models of the
two diagrams not to be identical. An association has at least two ends, each of

Fig. 4. Attribute notation vs. association notation
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which is a Property, a subtype of MultiplicityElement. An attribute is a Property,
too, but there is no second MultiplicityElement contained in the model.

Note 4. Association notation and attribute notation are defined to be exchange-
able. This analogy does not reflect the difference between the concepts on the
meta-level.

Modeling a reference from A to B with no restrictions about how many references
to B may exist at a time cannot be achieved by an attribute but only by means
of an association with appropriate multiplicities. On that issue, the semantics of
the specification might be seen as unnatural and we assume that this semantics
is not intended by the specification.

5 A Mapping of the UML Semantics to Java Code

This section discusses concepts that can be used to overcome the defiencies
outlined in the previous sections. It addresses the issue of extending currently
used code generation patterns and presents a promising alternative pattern.

5.1 Extending State-of-the-Art Code Generation

Code generation of EMF [9], Fujaba [11] and Rhapsody [25] is missing considera-
tion of multiplicities, ownership and orthogonality of navigability and visibility.
With little effort, checking bounds of multiplicities can be implemented as dis-
cussed by Akehurst et al. [2]. As ownership and the conflict between mutual
updates and visibility is not addressed there, we suggest the use of separate
code classes for associations as it is described in the Complete MOF (CMOF)
part of the MOF specification [20] and give a Java implementation for it.

5.2 Using a Separate Code Class for an Association

Note 1 of Sect. 4.3 is a limitation to the use of associations. To overcome this
limitation, associations could be translated to classes of their own right. Two
alternatives are possible: storing all links in a separate object or creating an
object for each link (see Fig. 5). We prefer the second idea because a link is an
instance of an association which is a classifier and hence has its own identity.

Note that figure 5 is intended to illustrate the code pattern used to translate
the model shown in figure 2, but not to be seen as a transformation of that model.
Generating a class for an association is a straight-forward implementation of a
link that is defined as a tuple of values by the UML specification. Accordingly,
we term instances ab : AB links and the references to instances a : A and b : B
the values of a link.

Fig. 5. Association representation by one object per link
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Implementing Ownership. An association end that is owned by a member
end class is a structural feature of that class. We assume the b-end of Fig. 2
to be owned by A, the a-end to be a navigableOwnedEnd of the association
AB. Listing 2 is an implementation of A and uses a list of links (line 4) as an
implementation of the b-end.

Listing 3 is an implementation of the class B. Note that no links are stored
within that class. The implementation of the association uses a static map that
contains a list of links for each instance of B that is associated with one or more
instances of A (see listing 4, line 5).

1 pub l i c c l a s s A implements ABEnd{
2 p r i v a t e i n t upper = 2 , l owe r = 0 ;
3 p r i v a t e B b = n u l l ;
4 p r i v a t e L i s t<AB> l i n k s = new Vector<AB>() ;
5 pub l i c vo id addB (B va l u e ) throws Excep t i on{
6 b = va l u e ;
7 AB. ge tL i nk ( t h i s ) ; }
8 pub l i c vo id take (AB l i n k ) throws Excep t i on{ l i n k . setB ( b ) ; }
9 pub l i c vo id n o t i f y R e l a t i o n (AB l i n k ){ l i n k s . add ( l i n k ) ; }

10 pub l i c boolean canAcceptL ink (AB l i n k ){ r e t u r n ( l i n k s . s i z e ()<upper ) ; }
11 }

Listing 2. Implementation of a class A of Fig. 2

1 pub l i c c l a s s B implements ABnavigableOwnedEnd{
2 p r i v a t e A a = n u l l ;
3 pub l i c vo id take (AB l i n k ) throws Excep t i on{ l i n k . setA ( a ) ; }
4 pub l i c vo id addA (A va l u e ) throws Excep t i on{
5 a = va l u e ;
6 AB. ge tL i nk ( t h i s ) ; }
7 }

Listing 3. Implementation of a class B of Fig. 2

Implementing Navigability. Listings 2, 3 and 4 implement navigable ends.
If the a-end is not navigable, the implementation of class B may be reduced to
an empty class. The implementation of the association may be shortened as the
method getLink (lines 31 to 35) is no longer needed. Even links for associations
with both ends being non-navigable are possible. However, the question arises
which element should be responsible for creating, accessing and removing links.

Implementing Visibility. For an association end that is private, access meth-
ods to the corresponding set of links must be defined private (see listing 2 line
5 and listing 3 line 4).

Furthermore, it must be assured that links are only created by instances of
the classes participating in the association. This can easily be achieved by passing
references to only those types. The required code for this is an application of
the visitor pattern [12] and implemented in listing 4 by the getLink methods
and the take methods in the associated classes. The interfaces of listing 5 are
needed to guarantee that the associated classifiers allow the passing of the link.
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1 pub l i c c l a s s AB{
2 p r i v a t e A a ;
3 p r i v a t e B b ;
4 i n t lowerB = 0 , upperB = 3 ;
5 p r i v a t e s t a t i c HashMap<B, Vector<A>> as = new HashMap<B, Vector<A>>();
6 p r i v a t e AB( ) {}
7 pub l i c A getA ( ) { r e t u r n a ; }
8 pub l i c B getB ( ) { r e t u r n b ; }
9

10 pub l i c vo id setA (A a ) throws Excep t i on{
11 i f ( a . canAcceptL ink ( t h i s ) ) t h i s . a = a ;
12 e l s e throw new Excep t i on (
13 ” V i o l a t i o n o f upper bound f o r a s s o c i a t i o n end a . ” ) ; }
14

15 pub l i c vo id setB (B b ) throws Excep t i on{
16 i f ( ! as . con ta i n sKey ( b ) ) as . put (b , new Vector<A> ( ) ) ;
17 i f ( as . ge t ( b ) . s i z e ( ) == upperB ) throw new Excep t i on (
18 ” V i o l a t i o n o f upper bound f o r a s s o c i a t i o n end b . ” ) ;
19 e l s e t h i s . b = b ; }
20

21 pub l i c s t a t i c vo id ge tL i nk (ABEnd r ) throws Excep t i on{
22 i f ( r i n s t a n c e o f A){
23 AB l i n k = new AB( ) ;
24 r . t ake ( l i n k ) ;
25 l i n k . setA ( (A) r ) ;
26 l i n k . getA ( ) . n o t i f y R e l a t i o n ( l i n k ) ;
27 as . ge t ( l i n k . getB ( ) ) . add ( l i n k . getA ( ) ) ; }
28 }
29 pub l i c s t a t i c vo id ge tL i nk ( ABnavigableOwnedEnd r ) throws Excep t i on{
30 i f ( r i n s t a n c e o f B){
31 AB l i n k = new AB( ) ;
32 r . t ake ( l i n k ) ;
33 l i n k . setB ( (B) r ) ;
34 l i n k . getA ( ) . n o t i f y R e l a t i o n ( l i n k ) ;
35 as . ge t ( l i n k . getB ( ) ) . add ( l i n k . getA ( ) ) ; }
36 }
37 }

Listing 4. Implementation of an association owning one of both ends

1 pub l i c i n t e r f a c e ABnavigableOwnedEnd {
2 pub l i c vo id take (AB l i n k ) throws Excep t i on ;
3 }
4 pub l i c i n t e r f a c e ABEnd extends ABnavigableOwnedEnd{
5 pub l i c vo id n o t i f y R e l a t i o n (AB l i n k ) ;
6 pub l i c boolean canAcceptL ink (AB L ink ) ;
7 }

Listing 5. Interfaces required for classes participating in associations

Implementing Consistency of Associations. By passing an instance when
invoking the getLink method, it is assured that only this instance gets a refer-
ence to the link and that it is referenced by the link. The second value of a link
is set by the invoking instance. After both values of a link are set, the referenced
instances are notified and can store a reference to the link. For removing links,
a similar pattern can be used. For lack of space, we give no listing for that.

Implementing Upper and Lower Bound Checks. Checking upper and
lower bounds must be done by the owning elements of the association ends.
In listing 2, the canAcceptLink method in line 10 checks the upper bound, in
listing 4 line 18, this is done for a non navigable end when setting the value of
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a link. Lower bounds must be checked when links are removed in a similar way
as it is done when adding links. If all ends of an association have a lower bound
greater than 0, a factory pattern [12] can be used for the creation of instances.
A factory makes complex object structures unavailable before all links are set
and thus ensures that no inconsistent state is revealed to other instances.

Updating References. Consider a 1 to 1 association between classes X and
Y and the situation that x1 : X is associated to y1 : Y and x2 : X to y2 : Y .
To update the references so that x1 references y2 and x2 references y1, it must
be possible to temporarily violate multiplicities. This issue relates to ACID-
transactions of database systems with a special focus on isolation. A mechanism
for deferring multiplicity checks and hiding temporarily inconsistent states is
most likely possible but not yet considered.

5.3 Implementing Association Classes

For the implementation of an association class, its attributes and operations
have to be added to the implementation of the association. A constructor with
parameters for supplying association ends with instances could be added as well.

5.4 Making Orthogonal Concepts Independent

By using implementation classes for associations, orthogonal concepts of the
model refer to independent parts of the generated code. Visibility of an asso-
ciation end corresponds to the visibility of access methods in the member end
class, navigability is integrated in the consideration of ownership which is itself
implemented by storing links within that element that owns the association end.

5.5 Implementing Aggregation and Composition

The semantic impact of aggregation is little. It just indicates, that an instance is
part of another instance, representing the whole whereas a composition entails
that the whole is responsible for the lifetime of its parts.

Java uses a garbage collector that removes unreachable objects. As long as a
part is contained in the composite, both the part and the whole are referenced
by a link and either both or none of them are removed. This effect runs contrary
to lifetime control in the way that the parts may prevent the composite from
being destroyed. If an element representing the whole of a composite is no longer
referenced by an instance not participating in the composition, it should be
removed by the garbage collector. Akehurst et al. [2] consider the use of Java
weak references but discard it because this mechanism does not assuredly prevent
access to deleted parts. An alternative implementation is given but a drawback
of this is that objects are marked inaccessible while links persist.

For the proposed code pattern, a simple idea is applicable: Links are always
accessible, either directly by the referenced instances or indirectly by the associa-
tion. If the whole of a composition is to be deleted, the values of links referencing
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its parts must be set to null if the links are not an instance of the composition
itself. If neither the whole nor its parts are referenced by a property of another
class, both stay linked but become unreachable from anywhere else and may be
removed by the garbage collector. An unsolved problem is that destroying links
may violate multiplicities of associated classes.

6 Discussion & Related Work

This paper shows shortcomings of the UML specification concerning relations
between associations and attributes as well as dependencies between concepts
that are actually designed to be orthogonal.

A straight forward implementation for associations is to use references to
the opposite class in each class participating the association. We agree to this
implementation if all ends are defined as public, but in general, this code pattern
is not sufficient [13]. Akehurst et al. [2] and Génova et al. [13] discuss this tech-
nique of association implementation. Unfortunately, visibility is not considered
by Akehurst et al. [2] and therefore, an alternative code pattern is not required.
Furthermore, it is stated that navigable ends must be owned by the classifier
whereas non-navigable ends must be owned by the association. Our work differs
from Akehurst et al. [2] by considering visibility and by considering that a nav-
igable association end can be owned by the association. However, Akehurst et
al. [2] discuss other characteristics like e. g. qualified associations.

Génova et al. [13] consider visibility and state that associations with both
ends defined private cannot be managed because synchronizing references is not
possible. Using an implementation class for an association is discussed and dis-
carded, because it is assumed that it does not solve the problem either, since it
involves auxiliary classes that cannot provide access to the methods for managing
the association to some classes excluding all other classes [13]. Unlike Génova et
al. [13], we show how to provide access to links to only some classes by combining
the visitor pattern [12] and implementation classes for associations.

A detailed examination of the proposed code pattern with regard to n-ary
associations, association classes and specialization of associations as well as a
systematic evaluation of tools and code generators will be covered by forthcoming
publications. An Eclipse-based implementation of the proposed code generation
pattern for ActiveCharts [23] is currently under development.
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