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Abstract. Mostly contracting diffeomorphisms are the simplest
examples of robustly nonuniformly hyperbolic systems. This pa-
per studies the mixing properties of mostly contracting diffeomor-
phisms.

1. Introduction.

This paper treats a class of partially hyperbolic systems with non-
zero Lyapunov exponents.

Before stating our result let us recall some recent work motivating our
research. In recent years there were several advances in understanding
of statistical properties of weakly hyperbolic dynamical systems.

On one hand L.–S. Young developed quantitative Pesin theory in
[38, 39]. Among other things she proved that if a diffeomorphism f
has a Pesin set Λ such that the distribution of the return time to Λ
has an exponentially decaying tail and if f has no discrete spectrum
then it is exponentially mixing. This theory was applied to a number
of examples in the above mentioned papers as well as in [3, 10].

On the other hand M. Grayson, C. Pugh and M. Shub showed ([13,
27, 28]) that partial hyperbolicity can give raise to a good ergodic
behavior in a robust way. Further examples of systems satisfying their
criteria can be found in [7, 8, 16, 20, 37].

These results lead to the natural question if there is an open set
of (partially hyperbolic) systems satisfying the conditions of Young’s
theory with uniform bounds. This question was addressed in a number
of papers [1, 2, 4, 32, 36]. Our paper also fits into this framework.

Let us give a few definitions. Let f be a diffeomorphism of a smooth
manifold X and let ν be an ergodic f–invariant measure. We call ν an
SRB–measure for f if there is a subset Y (ν) ⊂ X of positive Lebesgue
measure such that for almost all y ∈ Y for any continuous function A

1
n

n−1
∑

j=0

A(f jx) → ν(A). Y (ν) is called basin of attraction of ν. Certainly

the question of existence of SRB–measures and their dependence on
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parameters is quite important in smooth ergodic theory. We say that
f has a global attractor if there is only one SRB–measure whose basin
is all of X. (Our use of the word attractor follows that of [35, 27]. More
precisely, ν or supp(ν) should be called a stochastic attractor because
it describes the statistical properties of large iterations of f. For a more
topological approach see [19].) Let S be a subset of Diffr(X), r > 1
endowed with some topology (think of S as a parameter space) and
let f ∈ S. We call f statistically stable in S if any diffeomorphism g
in some neighborhood of f in S has a finite number of SRB–measures
ν1(g), ν2(g) . . . νk(g), the maps g → νj(g) are continuous and the union
of basins of νj(g) is all of X. If k = 1 we call f strongly statistically
stable. Below we deal with the case when S = Diff2(X) with uniform
C2–topology.

In this note we provide some sufficient conditions for statistical sta-
bility as well as for other good statistical properties. Our main results
are the following.

Theorem I. Let f be partially hyperbolic dynamically coherent u-convergent
mostly contracting diffeomorphism of a three-dimensional manifold X.
Then

(a) f has a global attractor ν;
(b) for any γ > 0 there are constants C, ζ < 1 such that if A,B ∈

Cγ(X) then for positive n
∣

∣

∣

∣

∫

B(x)A(fnx)dx− ν(A)

∫

B(x)dx

∣

∣

∣

∣

≤ Cζn||A||γ||B||γ,

∣

∣

∣

∣

∫

B(x)A(fnx)dν(x) − ν(A)ν(B)

∣

∣

∣

∣

≤ Cζn||A||γ||B||γ;

(c) f has non-zero Lyapunov exponents.

Remark. Parts (a) and (c) of this theorem were established before in
[4] for a larger class of systems. It follows from (c) and the results of
[11, 21] that the system (X, f, ν) is a Bernoulli shift.

Remark. In fact, we prove more than (a). Namely we show that
the image under fn of any unstable leaf becomes equidistributed. In
[12] we proved that diffeomorphisms having this property satisfy many
classical limit theorems of probability theory.

Theorem II. Let f be as in Theorem I. If in addition f is stably
dynamically coherent then f is strongly statistically stable. More pre-
cisely, there exists a neighborhood O(f) ⊂ Diff2(X) such that any
g ∈ O satisfies the conditions of Theorem I and the constants C, ζ
in Theorem I(b) can be chosen uniformly in O(f). In particular if



ON DYNAMICS OF MOSTLY CONTRACTING DIFFEOMORPHISMS. 3

νg is the SRB measure for g then for any γ > 0 the map g → νg

O(f) → (Cγ(X))∗ is Holder continuous.

See Sections 2, 3 for the definition of the terms appearing in the
formulation of this theorem. In Section 4 we show that for mostly
contracting diffeomorphisms the second forward Lyapunov exponent of
almost every point is negative and prove large deviation estimates for
the exceptional set. This is done by certain submartingale estimates
more common in the theory of stochastic differential equations. In
Section 5 we recall the construction of u-Gibbs measures [26] and show
that in our situation they are SRB measures. The uniqueness of SRB
measures is treated in Section 6–9. In Section 6 we recall the coupling
method of L.–S. Young. In Section 7 we describe coupling algorithm
for our system. The properties of this algorithm are studied in Sections
8 and 9. The proofs of the main theorems are completed in Section 10.
In Sections 11 and 12 we discuss some examples. Final remarks and
some open questions are presented in Section 13.

Remark. Independently and slightly earlier A. Castro [9] proved a
result similar to our Theorem I. However, because of some technical
assumptions in his paper it is not clear if his result can be applied to
the examples of Section 12.

Acknowledgment. I thank V. Nitica, C. Pugh and M. Ratner for
useful discussions. I first learned about mostly contracting systems
during Ergodic Theory and Statistical Mechanics Seminar at Princeton
University where a random version of this property was discussed. I
thank all the participants of that seminar and especially K. Khanin, A.
Mazel and Ya. Sinai for introducing me to this subject. In a previous
version of my paper I imposed a strong regularity requirement on the
unstable foliation to prove part (A) of Lemma 6.1. I am grateful to
C. Bonatti and M. Viana for explaining me that Pesin theory can be
used to verify this property (see Lemma 8.1). This work is supported
by Miller Institute for Basic Research in Science.

2. Partial hyperbolicity.

In this and the next sections we describe the properties of f which
appear in the statement of Theorem I. As it was mentioned in the
introduction f is a diffeomorphism of X3. We also assume that f is
partially hyperbolic and stably dynamically coherent. Thus the tangent
bundle of X is the sum of three continuous one dimensional subbundles
Eu, Ec and Es such that

eλ1 ≤ (df |Es) ≤ eλ2 , (1)
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eλ3 ≤ (df |Ec) ≤ eλ4 , (2)

eλ5 ≤ (df |Eu) ≤ eλ6 (3)

where λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 and λ2 < 0, λ5 > 0.
Eu and Es are always integrable so they are tangent to f invariant

foliations: unstable (W u) and stable (W s). Dynamical coherence means
that Ec, Ec ⊕ Eu and Ec ⊕ Es are also are tangent to f–invariant
foliations which are called central (W c), center–unstable (W cu) and
center–stable (W cs) respectively, and that W c subfoliates both W cu

and W cs. (In fact only unique integrability of Ec ⊕ Es is used in the
paper.) Stable dynamical coherence means that any g close to f is also
dynamically coherent. The openness of these conditions was studied in
[14]. Namely partial hyperbolicity is open. It is unknown if dynamical
coherence is open but if the center foliation of f is C1 then f is stably
dynamically coherent.

Let V be the set of all unstable curves of lengths between 1 and 2. V
is a Markov family in the sense that ∀V ∈ V there is a finite set {Ṽj} of

elements of V such that fV =
⋃

j Ṽj. More generally for any unstable

curve U of length greater than one there is a finite set {Vj} such that
Vj ∈ V and

U =
⋃

j

Vj. (4)

We call (4) Markov decomposition of U. We will use (4) for U = f nV
where V ∈ V, n > 0.

We call f u-convergent if ∀ε ∃n > 0 ∀V1, V2 ∈ V ∃xj ∈ Vj such that
d(fnx1, f

nx2) ≤ ε. Later on we show that u-convergence is open among
mostly contracting diffeomorphisms.

3. Mostly contracting systems.

The assumptions of Section 2 are routine partial hyperbolicity as-
sumptions. The next property guarantees that f is non-uniformly hy-
perbolic. In order to formulate it we need to recall the definition of
canonical densities on W u. We would like to study SRB–measure for f.
A priori we do not know if it exists, but if it does then its conditional
densities on W u are given by [26]. Fix a Riemann structure on X. It
induces a metric on W u–fibers. Let V be an interval inside W u. For
z1, z2 ∈ V let

ρ(z1, z2) =

∞
∏

j=0

(df−1|Eu)(f
−jz1)

(df−1|Eu)(f−jz2)
. (5)
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Fix some z0 ∈ V and let ρV (z) = Cρ(z, z0) where C = (
∫

V
ρ(z, z0)dz)

−1.
Since ρ(z, z′0) = ρ(z, z0)ρ(z0, z

′
0) this definition actually does not depend

on z0. Also if W = fV, y = fz then

ρV (z)dz = CV ρ(z, z0)dz = CV ρ(z, z0)(df
−1|Eu)(y)dy =

C̃V ρ(z, z0)
(df−1|Eu)(y)

(df−1|Eu)(y0)
dy = CWρ(y, y0)dy.

Thus if A is continuous then
∫

V

A(fz)ρV (z)dz =

∫

fV

A(y)ρfV (y)dy.

Our last assumption is the following. There is a positive constant α0

such that for any V ∈ V
∫

V

ρV (x) (ln(df |Ec)(x)) dx ≤ −α0 < 0 (6)

We call f mostly contracting if some positive power of it satisfies (6). In
the proof of the Theorem I we assume, as we may, that f itself satisfies
(6).

Remark. Condition (6) is C2–open. Indeed by standard theory ([14])
the map center(f) = (df |Ec)(x) is continuous: Diff2(X) → C(X).
Let V (x, f, t) denote f–unstable curve of length t centered at x. Let
V (x, f, t)(τ) be the arclength parameterization of τ.Denote T = {(t, τ) :
1 ≤ t ≤ 2, 0 ≤ τ ≤ t}. Then the map density(f) = ρV (x,f,t)(V (x, f, t)(τ))
is continuous: Diff2(X) → C(X × T) since ρ is a uniform limit of
continuous functions. center is also continuous in C1-topology, but
density is not because convergence in (5) may fail to be uniform in f
(cf. [23]). Thus it is unclear if mostly contractiveness is C1–open.

4. Large deviations.

Here we prove

Theorem 4.1. ∃C1, s > 0, θ1 < 1 such that ∀V ∈ V ∀n > 0
∫

V

ρV (x) (dfn|Ec)
s (x)dx ≤ C1θ

n
1 . (7)

The proof consists of a number of lemmas.

Lemma 4.2.

∀n > 0

∫

V

ρV (x) ln(dfn|Ec)(x)dx ≤ −nα0
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Proof. We have
∫

V

ρV (x) ln(dfn|Ec)(x)dx =

∫

V

ρV (x) ln(df |Ec)(x)dx+

∫

fV

ρfV (y) ln(dfn−1|Ec)(y)dy.

Let fV =
⋃

j Vj be an almost Markov decomposition. Then the second
term equals

∑

j

cj

∫

Vj

ρVj
(y) ln(dfn−1|Ec)(y)dy

where cj =
∫

f−1Vj
ρV (x)dx. By induction

∫

Vj

ρVj
(y) ln(dfn−1|Ec)(y)dy ≤ −(n− 1)α0.

Summation over j proves the lemma.
The following distortion bound is standard (see, for example [4], Lemma
3.3).

Proposition 4.3. There is a constant C so that ∀n > 0 ∀V ∈ V
∀x1, x2 ∈ f−nV

|ln(dfn|Ec)(x1) − ln(dfn|Ec)(x2)| ≤ C.

If A is a continuous function and U is a piece of unstable manifold
we write ||A||U = maxx∈U |A(x)|.

Corollary 4.4. There exists α1 such that if n is large enough then for
any V ∈ V for any Markov decomposition fnV =

⋃

j Vj the following

holds. Let Uj = f−nVj, cj =
∫

Uj
ρV (x)dx. Then

∑

j

cj ln ||(dfn|Ec)||Uj
≤ −α1.

Changing if necessary f → fn we can assume that this is true for
n = 1. Under this assumption we have

Lemma 4.5. If s is small enough there is a constant θ2(γ) < 1 such
that under the conditions of the previous corollary

∑

j

cj||df |Ec||
s
Uj

≤ θ2.

Proof. Regard the LHS as a function r(s). Then r(0) = 1, dr
ds

(0) ≤ −α1,

|d
2r

ds2 (0)| ≤ Const.
Repeating the argument of Lemma 4.2 we obtain
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Corollary 4.6. For any n > 0 there is a Markov decomposition f nV =
⋃

j Vj such that if Uj = f−nVj, cj =
∫

Uj
ρV (x)dx then

∑

j

cj||df
n|Ec||

s
Uj

≤ θn
2 . (8)

Proof. By induction. Suppose that (8) is valid for all n ≤ n0 − 1. Let
fV =

⋃

j Vj be a Markov decomposition. By inductive assumption ∀j

there is a Markov decomposition fn0−1Vj =
⋃

k Vjk satisfying (8). Let
Uj = f−1Uj, Ujk = f−n0Vjk, bj =

∫

Uj
ρV (x)dx, cjk =

∫

Ujk
ρUj

(x)dx.

Then fn0V =
⋃

jk Vjk is Markov and

∑

jk

∫

f−n0Vjk

ρV (x)||(dfn0|Ec)||
s
Ujk
dx =

∑

jk

bjcjk||(df
n0|Ec)||

s
Ujk

≤

∑

j

bj||(df |Ec)||
s
Uj

∑

k

cjk(||df
n0−1|Ec||fUjk

)s ≤

∑

j

bj||(df |Ec)||
s
Uj
θn0−1
2 ≤

θn0
2 .

This Corollary proves Theorem 4.1 since for any Markov decomposition
fnV =

⋃

j Vj LHS of (8) majorates LHS of (7).

5. Transfer operator.

Now we recall the general method of the construction of SRB–measures
for partially hyperbolic systems ([26]). SRB measures are obtained as
forward iteration limits of suitable measures. Here we describe the set
of the initial measures. Fix some R. Let E1(R) be the set of measures
of the form

l(A) =

∫

V

A(z)eG(z)ρV (z)dz

where V ∈ V, l(1) = 1 and |G(z1) − G(z2)| ≤ Rdγ(z1, z2). (Those
three conditions also guarantee that G is uniformly bounded.) Let
E2(R) be the convex hall of E1(R) and E(R) be the closure of E2(R).
The family {E(R)} is continuous from above in the sense that E(R0) =
⋂

R>R0
E(R). (This follows from the fact that E1(R0) =

⋂

R>R0
E1(R).)

Let T (l)(A) = l(A ◦ f).

Proposition 5.1. T : E(R) → E(Re−λ5γ).
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Proof. If l ∈ E1(R). Then

(T l)(A) =

∫

V

eG(z)A(fz)ρV (z)dz =

∫

fV

e(G◦f−1)(y)A(y)ρfV (y)dy.

Let fV =
⋃

j Vj, be a Markov decomposition then T l =
∑

cjlj, where

lj(A) =

∫

Vj

e(G◦f−1)(y)A(y)ρVj
(y)dy.

Also |(G ◦ f−1)(y1) − (G ◦ f−1)(y2)| ≤ Re−λ5γdγ(y1, y2). Thus T :
E1(R) → E2(Re

−λ5γ).
Since E(R) is a convex compact set Proposition 5.1 implies that there is
an f–invariant measure in E(R) which moreover belongs to

⋂

R>0E(R) =
E(0) (this is also proven in [26]).

Proposition 5.2. Any f -invariant measure ν ∈ E(0) has two negative
Lyapunov exponents.

Proof. By (6) for any l ∈ E(0) l(ln(df |Ec)) < −α0.
Proposition 5.2 and Lemma 13 of [26] guarantee that ν satisfies the
conditions of Theorem 3 of [27] and so it is a SRB measure. (Another
proof of this fact is given in Section 10.)

6. Coupling argument.

We now pass to the uniqueness of ν. It is established via the coupling
argument of [39]. We want to show that for large n for any l1, l2 ∈
E(R) T n(l1) is close to T n(l2). First we consider the case when l1 and
l2 are in E1(0), say lj(A) =

∫

Vj
A(x)ρVj

(x)dx. The idea is to divide

fnVj into small pieces and pair the pieces of fnV1 to fnV2 so that the
members of the pair are very close to each other. However since f n

gives different weights to different pieces of fnVj it is more convenient
to regard unstable curves as 1-chains so that the heavier ones can be
split into several pieces each one being paired to a different partner.

Let us now give a formal statement. Denote Yj = Vj × [0, 1]. Equip
Yj with the measure dmj(x, t) = ρVj

(x)dxdt. The heart of the coupling
method is the following result the proof of which occupies the next
three sections.

Lemma 6.1. There is a measure preserving map τ : Y1 → Y2, a func-
tion R : Y1 → N and constants C1, C2 > 0, ρ1 < 1, ρ2 < 1 such that

(A) If (x2, t2) = τ(x1, t1) then for n ≥ R(x1, t1)

d(fnx1, f
nx2) ≤ C1ρ

n−R
1 ; (9)

(B) m1(R > N) ≤ C2ρ
N
2 .
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Let ||l||γ denote the norm of l as the element of (Cγ(X))∗.

Corollary 6.2. ∃C3 > 0, ρ3 < 1 such that ∀n > 0 ∀l1, l2 ∈ E(0)
||T n(l1 − l2)||γ ≤ C3ρ

n
3 .

Proof. It suffices to verify this for lj ∈ E1(0). We have

(T nlj)(A) =

∫

Yj

A(fnxj)dmj(xj, tj).

Let (x2, t2) = τ(x1, t1). Then

|T n(l1 − l2)(A)| ≤

∫

Y1

|A(fnx1) − A(fnx2)|dm1(x1, t1).

Let Z(n) = {y : R(y) < n
2
} then

|T n(l1 − l2)(A)| ≤
∫

Z(n)

|A(fnx1) − A(fnx2)|dm1(x1, t1) + 2||A||0m1(Y1\Z(n)) ≤

||A||γ

(

(C1ρ
n
2
1 )γ + 2C2ρ

n
2
2

)

.

Let ν be some f–invariant measure in E(0). Substituting in Corollary
6.2 l2 = ν we obtain

Corollary 6.3. ν is the only f–invariant measure ν in E(0). Moreover
∀l ∈ E(0) ∀A ∈ Cγ(X), ∀n > 0

∣

∣

∣

∣

∫

A(fnx)dl(x) − ν(A)

∣

∣

∣

∣

≤ C3ρ
n
3 ||A||γ.

7. Coupling algorithm.

Here we define τ and R described in Lemma 6.1. Let Y be the set
of rectangles Y = V × I, V ∈ V, I ⊂ [0, 1]. Let D > 2 be a constant

defined below (see (13). Let Ỹ be the set of rectangles Y = V × I,
where the length of V is between 1

D
and D and I ⊂ [0, 1]. We write

f(x, t) = (fx, t). For Y1 ∈ Y, Y2 ∈ Ỹ such that mes(Y1) = mes(Y2)
we give an algorithm defining τ and R. This algorithm will depend on
three positive parameters K, λ and ε. We require λ be so close to 0 that
λ < −λ2 (recall (1)) and e−λs > θ1, where s and θ1 are the constants
from Theorem 4.1. By this Theorem and Proposition 4.3 if K is large
enough then

q1 = max
V ∈V

mes(U(V )) < 1, (10)

where U(V ) = {x ∈ V : ∃n > 0, y ∈ V : d(fnx, fny) ≤ 2 and
(dfn|Ec)(y) ≥ Ke−λn}. Take K so large that (10) is satisfied. Write
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Ecs = Es ⊕ Ec. By partial hyperbolicity there is a constant K ′ such
that ∀j > 0 ∀x

||(df j|Ecs)(x)|| ≤ K ′|(df j|Ec)(x)|. (11)

Set K̃ = max(KK ′, 1). Since (df |Ec)(x) is Holder continuous there

exists δ > 0 such that if d(x, y) < δ then |(df |Ecs)(y)| ≤ e
λ
2 |df |Ecs(x)|.

Let

ε ≤
δ

2K̃
. (12)

Now D is defined by the requirement that if V1, V2 are unstable curves,
V1 ∈ V, V2 is the image of V1 under center–stable projection and ∀x ∈
V1 d(x, px) < δ then

1

D
≤ length(V2) < D. (13)

Our algorithm will work recursively. During the first run we define
the map between subsets P∞

j of Yj. For points where τ is not de-
fined we define a stopping time s(y) such that the set P n

j = {y ∈
Yj : s(y) = n} will be of the form f−n(

⋃

k Yjnk), Y1nk ∈ Y, Y2nk ∈

Ỹ and mes(P n
1 ) = mes(P n

2 ). Then we can use our algorithm again
to couple P n

1 to P n
2 . More precisely since mes(P n

1 ) = mes(P n
2 ) we

can chop each Yjnk into several pieces so that the resulting collec-
tions {Ȳjnl} satisfy

⋃

k Yjnk =
⋃

l Ȳjnl and mes(Ȳ1nl) = mes(Ȳ2nl). Let
f−nȲjnl = Ujnl×Ijnl. Denote cjnl =

⋃

Ujnl
ρVj

(x)dx. Let ∆jnl be the map

∆jnl(x, t) = (fnx, rjnl(t)) where rjnl is the affine isomorphism between
Ijnl and [0, cjnl|Ijnl|]. (This rescaling is necessary to make ∆’s measure
preserving.) We now call our algorithm recursively to produce maps
τnl : ∆(f−nȲ1nl) → ∆(f−nY2nl) and Rnl : ∆(f−nȲ1nl) → N satisfying
the conditions of Lemma 6.1. We when set

τ(x, t) =

{

τfirst run(x, t) if (x, t) ∈ P∞
1

∆−1
2nl ◦ τnl ◦ ∆1nl if (x, t) ∈ f−nȲ1nl,

R(x, t) =

{

Rfirst run(x, t) if (x, t) ∈ P∞
1

n +Rnl(∆1nl(x, t)) if (x, t) ∈ f−nȲ1nl.

Let us now describe the first run of our algorithm. By rescaling we may
suppose that Yj = Vj × [0, 1]. By u-convergence there is n0 and curves
V̄j on distance at least 1 from ∂(fnVj) such that V1 ∈ V, V̄2 = pV̄1 and
∀x ∈ V̄1 d(x, px) ≤ ε. (Here p means center-stable holonomy.) Let ĉj =
∫

f−n0 V̄j
ρVj

(x)dx. Let (t̄1, t̄2) = (1, ĉ2
ĉ1

) if ĉ2 ≤ ĉ1 and (t̄1, t̄2) = ( ĉ1
ĉ2
, 1) if

ĉ1 ≤ ĉ2. Define Ȳj = V̄j × [0, t̄j]. Let s(y) = n0 for points of Yj\f
−n0Ȳj.
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We now proceed to define P n
j inductively for n > n0. Let Qn−1

j =

Yj\
⋃n−1

m=n0
Pm

j . We assume by induction that fn−1Qn−1
j =

⋃

k Zjk(n−1)

where Zjk(n−1) = Vjk(n−1) × [0, tjk(n−1)],

mes(f−(n−1)Z1k(n−1)) = mes(f−(n−1)Z2k(n−1)), (14)

V1k(n−1) ∈ V and V2k(n−1) = p(V1k(n−1)) and d(x, px) ≤ rn−1 where

rn = K̃εe−
λn
2 (15)

Take a Markov decomposition fV1k(n−1) =
⋃

l V1lkn and let V2lkn =
p(V1lkn). We note that the fact that V1lkn ∈ V, (12), (13) and(15)

guarantee that then V2lkn ∈ Ỹ. Let βlkn = max
x∈f−nV1lkn

(dfn|Ec)(x). If

βlkn > Ke−λn let s(y) = n on f−nVjlkn × [0, tjk(n−1)]. Otherwise let

Z̃jlkn = Vjlkn × [0, tjk(n−1)]. In general mes(f−nZ̃1lkn) 6= mes(f−nZ̃2lkn).
So cutoff the top of the larger rectangle so that the adjusted ones sat-
isfy mes(f−nZ1lkn) = mes(f−nZ2lkn) and let s(y) = n on Z̃jlkn\Zjlkn.
Now P∞

j = Yj\
⋃

n P
n
1 is a union of vertical intervals of the form

{(x, [0, t(x)])} where x varies over some positive measure Cantor set

R1. For points of P∞
1 let τ(x, t) = (px, t(px)

t(x)
t), R(x, t) = n0.

Four things have to be proven:
–τ is defined on a set of whole measure in Y1;
–τ is measure preserving;
–τ satisfies condition (A) of Lemma 6.1;
–τ satisfies condition (B) of Lemma 6.1.
The second and the third properties of τ are verified in Section 8.

The first and the fourth properties are verified in Section 9.

8. Convergence of images.

Here we prove the property (A) of Lemma 6.1. Let W ∗
r (x) denote the

ball centered at x of radius r inside W ∗ with induced Rimannian metric.
Let (x, t) ∈ P∞

1 . Let x0 = fn0x. Then ∀j ≥ 0 (df j|Ec)(x0) ≤ Ke−λj, so
it suffices to show the following.

Lemma 8.1. (Cf. [2], Lemma 2.7) If x0 ∈ X and n > 0 are such that
∀0 ≤ j ≤ n (df j|Ec)(x0) ≤ Ke−λj then ∀0 ≤ j ≤ n

f jW cs
ε (x0) ⊂ Wrj

(f jx0) (16)

where rj is given by (15).

Proof. We proceed by induction. For j = 0 (16) is true by (12). Sup-
pose that (16) holds for 0 ≤ j < j0. Then ∀y ∈ W cs

ε (x) ∀0 ≤ j < j0
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d(f jy, f jx0) ≤ δ. Hence

|(df j0|Ecs)|(y) =

j0−1
∏

j=0

|(df |Ec)(f
jy)| ≤

j0−1
∏

j=0

[

e
λ
2 |(df |Ec)(f

jx0)|
]

≤ Ke−
j0λ

2 .

By (11) ||(df j|Ecs)(y)|| ≤ K̃e−
j0λ

2 and so f jW cs
ε (x0) ⊂ Wrj

(f jx0) as
claimed.
Note that the proofs of Lemma 8.1 and Theorem 4.1 do not use u–
convergence. Hence we get the following result which will be used in
Section 10.

Corollary 8.2. Assume that f satisfies all the conditions of Theorem
I except possibly u–convergence. There are constants q1, ε > 0 such that
for any pair of unstable curves V1, V2 such that V1 ∈ V, V2 = p(V1) and
∀x ∈ V d(x, px) < ε

mes({x ∈ V1 : d(fnx, fnpx) → 0}) ≥ q1.

We now continue with the proof of Lemma 6.1.

Corollary 8.3. τ is measure preserving.

Proof. By the recursive structure of our algorithm it suffices to show
that τ : P∞

1 → P∞
2 is measure preserving. Denote by Rj the base

of P∞
j . It follows from Lemma 8.1 by standard Pesin theory (see [24],

Section 3 or [27], Section 4) that p : R1 → R2 is absolutely continuous.
We want to compute its Jacobian J(x). Let tn(x) denote the height of
the rectangle containing (x, 0) and Wn(x) denote its base. By absolute
continuity for almost all x ∈ R1 x is a density point of R1 and px is a
density point of R2. For such points

J(x) = lim
n→∞

∫

pWn(x)
1R2(y)ρV2(y)dy

∫

Wn(x)
1R1(y)ρV1(y)dy

Since R1, R2 have large densities in Wn(x) and pWn(x) respectively we
can drop indicator functions. So

J(x) = lim
n→∞

∫

pWn(x)
ρV2(y)dy

∫

Wn(x)
ρV1(y)dy

= lim
n→∞

tn(x)

tn(px)
=

t(x)

t(px)

where the second equality follows by (14). Thus τ is measure preserv-
ing.
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9. Coupling time.

Here we prove the part (B) of Lemma 6.1. We begin with some
information about one run of our algorithm.

Lemma 9.1. There are constants q, C0 > 0, ρ0 < 1 such that for any
pair Y1, Y2

(1)
mes(P∞

1 )

mes(Y1)
≥ q;

(2)
mes(P n

1 )

mes(Y1)
≤ C0ρ

n
0 .

Proof. We begin with (2). (y, t) can belong to P n
1 for two reasons.

The first, ∃x̃ such that d(fny, fnx̃) ≤ 2 and (dfn|Ec)(x̃) > Ke−λn. By
Proposition 4.3 (dfn|Ec)(x̃) > K∗e−λn. So the measure of such points
is exponentially small by Theorem 4.1 and our choice of λ. The second
reason is that fn(y, t) ∈ Z̃1lkn\Z1lkn. Let

κn(y) =
mes(f−nZ̃1lkn\Z1lkn)

mes(f−nZ1kln)
=

mes(Z̃1lkn\Z1lkn)

mes(Z1kln)
.

Lemma 9.2. There are constants C4 > 0, ρ4 < 1 such that

κn(y) ≤ C4ρ
n
4 . (17)

Proof. We may suppose that mes(Z̃1lkn) > mes(Z̃2lkn), since otherwise
Z1kln = Z̃1kln. Then

mes(Z̃1lkn\Z1lkn)

mes(Z1kln)
=

mes(V1lkn)mes(V2k(n−1))

mes(V2lkn)mes(V1k(n−1))
− 1. (18)

Now by inductive assumption we have both on V1k(n−1) and on V1lkn

d(x, px) ≤ K̃εe−
λ
2
(n−1). (19)

In the proof below C∗ will denote various constants which depend on f
but not on n or Yj. Likewise ρ∗ will denote various constants which are
less then 1. Let x0 be the center of V1k(n−1) and x̃0 = px0. By Holder
continuity of unstable foliation ∃C5 > 0, ρ5 < 1 such that

∣

∣

∣

∣

ρ(x0, x)

ρ(x̃0, px)
− 1

∣

∣

∣

∣

≤ C5ρ
n
5 .

Divide V1k(n−1) into subintervals σm of size e−
λn
4 and let σ̃m = pσm.

Then
∫

V1k(n−1)

ρ(x0, x)dx =
∑

m

ρ(x0, xm)dm +O(ρn
6),
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where xm is any point on σm and dm is the distance between the end-
points of σm. Likewise

∫

V1k(n−1)

ρ(x0, x)dx =
∑

m

ρ(x̃0, pxm)d̃m +O(ρn
6)

where d̃m is the distance between the endpoints of σ̃m. Now by (19)

and the triangle inequality | dm

d̃m
− 1| ≤ C6e

− λ̃n
2 . Hence

∣

∣

∣

∣

mes(V1k(n−1))

mes(V2k(n−1))
− 1

∣

∣

∣

∣

≤ C7ρ
n
7 .

Similarly
∣

∣

∣

∣

mes(V1kln)

mes(V2kln)
− 1

∣

∣

∣

∣

≤ C7ρ
n
7 .

The last two inequalities together with (18) prove the lemma.
Assertion (2) of Lemma 9.1 now follows from (17) by summation over
k and l.

Now let (x, t) ∈ P∞
1 . Let κj(x) be the relative measure of points

cut off the top of the rectangle containing (x, t) on the jth step. Thus
t(x) =

∏∞
j=n0

(1−κj(x)). By (17) this series converges uniformly, hence

t(x) is uniformly bounded from below. But the measure of the base of
P∞

1 is also uniformly bounded (see (10)). This proves assertion (1) of
Lemma 9.1.
Now represent R(y) =

∑k(y)
j=1 sj(y), where sj(x) is the stopping time of

the jth run of our algorithm. Let Tk be the set where τ is not defined af-
ter k runs of our algorithm, Uk = Tk−1\Tk. Denote Sk(x) =

∑k

j=1 sj(x)

and consider generating functions ϕk(Y1, ξ) = 1
mes(Y1)

∫

Tk
ξSk(x)dm(y),

ψk(Y1, ξ) = 1
mes(Y1)

∫

Uk
ξSk(x)dm(y). Lemma 9.1 says that the radius of

convergence of ϕ1 is strictly greater than 1 and ϕ1(1) ≤ 1− q. We need
the following generalization.

Lemma 9.3. ∃δ0, q̄, C > 0 such that if 0 ≤ ξ ≤ 1 + δ0 then
(1) ϕk+1(ξ) ≤ (1 − q̄)ϕk(ξ);
(2) ψk+1 ≤ Cϕk(ξ).

Proof. (1) Take some y ∈ Tk. Assume that after k runs of our algorithm
fSk(y) ∈ Y k

1 (y) and (k+1)-st run couples Y k
1 to some Y k

2 . Let us compare
the contributions of Y k

1 to ϕk and ϕk+1. (That is if Y k
1 = ∆(k)Ȳ k

1 where
Ȳ k

1 ⊂ Y1, ∆(k)(x, t) = (fSk(y)x, at + b) and we compare

Ik =
1

mes(Y1)

∫

Ȳ k
1

ξSk(x)dm1 = ξSk(y) mes(Ȳ k
1 )

mes(Y1)



ON DYNAMICS OF MOSTLY CONTRACTING DIFFEOMORPHISMS. 15

and Ik+1 = 1
mes(Y1)

∫

Ȳ k
1
ξSk+1(x)dm1.) Their ratio equals r(ξ) =

Ik+1

Ik
=

ϕ1(Y
k
1 , ξ). By Lemma 9.1 r(ξ) is uniformly convergent and r(1) ≤ 1−q.

So there is δ0, q̄ such that for ξ < 1 + δ0 r(ξ) ≤ 1 − q̄. This proves (1).

(2) ψk+1(ξ) = ξn0

∫

Uk+1

ξSk(y)dm(y) ≤ ξn0

∫

Tk

ξSk(y)dm(y) ≤ (1+δ0)
n0ϕk(ξ).

Now for ξ ≤ 1 + δ0
∫

Y1

ξR(y)dm(y) =
∞

∑

k=1

ψk(ξ) ≤ C
∞

∑

k=1

(1 − q̄)k−1ϕ1(ξ) ≤
C

q̄
ϕ1(ξ) <∞.

This shows that m(R > n) ≤ Const
(1+δ0)n and in particular m(R = ∞) = 0.

These facts complete the proof of Lemma 6.1.

10. Proof of the main results.

Proof of Theorem I. Consider l ∈ E(R). By Proposition 5.1

there exists l̃ ∈ E(0) such that for all N > 0

||T N+n
2 l − T N l̃|| ≤ Conste

−λ5n

2 .

Hence
||T nl − ν|| ≤ Conste

−λ5n

2 + ||T
n
2 l̃ − ν|| ≤ C8ρ

n
8 .

It follows from [12] that ν is a global attractor for f. Let B ∈ Cγ(X)
then, for large R, B·Lebesgue and B ·ν are in E(R), provided that γ is
sufficiently close to 1 (see [26, 12]). This together with Proposition 5.2
proves Theorem I for γ close to 1. The result for general γ is proved
by approximation of A and B by smooth functions.
Proof of Theorem II. By the remark at the end of Section 3 there
exists a C2 neighborhood O1(f) such that any g ∈ O1(f) is mostly
contracting. Also, given ε there is another C2 neighborhood O2(f)
such that ∀g ∈ O2(f) ∃n0 such that ∀V1, V2 ∈ V ∃Uj ⊂ Vj such that
gn0U1 ∈ V, U2 = pU1 and ∀x ∈ U1 d(g

n0x, gn0px) < ε. By Corollary 8.2
g is u–convergent. Constants C, ζ from part (b) of Theorem I can be
chosen uniformly for g near f since they depend only on Holder data
of invariant foliations and the constant α0 in (6). Thus

νg(A) − νf(A) =

∫

[A(gnx) − A(fnx)]dx+O(||A||γζ
n) =

||A||γ(O(ζn) +O((Knd(f, g))γ + ζn) =

||A||γO(Knd(f, g))γ + ζn).

Taking n so that ( ζ

Kγ )n = d(f, g)
γ

2 we obtain the result needed.
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11. Examples of u-convergent diffeomorphisms.

Here we give several conditions sufficient for u-convergence.
(a) Suppose that f has 3-leg accessibility property in the sense that

there exists R such that ∀V1, V2 ∈ V ∃x1 ∈ V1, x2 ∈ V2 such that
x2 ∈ W s(x1) and ds(x1, x2) ≤ R where ds means the distance along the
stable leaf. Then ds(f

nx1, f
nx2) ≤ eλ2nR so f is u-convergent.

(b) Assume that W u is minimal. Thus given ε there exists R such
that for any two unstable curves V1, V2 of length at least R there are
xj ∈ Vj such that d(x1, x2) ≤ ε. So, f is u-convergent.

(c) To formulate this condition suppose that the fibers of W c are
circles. Suppose that f satisfies the following condition: for any two
unstable curves V1 ∈ V and V2 ∈ W cu(V1) : V2 = pc(V1) (where pc

denotes the center holonomy) the following inequality holds
∫

V1

ρV1(x) ln

(

d(fx, fpx)

d(x, px)

)

dx ≤ −α0 < 0. (20)

(Note that letting here V2 tend to V1 we obtain (6) so (20) is a stronger
assumption).

Proposition 11.1. there are sets Uj ⊂ Vj such that mes(Vj\Uj) = 0,
U2 = p(U1) and for all x ∈ U1 d(f

nx, fnpx) → 0.

Proof. Let U1 = {x ∈ V1 : d(fnx, fnpx) → 0}. Repeating the argu-
ments of Corollary 8.2 we get that there is a constant q̃ (depending
only on f but not on V1, V2) such that

mes(U1) ≥ q̃mes(V1). (21)

Now considering Markov decompositions fnV1 =
⋃

l Vln and apply-
ing (21) to each Vln we find that V1\U1 has no density points and so
mes(V1\U1) = 0. Interchanging V1 and V2 we get mes(V2\U2) = 0.
Now since W u and W cs are transverse foliations there exists R > 0 such
that ∀x1, x2 ∈ X there is x3 ∈ X such that x3 ∈ W cs(x1)

⋃

W u(x2) and
dcs(x1, x3) < R, du(x1, x3) < R. Iterating this construction forward we
find that ∀δ ∃R̃ such that ∀x1, x2 ∃y1, y2 such that y1 ∈ W s

δ (x1) and
y2 ∈ W c(y1)

⋂

W u

R̃
(x2). Now if δ is small enough then by Corollary 8.2

there exist sets U1 ⊂ W u
1 (U1), Ũ ⊂ W u

1 (y1) such that mes(U1) > 0,

mes(Ũ1) > 0 Ũ1 = pcs(U1) and ∀x ∈ U1 d(fnx, fnpcsx) → 0. But
y2 ∈ W u

R̃
(x2). By compactness there is R∗ > 0 such that U2 ⊂ WR∗(x2).

Thus ∃z1 ∈ W u
1 (x1), z2 ∈ W u

R∗(x2) such that d(fnz1, f
nz2) → 0. Now

take V1, V2 ∈ V. There exists n0 such that the lengths of fn0Vj is greater
than 2R∗ and so ∃zj ∈ fn0Vj : such that d(fnz1, f

nz2) → 0. Therefore
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f is u–convergent. Hence (20) implies both mostly contractiveness and
u-convergence.

Similarly we can consider the case when the leaves of f are non-
compact and require that (20) is satisfied for d(V1, V2) ≤ R there R =
R(f) is a large constant.

Remark. If fibers of W c are circles and (20) is satisfied then one can
show using Proposition 11.1 that W c–holonomy restricted to W cu is
absolutely continuous. Let us examine underlying geometric picture
more closely since it will allow the reader to appreciate better the idea
behind the proof of Lemma 6.1. Indeed choose an orientation of W c

and let V1, V2 be two unstable curves in the same center–unstable
leaves such that V2 = p(V1) V2 is ε–close to V1 and is on the right of
V1. Then there are subsets Uj ⊂ Vj such that U2 = p(U1), mes(Vj/
Uj) = 0 and ∀x ∈ U1 d(f

nx, fnpx) → 0. The geometry of U1 is however

quite complicated. In fact there is a Cantor set U
(1)
1 ⊂ U1 of measure

1 − O(εC) such that for x ∈ U
(1)
1 fnpx is always on the right from

fnx. Each gap of U
(1)
1 contains a positive measure Cantor set U

(2)
1 such

that for x ∈ U
(2)
1 fn(px) is on the left from fnx. In turn each gap of

U
(2)
1 contains a positive measure Cantor set U

(3)
1 such that for x ∈ U

(2)
1

fn(px) is on the right from fnx and so on.
If fibers of W c are lines then it is conceivable that W c is not ab-

solutely continuous inside W cu. Instead Lemma 6.1 allows us to con-
struct a map π : V1 → V2 which is absolutely continuous and such
that πx ∈ W cs(x). However even if V2 is very close to V1 still πx some-
times will be different from the naive projection along the W c–fibers.
The fact that the fibers of W cs are dense and so for each x there is a
countable number of candidates for πx is really essential to this proof.

12. Examples of mostly contracting diffeomorphisms.

(a) Let T : T
2 → T

2 be a linear Anosov diffeomorphism. Take
A : T

2 → SL2(R). Assume that the image A(T2) generates SL2(R).

Let Sn1,n2(x) = A(T n1n2x) . . . A(T n2x)A(x), Mn1,n2(x)v =
Sn1,n2 (x)v

||Sn1,n2 (x)v||
.

Define fn1,n2 : T
2 × P

1 → T
2 × P

1 by fn1n2(x, v) = (T n1n2x,Mn1,n2v).
We claim that ∃n̄2 such that ∀n2 > n̄2 ∃n̄1 such that ∀n1 > n̄1 fn1,n2

satisfy (20). Let d(v1, v2) = Area(v1, v2). We have

d(fn1,n2(x, v1), fn1,n2(x, v2)) =

Area(Mn1,n2(x)v1,Mn1,n2(x)v2) =

Area(Sn1,n2(x)v1, Sn1,n2(x)v2)

||Sn1,n2(x)v1||||Sn1,n2(x)v2)||
=
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Area(v1, v2)

||Sn1,n2(x)v1||||Sn1,n2(x)v2)||

since S ∈ SL2(R). The reader will have no difficulties to show that for
fixed n2 and large n1 fn1,n2 is partially hyperbolic, its unstable mani-
folds are graphs of functions Γn : W u(x0) → P

1 and ||dΓn|| → 0 as n→
∞. Now the Riemann structure of T

2 is non-degenerate on the leaves
of W u and with respect to this structure ρ((x1,Γn(x1)), (x2,Γn(x2))) =
ρ(x1, x2). Let m be the distribution of A(x) with respect to Lebesgue
measure andmn be the n-th convolution power ofm. Take now x0 ∈ T

2,
v1, v2 ∈ P

1 and let Γj
n(x) be the function defining the unstable manifold

through (x0, vj). Then
∫

V

ρ(z) ln

(

d(fn1,n2(x,Γ
1
n(x)), fn1,n2(x,Γ

2
n(x)))

d(v1, v2)

)

dz → (22)

−
1

|V |

∫

V

Emn2−1

(

ln ||AM(x)Γ1
n(x)|| + ln ||AM(x)Γ2

n(x)||
)

dx

as n1 → ∞. But by [5], Theorem A3.6 for all v 1
n
Emn

ln ||Av|| → λ+ > 0
where λ+ is the positive exponent of m. So for large n2, n1 � n2 the
expression (22) is negative.

(b) This example is similar to (a). Let fn : T
2 × S1 → T

2 × S1 be
given by fn(x, y) = (T nx, gn(x)y) where the distribution of gn converges
to that of time 1 map of the stochastic differential equation

dy = Φ(y)dw(t), (23)

dw(t) being the white noise. Then for large n fn is mostly contracting.
This follows from the fact that ξ = ∂y

∂y0
(t) satisfies

d ln ξ =
dΦ

dy
dw −

1

2

(

dΦ

dy

)2

dt

and so

EP ln ξ(1) = −
1

2

∫ 1

0

EP

(

dΦ

dy
(t)

)

dt < 0.

where P denotes the stationary distribution of process defined by (23).
(Of course since the distribution of ξ is not compactly supported some
restrictions should be imposed on the rate of convergence of gn to the
distribution of the solution of (23). We leave it as an exercise to the
reader to write down the explicit estimates.)

Remark. This example shows that many phenomena occurring in sto-
chastic differential equation can also take place in deterministic sys-
tems. More research is needed in this direction.
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(c) The above examples are essentially dissipative, since where both
f and f−1 are mostly contracting. Here we describe a conservative
example which is a slight modification of the one given in [32].

Let T : T
2 → T

2 be as before. Consider f0 : T
3 → T

3 given by
f0(x, θ) = (T (x), θ + τ(x)) where τ is such that f0 is Bernoullian (this
condition discards an infinite codimension submanifold in the space of
skewing functions). Let h : T

3 → T
3 be a volume preserving diffeomor-

phisms close to identity. (df maps small cones Ku around Eu and Kcu

around Eu ∧Ec into themselves. Likewise df−1 preserves cones Ks and
Kcs. We want dh map Eu into Ku and so on.) Let fn = fn

0 ◦ h ◦ fn
0 .

Choose vectorfields eu ∈ Eu, ec ∈ Ec and es ∈ Es so that df(eu) = λeu,
df(ec) = ec, df(es) = 1

λ
es. Suppose that in this basis dh(x) = (Aij(x)).

fn has an unstable vector of the form vu = eu + α(x)ec + β(x)es.

Let dfn(x)vu = r
(n)
1 (x)vu. The direct calculation shows that r

(n)
1 (x) =

λ2nA11(f
n
0 x)(1 +O( 1

λn )). Similarly choose the central vector v0 so that

vu ∧ v0 = eu ∧ e0 + . . . and let dfn(x)(vu ∧ v0) = r
(n)
2 (x)(vu ∧ v0). Then

r
(n)
2 (x) = λ2n(A11A22 − A12A21)(f

n
0 x)(1 +O( 1

λn )). Again one can show
that unstable manifolds of fn are close to unstable manifolds of f0 and
so they are transversal to W cs. Let

J (h) =

∫

T3

ln

(

A11A22 − A12A21

A11
(x)

)

dx.

We have
∫

Vn

ρVn
(x) ln(dfn|Ec)(x)dx ≈

∫

Vn

ρVn
(x) ln

(

A11A22 − A12A21

A11

)

(fn
0 x)dx

Since f0 is mixing we obtain (cf. [18] or [15] Section 20.6) that
∫

Vn

ρVn
(x) ln

(

A11A22 − A12A21

A11

)

(fn
0 x)dx ≈

J (h)

∫

Vn

ρVn
(x)dx ≈ J (h).

So, if J (h) < 0 then fn is mostly contracting for large n. Similarly if
J (h) > 0 then f−1

n is mostly contracting for large n. (A more symmetric
expression for J is

J =

∫

T3

[lnA33(h
−1) − lnA11(h)]dx.)
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To show that J is not identically zero one can use the following ar-
gument of [32]. Let Diff∗(T3) be the space of volume preserving C3–
diffeomorphisms which preserve W cs(f0). Then J |Diff∗(T3) is a C2-functional
and calculating its first two derivatives at identity one can prove that
J 6≡ 0. We refer the reader to [32] for more details.

(d) A similar example can be given with f0 being a time one map
of the geodesic flow on unit tangent bundle over a negatively curved
surface.

(e) In [4] several examples are given of the systems having the fol-
lowing property

(*) ∀V ∈ V there is a subset U ⊂ V of positive measure such that
for all x ∈ U the forward Lyapunov exponent of Ec is negative.

The next proposition is essentially proven in [4] even though it is
not stated where. For the convenience of the readers we sketch their
arguments below.

Proposition 12.1. f satisfies (*) ⇔ it is mostly contracting.

Proof. In view of Theorem 4.1 we only have to show that if f satisfies
(*) then it is mostly contracting. Given x0 ∈ X choose V containing
x0 in its interior. By (*) ∃K(x0), λ(x0) such that the set L(x0) = {x ∈
V : (dfn|Ec)(x) ≤ Ke−λn} has positive measure. Given δ there is ε > 0
and a positive measure subset L̃ ⊂ L such that

(a) ∀xL̃ W cs
ε (x) belong to the weak stable manifold of x;

(b) If Ṽ ∈ V, d(Ṽ , V ) ≤ ε the the center stable holonomy p : V → Ṽ
is absolutely continuous on L̃ and its Jacobian J(x) satisfies |J(x)−1| ≤
δ.

Let y be a density point of L̃(x0). It follows that if I is small enough
interval about y then ∀n

∫

I

ρI(x) ln(dfn|Ec)(x)dx ≤ −
λn

2
+K1.

Let C = [I,W cs
ε (y)] ([·, ·] denotes (u,cs)-local product). Then if δ, ε are

small enough then for any unstable slice J of C
∫

J

ρJ(x) ln(dfn|Ec)(x)dx ≤ −
λn

4
+K2

Call T = [V (x0),W
cs
ε(x0)

(y(x0))] the trap associated with x0. Call C the
core of T. By compactness X is covered by a finite number of traps
{Tj}. Now take any V ∈ V. Given m > 0 let V1(m) be the set of points
which visit some Cj before time m and let V2(m) = V \V1(m). We have

In =

∫

V

ρV (x) ln(dfn|Ec)(x)dx =
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(
∫

V1(m)

+

∫

V2(m)

)

ρV (x) ln(dfn|Ec)(x)dx = I + II.

I ≤

[

−
λn

4
+K(m)

]

mes(V1(m)),

II ≤ Constnmes(V2(m))

and mes(V2(m)) ≤ Constθm for some θ < 1 (the proof of this last in-
equality is similar to that of Lemma 9.1.) So, for large n, In is negative.

13. Conclusions.

Here we repeat what we have said in the introduction adding more
technical details.

13.1. Here we relate our results with those of [38]. Let K, λ be as in
Section 7. For V ∈ V let x(V ) be the center of V and

L(V ) = {x ∈ V : (dfn|Ec)(x) ≤ Ke−λn}.

Let Λδ(V ) = [L,W cs
δ (x(V ))]. Then we have essentially shown that if

δ is small enough then Λδ(V ) satisfies the conditions of Theorem 2 of
[38]. We did not deduce our result from [38] but rather repeated some
of her arguments in Sections 6–9 in order to show that u-convergence
guarantees the absence of the discrete spectrum. Now suppose that f
satisfies all the conditions of Theorem I except u-convergence. Then
the conclusion can be false (consider, for example, the double covering
of f from 12(a) corresponding to π : S1 → P

1). However we can still
say something. Namely by [4] there is a finite number ν1 . . . νk of SRB
measures and the union of their basins is the whole of X. Let Ω =
⋃

j supp(νj). Let ε be as in Section 7. Choose a finite disjoint set
V1 . . . Vm which is ε-dense in Ω. Take δ � ε. Choose small subintervals
Uj ⊂ Vj such that Λδ(Ul) are disjoint. Then the arguments of Sections
8 and 9 show that Λδ =

⋃m
l=1 Λδ(Ul) satisfy Theorem 2 of [38] except

maybe fn is not ergodic for some n. It then follows from the analysis of
[38] that ∀j ∃nj so that νj = 1

nj

∑nj

l=0 νjl and (fnj , νjl) is exponentially

mixing.
Question. What happens for g close to f? Can the maps g → νj(g)
be chosen continuously?
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13.2. It seems that the assumption that f is dynamically coherent
can be relaxed (it is however satisfied in all the known examples).
In fact, we only used it in Section 8. Let (Ω1, m1) and (Ω2, m2) be
probability spaces. Call the map τ : Ω1 → Ω2 ε–measure preserving if
∃Aj ⊂ Ωj such that mj(Aj) ≤ ε and τ |Ω1\A1

is absolutely continuous
and the Jacobian satisfies |J(x)− 1| ≤ ε. For our arguments it suffices
to know that if d(V1, V2) ≤ ε then there is εβ–measure preserving map
p : V1 → V2 such that for x ∈ V1\A1 fn(x) and fn(px) converge
exponentially fast. This, in turn seems to follow from the Pesin theory.
However, the proof without the dynamical coherence assumption would
be much more complicated.

13.3. Question. Let f be as in Theorem I. Is the map g → νg

actually smooth? An easier problem is the following. Assume that
W c(f) is absolutely continuous. Is the map g → νg differentiable at f?
(See [31] for additional discussion.)

13.4. Question. How common is (6) among partially hyperbolic dif-
feomorphisms of three manifolds? In particular is the set {f : f or f−1

is mostly contracting } dense?

13.5. Let X be a three dimensional manifold. Consider the space S
of partially hyperbolic ergodic volume preserving diffeomorphisms with
two negative Lyapunov exponents.
Question. How often are elements of S mostly contracting? What is
the rate of mixing for elements of S?

According to the general scheme proposed in [38] one has to locate
a ’bad set’ of f and see how long an orbit can stay near it. Analysis of
[4] shows that the bad set here is the the set of points whose forward
orbits never fall into any trap described in Section 12(e). So a way to
attack this problem is to obtain more information about the geometry
of this set. For example, can it have the Hausdorff dimension equal to
three?

13.6. For f ∈ S we have the following elegant characterization due to
[4]
f is mostly contracting if and only if W u(f) is minimal.
(Minimality implies mostly contractiveness by ([4], Theorem B). The

converse implication is easier. See, for example [18].)
Question. How often W u is minimal? What can be said if it is not?
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13.7. Another natural condition to consider if dimW c = 1 is

∀V ∈ V

∫

V

ρV (x) ln(df |Ec)(x)dx ≥ α0 > 0.

In this case the results similar to ours were obtained in [1], [2]. In
fact, [1], [2], [4] do not assume that dim(W c) = 1 but only that all its
Lyapunov exponents have the same sign.
Question. Can a similar theory be developed in case (f |Eu) has both
positive and negative Lyapunov exponents?

13.8. In the example 12(a) f is a skew extension over Anosov base.
Similar construction can be made with Axiom A attractors.
Question. What can be said for general Axiom A diffeomorphisms? In
particular, call f entropy stable if any g near f has an unique measure
of maximal entropy µg and µg → µf as g → f. How large is the set of
entropy stable diffeomorphisms? Are examples of Section 12 entropy
stable?

13.9. In [7, 8, 16, 20, 28] a number of examples is given of ergodic
systems which remain ergodic after a small volume preserving pertur-
bations.
Question. What happens if we allow non-volume preserving pertur-
bations?

13.10. Finally, let us remark that the questions we asked are spe-
cial cases of some general conjectures about statistical properties of a
generic dynamical systems. See [22].
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