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Abstract— Sampling-based algorithms have dramatically im-
proved the state of the art in robotic motion planning.
However, they make restrictive assumptions that limit their
applicability to manipulators operating in uncontrolled and
partially unknown environments. This work describes how one
of these assumptions—that the world is perfectly known—can
be removed. We propose a utility-guided roadmap planner that
incorporates uncertainty directly into the planning process.
This enables the planner to identify configuration space paths
that minimize uncertainty and, when necessary, efficiently
pursue further exploration through utility-guided sensing of
the workspace. Experimental results indicate that our utility-
guided approach results in a robust planner even in the
presence of significant error in its perception of the workspace.
Furthermore, we show how the planner is able to reduce the
amount of required sensing to compute a successful plan.

I. INTRODUCTION

Most sampling-based motion planners rely on two basic

assumptions: that the world is perfectly known and that it

is either static or evolves in a predictable manner. These as-

sumptions are plausible in a number of application domains,

ranging from virtual prototyping and character animation to

molecular biology [1]—and sampling-based motion planners

have had great success in these domains. In contrast, these

assumptions do not hold for physical manipulators acting

in uncontrolled, unstructured, real-world environments. In

these environments, the planner only has partial knowledge

of its surroundings and this knowledge may be inaccurate

or outdated. For sampling-based motion planners to be use-

ful for high-dimensional, real-world motion planning, these

restrictions must be removed.

In this paper we take an important first step toward

enabling such real-world sampling-based motion planning.

We introduce a sampling-based planner that incorporates

sensor uncertainty into the planning process. This planner

also suggests sensing actions which refine its incomplete and

uncertain world model. The planner begins with a particular

path query and incomplete, inaccurate information about

the world. When necessary, it identifies the most useful

additional sensing action, refines its understanding of the

world based on the resulting information, and recomputes

the most reliable motion. By iterating the invocation of this

planner from within a “sense, plan, act” control loop, it is

possible to generate robust motion for complex robots in

uncertain environments.

In principle, such a control loop could use any planner.

However, the explicit consideration of uncertainty and sens-

ing actions in the planning process has several advantages.

First, it allows the planner to operate despite inaccurate

knowledge of the environment. Second, dynamic environ-

ments can be addressed simply by increasing the uncertainty

in outdated regions of the environment. Third, the considera-

tion of uncertainty enables the planner to determine motions

that have a high probability of success in the absence of

perfect sensing. Finally, the generation of on-board or off-

board (smart room) sensing actions based on the particular

motion objective minimizes the cost of sensing required to

obtain the information required for successful planning.

Our experimental evaluation demonstrates that the pro-

posed planner can successfully plan using partial and un-

certain information about the world, shows that the explicit

consideration of uncertainty improves the success rate of

plans, and validates that our guided exploration is effective

at reducing the sensing necessary for solving a planning

problem.

II. RELATED WORK

The work proposed here aims to apply motion planing

to real-world scenarios that include uncertainty and thus

potentially require feedback. The area of feedback motion

planning has recently received increased attention in the

literature. Conner et al. [2] propose a hybrid control system

which combines a set of local control policies with a dis-

crete planner. Lindemann and LaValle [3] propose a general

theoretical approach to feedback planning using cylindrical

algebraic decompositions of the configuration space. The

elastic roadmap [4] consists of a series of configuration space

milestones and local controllers which link the milestones

together. Plans computed in the roadmap use the local con-

trollers to maintain task constraints and obstacle avoidance

while executing the plan. Van den Berg and Overmars [5]

also propose integrating a roadmap and local control. Their

planner, which is intended to handle dynamic obstacles,

computes a roadmap for static obstacles in the environment

and then uses a local obstacle avoiding controller to execute

the edges that connect two milestones together. In contrast

to our work, none of these approaches explicitly consider

integrating uncertainty or sensory refinement and planning.

The problem of sampling-based motion planning in dy-

namic environments was first considered by Leven and

Hutchinson [6] who propose a roadmap representation that

can be efficiently modified as obstacles move. Another



approach [7] assumes a finite set of dynamic obstacles,

such as doors, whose motion is known. In this work the

roadmap is augmented to label edges as possibly obstructed

by a dynamic obstacle. When a path is computed in the

roadmap, these possibly obstructed edges are re-checked to

ensure they are currently free. If a path can not be found, a

local planner is used to reconnect and replace the obstructed

edge in the roadmap. A further refinement of this hybrid

roadmap approach [8] also constructs a roadmap for the static

portions of the environment. When the roadmap is queried it

is augmented with a time dimension to enable consideration

of dynamic obstacles and changing environmental properties.

They also propose incremental replanning of the path as new

information is obtained in the process of plan execution.

However, they do not explicitly guide acquisition of new

information.

A significant amount of recent research on uncertainty

in robotics has focused on the problem of simultaneous

localization and mapping (SLAM) for mobile robots [9].

The work in SLAM provides some of the inspiration for

the use of modeling and probability estimation in order to

minimize uncertainty. SLAM solves an important problem,

namely how a maximally accurate model of the workspace

can be constructed from noisy and erroneous sensor data

and how this model can be used to localize the robot. A

workspace model, however, is not sufficient for motion plan-

ning. For motion planning, the uncertainty in the model of the

workspace must be translated into uncertainty in the model

of the configuration space. In turn, this uncertainty must be

integrated into the planner to identify paths that minimize the

expected cost, due to failure, of the motion plan. Thus SLAM

is a starting point upon which our approach builds, the maps

of the world produced by SLAM algorithms (as well as any

estimates of the map’s certainty) are a possible source for the

representation of the workspace used to compute a motion

plan.

Missiuro and Roy [10] address sensor uncertainty in the

context of complete motion planning. The approach adap-

tively samples configuration space using a distribution based

upon the certainty of the sampled configurations. Paths are

found in the resulting roadmap using A* search and an

uncertainty heuristic. This work differs from ours because

it assumes polygonal obstacles and plans motion for a 2-

DOF mobile robot. In contrast, our work can be applied to

arbitrary obstacle representations and articulated robots with

many degrees of freedom.

There has also been work on guided exploration for a

motion planning system. Yu and Gupta [11] use the notion

of entropy to guide exploration to maximize the quality of the

observations of the world obtained by a eye-in-hand robot.

In this work the purpose of the exploration is to minimize

entropy in the representation of the entire workspace, not

reduce the uncertainty of a particular motion plan.

III. UTILITY-GUIDED PLANNING UNDER UNCERTAINTY

In the real world, errors in perception introduce errors

in the workspace representation a planner uses to compute

feasible motions. Given the possibility of error due to un-

certainty and the severity of the potential consequences of

this error, it is important for a planner to reason about such

potential mistakes during planning.

A practical planning method can initially only assume

inaccurate and incomplete information about the workspace.

To generate motion, it must use this limited information

to identify the best possible path available. To achieve

this, we use the formalization of Bernoullian utility [12],

explored in the context of sampling-based motion planning

in our previous work [13]. Based on this formulation, every

successful path has a benefit, or positive utility, which can be

a function of various task-specific considerations. Likewise,

every failed path has a cost, or negative utility. Cost is

computed from the consequences of a path failure such as a

physical collision, or simply failing to achieve a goal.

Expected utility combines the notions of utility and cost,

weighted by the probability that the path is successful. This

probability estimate is derived from an understanding of

how errors occur in the representation of the workspace

(see Section IV). The expected utility of a path E is the

summation over its constituent edges ei:

∑

ei∈E

P (ei = free) ·U(ei = free)+P (ei = obs) ·C(ei = obs)

the function U measures utility and the function C measures

cost. The path with greatest expected utility maximizes the

rewards and minimizes the risks of physically enacting a

particular plan.

The initial information about the workspace available to

the robot may be insufficient to identify an acceptable path.

When uncertainty is great or the cost of failure high, the

expected utility of the best available path may be negative.

In such cases, a planner’s only option is to use additional

sensing to explore the world and refine its representation

of the workspace. Because there is a cost associated with

sensing, information from the previous planning is used

to guide further sensing to areas relevant to the particular

path query. This sensing reduces uncertainty and provides

additional information about the workspace. Using this new

information, the planner can replan a new path with max-

imal expected utility. Planning and sensing alternate until

a satisfactory path is identified and sent to the robot for

execution. Although this path has positive expected utility,

when executed it may turn out to be obstructed. When a path

fails, information from the failure can also incorporated into

the planner’s knowledge of the workspace and lead to the

computation of a new maximum expected utility path.

In the following we describe the three components of our

new utility-guided planner: constructing a roadmap, search-

ing for a path with maximal utility, and guiding sensing based

on the planning problem and the available world model.



Construction

The roadmap constructed by our planner combines several

features from previous planning algorithms. Similarly to

methods for planning in dynamic environments [7], [6], [5],

we allow cycles in our roadmap to add redundancy. We also

delay the validation of edges until query processing [14],

[15], [16].

In our planner, delaying the concrete construction of the

roadmap until queried has two significant benefits. First, it

eliminates the memory and computational costs of maintain-

ing redundant paths. Edges are only created in the roadmap

as required for the solution of specific queries. Also, delaying

the construction of the roadmap ensures that the most up-to-

date information about the workspace is used for construc-

tion. The robot is constantly acquiring new information about

the workspace, either from sensing or from other planning.

Delaying the evaluation of edges until they are required

means that the latest knowledge is always used to evaluate

their expected utility.

For the selection of nodes in the roadmap, the uncer-

tainty roadmap is sampling-strategy agnostic. Numerous

sampling strategies for selecting configurations have been

proposed [17], [18], [13], [10] including one that directly

incorporates uncertainty into the sampling strategy. Any one

of these can be used to select the samples that define an

uncertainty roadmap.

Querying

The A* algorithm [19] is used for path queries and to

construct the uncertainty roadmap. A* is a general approach

for searching implicitly defined graphs. For concrete imple-

mentations it requires a cost function, a heuristic function,

and a way to obtain a node’s successors. Note this A* cost

is different than the cost of path failure.

The function for estimating the cost of an edge in A* is:

G(e) = P (e = obs.)C(e) +
P (e = free)

U(e)
.

P (e = obs.) is the probability that the edge is obstructed.

This probability is estimated using knowledge of sensor error.

The function C() measures the cost of an edge failure.

The function U() measures the utility of the edge. Because

the A* heuristic function finds paths with minimal cost,

1/U(e) is used in this expression. This favors edges with

high utility, but ensures that every edge has at least some

cost. In our experiments we used constant cost and utility

functions for edges. This implements a path utility function

that favors shorter configuration space paths. Other edge

utility functions such as kinematic conditioning could easily

be substituted. The A* heuristic function H(qi) uses the

Euclidean distance in the configuration space. This keeps

the planner “on target” toward the goal.

During the node expansion step of A*, the implicit un-

certainty roadmap connected to a particular configuration

is computed. Neighbors of this configuration are selected

using the traditional PRM algorithm: The set of nearest

neighbors to the configuration are found and returned as

possible connections. The planner estimates the probability

that the edge leading to each neighbor is obstructed. If

this probability is greater than a threshold, the neighboring

configuration is ignored. Otherwise, an edge is added to the

uncertainty roadmap. Because multiple A* searches may be

applied to the same roadmap, the probability associated with

each possible edge is cached to avoid redundant computation.

This cache is invalidated when relevant further sensing is

performed. When A* search finds a path, the path and its

certainty are returned to a higher level planner.

Exploration

Until a satisfactory path is found, the planner alternates

path planning with guided sensing of the environment.

However, there is a cost associated with sensing. To max-

imize planner efficiency, only required sensing should be

performed. The current best path suggested by the planner

provides information about the areas of the workspace that

are relevant to the particular path query under consideration.

Our algorithm sorts edges in the path with the highest

expected utility by their uncertainty. Edges with the greatest

uncertainty are explored first. Highly uncertain edges have

high exploration utility for two reasons. If they are still

believed to be free after sensor refinement, the corresponding

reduction in uncertainty maximally increases the expected

utility of the path. If they are found to be obstructed, further

sensing is not wasted on refining other edges in the path that

are more likely to be free.

During refinement, the planner receives new workspace

information from additional sensing and performs a new A*

search to identify the path with the current greatest expected

utility. Planning and sensing alternate until a path whose

expected utility is positive is found.

IV. MODELING SENSOR ERROR

The planner introduced in the previous section estimates

the probability that a particular location of configuration

space is collision free. We assume that the world model

employed by the planner does not incorporate uncertainty.

Instead, the planner uses a model of sensor error to interpret

the uncertainty-free world model. We now present two such

models, one for binary occupancy grids obtained from range

sensors and one for perceived poses of known objects deter-

mined by a vision system. The objective of this paper is not

to examine the quality of such models and our planner would

work with a wide variety of models. We believe that the

two models used for our experiments are representative and

capture important characteristics of frequently used sensing

modalities.

A. Sensor model for range sensors

Range sensors are frequently used to build models of

a robot’s environment by translating distance measurement

into an occupancy grid. For our experiments, we consider a



simple binary three-dimensional occupancy grid. A sensing

error of a range sensor will result in the incorrect labeling

of cells in the occupancy grid. To evaluate a particular

configuration, the corresponding workspace pose of the robot

is computed. If the robot intersects obstructed cells, the

configuration is considered to obstructed.
Given the possibility of error in the occupancy grid, the

planner predicts the true state of a configuration space edge
using a naive Bayesian model [19]. A naive Bayes model
uses observations generated by some hidden state, to generate
a prediction about the hidden state. In this case, the hidden
state is the true state of the configuration (obstructed or
free) and the labels (obstructed or free) are determined by
the occupancy grid. Given a set of configurations (q1 . . . qn)
and obstructed/free labels (x1 · · ·xn) determined by the
occupancy grid, the probability of an edge being obstructed
is

n∏

i=1

P (qi = xi|obs.)P (obs.)

P (qi = xi|obs.)P (obs.) + P (qi = xi|fr.)P (fr.)
,

where P (qi = xi|obs.) is the probability that the configura-

tion qi has label xi, given that the edge is obstructed.

This model of sensor error includes several parameters.

The value for P (qj = obs.|fr.) = 1 − P (qj = fr.|fr.) is

set explicitly and corresponds to the fraction of observations

that are erroneous, i.e., the fraction of errors made by the

sensor. We estimate the remaining parameters for general

categories of workspaces (e.g., office environment, assembly

cell) by sampling specific example workspaces. Once we

have determined these parameters, we can instantiate the

model. P (obs.) = |Cobs|/|C| ∈ [0..1] is the estimated ratio

of the volume of obstructed configuration space and the total

configuration space. P (qj = obs.|obs.) = (1−e)·f+e·(1−f)
is determined from the error fraction e and the fraction f of

edges that were observed to be obstructed in the example

environments.

B. Sensor model for vision-based object recognition

Vision-based algorithms can recognize and localize known

objects in the environments. The corresponding world model

associates poses with each of the identified objects. The

sensor model for this type of sensor imposes a Gaussian

distribution on the pose estimate contained in the world

model. The model’s ability to accurately predict the state of

a configuration depends on the magnitude of the localization

error that would invalidate the prediction. We restrict our

experiments to to translational localization error, but the

same approach could be extended to rotational error. This

error model assumes that error is equally likely in all three

translational axis.

When a configuration is tested for collision in the world

model, the collision checker determines the penetration depth

(if the configuration is obstructed) or the distance to the near-

est obstacle (if the configuration is free). For the calculated

state of the configuration to be incorrect, the localization

error must be greater than the value returned by the collision

checker. If it is less, this value can be used to determine

the certainty that the measured state of the configuration

(a) 10-DOF Mobile Manipulator (b) 14-DOF Humanoid Torso

Fig. 1. The experimental workspaces and robots used to evaluate the
uncertainty roadmap.

is correct. This is done using the cumulative distribution

function (CDF) of the Gaussian:

1 − 1

2
(1 + erf(

d

σ
√

2
)),

where “erf” is the Gauss error function and d is the penetra-

tion depth or distance to the nearest obstacle. This represents

an approximation of the true probability of error, as it only

considers interactions between the robot and the localization

of the closest obstacle.

V. EXPERIMENTS

Sampling-based motion planners are generally evaluated

by comparing execution times for difficult planning prob-

lems. This method of evaluation is not appropriate here.

Instead, we compare how well the proposed sampling-

based planner can handle uncertainty in comparison with the

traditional PRM method [20]. Since we are not concerned

with execution time (although we will report it), this is

an adequate comparison. Using planners that employ non-

uniform sampling would make an experimental evaluation

more difficult, due to interactions between uncertainty and

the sampling distribution.

In our experiments, we employed three different robots:

a cylindrical mobile base (not shown), a mobile manipu-

lator with ten degrees of freedom, and a humanoid upper

body with fourteen degrees of freedom (both robots are

shown in Figure 1). The experiments were performed in two

workspaces, shown in Figure 1. The first represents a simple

cubicle environment, the second emulates a construction

environment. In the cubicle environment, the mobile manip-

ulator only has 10cm clearance when inside the narrower

side passage. In the construction environment, the rectangular

frame splits the reachable configuration space of each arm

into two regions connected by a relatively narrow passage

(the arm above or below the frame).

In each of the experiments reported below, the planners

were asked to solve 50 planning queries between the same

set of randomly generated start and goal configurations. For

each trial, the start and end configurations were sampled from

a hyper-sphere located at opposite ends of the configuration

space. This ensures that each of these planning problems is

solvable with perfect sensing. For each sensor model, we

varied the accuracy of the sensor (fraction of mislabelings
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Fig. 2. Fraction of paths successfully found by traditional PRM and the
utility-guided uncertainty planning as a function of occupancy grid error.

for the occupancy grid and mean localization error for the

pose-based world model). For these varying accuracies, we

recorded the fraction of paths returned by the respective

planners that were collision-free when validated with a

certain collision checker.

Occupancy grid: The experimental results for the mobile

manipulator in the cubicle world and the humanoid upper

body in the construction environment are shown in Figure 2.

In these experiments, the proposed planner was not allowed

to perform any refinement.

These experiments demonstrate that the consideration of

uncertainty by the proposed planner significantly improves

the ability to determine collision-free paths, even for a large

fraction of mislabelings in the occupancy grid. The proposed

planner maintains 100% accuracy, even when 20% of the

occupancy grid cells are mislabeled due to sensor error.

The rapid deterioration in performance for the PRM plan-

ner can be explained by the error model for the sensor.

Significant sensor error will result in a large probability that

long edges are erroneously classified as collision-free when

in fact they are not. Consequently, the roadmap constructed

by the planner will contain many invalid edges, leading

to many invalid solution paths. In addition, error in the

workspace representation sometimes caused the initial or

goal states to be mislabeled as obstructed. Also, we halted

the operation of the PRM planner after 30 minutes and

considered the planning operation as failed.

Object pose experiments: Figure 3 shows the experimental

results for the posed-based world model described in Sec-

tion IV-B. Results for the cylindrical robot in the cubicle

environment are shown on left, for the mobile manipulator in

the cubicle environment in the middle, and for the humanoid

torso in the construction environment on the right. In these

experiments, we also varied the percentage of refinement

performed by the planner. This percentages indicates the

fraction of edges in a chosen solution path that are refined

by additional sensing operations. Only the most uncertain

edges are refined. In this particular experiment, we assumed

a smart room environment that is able to direct accurate

sensors to particular areas of the environment to reduce

the localization error. Consequently, refinement consisted of

removing the localization error for obstacles near to the edge

being refined. An alternative approach to refinement could

reduce the localization error for those areas perceivable by

the robot; this would correspond to a scenario in which all

the sensors are mounted on the robot itself.

In a pose-based world model, the performance advantage

of the proposed planner is less pronounced. Nevertheless, in

two out of the three worlds, the proposed planner without

refinement outperforms traditional PRM, selecting paths that

are more likely to be free. For the mobile manipulator in

the office environment, traditional PRM and the proposed

planner perform roughly equivalently. This can be explained

by the fact that the path that was easiest to find for the PRM

planner (down the center of the hallway) also was most likely

to be free.

The experiments also show that refinement significantly

improves the reliability of the paths returned by the pro-

posed planner. Interestingly, even relatively sparse refinement

shows significant improvement in plan reliability. Refining

only half the edges leads to over 90% reliability. This shows

that guided exploration is able to direct sensor actions to

relevant regions of the workspace while relying on a coarse

representation in other regions. Depending on the cost of

sensing, a reduction of the required sensory refinement by

50% can translate into significant performance improve-

ments.

Running time: The consideration of uncertainty during the

planner process requires computation. It therefore is to be

expected that the computation time of the proposed planner

exceeds that of the PRM planner.

a) Occupancy grid experiments: When there is no

sensing error for the occupancy grid, the computational

overhead associated with the proposed planner causes it to

be outperformed by the PRM planner. As error increases,

however, the runtime of traditional PRM planning increases

significantly. Even when the probability of error is only 5%,

the proposed planner is actually more efficient than the PRM

planner. In large part this is because sensing error has a

similar effect to narrow passages on PRM planning. As error

increases, the probability of finding a collision free edge

decreases, requiring traditional PRM planning to perform

significantly more exploration to determine a valid edge.

b) Object pose experiments: For the pose-based world

model, the run time of the planners did not vary signifi-

cantly as error increased. The consideration of uncertainty
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Fig. 3. Fraction of correct paths found by each planning algorithm as a function of localization error

in planning requires on the nearly an order of magnitude

more computation time than the PRM planner. This increase

is mostly due to the significant amount of additional config-

uration exploration that is required to find paths with high

certainty. An additional factor is the cost of the repeated

nearest obstacle and distance queries incurred when evalu-

ating the certainty of an edge. The increased computational

cost has to be weighed against the risk of collision as well

as against the tremendous cost of executing uncertain and

unnecessary paths that are generated by a planner without

the consideration of uncertainty.

VI. CONCLUSIONS

We presented a sampling-based planner that is capable

of incorporating sensor uncertainty into the planning pro-

cess. This planner represents an important step towards

high-dimensional, real-world motion planning problems in

which knowledge about the environment is uncertain and

incomplete. The planner considers uncertainty when deter-

mining the solution paths, resulting in motion that is safe

in the presence of world model inaccuracies. Throughout

the planning process, the planner guides sensing in order

to refine the world model. Our experimental results show

that the proposed planning method significantly improves the

robustness of planning in the presence of uncertainty. Further,

by identifying areas of the workspace for which additional

sensing provides a useful refinement of the world model,

sensing resources can be employed effectively to maximally

improve the resulting solution path.
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