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We study light propagation in biological tissue using the radiative transport equation. The Green’s function
is the fundamental solution to the radiative transport equation from which all other solutions can be com-
puted. We compute the Green’s function as an expansion in plane-wave modes. We calculate these plane-
wave modes numerically using the discrete-ordinate method. When scattering is sharply peaked, calculating
the plane-wave modes for the transport equation is difficult. For that case we replace it with the Fokker–
Planck equation since the latter gives a good approximation to the transport equation and requires less work
to solve. We calculate the plane-wave modes for the Fokker–Planck equation numerically using a finite-
difference approximation. The method of computing the Green’s function for it is the same as for the trans-
port equation. We demonstrate the use of the Green’s function for the transport and Fokker–Planck equa-
tions by computing the point-spread function in a half-space composed of a uniform scattering and absorbing
medium. © 2004 Optical Society of America

OCIS codes: 170.3660, 030.5620, 000.3860.
1. INTRODUCTION
The radiative transport equation governs light propaga-
tion in random media such as biological tissue.1 Hence,
solutions of it provide basic insight into the interaction
between light and tissue. The Green’s function is the
fundamental solution to the radiative transport equation
from which all other solutions can be computed. This
theory for the radiative transport equation is well
known.2,3 However, the Green’s function is not known
except for relatively simple situations.

We shall describe a method to compute the Green’s
function for the transport equation. It is given as an
analytical expansion in plane-wave modes. Plane-wave
modes are general solutions to the radiative transport
equation. They have useful symmetry and orthogonality
properties. Because these plane-wave modes are not
known analytically, we calculate them numerically using
the discrete-ordinate method.

Biological tissue scatters light strongly in the forward
direction. This sharp peak requires large computational
resources to calculate plane-wave modes with adequate
resolution. For that case we shall replace the transport
equation by the Fokker–Planck equation.4 It requres
less work to solve than the transport equation for sharply
peaked forward scattering. The method to compute the
Green’s function is the same as for the transport equa-
tion. It is just that the plane-wave modes are different.
We calculate plane-wave modes for the Fokker–Planck
equation by using a finite-difference approximation.

Kim and Keller4 have given several results regarding
plane-wave solutions for the transport and Fokker–
Planck equations that we shall use here. In particular,
they have identified an important symmetry property.
Here, we shall discuss also the orthogonality of plane-
wave modes. It is the use of both the symmetry and or-
thogonal properties of plane-wave modes that allows us to
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compute the Green’s function readily. Furthermore, that
previous discussion is limited to problems with planar
and azimuthal symmetry. We shall extend their results
to consider more general problems.

We shall use the Green’s function for the transport and
Fokker–Planck equations to compute the point-spread
function in a half-space. The point-spread function is the
radiance exiting the half-space as a result of a unit source
in position and direction. The half-space is composed of a
uniform scattering and absorbing medium. For an opti-
cally thick medium such as biological tissue, the diffusion
approximation is often used.1 It assumes that light un-
dergoes sufficient multiple scattering that the radiance
becomes isotropic. We shall show that the point-spread
function possesses a nontrivial direction dependence even
for sources located deep in the half-space. Hence, the
key assumption in the diffusion approximation is not
valid for the point-spread function.

We review the radiative transport equation for light
propagation in biological tissue in Section 2. In Section 3
we discuss plane-wave modes and the numerical method
used to calculate them. In Section 4 we compute the
Green’s function as an expansion in plane-wave modes.
In Section 5 we discuss the Fokker–Planck equation for
sharply peaked forward scattering problems and the nu-
merical method for computing its plane-wave solutions.
We derive the point-spread function in a half-space com-
posed of a uniform scattering and absorbing medium and
present results of it in Section 6. We present our conclu-
sions in Section 7.

2. RADIATIVE TRANSPORT EQUATION
The time-independent radiance C is the radiant power
per unit solid angle per unit area perpendicular to the di-
rection of propagation. It depends on a position vector r
2004 Optical Society of America



Arnold D. Kim Vol. 21, No. 5 /May 2004/J. Opt. Soc. Am. A 821
and a unit direction vector v. The radiative transport
equation,

v • ¹C 1 saC 1 ssLC 5 Q, (1)

governs C in a scattering and absorbing medium. The
absorption and scattering coefficients are denoted by sa
and ss , respectively. Q denotes an interior source. The
scattering operator L is defined as

LC 5 C~v, r! 2 E
V

f~v – v8!C~v8, r!dv8. (2)

Integration in Eq. (2) takes place over the unit sphere V.
The scattering phase function f gives the fraction of light
scattered in direction v as a result of light incident in di-
rection v8. We assume that f depends only on the cosine
of the scattering angle v – v8.

The solution of Eq. (1) in a spatial domain D with
boundary surface S is determined uniquely by internal
sources and the radiance incident on the surface.2

Hence, Eq. (1) is a well-posed problem, provided that it is
supplemented with boundary conditions of the form

C~v, rs! 5 h~v, rs!, v P V in~rs!, rs P S.
(3)

V in(rs) is the set of unit direction vectors pointing into D
at a point rs on S. It is defined as

V in~rs! 5 $v : v • n̂~rs! . 0%, (4)

with n̂(rs) denoting the unit inward normal at rs .
The solution to Eq. (1) with Eq. (3) in a domain D with

boundary S is given by the general representation
formula2,3

C~v, r! 5 E
D
E

V
G~v, r; v8, r8!Q~v8, r8!dv8dr8

1 E
S
E

V
G~v, r; v8, rs8!@v8 • n̂~rs8!#

3 C~v8, rs8!dv8drs8 . (5)

The Green’s function G(v, r; v8, r8) is the solution of Eq.
(1) in the whole space with Q(v, r) 5 d (v 2 v8)d (r
2 r8) that is bounded for all r Þ r8. The surface inte-
gral term in Eq. (5) contains the Green’s function for a
source located at the boundary surface. It is formally de-
fined as the limiting value of the Green’s function as the
source location approaches the boundary from within the
domain.2,3

The second term in Eq. (5) requires that the radiance at
the boundary surface be known for all directions. How-
ever, it is known, from Eq. (3), only for directions pointing
into the domain. To obtain the radiance over the remain-
ing directions, we must solve the surface integral
equation3
C~v, rs! 5 E
D
E

V
G~v, rs ; v8, r8!Q~v8, r8!dv8dr8

1 E
S
E

V
G~v, rs ; v8, rs8!@v8 • n̂~rs8!#

3 C~v8, rs8!dv8drs8 . (6)

This integral equation is for the radiance over all direc-
tions. Hence, it is a coupled system of integral equations
for

C~v, rs! 5 H C in~v, rs! v P V in~rs!

Cout~v, rs! v P Vout~rs!
, (7)

with

Vout~rs! 5 $v : v • n̂~rs! , 0%. (8)

By solving Eq. (6), we determine C on S for all directions.
The solution anywhere in D follows from evaluating Eq.
(5).

3. PLANE-WAVE MODES
We study plane-wave mode solutions to the homogeneous
transport equation, which is Eq. (1) with Q 5 0. Plane-
wave solutions take the form

C~n, m, r, z ! 5 ~2p! 2 2 E
R2

V~n, m; k!exp@l~k!z#

3 exp~ik – r!dk. (9)

In Eq. (9) we express the position vector as r 5 (r, z) and
the direction vector as v 5 (n, m). By substituting Eq.
(9) into Eq. (1) and Fourier transforming that result with
respect to r we obtain the eigenvalue problem

lmV 1 in – kV 1 saV 1 ssLV 5 0. (10)

Both l and V depend on k parametrically. A portion of
the eigenvalue spectrum is continuous.2 In the discus-
sion that follows, discrete sums are meant to include in-
tegration over the continuous spectrum.

A. Symmetry
Kim and Keller4 showed that for each pair
@l(k), V(n, m; k)# solving Eq. (10), the pair
@2l(k), V(n, 2m; k)# also solves it. This can be verified
by substituting the second pair into Eq. (10) and recogniz-
ing the invariance of L under the change from m to 2m.

In light of this symmetry, we order the eigenvalues by
their real part. Furthermore, we index the eigenvalues
so that Re(lj) . 0 for j . 0 and Re(lj) , 0 for j , 0.
Hence, the symmetry property of plane-wave modes is
given as

l2j 5 2l j , V2j~n, m; k! 5 Vj~n, 2m; k!,

j 5 1, 2,... . (11)

B. Orthogonality
Consider Eq. (10) for two different pairs @l j , Vj(n, m)#
and @lk , Vk(n, m)#:
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l jmVj 1 in – kVj 1 saVj 1 ssLVj 5 0, (12a)

lkmVk 1 in – kVk 1 saVk 1 ssLVk 5 0.
(12b)

We multiply Eq. (12a) by Vk and Eq. (12b) by Vj , inte-
grate both results over the unit sphere, and take the dif-
ference. This manipulation yields

~l j 2 lk!E
V

Vj~n, m!Vk~n, m!mdv 5 0. (13)

From Eq. (13) we determine that the plane-wave modes
are orthogonal with respect to an inner product having
weight m.

Suppose that

E
V

Vj~n, m!Vj~n, m!mdv 5 c. (14)

Changing integration variables from m to 2m in Eq. (14)
and using Eq. (11), we determine that

E
V

V2j~n, m!V2j~n, m!mdv 5 2c. (15)

In view of Eq. (15) we normalize plane-wave modes as

E
V

Vj~n, m!Vj~n, m!mdv 5 H 11 for j , 0

21 for j . 0
. (16)

C. Completeness
It can be shown that plane-wave modes are complete over
the full range.2 We now show that half of them are com-
plete over the half-range. Consider the one-dimensional
problem

m]zC~v, z ! 1 saC~v, z ! 1 ssLC~v, z ! 5 0 (17)

in the half-space z . 0 with the boundary condition

C~v, 0! 5 h~v!, v • ẑ . 0. (18)

We impose also that the solution is bounded for all z
. 0. The solution to this problem exists and is unique.

Because of planar symmetry we need to consider only
plane-wave modes for k 5 (0, 0). Using completeness of
plane-wave modes, we write the general solution to Eq.
(17) as

C~v, z ! 5 (
j

aj exp~l jz !Vj~v!. (19)

To impose boundedness for all z . 0, we set aj 5 0 for j
. 0, thereby removing exponentially growing terms in
Eq. (19). By imposing the boundary condition of Eq. (18),
we obtain the linear system

(
j,0

ajVj~v! 5 h~v!, v • ẑ . 0. (20)

Because there is at most one solution to this half-space
problem, it follows that Eq. (20) must hold for any func-
tion h defined over the hemisphere V1 5 $v : v • ẑ
. 0%. Therefore, half of the plane-wave modes (those

with indices j , 0) are complete over the half-range. A
similar analysis can be done to show that the plane-wave
modes for which j . 0 are complete over the hemisphere
V2 5 $v : v • ẑ , 0%.

D. Numerical Method for Calculating Plane-Wave
Modes for the Transport Equation
We solve Eq. (10) with L defined by Eq. (2) by using the
discrete-ordinate method. The direction vector v is
given in terms of the cosine of the polar angle m 5 cos u
and the azimuthal angle f as

v 5 @~1 2 m2!1/2 cos f, ~1 2 m2!1/2 sin f, m#. (21)

We use an M-point, Gauss–Legendre quadrature rule for
m with abscissas mm and weights wm . The plane-wave
modes are 2p-periodic in f, so we use an N-point ex-
tended trapezoid rule with abscissas fn 5 2p 1 (n
2 1)Df for j 5 1,...,N and constant weights Df
5 2p/N. Using these quadrature rules, we obtain the
approximation for the scattering operator:

LV~mm , fm! ' V~mm , fn!

2 (
m851

M

(
n851

N

f~mm , fn ; mm8 , fn8!

3 V~mm8 , fn8!wm8Df. (22)

We use Eq. (22) in Eq. (10) and seek the values of V at
the discrete points (mm , fn). This yields the MN
3 MN matrix eigenvalue problem

lmmV~mm , fn! 1 i~1 2 mm
2 !1/2~kx cos fn

1 ky sin fn)V~mm , fn! 1 saV~mm , fn!

1 ssLV~mm , fn! 5 0,

m 5 1,..., M, n 5 1,..., N. (23)

Here k 5 (kx , ky). Solving Eq. (23) yields MN eigenval-
ues. We choose M and N so that MN is even.

To normalize the plane-wave modes as in Eq. (16), we
use the quadrature rules to compute the normalization
factor

g j 5 (
m51

M

(
n51

N

Vj~mm , fn!Vj~mm , fn!mmwmDf. (24)

Then we scale the calculated plane-wave modes by
(2g j)

1/2 for j . 0 and (1g j)
1/2 for j , 0.

Because of the symmetric quadrature rules used in re-
lation (22), the symmetry given in Eq. (11) is retained so
that l2j 5 2l j and V2j(mm , fn) 5 Vj(mM2m11 , fn) for
j 5 1,...,MN/2. We order the eigenvalues by their real
parts and index them as follows:

Re~l2MN/2! , ¯ , Re~l21! , Re~l11! , ¯

, Re~l1MN/2!. (25)

We solve Eq. (23) for each (kx , ky) on an equally spaced
grid. This grid is chosen in relation to an equally spaced
grid in (x, y) for use in a two-dimensional, discrete Fou-
rier transform. Those results are stored in physical
memory. In fact, only half of the eigenvalues and eigen-
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vectors (i.e., those for which j . 0) are kept. The others
can be computed readily by using the symmetric property
of plane-wave modes.

4. GREEN’S FUNCTION
Suppose we have calculated all of the plane-wave modes.
We now use them to compute the Green’s function. The
Green’s function satisfies

v • ¹G 1 saG 1 ssLG 5 d ~v 2 v8!d ~r 2 r8!
(26)

in the whole space. It is translationally invariant.
Hence, we seek G in the form

G~v, r; v8, r8! 5
1

~2p!2
E

R2
Ĝ~v, z; v8, z8, k!

3 exp@ik • ~r 2 r8!#dk, (27)

where Ĝ solves

m]zĜ 1 in – kĜ 1 saĜ 1 ssLĜ 5 d ~v 2 v8!d ~z

2 z8!. (28)

We impose that Ĝ is bounded for all z Þ z8. By integrat-
ing Eq. (28) about a small interval about z8, we obtain the
jump condition

mĜ~v, z8 1 0; v8, z8, k! 2 mĜ~v, z8 2 0; v8, z8, k!

5 d ~v 2 v8!. (29)

We seek Ĝ as a plane-wave mode expansion

Ĝ~v, z; v8, z8, k! 5 (
j

gj~z; v8, z8, k!Vj~v!.

(30)

By substituting Eq. (30) into Eq. (28) and using Eq. (12a),
we obtain

(
j

$@]z 2 l j~k!#gj~z; v8, z8, k!mVj~v; k!%

5 d ~v 2 v8!d ~z 2 z8!. (31)

By using the orthogonal properties of plane-wave modes,
we arrive at

]zgj~z; v8, z8, k! 2 l j~k!gj~z; v8, z8, k!

5 2sgn~ j !Vj~v8; k!d ~z 2 z8!, (32)

with sgn( j) 5 j/u ju. From Eq. (32) we deduce that gj
5 2sgn( j)Cj(z; z8, k)Vj(v8) where Cj satisfies

]zCj~z; z8, k! 2 l j~k!Cj~z; z8, k! 5 d ~z 2 z8!.
(33)

We seek the solution to Eq. (33) that is bounded for all z
Þ z8 and satisfies

Cj~z8 1 0; z8, k! 2 Cj~z8 2 0; z8, k! 5 1. (34)

The solution is readily found to be
Cj~z; z8, k!

5 5
2exp@l j~k!~z 2 z8!#, z , z8, j . 0

0, z , z8, j , 0

0, z . z8, j . 0

1exp@l j~k!~z 2 z8!#, z . z8, j , 0

.

(35)

Therefore Ĝ is given by

Ĝ~v, z; v8, z8, k!

5 5 (
j.0

exp@l j~k!~z 2 z8!#Vj~v; k!Vj~v8; k!, z , z8

(
j,0

exp@l j~k!~z 2 z8!#Vj~v; k!Vj~v8; k!, z . z8

.

(36)
The Green’s function G(v, r; v8, r8) is recovered by sub-
stituting Eqs. (36) into Eq. (27).

Equation (36) is approximate because we calculate the
plane-wave modes numerically. If the plane-wave modes
are known exactly, then it would be exact. For the case of
isotropic scattering with planar symmetry, Case and
Zweifel2 have computed the plane-wave modes analyti-
cally. Their analysis extends to a weakly anisotropic
scattering phase function. However, this analysis re-
quires extensive numerical calculations for general scat-
tering problems. Another way to interpret Eqs. (36) with
numerically calculated plane-wave modes is that it is the
exact Green’s function for the system of differential equa-
tions resulting from the discrete-ordinate method.

5. SHARPLY PEAKED FORWARD
SCATTERING
Biological tissue scatters light strongly with a sharp for-
ward peak. This sharp peak requires a large number of
angle points in the discrete-ordinate method to resolve it
sufficiently well. Hence the matrix eigenvalue problem
of Eq. (23) becomes very large, resulting in long computa-
tion times.

For biological tissue with sharply peaked forward scat-
tering, Kim and Keller4 proposed replacing the radiative
transport equation by the Fokker–Planck equation. The
latter is the same equation as Eq. (1) except for the scat-
tering operator which is given by

LC 5 2
1
2 ~1 2 g !DC. (37)

Here D is the spherical Laplacian and g is the anisotropy
factor defined as

g 5 2pE
21

11

v – v8f~v – v8!d~v – v8!. (38)

The theory for the Fokker–Planck equation is the same
as that for the radiative transport equation. Therefore,
we can make use of Eqs. (36) to compute the Green’s func-
tion for the Fokker–Planck equation. The only differ-
ence is that the plane-wave mode solutions are different.

To solve Eq. (10) with L defined by Eq. (37), we approxi-
mate the spherical Laplacian D by finite differences. For
the m derivatives, we use a differencing scheme due to
Morel.5 For the f derivatives, we use second-order, cen-
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tered finite differences. The m and f grid points are the
same Gauss–Legendre and extended-trapezoid-
quadrature points, respectively, that are used for the
transport equation.

Let a1/2 5 0 and

am11/2 5 am21/2 2 2mmwm , m 5 1,..., M (39)

with wm the Gauss–Legendre quadrature weights. By
construction aM11/2 5 0. The finite-difference approxi-
mation for D that we use is

DV~mm , fn!

'
1

wm
Fam11/2

V~mm11 , fn! 2 V~mm , fn!

mm11 2 mm

2 am21/2

V~mm , fn! 2 V~mm21 , fn!

mm 2 mm21
G 1

1

1 2 mm
2

3 FV~mm , fn11! 2 2V~mm , fn! 1 V~mm , fn21!

~Df !2 G .

(40)

The function V(m, f ) is 2p-periodic in f so

V~m, f ! 5 V~m, f 1 2p!. (41)

In view of Eq. (41) we require that V(mm , f0)
5 V(mm , fN) and V(mm , fN11) 5 V(mm , f1) in rela-
tion (40). Since a1/2 5 aM11/2 5 0, we do not need to
evaluate terms in relation (40) involving m0 and mM11 .

We use relation (40) in Eq. (10) and evaluate V at
(mm , fn) to obtain the matrix eigenvalue problem

lmmV~mm , fn! 1 i~1 2 mm
2 !1/2~kx cos fn

1 ky sin fn)V~mm , fn! 1 saV~mm , fn!

2
1
2ss~1 2 g !DV~mm , fn! 5 0,

m 5 1,..., M, n 5 1,..., N. (42)

After solving Eq. (42), we normalize the plane-wave
modes for the Fokker–Planck equation just as we have
done with the transport equation. The eigenvalue sym-
metry is retained. Hence, we index and order both sets
of eigenvalues and eigenfunctions as we have done for the
transport equation. It is solved for the same k
5 (kx , ky) grid used for the transport equation.

The resolution requirements for Eq. (42) are dictated
solely by resolving the spherical Laplacian adequately
well. Once this resolution is set, it need not change for
different parameter values. In fact, the resolution re-
quirements for Eq. (42) are significantly smaller than
those for Eq. (23) for sharply peaked forward scattering.
So for sharply peaked forward scattering, the Fokker–
Planck equation requires less work to solve than the
transport equation.

Kim and Keller4 showed that a modified Fokker–
Planck equation due to Leakeas and Larsen6 is a better
approximation than the original Fokker–Planck equa-
tion. The scattering operator for it is LC 5 aD(I
2 bD)21, with I denoting the identity operator. The pa-
rameters a and b are determined from the first three co-
efficients of the Legendre polynomial expansion of the
phase function. The plane-wave modes for the Leakeas–
Larsen equation can be calculated also using relation
(40). Then the Green’s function is computed by using Eq.
(36).

6. POINT-SPREAD FUNCTION
We use the Green’s function to compute the point-spread
function in a half-space composed of a uniform scattering
and absorbing medium. The point-spread function is the
radiance exiting the half-space z . 0 at the boundary z
5 0 resulting from a unit source in position and direction
located inside the half-space.

We wish to solve

v • ¹C 1 saC 1 ssLC 5 d ~r!d ~z 2 z8!d ~v 2 v8!

(43)

in the half-space z . 0 subject to the boundary condition

C~v, r, z 5 0 ! 5 0, v • ẑ . 0, r P R2.
(44)

The point-spread function is C(v, r, 0) for v • ẑ , 0.
The Green’s function solves Eq. (43) but does not satisfy

condition (44). Hence, we seek C in the form

C 5 G 2 Y (45)

where Y is a bounded and regular solution of the homoge-
neous problem in the half-space. We impose condition
(44) by using Eq. (45) and determine that

Y~v, r, 0; v8, 0, z8! 5 G~v, r, 0; v8, 0, z8!,

v • ẑ . 0. (46)

Hence, Y satisfies the homogeneous, half-space problem
with boundary condition (46). From the discussion on
the half-range completeness of plane-wave modes, we
know that Y takes the form

Y~v, r; v8, r8! 5
1

~2p!2
E

R2
Ŷ~v, z; v8, z8, k!

3 exp~ik – r!dk, (47)

with

Ŷ~v, z; v8, z8,k! 5 (
j,0

yj~v8, z8; k!

3 exp@l j~k!z#Vj~v; k!. (48)

By imposing condition (46), we find that yj solves the lin-
ear system

(
j,0

yj~v8, z8; k!Vj~v! 5 Ĝ~v, 0; v8, z8, k!,

v • ẑ . 0. (49)

Because z8 . 0 we determine from Eq. (36) that
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Ĝ~v, 0; v8, z8, k! 5 (
j.0

exp@2l j~k!z8#

3 Vj~v; k!Vj~v8; k!. (50)

Equation (49) must hold for all v8, but not for all v.
Hence, we seek yj as the plane-wave mode expansion

yj~v8, z8; k! 5 (
k

djk~k!exp@2lk~k!z8#Vk~v8; k!.

(51)

By substituting Eqs. (51) and (50) into Eq. (49), multiply-
ing by m8, and integrating over V we obtain the linear sys-
tem

(
j,0

djk~k!Vj~v; k! 5 Vk~v; k!,

v • ẑ . 0, k . 0. (52)

For k , 0, djk is identically zero. After solving system
(52) we compute Ŷ by evaluating

Ŷ~v, z; v8, z8,k! 5 (
j,0

H (
k.0

djk~k!

3 exp@2lk~k!z8#Vk~v8; k!J
3 exp@l j~k!z#Vj~v; k!. (53)

We recover Y by substituting Eq. (53) into Eq. (47).

A. Isotropic Scattering Results
We have calculated the point-spread function by using the
radiative transport equation with isotropic scattering.
Since scattering is isotropic, the scattering phase function
is f(v – v8) 5 1/4p. We have computed the plane-wave
modes for the transport equation by using 16 points in m
and 16 points in f. Hence, the matrix eigenvalue prob-
lem of Eq. (23) has size 256 3 256. We have solved it for
a 64 3 64 grid in (x, y) chosen to sample 20 square mean
free paths ls 5 ss

21. It took approximately 1.5 h to com-
pute all of the plane-wave modes on a 2.53-GHz, Pentium
IV, Linux workstation. Once the plane-wave modes were
computed, the point-spread function took approximately 5
min to compute.

Figure 1 shows a contour plot of the point-spread func-
tion for a fixed observation direction (m, f )
5 (20.9894, p). Scattering in the medium is isotropic
with sa /ss 5 0.01. The source is at depth z8 5 4ls in di-
rection (m8, f 8) 5 (20.9894, 0). The x and y axes are
normalized with respect to ls . The point-spread function
for this observation direction has been normalized so that
it integrates to unity with respect to x and y.

The source and observation directions are not normal
to the boundary plane. Hence, there is no axisymmetry.
Figure 1 shows the peak of the point-spread function
skewed slightly from the center. The radial width of the
point-spread function is approximately 2ls at its half-
maximum.

Figure 2 shows a contour plot of the same point-spread
function evaluated in a different observation direction
(m, f ) 5 (20.8565, p). The source location and direc-
tion are the same as in Fig. 1. This result shows a larger
departure from axisymmetry than Fig. 1.

We compare the results from Figs. 1 and 2 in Fig. 3. It
shows the PSF as a function of x for fixed values of y (top)
and as a function of y for fixed values of x (bottom). The
dark curves are for (m, f ) 5 (20.9894, p) and the light
curves are for (m, f ) 5 (20.8565, p). Differences be-
tween the two different observation directions are seen
most with respect to x. Differences with respect to y are
not as pronounced since the azimuthal angle is f 5 p for
both observation directions.

B. Sharply Peaked Forward Scattering
We have computed the plane-wave modes for the Fokker–
Planck equation by using 16 points in m and 16 points in

Fig. 1. Contour plot of the point-spread function for the radia-
tive transport equation evaluated in direction (m, f )
5 (20.9894, p). The half-space is an isotropic scattering me-
dium with sa /ss 5 0.01. It is for a source at depth z8 5 4ls in
direction (m8, f 8) 5 (20.9894, 0). The x and y axes are nor-
malized by the scattering mean free path ls . The gray scale of
the contours is given in decibels.

Fig. 2. Same as Fig. 1, but evaluated in the direction (m, f )
5 (20.8565, p).
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Fig. 3. Comparison of the results shown in Figs. 1 and 2. The
top plot shows the point-spread function as a function of x nor-
malized by ls for y 5 0, 2.5ls , and 5.0ls . The bottom plot shows
the point-spread function as a function of y normalized by ls for
x 5 0, 2.5ls , and 5.0ls . Dark curves, (m, f ) 5 (20.9894, p);
light curves, (m, f ) 5 (20.8565, p).

Fig. 4. Contour plot of the point-spread function for the
Fokker–Planck equation with g 5 0.95. All other parameters
are the same as in Fig. 1.
f leading to the matrix eigenvalue problem of size 256
3 256. We have solved it for the same (x, y) grid used
for the transport equation.

Figure 4 shows a contour plot of the point-spread func-
tion at a fixed observation direction computed from the
Fokker–Planck equation. Scattering in the medium is
sharply peaked in the forward direction with g 5 0.95.
All other parameters are the same as in Fig. 1.

There are qualitative differences between the case with
sharply peaked forward scattering shown in Fig. 4 and
that with isotropic scattering shown in Fig. 1. To exam-
ine these differences more closely, we compare results
from Figs. 1 and 4 in Fig. 5. It shows the point-spread
function as a function of x for fixed values of y (top) and as
a function of y for fixed values of x (bottom). The dark
curves are results from the Fokker–Planck equation with
g 5 0.95 and the light curves are from the radiative
transport equation with g 5 0.

For a sharply peaked forward scattering medium, the
peak of the point-spread function is much more pro-
nounced than that for an isotropic scattering medium.
In addition, the dynamic range is much larger for the

Fig. 5. Comparison of the results shown in Figs. 1 and 4. Dark
curves, results from the Fokker–Planck equation; light curves,
results from the radiative transport equation. All other param-
eters are the same as in Fig. 3.
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sharply peaked forward scattering medium than the iso-
tropic scattering medium.

C. Asymptotic Result
Suppose that the source is situated deep inside the half
space. In that case the contribution from most of the
plane-wave modes in Eqs. (50) and (53) to the point-
spread function is small. By neglecting all plane-wave
modes except for the slowest decaying one, we compute
the asymptotic result of the point spread function as z8
→ `.

The Fourier transform of the point spread function de-
fined as

Ĉ~v, 0; k! 5 E
R2

C~v, r, 0!exp~2ik – r!dr. (54)

Fourier transforming Eq. (45) yields Ĉ 5 Ĝ 2 Ŷ. Be-
cause the eigenvalues l j are ordered by their real parts,
the terms in a plane-wave mode expansion involving
exp@2l1(k)z8# in Eqs. (50) and (53) are the slowest decay-
ing ones as z8 → `. Neglecting terms involving faster
decaying modes yields the asymptotic result

Ĉ~v, 0; k! ; exp@2l1~k!z8#V1~v8; k!

3 FV1~v; k! 2 (
j,0

dj,1~k!Vj~v; k!G ,

as z8 → `. (55)

The coefficients dj,1 are determined from Eq. (52) and do
not depend on z8.

For a strongly scattering and weakly absorbing me-
dium, the diffusion approximation1 is used often. The
diffusion approximation assumes that light undergoes so
much multiple scattering that the radiance becomes iso-
tropic. However, the summation term in relation (55)
shows that the point-spread function still maintains a sig-
nificant amount of directional information. This is be-
cause the radiance must satisfy the boundary condition
(44).

7. CONCLUSIONS
We have discussed a method to compute the Green’s func-
tion for the radiative transport equation. Its Fourier
transform with respect to transverse spatial variables is
given as an analytical expansion in plane-wave modes in
Eq. (36). These plane-wave modes have been calculated
numerically using the discrete-ordinate method.
For problems with sharply peaked forward scattering,
we have replaced the radiative transport equation with
the Fokker–Planck equation. It requires less work to
solve than the radiative transport equation for that situ-
ation. The method of computing the Green’s function is
the same as for the transport equation. The only differ-
ence is in calculating the plane-wave modes, which is
done by using a finite-difference approximation.

We have used the Green’s function for the radiative
transport and Fokker–Planck equations to compute the
point-spread function in a half-space composed of a uni-
form scattering and absorbing medium. For sharply
peaked forward scattering, the peak of the point-spread
function is more pronounced than that for isotropic scat-
tering.

We have derived the asymptotic result of relation (55)
for the point-spread function when the source is deep in-
side the half-space. It shows that the point-spread func-
tion has a nontrivial direction dependence. Because the
fundamental assumption in the diffusion approximation
is not satisfied, it should not be used to compute the point-
spread function.
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