
Decomposition Techniques for Policy Refinement
Robert Craven

Dept. of Computing
Imperial College London

SW7 2AZ

Jorge Lobo
IBM T.J. Watson

New York

Emil Lupu
Dept. of Computing

Imperial College London
SW7 2AZ

Alessandra Russo
Dept. of Computing

Imperial College London
SW7 2AZ

Morris Sloman
Dept. of Computing

Imperial College London
SW7 2AZ

Abstract—The automation of policy refinement, whilst promis-
ing great benefits for policy-based management, has hitherto
received relatively little treatment in the literature, with few
concrete approaches emerging. In this paper we present initial
steps towards a framework for automated distributed policy
refinement for both obligation and authorization policies. We
present examples drawn from military scenarios, describe details
of our formalism and methods for action decomposition, and
discuss directions for future research.

I. INTRODUCTION

The automated refinement of high level goals and policies
into implementable management and security policies would
help non-programmers specifying policies in situations such
as service management, pervasive applications and for health-
care services. Refinement involves generating enforceable and
implementable policies guaranteed to achieve and preserve
the high-level security and system management goals from
which the policies are derived. Some progress has been made,
but as yet there is no comprehensive, accepted solution. This
paper presents our ideas on the refinement of authorization
and obligation policies, with a preliminary view of a formal
framework, algorithms and representations.

We view the process of policy refinement as comprising
three aspects: decomposition, operationalization and distribu-
tion. In policy decomposition—the main focus of this paper—
policies expressed at higher levels of abstraction are mapped
into lower-level policies; successive mappings move closer
to concepts that are directly implementable. The mapping is
achieved using policy-independent refinement rules, defined
within the scope of an application-specific system model. The
paper describes the syntax of the refinement rules, how they
relate to and are constrained by the system model, and the
way they are applied to authorization and obligation policies.

Operationalization associates abstract policy classes with
specific subjects responsible for initiating actions and specific
targets on which the actions are performed, obtained from the
system model. Required action parameters may also depend
on specific targets. The refinement process may itself need to
be distributed, e.g. to organizations part of a collaboration:
parts of the system model may be distributed, or there may
be concerns about the confidentiality of policies within or-
ganizations. In a rich, distributed policy scenario, we foresee
there being several phases of policy decomposition, followed
by operationalization, followed by distribution.

There is a need to interleave policy refinement with analysis

to ascertain that the refined specification achieves the require-
ments and is consistent with system properties and limita-
tions, as well as with existing policies. Parallel, distributed
refinement could lead to policies which conflict with each
other as the refinement context will not be the same across
all entities. Consequently, in the current paper we build on
our previous work on policy analysis [1], [2], using the same
representation language, with a view to the future integration
of refinement and analysis in a single framework. The nature
of the interleaving itself is left for future work.

II. SYSTEM MODELS

A system model defines the scope for specification of
policies: the agents (human or automated) that can be subjects
and targets, services and devices on which actions can be
performed, detailed specification of the action parameters (c.f.
interface specification) as well as the organizational relation-
ships of all these entities. We use UML class diagrams to
define a system model as they are widely-used, well-supported
and perspicuous. Subjects and targets of policies are objects of
classes specified in the class diagram, with associations being
used to constrain the objects to satisfy specified properties. The
main relationships that refinement exploits are generalization,
aggregation, association and composition, so we currently
restrict the UML to these relationships between classes.

The examples used in this paper are taken from a more
detailed military policy scenario [3], involving platoons, divi-
sions, sensor networks, and the submission of daily activity
reports across the organizational structure. Figure 1 shows a
fragment of the UML system model for that scenario which
we will use in this paper. This example contains instances
of class specialization and generalization, named associations,
and aggregation (there is no composition).

Our representation language is a subset of first-order logic.
We use the Event Calculus [4] (EC) to describe the state
of the system, and to express the conditions under which
a policy applies; we therefore show how the UML used to
represent domains can be translated into the EC. The variant
of the EC we use is presented in full in [2]. holdsAt(·, ·)
is used to represent the changing properties of a system’s
state, with the first argument taking a fluent (a property
whose value changes over time) and the second a time at
which the system has the property expressed by the fluent.
Thus, holdsAt(obj(s, backupServer), 4) could represent that
the object s exists as a backup server, at time 4.

1

ReportRepository

+ send(D : Document)

belongs

*

Platoon

Division

Coalition

Organization

Soldier
+ hasClerkSkills : bool
+ notify(M : Message)

AdminCentre

Commander

Log

CommsOfficer

Device

Document

Report Message

part_of

1

*

serves
1

0..1
member

*

1..*

belongs

1

1..*

1

part_of
*

creator
*

1..*

support

*

1

Unit

+ fileRep(R : Report)

BackupServer

+ backup(D : Document)

Fig. 1. UML structure for fragment of domain

There is no need to use the EC for static features of the
system model, as they can be encoded directly in first-order
logic, using the class predicate:

class(org) class(device) class(adminCentre)

To express the relationship between classes, we use isa for
class specialization; assType for association; compType for
composition; and aggregType for aggregation. The relevant
relationships from Figure 1 would be represented according
to the following model:

isa(division, unit) aggregType(org, part of, cltn)
isa(reportRepos, device) assType(org, supports, cltn)

Finally, classOp facts are included which describe the
operations possible on instances of a given class, and the types
of the arguments these operations take. For instance:

classOp(unit, fileRep, 1, [report])
classOp(backupServer, backup, 1, [document])

The first argument is the class name; the second, the operation
name; the third, the arity; the fourth, a list of argument-types.
To aid reasoning over the structure of our domain models, we
introduce the following transitive version of the isa predicate:

isa trans(X,Y)← isa(X,Y). (1)
isa trans(X,Z)← isa(X,Y), isa trans(Y,Z).

If there were a special kind of report repository called a
‘mobile report repository’, for instance, with an associated
fact isa(mobileRepRep, reportRepos) in our knowledge base,
then we could conclude that this too was a device, using the
transitivity of the isa relationship.

Specific instances of the above classes are needed for
policy operationalization. For instance, there may be both
UK and US organizations in a coalition; the US may have
two divisions, eastDivision and westDivision, with devices,
soldiers, commanders, and so on. In our example, all divisions
and platoons have a commander, a communications officer, a
log, report repository, and backup server. We consider this set-
up to be stable over timescales of policy specification although
our approach would allow for changes. Facts about instances
of classes existing at a time T are represented, in the EC, as:

holdsAt(obj(ita, cltn), T)
holdsAt(obj(us, org), T)
holdsAt(obj(eastPlatOneComOf, commsOfficer), T)

We define a recursive clause for the obj fluent, using a new
obj trans fluent similar to the isa relationship above.

holdsAt(obj trans(O,C), T)← holdsAt(obj(O,C), T). (2)
holdsAt(obj trans(O,C), T)←

holdsAt(obj(O,C′), T), isa trans(C′, C).

This allows us to reason, for instance, that each platoon
communications officer is also a soldier—required for an
authorization policy giving access to a certain document to
all soldiers in the Eastern division is to be correctly applied.

Relationships between instances of classes are depicted as
follows (we show a representative sample).

holdsAt(aggreg(uk,member, ita), T)
holdsAt(aggreg(eastDivision, part of, us, T)
holdsAt(ass(usAdminCentre, serves, us), T)

Definition 1 A class definition C is a set of ground (con-
taining no variables) instances of the predicates class, isa,
assType, aggregType, compType, classOp together with the
definition (1) of the isa trans predicate, if that does not include
cycles in the isa relation. We require that
• if isa(c, c′) ∈ C, then class(c), class(c′) ∈ C;
• if assType(c, a, c′) ∈ C, then class(c), class(c′) ∈ C;
• if aggregType(c, a, c′) ∈ C, then class(c), class(c′) ∈ C;
• if compType(c, a, c′) ∈ C, then class(c), class(c′) ∈ C;
• if classOp(c, o, n, l) ∈ C, then class(c) ∈ C, and for all
c′ ∈ l, class(c′) ∈ C, and l has length n. y

In this way, the definition of classes, and their associations
and operations is self-contained. The isa relationship must
hold between classes explicitly stated to exist; the type of
associations, aggregations and compositions must be between
known classes; and operations must be on known classes.

Definition 2 An instance definition at t, where t is a time
variable or ground member of the Time sort, is a set of ground
instances of holdsAt, all of whose second arguments are t, and
whose fluents are instances of obj, ass, aggreg or comp. y

The following defines the proper relationship between class
and instance definitions. (|= represents standard first-order
semantic entailment.)

Definition 3 Let C be a class definition, and I an instance
definition at time t. I is correct with respect to C if:
• If holdsAt(obj(o, c), t) ∈ I then class(c) ∈ C
• If holdsAt(obj(o, c), t), holdsAt(obj(o, c′), t) ∈ I then
C |= isa trans(c, c′) ∨ isa trans(c′, c)

• If holdsAt(ass(o, a, o′), t) ∈ I, there are c, c′ such that

C ∪ I |= holdsAt(obj trans(o, c), t)∧
holdsAt(obj trans(o′, c′), t) ∧ assType(c, a, c′)

• If holdsAt(aggreg(o, a, o′), t) ∈ I, there are c, c′ with

C ∪ I |= holdsAt(obj trans(o, c), t)∧
holdsAt(obj trans(o′, c′), t) ∧ aggregType(c, a, c′)

• If holdsAt(comp(o, a, o′), t) ∈ I, there are c, c′ such that

C ∪ I |= holdsAt(obj trans(o, c), t)∧
holdsAt(obj trans(o′, c′), t) ∧ compType(c, a, c′) y

That is, in turn: if an object is said to belong to a given class,
the class must be stated to exist; if an object belongs to two
different classes, one must be a subclass of the other; if an
object is associated with, aggregated to form, or composed of,
another object, then the two objects must belong to classes
between which the assocation, aggregation, or composition is
possible.

In Section IV we introduce refinement rules to define the
relationship between objects and actions seen at a higher
level of abstraction, to their lower-level details, contents and
implementations. These rules’ forms will be constrained by
the UML class structure of the domain to which they apply.

III. POLICY LANGUAGE

The first stage of policy refinement is to translate the
most abstract representation of a policy into a formal lan-
guage upon which automated refinement techniques can work.
Accordingly, we assume that policies are specified, at the
highest level of abstraction, in a structured natural language,
having a constrained lexicon and syntax designed for policy
expression; automated translation could then compile this into
the abstract, logical language we describe below. Work on
structured natural languages for policies is known [5].

We present a brief summary of the language we use to
represent policies. This language is abstract, in the sense that
it is not meant to serve as an implementable policy language,
deployed into policy decision points; rather, it is intended to
serve as a generic formal language into and out of which
multiple policy languages can be translated. The base language
is that of constraint logic programs—normal logic programs
with constraints—and we use the constraints to order the times
at which the conditions of the policy must be true. Policies
are expressed as rules, with the head an instance of one of the
predicates permitted, denied or obligation, and the body of the
rule representing circumstances in which the policy applies.
A fuller version of the language for authorization policies is
in [1]. In the following, a constraint c is given by:

c ::= s1 = s2 | s1 < s2 | s1 6 s2

s ::= n | v | s1 + s2 | s1 − s2

n ∈ R+ ∪ {0}, v is a variable. A condition is a literal of
holdsAt, happens, permitted, denied, obligation, do or req.

The language is divided into two parts: one for the policies
and one for the system the policies are used to control. There
are bridges between these parts that model the role of a Policy
Enforcement Point. Authorization policies take the form

[permitted/denied](Sub, Tar,Act, T)← (3)
L1, . . . , Lm, C1, . . . , Cn.

where the Li are conditions in the sense defined above, and the
Ci are constraints, also as above. Where the conditions Li are
true, subject to the constraints Ci, then the Sub is permitted
(/denied permission) to perform Act on Tar at time T . For
example, consider the domain we sketched in Section II. A
policy that [Red Cross devices are permitted to access logs of
coalition platoons] might be formalized as

permitted(Sub, Tar, read, T)← (4)
holdsAt(obj(Sub, device), T),
holdsAt(ass(Sub, owner, redCross), T),
holdsAt(obj(Tar, log), T),
holdsAt(ass(Tar, owner, C), T),

holdsAt(obj(C, org), T),
holdsAt(ass(C,member, cltn), T).

In the conditions, the subject Sub is constrained to be a device
owned by the Red Cross; the target must be a log belonging
to a nation which is a member of the coalition. There are no
constraints over T , so the permission applies at all times.

Obligations require an action to be performed within a
certain period; thus, in addition to the time T at which the
obligation holds, reference is needed to the times Ts and Te
which are the limits of the period in which the action should
be performed. Our obligation policies have the form

obligation(Sub, Tar,Act, Ts, Te, T)← (5)
L1, . . . , Lm, C1, . . . , Cn.

The Li and Ci are as before—conditions and constraints.
These obligations have a more general form than event-
condition-action (ECA) rules, as found in many systems, such
as Ponder [6]. The form considered here is more common
in higher-level specifications, allowing for actions performed
by humans and more complex management actions (e.g. that
schedule their own actions). ECA rules are a particular form
of implementing these more general obligations; our refine-
ment process can refine the obligations into the ECAs that
implement them. This happens in one of two ways: either an
obligation to an action read (for instance) is directly refined
into an ECA rule to do the read; or else the obligation is
interpreted more along the lines found in work on norm-
governed systems, and the refinement is into ECA rules
notifying the user of the obligation, and taking appropriate
action when the obligation is fulfilled or violated.

As an example of an obligation policy, consider [Platoon
communications officers must file daily activity reports to the
division their platoon belongs to between 2000h and 2200h].
This can be formalized as follows:

obligation(Sub, Tar, fileRep(R), 2000h, 2100h, T)← (6)
holdsAt(obj(Sub, commsOfficer), T),
holdsAt(ass(Sub, belongs, P), T),

holdsAt(obj(P, platoon), T),
holdsAt(obj(Tar, division), T),
holdsAt(ass(P, part of, Tar), T),
holdsAt(obj(R, report), T),
holdsAt(ass(R, reportType, dailySummary), T),
2000h < T 6 2200h.

In addition to obligation policies of the form above, the syntax
allows for the specification of obligations defined for classes of
objects, where any member of the class (as supposed to every
member of the class as above) can fulfill the obligation. These
obligations are not discussed further in the current paper.

An obligation on a subject to perform an action on a target
is fulfilled when the action is done. An obligation is violated
when the time at which it could have been fulfilled runs out;
for instance, fulfilled is defined as follows:

fulfilled(Sub, Tar,Act, Ts, Te, Tdo, T)← (7)
do(Sub, Tar,Act, Tdo),

obligation(Sub, Tar,Act, Ts, Te, Tdo),

Ts 6 Tdo < Te, Tdo 6 T.

obligation(Sub,Tar,Act, Ts, Te, T) must be defined such that
the constraints in its body imply T 6 Te; however, the
obligation may only be fulfilled at a time Tdo before Te.

IV. REFINEMENT RULES

In defining the management and security policies of a
system, it ought only to be necessary to specify the policies
at the highest level of abstraction, and then use refinement
techniques to map those higher-level policies, in successive
phases, to the lowest level. Policies that refer generically to
sensors as targets of configuration actions, for instance, may
first be mapped to types of sensor (audio, or video, say). The
policies derived for audio sensors may then be mapped onto
policies for different models of audio sensors, with model-
specific configuration operations. Finally, policies controlling
configuration operations intended for a given model of audio
sensor may be mapped into policies concerning messages sent
to a certain port of all audio sensors of the relevant model
known to be currently attached to a sensor network.

To achieve this gradual refinement, we use rules to relate
subjects, targets and actions described abstractly, or described
en masse, to the lower level. The basic components of such
rules are known as conditioned actions—expressions which
represent the performance of an action on a target by a subject
in certain contexts, and where the contexts place constraints
on the types of the subjects, targets and actions and the
relationships between them.

Definition 4 Let L be a policy representation language.1 A
conditioned action for L has the form

(Sub, Tar,Act) : C1, . . . , Cn.

where each Ci has one of the forms obj(O,C), ass(O,A,O′),
aggreg(O,A,O′) or comp(O,A,O′). In each case, C must
be a ground class name from the domain, and A must be a
ground association, aggregation, or composition name from
the domain. Any variable occurring in Sub,Tar,Act must also
occur in one of the Ci; this constrains the refinement rule to
apply only to objects of classes present in the UML diagram.y

For example, a conditioned action

(Sub, Tar, read(locDev,wQuad)) : (8)
obj(Sub, device), ass(Sub, owner, X),

obj(Tar, locationServer), ass(Tar, owner, X).

represents the performance of an action of reading information
on the location of devices in the West Quadrant by devices
which belong to the same organization as the location server
from which the information is read. Such conditioned actions
form the basic components of refinement rules.

Definition 5 Let L be a policy representation language, and
C a class definition. A refinement rule is an expression

C ⇒ C1 then · · · then Cn (9)

where C,C1, . . . ,Cn are conditioned actions, and i > 1. C is
called the top of such a rule, and the Ci are bottoms.
More precisely, where R has the form

(Sub, Tar,Act) : Conds⇒ (10)
(Sub1, Tar1,Act1) : Conds1
then . . .

then (Subn, Tarn,Actn) : Condsn

1) There must be obj(Sub, C) and obj(Tar, C ′) in the
conditions of C, such that for some N and L

C |= class(C) ∧ class(C′) ∧ classOp(C′′Act, N, L)

∧ isa trans(C′, C′′)

and further, in each Condsi, 1 6 i 6 n:
2. there is an expression obj(Subi, Ci) (resp. obj(Tari, Ci))

in Condsi, but not Conds, with C |= isa trans(Ci, C)
and obj(Sub, C) (resp. obj(Tar, C)) is in Conds—or
Subi = Sub (resp. Tari = Tar);

3. there is aggreg(Subi, A, Sub) (resp. aggreg(Tari, A,Tar)
in Condsi which is not in Conds, and such that
C |= aggregType(Ci, A,C), Conds |= obj(Sub, C)
and Condsi |= obj(Subi, Ci)—or else Subi = Sub
(resp. Tari = Tar);

4. there is comp(Subi, A, Sub) (resp. comp(Tari, A,Tar) in
Condsi but not in Conds, with C |= compType(Ci, A,C),

1See [2]. L defines the language used to specify both policies and the
domains they operate on.

Conds |= obj(Sub, C) and Condsi |= obj(Subi, Ci)—or
Subi = Sub (resp. Tari = Tar).

In addition, for each i such that 1 6 i 6 n

5. C ∪ Conds ∪ Condsi |= classOp(Tari,Acti, Ni, Li) for
some Ni, Li. y

The meaning of such rules is that the succession of actions
referred to in C1, . . . ,Cn correspond to a refinement of the
higher-level action in C, with then intended to denote tem-
poral sequence. The constraints 1–5 ensure that our refinement
rules respect the UML system model.

Specifically, constraint 1 ensures that the subjects and
targets of the high-level conditioned action appearing in the
refinement rule must be objects of the domain, as defined by
the UML; this constraint also forces the high-level action to
be one of the operations the target supports. Constraints 2–4
ensure that, as we refine, we move to more specific subjects
and targets; for each Ci that constitutes a lower-level action,
either the subject or the target must be more specific, and
neither should be more general or abstract. For instance, if
the subject of the top of a refinement rule is defined to be a
platoon, then the subject of the action into which we refine
could be a soldier belonging to that platoon (this would be
a case of aggregation). Or, the target might be constrained,
in the top of the refinement rule, to be a sensor—a possible
target of the bottom of the refinement rule could be an audio
sensor, the sensor class being a generalization of audio sensors.
Finally, constraint 5 ensures that the refinement rules are well-
formed—the actions Acti of the lower-level parts of the rules
must be operations it is possible to perform on the targets Tari.

As an illustration, consider an action of filing a daily activity
report within the US military. We suppose the workflow for
filing reports is predefined centrally within the US army, and
the procedure must be followed throughout the organization.
Seen at a more abstract perspective, soldiers file reports to
units (not necessarily their own). However, for a soldier to
file a report, a series of actions specified at a more concrete
level must occur. He must first send the report to the report
repository of the unit to which the report is to be filed. He must
then backup the report to that unit’s backup server. When this
has been done, the soldier must notify the communications
officer of the unit that the upload has been completed. The
following refinement rule represents this picture:

(Sub, Tar, fileRep(R)) : (11)
obj(Sub, soldier), obj(Tar, unit)
⇓

(Sub, Tar1, send(R)) :
obj(Tar1, reportRepos), aggreg(Tar1, belongs, Tar)

then (Sub, Tar2, backup(R)) :
obj(Tar2, backupServer), ass(Tar2, belongs, Tar)

then (Sub, Tar3, notify(upload(R))) :
obj(Tar3, commsOfficer), ass(Tar3, belongs, Tar)

Note that the same variable Sub occurs as subject of all actions,
both in the top and bottom of the rule: the same soldier must

send the report, then back it up and make the notification.
However, the target varies: from a report repository, to a
backup server, to a communications officer.

In [7] we used concepts from data integration to formulate
rules and algorithms for the refinement of targets and actions,
for the same broader goal of policy refinement. Data inte-
gration concerns the way in which heterogeneous databases
are mapped to each other so their vocabularies (schemata) are
inter-translatable. Refinement rules as we define them here are
a generalization of that previous work.

V. POLICY DECOMPOSITION

In this section, we examine in detail the decomposition
stage of policy refinement. This itself divides into two parts.
Matching verifies whether a refinement rule is applicable to a
policy; and decomposition proper performs the refinement.

A. Matching

Recall policy (6). In order to refine this using rule (11), vari-
ables are first renamed so as no longer to be shared between
policy and refinement rule. Then, an attempt is made to unify
the head of the top of the refinement rule—in our example,
(Sub,Tar, fileRep(R))—with the corresponding features of the
head of the policy. Let variables in the policy (6) which are
shared with the refinement rule be given a mark ′ to separate
them; the subject, target and action can be matched using the
most general unifier (m.g.u.) θ = {Sub/Sub′,Tar/Tar′, R/R′}.

Next, a test is made to determine whether the constraints
on the action in the body of the top of the refinement rule—
in our example, obj(Sub′, soldier) and obj(Tar′, unit) with θ
applied—are consistent with the conditions on the subject,
target, and action found in the policy. The purpose of this
consistency check is to ensure that there is an overlap between
the circumstances in which the refinement rule and policy
apply. The consistency check is made as follows. Let Conds
be the set of conditions in the top of the refinement rule, and
CondsP be the set of holdsAt conditions in the body of the
policy, with θ applied. Let Conds∗P θ be the result of stripping
the holdsAt(·, ·) predicates from the members of CondsP θ,
leaving the fluents. In our case, we have

Condsθ = {obj(Sub′, soldier), obj(Tar′, unit)}
Conds∗P θ = {obj(Sub′, commsOfficer), aggreg(Sub′, belongs, Us),

obj(Us, platoon), obj(Tar′, division),

aggreg(Us, part of, Tar′), obj(R′, report),

ass(R′, reportType, dailySummary)}

We now check Condsθ and Conds∗P θ for logical consistency,
with respect to the background UML formalization. (The
details are given below, in Definition 6.) If this phase succeeds,
then the refinement rule is known to be applicable to the policy.

Definition 6 Let L be a policy representation language, C a
class description. Given an obligation policy P

obligation(Sub′, Tar′,Act′, Ts, Te, T)← CondsP ,ConsP .

or an authorization policy

[permitted/denied](Sub′, Tar′,Act′, T)← CondsP ,ConsP .

where CondsP are literals and ConsP are constraints, and a
refinement rule R of the form (10), whose variables have been
renamed to be different, we say that P and R head-match
with θ if there is an m.g.u. θ such that (Sub,Tar,Act)θ =
(Sub′, θ′,Act′)θ. Further, if P and R head-match on θ, let
Conds∗P be defined as

{F | ∃T (holdsAt(F, T) ∈ CondsP , F is obj, ass, aggreg or comp}
∪ {¬F | ∃T (not holdsAt(F, T) ∈ CondsP F is an obj, ass,

aggreg or comp fluent}

Let X be C ∪ Conds∗P ∪ Conds. R is said to match P on θ if

∀o[obj(o, c), obj(o, c′) ∈ X →
|= X → (isa trans(c, c′)↔ ¬isa trans(c′, c))] y

If a refinement rule matches a policy on some θ according to
Definition 6, then the rule can be applied to the policy during
policy refinement.

B. Policy Decomposition
After a successful matching process, the policy is decom-

posed. Part of the conditions defining the scope of the refined
policies comes from the original policy, part from the top of
the refinement rule, and part from the conditioned actions in
the bottom of the refinement rule. The circumstances in which
the refined policy applies will be the intersection of these three.

Given conditioned actions C1, . . . ,Cn in the bottom of the
refinement rule, n copies of Pθ are made, with the subject,
target and action of Pθ replaced by those of each Ciθ.
Conditions from the top of the refinement rule that are not
implied by the conditions of the original policy are added to
each of these copies. Conditions from each Ci are added to the
policy. Conditions are added deriving from each conditioned
action Ci that the actions at the head of each Cj , j < i, have
been performed, and in the right order.

Returning to our running example, let PolicyConditions be:

holdsAt(obj(Sub′, commsOfficer), T),

holdsAt(aggreg(Sub′, belongs, Us), T),

holdsAt(obj(Us, platoon), T),

holdsAt(obj(Tar′, division), T),

holdsAt(ass(Us, part of, Tar′), T),

holdsAt(obj(R′, report), T),

holdsAt(ass(R′, reportType, dailySummary), T),

These are the literals that will be inherited from the higher-
level policy. The results for our example are shown below (the
source of the various conditions in the bodies of the policies
has been marked to their left). The policy stemming from the
first conditioned action, C1, is:

obligation(Sub′, Tar1, send(R′), 2000h, 2200h, T)← (12)

C1

[
holdsAt(obj(Tar1, reportRepos), T),
holdsAt(aggreg(Tar1, belongs, Tar′), T),

policy
[

PolicyConditions,
2000h < T 6 2200h.

The policy coming from the second conditioned action, C2:

obligation(Sub′, Tar2, backup(R′), T1, 2200h, T)← (13)

C2

[
holdsAt(obj(Tar2, backupServer), T),
holdsAt(aggreg(Tar2, belongs, Tar′), T),

policy
[

PolicyConditions,
T1 < T < 2200h,

C1

[
fulfilled(Sub′, Tar1, send(R′), 2000h, 2200h, T1, T).

Finally, the policy derived from C3 is:

obligation(Sub′, Tar3, notify(upload(R′)), T2, 2200h, T)← (14)

from C3

[
holdsAt(obj(Tar3, commsOfficer), T),
holdsAt(aggreg(Tar3, belongs, Tar′), T),

policy

 PolicyConditions,
2000h < T1 < 2200h,
T1 < T2 < 2200h,

C1

[
fulfilled(Sub′, Tar1, send(R′), 2000h, 2200h, T1, T),

C2

[
fulfilled(Sub′, Tar2, backup(R′), T1, 2200h, T2, T).

Some description of what has happened here is appropriate.
We focus on the third derived policy. The action is determined
by the conditioned action

(Sub, Tar3, notify(upload(R))) :
obj(Tar3, commsOfficer)
ass(Tar3, belongs, Tar)

from the rule (11). The first set of conditions in the derived
policy’s body is inherited from the specific conditioned action
in the bottom of the action-refinement rule: these define the
nature of the target of the derived policy (it is this target, and
the action in the head of the policy, that are altered from the
high-level policy). Next, there are conditions come from the
high-level policy: these define the subject which must perform
the lower level notify(·) action, the kind of report referred to,
and the relationship of the subject to platoons and divisions.

There are two additional sets of conditions in (14). These
require that, for the obligation policy to hold, the obligations
derived from other conditioned actions in the action decom-
position rule must have been fulfilled. This is a result of
the structure of the refinement rule: one should only notify
of an upload, once the report has been sent and then the
report has been backed up. In general, given a refinement
rule C ⇒ C1 then · · · then Cn, the ordering of actions
is crucial. An obligation to do the action of C is an obligation
to do the actions of the C1, . . . ,Cn in order, and so Ci must be
performed only if Cj , for j < i, have been correctly executed.
To return to our example policy, the times between which the
action that the policy requires must be performed, are T2 and
2200h. 2200h is the final time from the original high-level
policy; T2 is the time at which the obligation derived from
the previous conditioned action C2 was fulfilled.

The refinement of positive authorization policies (with
permitted in their heads) is very similar. The only difference
concerns the temporal constraints on when the derived policies
hold. In an obligation policy, an interval is given, within which
the action must be performed; when the policy is refined, we

have interpreted this to mean that the entire sequence of lower-
level actions must be performed in the interval, in the correct
order. But with authorization policies, in general, a reference
is made in the head of the policy to a single time at which
the action is authorized. We therefore adopt the convention
that it is the final action in the sequence that is authorized at
this time. The high-level policy can be seen as authorizing the
production of certain effects (those which the high-level action
achieves), and these effects are only guaranteed to be achieved
when the entire sequence of actions as been performed.

For negative authorization policies (with denied in their
head), a slightly different tactic is taken. The denial of a high-
level action is the denial of permission to execute a sequence,
but one might interpret this to mean, either the denial of
permission to perform every action in the sequence, or denial
to perform only some of these actions, selected according
to some appropriate criterion. We take the latter approach,
and have chosen in the current work to disallow the final
action of the sequence, as the one that achieves the sequence’s
completion. However, there is no reason why this choice of the
way in which to refine negative authorization policies should
not be made available to the user. Note that the final action of a
sequence is denied, in this model, only if the previous actions
of the sequence have already been performed; this qualification
is achieved by conditions in the body of the derived policy.

Definition 7 Let P be either an obligation or authorization
policy, of any of the forms

obligation(Sub′, Tar′,Act′, Ts, Te, T)← CondsP ,ConsP ,

[permitted/denied](Sub′, Tar′,Act′, T)← CondsP ,ConsP .

Let R be a refinement rule C ⇒ C1 then · · · then Cn. C
has the form (Sub,Tar,Act) : Conds, and each Ci has the form
(Subi,Tari,Acti) : Condsi. Assume that R matches P with
m.g.u. θ. Recall the meaning of Conds∗P from Definition 6.
Matching ensures that Conds and Conds∗P are consistent with
respect to the UML class definitions. Let holdsAt(Conds) be
defined as the set {holdsAt(F, T) | F ∈ Conds} and let
holdsAt∗(Conds) is defined to be

{holdsAt(F, T) | F ∈ Conds and CondsP ∪ C 6|= holdsAt(F, T)}

(i) if P is an obligation policy, then the refinement of P
w.r.t. R is the set of policies

[obligation(Subi, Tari,Acti, Ti, Te, T)← (15)
CondsP , holdsAt∗(Conds),
Fulf1, . . . ,Fulfi−1.]θ

Where Fulfj , for 1 6 j < i is

fulfilled(Subj , Tarj ,Actj , Tj−1, Tj , Te, T). (16)

In the case where j = 1, the condition Tj−1 is replaced by
Ts. The Fulfj expressions ensure that the previous actions in
the series of those required have been correctly performed.

(ii) if P is a positive authorization policy, then the refinement
of P w.r.t. R is the set of policies

[permitted(Subi, Tari,Acti, T)← (17)
CondsP , holdsAt∗(Conds),
Done1, . . . ,Donei−1.]θ

Donej , for 1 6 j < i is

do(Subj , Tarj ,Actj , Tj),

Tj−1 < Tj < Tj ,

holdsAt∗(Cj).

Where j = 1, there is no temporal constraint; where j = i−1,
the constraint is Ti−1 < T .

(iii) finally, if P is a negative authorization policy, then the
refinement of P with respect to R is

[denied(Subn, Tarn,Actn, Tn)← (18)
CondsP ,
holdsAt∗(Conds),
Done1, . . . ,Donen−1.]θ

The definition of Done is the same as for permitted. y

This definition formalizes the preceding discussion.

C. Multiple refinement rules

In a given scenario, be true that many different refinement
rules match a given policy. This could be the case when there
are a number of heterogenous devices, which implement an
action specified at a higher level of abstraction in different
ways. For example, if a generic configure action applies
to devices designated as sensors, this might be refined to
an audio sensor’s having its sampling rate set, and to an
image sensor’s having its resolution set. There would be two
different refinement rules, for each type of sensor, but both
may match the same policy, and a single policy should be
refined using both simultaneously, so the policy may be
implemented on the PDPs applying both to audio sensors and
image sensors. This ability of a single higher-level policy to
be refined in multiple different ways is one of the advantages
of our approach.

VI. OPERATIONALIZATION AND DISTRIBUTION

Operationalization in software engineering is the process
of assigning specific resources for the performance of goals.
In the context of policy refinement, we understand it as the
selection of named entities for the execution of policies.

In a centralized refinement model, we would expect the
following arrangements. There would be a set of policy
refinement rules of the form given by (5), together with a
class definition C, and an instance repository which stores
information about the instances of classes known to exist, and
their relationships (instance repositories can be represented as
instance definitions, as in Section II). A policy to be refined
enters the refinement component, and the refinement rules are
iteratively applied to it—more than one refinement rule may,
of course, apply to a given policy. When policies have reached
the point that no more refinement rules are applicable to them,
then their form is tested against a subset of the language which

is known to describe concretely implementable components
of the domain: class names of actual rather than abstract
devices, and the lowest level of concrete description of the
properties of those devices. If the policies are expressed in this
“implementable” subset of the policy representation language,
then they may be operationalized.

Authorization policies grant or deny the permission to per-
form an action on a target; their operationalization accordingly
means grounding the targets referred to in the heads of rules.
If the target is not currently ground, then those literals in the
body of the authorization policy which include the variable
appearing in the head of the rule as target are collected,
together with literals transitively sharing variables with them.
These are then passed, as a query, to the database holding
the current instance repository. Answers return supply a set of
ground values for the target of the policy; it is to those targets
that the policy is distributed, with the ground target replacing
the target variable in the rule.

In the case of obligation policies, the last stage of refinement
transforms the policy into ECA-type policies which (i) will
notify subjects of the obligation of its imminence, and (ii) take
any necessary action if the obligation is fulfilled or violated.
Operationalization here means the selection of the appropriate
policy monitors to carry out these notifications and responses.

In a fully distributed refinement scenario, partially-refined
policies may be distributed to other refinement-centres, with
local knowledge of devices and their refinement rules. Phases
of decomposition, operationalization and distribution are then
made locally.

VII. RELATED WORK

Policy refinement remains one of the most ambitious goals
in policy-based security management because it aims to auto-
mate the realization of high-level requirements in executable
implementations. Early studies (e.g. [8]) highlighted some of
the specific issues and have attempted to address them in a
very restricted way. However, there has been renewed interest
in this problem in recent years as demonstrated by the panel
discussion at IM 2007 and several recent studies [9], [10],
[11], [12] which address subsets of the problem such as goal
decomposition for refinement or transforming specifications
using predefined mappings. [13] considers a planning approach
to refining change requests into implementable tasks, but does
not consider policies. In [14] a goal is essentially a utility
function which can be optimised to select a set of parameters
for policies used to configure a sensor network. Our approach
is much more general than these rather specialised forms of
policy refinement.

VIII. CONCLUSION

In this paper, we have described the process of action
decomposition in a policy refinement framework we are de-
veloping. Future work must address the formalization of op-
erationalization and distribution, as well as the full integration
of distributed policy refinement with policy analysis.

We are testing the approach for specifying policies relating
to inter-organizational collaborations and the use of sensor
networks. We intend to develop tools to help non-technical
users refine their goals into policies.

Acknowledgment Research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement W911NF-
06-3-0001. The views and conclusions in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government.

REFERENCES

[1] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, A. Bandara, S. Calo,
and M. Sloman, “Expressive policy analysis with enhanced system
dynamicity,” in ASIACCS. ACM, 2009, pp. 239–250.

[2] R. Craven, E. Lupu, J. Lobo, A. Bandara, S. Calo, J. Ma, A. Russo, and
M. Sloman, “An expressive policy analysis framework with enhanced
system dynamicity,” Technical Report, Department of Computing, Im-
perial College London, 2008.

[3] R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, and M. Sloman,
“Distributed policy scenario,” ITA Technical Report, 2010.

[4] R. A. Kowalski and M. J. Sergot, “A logic-based calculus of events,”
New Generation Comput., vol. 4, no. 1, pp. 67–95, 1986.

[5] C. Brodie, C.-M. Karat, and J. Karat, “An empirical study of natural
language parsing of privacy policy rules using the sparcle policy
workbench,” in SOUPS, ser. ACM International Conference Proceeding
Series, L. F. Cranor, Ed., vol. 149. ACM, 2006, pp. 8–19.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” in POLICY, ser. LNCS, M. Sloman, J. Lobo,
and E. Lupu, Eds., vol. 1995. Springer, 2001, pp. 18–38.

[7] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Security policy
refinement using data integration: a position paper,” in SafeConfig ’09:
Proceedings of the 2nd ACM workshop on Assurable and usable security
configuration. New York, NY, USA: ACM, 2009, pp. 25–28.

[8] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284, 1991.

[9] A. K. Bandara, E. Lupu, J. D. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in POLICY. IEEE Computer Society,
2004, pp. 229–239.

[10] S. Davy, B. Jennings, and J. Strassner, “Conflict prevention via model-
driven policy refinement,” in DSOM, ser. Lecture Notes in Computer
Science, R. State, S. van der Meer, D. O’Sullivan, and T. Pfeifer, Eds.,
vol. 4269. Springer, 2006, pp. 209–220.

[11] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A functional solution for goal-ooriented policy refinement,” in POLICY.
IEEE Computer Society, 2006, pp. 133–144.

[12] M. Beigi, S. B. Calo, and D. C. Verma, “Policy transformation tech-
niques in policy-based systems management,” in POLICY. IEEE
Computer Society, 2004, pp. 13–22.

[13] D. Trastour, R. Fink, and F. Liu, “ChangeRefinery: Assisted Refinement
of High-Level IT Change Requests,” Policies for Distributed Systems
and Networks, IEEE International Symposium on, vol. 0, pp. 68–75,
2009.

[14] G. Campbell and K. Turner, “Goals and policies for sensor network
management,” Sensor Technologies and Applications, International Con-
ference on, vol. 0, pp. 354–359, 2008.

