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Abstract
Semi-active control systems are becoming more popular because they offer
both the reliability of passive systems and the versatility of active control
systems without imposing heavy power demands. In particular, it has been
found that magnetorheological (MR) fluids can be designed to be very
effective vibration control actuators, which use MR fluids to produce
controllable damping force. The objective of this paper is to study a
single-degree-of-freedom (SDOF) isolation system with an MR fluid
damper under harmonic excitations. A mathematical model of the MR fluid
damper with experimental verification is adopted. The motion
characteristics of the SDOF system with the MR damper are studied and
compared with those of the system with a conventional viscous damper. The
energy dissipated and equivalent damping coefficient of the MR damper in
terms of input voltage, displacement amplitude and frequency are
investigated. The relative displacement with respect to the base excitation is
also quantified and compared with that of the conventional viscous damper
through updating the equivalent damping coefficient with changing driving
frequency. In addition, the transmissibility of the MR damper system with
semi-active control is also discussed. The results of this study are valuable
for understanding the characteristics of the MR damper to provide effective
damping for the purpose of vibration isolation or suppression.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Isolation or suspension systems can be used to control the
vibration of moving systems. To reduce the system vibration,
effective vibration control of the isolation or suspension
systems is necessary. Vibration control techniques have
classically been categorized into two areas, namely, passive
and active controls. In a passive system, the parameters are
synthesized through off-line design techniques and no on-line
feedback actions are used. Since passive systems produce
fixed designs, the control would not be optimal when the
system or the operating condition changed. On the other
hand, active controls have been of popular interest in recent

1 Author to whom any correspondence should be addressed.

years. Force or torque inputs from actuators are usually used to
suppress vibration amplitudes based on on-line measurements
from sensors. The advantage of an active approach is that
it can adapt for system variations, and can be much more
effective than passive systems. Considering the above two
methods, one can see the merit of combining the feedback
concept in active systems with adaptable energy dissipation
devices whose damping/stiffness characteristics can be varied
according to the control commands. This semi-active control
approach has been investigated by several researchers [1–4].
It has advantages over passive systems for better performance
and it requires less power than active control.

In particular, it has been found that magnetorheological
(MR) fluids can be quite promising for vibration reduction
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applications [5]. MR fluids are magnetic analogs
of electrorheological (ER) fluids and typically consist
of micrometre-sized, magnetically polarizable particles
dispersed in a carrier medium such as mineral or silicone
oil. When a magnetic field is applied to the fluid, particle
chains form, and the fluid becomes a semi-solid and exhibits
viscoplastic behaviour similar to that of ER fluid. This
controllable change of state with some desirable features such
as high strength, good stability, broad operational temperature
range and fast response time gives rise to isolation and
suspension system applications. MR fluid dampers considered
here are semi-active control devices that use MR fluids to
produce controllable damping forces.

Recently, semi-active vibration systems via ER/MR fluid
dampers have been discussed by some researchers. A sliding
mode control algorithm was developed by Wang et al [2]
to maximize the damping effects of ER fluid dampers for
structural vibration control. An experimental approach was
made to seismic protection through MR dampers by Dyke
et al [6]. The hysteresis behaviour of the linear stroke MR
damper was characterized by four different models [7]. Also,
a viscoelastic–plastic model was considered by Li et al [8]
to model an MR damper. An alternative representation of
an MR damper in terms of neural network was developed by
Chang and Roschke [9]. A seat suspension system, equipped
with a skyhook control scheme, using an MR damper has been
developed by Choi et al [10].

2. Problem statement and objective

While the previous studies on MR dampers have shown
promising results, it should be noted that the MR dampers
either in passive-on or semi-active controlled modes could be
further explored as compared with systems with conventional
viscous dampers. The goal of this research is to investigate
the characteristics of the MR damper and a single-degree-of-
freedom (SDOF) system with the MR damper through exper-
imental studies and analyses under harmonic excitation of the
base. In particular, it will be explained why the frequency
shift of the peak transmissibility for the MR damper system
is different from that with the viscous damper. The transmis-
sibility will also be quantified and compared with that of the
conventional viscous damper through updating the equivalent
damping coefficient with changing driving frequency. These
issues will be thoroughly addressed in this study.

3. MR damper behavior and modeling

3.1. MR damper and model

The MR damper used in this study is RD-1005-1, which was
manufactured by Lord Corporation. The length of the damper
is 20.83 cm in its extended position. It has a 5 cm stroke. The
maximum current to the electromagnet in the magnetic choke
is 2 A and the coil resistance is 5�.

To evaluate the performance of MR dampers in vibration
control applications and to take full advantage of the unique
features of these devices, a model is needed to accurately
describe the behaviour of the MR damper. The mathematical
model proposed by Spencer et al [11] is adopted in this study.

c0 

c1 

k0 

k1 

Bouc-Wen

fMR 

y x 

Figure 1. Mechanical model of the MR damper.

   load cell 

     shaker  

  MR damper  

vibrometer

Figure 2. Schematic test setup for the MR damper.

The hysteretic behaviour in the damper was described by the
Bouc–Wen model. The mechanical realization of the MR
damper is shown in figure 1. The phenomenological model
is governed by the following equations [11]:

ẏ = 1

(c0 + c1)
[αz + k0(x − y) + c0ẋ] (1)

ż = −γ |ẋ − ẏ‖z|n−1z − µ(ẋ − ẏ)|z|n + A(ẋ − ẏ) (2)

fMR = c1ẏ + k1(x − x0) (3)

α = α(u) = αa + αbu (4)

c1 = c1(u) = c1a + c1bu (5)

c0 = c0(u) = c0a + c0bu (6)

u̇ = −η(u − v) (7)

where v is the voltage applied to the current driver.
In this model, there are a total of 14 parameters
(c0a, c0b, k0, c1a, c1b, k1, x0, αa, αb, γ, µ, A, n, η) to charac-
terize the MR damper. The optimized values for the 14 param-
eters are determined by fitting the model to the experimental
data obtained.

3.2. Experimental setup

The load frame shown in figure 2 is set up and built for the
purpose of obtaining MR damper response data for parameter
identification. The dynamic responses of the damper can be
measured for prescribed waveforms and frequencies. The
vibration system (Labworks Inc., LW-127-500) is used to
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Figure 3. Force versus displacement and velocity of the MR damper. (a) Force–displacement relationship. (b) Force–velocity relationship.

produce excitation for the damper. It consists of a shaker (ET-
127) and a matching power amplifier (PA-123-3/2-500). The
amplifier receives an electrical signal, amplifies it and sends it
to the shaker. The load cell (PCB Piezotronics Inc., 208C03)
can sense the damping force under different conditions. A laser
vibrometer (Polytec GMBH, OFV-3001) is used to measure the
related displacement and velocity.

In order to acquire the experimental data (displacement,
velocity and damping force of the MR damper), the dSPACE
system is used. It also commands a suitable voltage signal to
the MR damper. The dSPACE system consists of two main
elements—software and hardware. The software interfaces
with MATLAB on a PC and allows the user to create a
block diagram of the system in Simulink. The dSPACE real-
time interface, which runs under MATLAB, can then compile
the Simulink model and load the model directly to a DSP
chip in the hardware of the dSPACE system. The hardware
portion consists of the DSP processor board. All data for this
research were acquired directly using the TRACE module in
the dSPACE toolkit. TRACE can generate a time history of
any variable in the Simulink control block diagram.

3.3. Damper characteristics

In this experiment, the shaker is driven with a sinusoidal
signal with a fixed frequency, and the voltage applied to the
damper is held at a constant level. Three sets of experimental
data are obtained according to three voltage levels (0, 1, and
2 V). Each set of data consists of displacement, velocity and
damping force. The responses of the MR damper subject to a
1 Hz sinusoidal signal are shown in figure 3 for three constant
voltage levels applied to the damper. Both force–displacement
and force–velocity loops are shown in the figure. The force–
displacement loops (figure 3(a)) progress along a clockwise
path with the increase of time while the force–velocity loops
(figure 3(b)) progress along a counterclockwise path. Also, it
can be seen that, as the voltage increases, the corresponding
damping force increases.

Observing both figures 3(a) and (b), the force produced
by the damper is not centered at zero. This shows the effect
of the accumulator at the bottom of the damper. Also, the
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Figure 4. Force–displacement relation with different excitation
amplitudes.

maximum force increases with increasing applied voltage,
which is related to the magnetic field.

As shown in figure 3(b), when the damping force is less
than the yield force, the damper is operating in the pre-yield
region. It strongly exhibits hysteresis characteristics. Also,
the slope of the curve is relatively steep. When the damping
force is larger than the yield force, the damper is operating
in the post-yield region. The yield transition occurs as the
damping force crosses the yield force value. After the yield
force values, the change rate of damping force with velocity is
relatively low.

In order to compare the damping performance of the
MR damper with that of a conventional viscous damper, an
equivalent damping coefficient ceq is determined by equating
the energy dissipated in a full cycle [7, 8]. In the following
experiments, sinusoidal excitations with different amplitudes
are used to test the characteristics under different constant
voltages. For example, with no voltage input, five sets of
data (peak amplitudes of excitations are 0.002, 0.004, 0.006,
0.008 and 0.01 m), under 1 Hz excitation, are captured and
five sets of force versus displacement curves are shown in
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Figure 5. Energy dissipated versus voltage.
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Figure 6. Energy dissipated versus displacement amplitude.

figure 4. In a similar way, some experiments are performed
under sinusoidal excitations with different frequencies (0.2,
0.6, 1, 1.4 and 1.8 Hz) with fixed excitation amplitude.

Let the energy dissipated by the MR damper in one cycle
be W

W =
∫ 2π/ωd

0
fMR dx =

∫ 2π/ωd

0
ceq ẋ dx (8)

where ωd is the driving frequency of the sinusoidal excitation,
ẋ is the relative velocity of the damper and fMR is the measured
damping force.

It should be noted that W can be found from the area
enclosed by the curve in the force–displacement diagram under
a particular voltage input, excitation amplitude and frequency.
Then, the energy dissipated per cycle in each case can be
calculated. The relations among W , input voltage, excitation
amplitude and frequency are shown in figures 5–7. The
excitation frequency for the results shown in figures 5 and 6
is 1 Hz. For figure 7, while the excitation amplitude is kept
constant (0.004 m peak-to-peak), the excitation frequency and
voltage input are to be varied. From figure 4, it is obvious that
a greater energy dissipated results from a greater excitation
amplitude due to a larger loop. Also, for higher voltage input,
the loop will be larger due to the higher damping force. This
results in a larger amount of energy dissipated. These results
are also shown in figures 5 and 6.

Observing figure 7, for the same voltage input, the
variance of the energy dissipated under the excitation of higher
frequency is less than that under lower-frequency excitation.
This shows that, at higher frequencies, the energy dissipated
varies little with the excitation frequency for a fixed amplitude.
As mentioned before, the energy can be found from the area
enclosed by the force–displacement loop, such as those in
figure 4. For the MR damper, the force–displacement loop
is in a rectangular-like shape, so the area of the loop can be
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Figure 7. Energy dissipated versus frequency.
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Figure 8. Equivalent damping coefficient versus input voltage.
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Figure 9. Equivalent damping coefficient versus displacement
amplitude.

estimated by the product of the peak-to-peak value of the
displacement and that of the damping force. For a fixed
excitation amplitude, since it has been shown that the energy
dissipated varies little with the frequency for higher-frequency
excitation, the peak-to-peak value of the damping force also
varies little. This means that, at higher frequencies, the
excitation frequency does not affect the damping force much
for a fixed amplitude.

From equation (8), assuming a simple harmonic
excitation, x(t) = X sin ωdt , where X is the amplitude of
the relative motion of the damper,

W =
∫ 2π/ωd

0
ceq(ẋ)2 dt

=
∫ 2π/ωd

0
ceq(ωdX cos ωdt)2 dt = πceqωdX2. (9)

Therefore, ceq can be found as

ceq = W

πωdX2
. (10)

The relations among ceq , input voltage, excitation
amplitude and frequency are shown in figures 8–10. The
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Figure 10. Equivalent damping coefficient versus frequency.

damping coefficients in figures 8–10 correspond to the energy
dissipated shown in figures 5–7, respectively. Figure 8 shows
that the damping coefficient increases with the increase of
the input voltage for a constant-amplitude input. Also, for
the amount of increment in ceq , the effect of the increase
in voltage on lower amplitudes is more significant than that
on higher amplitudes. This shows that the value of the
damping coefficient changes dramatically with applied voltage
at a low amplitude where the velocity is relatively low for a
fixed frequency. For higher velocities, when the displacement
amplitude is higher, the change in ceqwith the voltage is less
significant.

In figure 9, it can be seen that the damping coefficient
decreases as the excitation amplitude is raised under the
same input voltage. For the same amount of increment in
displacement amplitude, the damping coefficient for the higher
voltage input decreases more. Compared with figure 6, which
shows that energy dissipated increases with the excitation
amplitude, it is interesting to see that the trend for ceq is
opposite to that for the energy dissipated with the same voltage
input. This is because, from equation (10), ceq is treated as
a normalized damping factor for the amount of dissipated
energy with respect to excitation frequency and amplitude.
From equation (10), for ceq, W is divided by the square of
X. Therefore, for the approximately linear increase of W with
X in figure 6, ceq decreases with the increase of X.

In figure 10, when the displacement (0.004 m peak-to-
peak) is kept fixed, an increase in frequency leads to a decrease
in damping coefficient. The amount of reduction is larger for
higher voltage input. This can be explained by the effect of the
pre-yield/post-yield phase. For lower excitation frequencies,
a smaller velocity will result at the same excitation amplitude.
Then, the damper operates in the pre-yield region. From
figure 3(b), when the fluid in the damper is in the pre-yield
phase, the slope of the curve is relatively steep compared
with that in the post-yield phase. Basically, the slope can
reflect the damping ability, which is described quantitatively
by the equivalent damping coefficient. When the velocity is
increased, the damper would work beyond the pre-yield region.
In the post-yield region, the slope of curve in figure 3(b) is
much smaller. Therefore, on average, the damping coefficient
of the MR damper working at higher frequencies is smaller.

3.4. Comparison between model and experimental data

In order to obtain the optimized parameters for the MR damper
model from the above experimental data, a least-squares
optimization method is used. The optimization is performed

Table 1. Parameters for the model.

Parameter Value Parameter Value

c0a 784 N s m−1 αa 12 441 N m−1

c0b 1803 N s V−1 m−1 αb 38 430 N V−1m−1

k0 3610 N m−1 γ 136 320 m−2

c1a 14 649 N s m−1 µ 2059 020 m−2

c1b 34 622 N s V−1 m−1 A 58
k1 840 N m−1 n 2
x0 0.0245 m η 190 s−1

using the function ‘leastsq’ available in MATLAB. The 14
parameters are estimated by minimizing the error between the
model-predicted force (fmodel) and the force from experimental
results (fexperiment). The error concerned is represented by the
objective function J , which is given by

J =
∑

(fexperiment − fmodel)
2. (11)

It should be noted that the number of points for calculation
is 400 and the sampling time is 0.005 s. The resulting
parameters are given in table 1.

Figure 11 shows the comparison of the predicted model
with the experimental data for five constant voltages (0, 0.5, 1,
1.5 and 2 V). It can be seen that the model accurately predicts
the behaviour of the damper.

4. Vibration characteristics of a base-excited system

Consider an SDOF isolation system with base excitation shown
in figure 12; the equation of motion is

msẍs + c(ẋs − ẋb) + k(xs − xb) = 0 (12)

where ms is the system mass, xs, ẋs are the vertical
displacement and velocity of the mass, k is the stiffness
coefficient, xb, ẋb are the displacement and velocity of the base
and c is the damping coefficient.

By replacing the viscous damper with an MR damper,
the SDOF isolation system with the MR damper is shown in
figure 13. The governing equation of motion is

msẍs + k(xs − xb) + fMR = 0 (13)

where fMR is the controllable damping force.

4.1. SDOF system with viscous damper

Considering the SDOF system with a viscous damper
(figure 12), assume the base of the system undergoes harmonic
motion, i.e.

xb(t) = Xb sin ωt. (14)

Then the system response can be expressed as xs(t) =
Xs sin(ωt − φ). The displacement transmissibility amplitude
Xs/Xb and phase angle φ can be obtained as

Xs

Xb

=
[

k2 + (cω)2

(k − msω2)2 + (cω)2

] 1
2

=
[

1 + (2ζ r)2

(1 − r2)2 + (2ζ r)2

] 1
2

(15)

φ = tan−1

[
2ζ r3

1 + (4ζ 2 − 1)r2

]
(16)
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Figure 11. Comparison of model and experimental results. (a) Force–displacement relationship. (b) Force–velocity relationship.

ms 

ck

xs 

xb 

Figure 12. SDOF system with viscous damper.

where ζ = c/2
√

msk and r = ω/ωn = ω
√

ms/
√

k; ωn is the
natural frequency of the system. ζ is the damping ratio and r

is the frequency ratio.
The displacement transmissibility and the phase angle

of the SDOF system, where all the elements of the system
are passive, are shown in figure 14 for various damping
coefficients. From figure 14(a), it can be seen that
at low passive damping the maximum transmissibility (at
resonance) is relatively large, while the transmissibility at
higher frequency is low.

As the damping is increased, the resonance peak is
attenuated but isolation is lost at high frequency. This
transmissibility plot illustrates the inherent tradeoff between
resonance control and high-frequency isolation that is
associated with the design of passive isolation system.
Also, from figure 14(a), the location of the peak of the
transmissibility for the damping ratio 0.2 is almost at unit
frequency ratio. However, as the damping ratio is increased,
the location of the peak shifts to smaller frequency ratios.
Figure 14(b) presents the coupling effect between the base
excitation and the motion of the system mass. A small phase
angle means that the two ends of the damper are strongly
coupled and are moving in phase with each other. Increasing
damping causes more coupling across the isolation system.

4.2. SDOF system with passive MR damper

Using the MR damper model studied in section 3, the
displacement transmissibility and phase angle can be found
through simulation.

ms 

k fMR 

xs 

xb 

Figure 13. SDOF system with MR damper.

In the simulation, the system mass is set to be 1500 kg and
the stiffness of the spring is 75 000 N m−1. The amplitude of
the base excitation is set to be 0.01 m. The results are shown
in figure 15. As expected, they are similar to those cases
with the viscous damper. Around the resonance frequency,
the transmissibility is high for low damping (low voltage
applied). In this case, 0 V input causes the lowest damping
of the MR damper. As the voltage applied is increased, the
transmissibility decreases. For higher frequencies (r > 1.5),
lower voltage input (lower damping) has better isolation.

One interesting thing to note is that the location of the peak
of the transmissibility shifts to higher frequency ratios as the in-
put voltage increases (larger damping). This is totally different
from the case with the viscous damper. In order to investigate
this characteristic, the corresponding equivalent damping coef-
ficient ceq has to be found. Before determining the energy dis-
sipated in one cycle, the amplitude of relative motion (xs −xb)
of the damper for the SDOF system should be found. The
relative displacements of the damper are shown in figure 16.

By using equation (10), ceq can be calculated by
substituting X by the relative displacement where W can be
found by using equation (8). The plot of this value against
frequency ratio for various input voltages is shown in figure 17.
The displacement transmissibility can be calculated using
equation (15) by varying damping and frequency. These results
are plotted in figure 18 with the results from figure 15(a) for the
purpose of comparison. It can be seen that the transmissibility
from the system simulation is quite close to that calculated
from ceq .

In figure 17, the equivalent damping coefficients drop for
all voltage cases as the frequency ratio increases although the
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Figure 14. Transmissibility and phase for the passive system with viscous damper. (a) Displacement transmissibility. (b) Phase angle.
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Figure 15. Transmissibility and phase for the passive system with MR damper. (a) Displacement transmissibility. (b) Phase angle.
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Figure 16. Relative displacement of the SDOF system with MR
damper.

locations of the drops are different. Referring to figure 16,
when ceq remains at a high value, the amplitude of relative
displacement is low. This means that the MR fluid in the
damper is near pre-yield phase at this time. When the
amplitude of relative displacement is higher, the damping force
exceeds the yield force of the MR fluid and the damper operates
in the post-yield region. In this phase, the equivalent damping
will be much smaller. This illustrates that ceq can change
dramatically with the amplitude of the relative displacement.

In figure 17, the ceq value drops significantly from the
frequency ratio of about 0.8 for 2 V input while it drops from
that of about 0.4 for 0 V input. That is, for the 0 V case,
the coefficient starts to drop at lower frequency ratios. Then,
for 2 V, ceq drops to as low as 9000 N s m−1 after the unit
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Figure 17. Equivalent damping coefficient for the passive system
with MR damper.

frequency ratio and it stays at that level afterwards. However,
for 0 V, it can reach the steady value of ceq at around the unit
frequency ratio. It is obvious that ceq for 2 V starts to decrease
late (in the sense of frequency ratio) and reaches the steady
value late. In figure 15(a), the transmissibility for 2 V input
therefore starts to increase at the frequency ratio of about 0.8
and it will not reach the peak at the unit frequency ratio. It
will have a peak after the unit frequency ratio as there still
exists a significant drop of ceq for the 2 V case at the unit
frequency ratio. From figure 14(a), it should be reminded that
the transmissibility at resonance increases significantly with
the decrease of damping. This is why a sudden damping drop
can increase the transmissibility.
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Figure 18. Comparison between two transmissibilities of the SDOF system.
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Figure 19. Transmissibility and phase of the controlled system. (a) Displacement transmissibility. (b) Phase angle.

4.3. SDOF system with semi-active MR damper

In this section, the performance of the semi-active vibration
control of the SDOF MR system is evaluated through the
transmissibility analysis. With the consideration of the loading
uncertainties, the sliding mode control is used for the system
controller. The sliding surface is defined as

S = ė + λe (17)

where
e = xs − xref . (18)

The reference model used here is the ideal skyhook system,
which has been reported to be highly effective in controlling a
one-degree-of-freedom system [12]. For loading perturbation,
ms = mso + +ms where mso represents the nominal mass and
+ms is the uncertain part. The desired control force fd can be
derived as [13]

fd = −mso[u′
o − K ′ sgn (S)] (19)

where

u′
o =

(
k

mso

xs − k

mso

xb − λė + ẍref

)
(20)

K ′ = β

[(
1 − 1

β

)(
k

mso

|xs | +
k

mso

|xo| + |u′
o|

)
+ ϕ

]
. (21)

It should be noted that the MR damper is a semi-active
device, which cannot generate force arbitrarily as an active

actuator. Therefore, a continuous state controller can be used
to deal with the semi-active MR damper [14]. The algorithm
for selecting the command signal is stated as

if

G(fd − BfMR) sgn (fMR) > Vmax

v = Vmax

else if

G(fd − BfMR) sgn (fMR) < Vmin

v = Vmin

else

v = G(fd − BfMR) sgn (fMR)

(22)

where Vmax is the maximum voltage to the damper and Vmin is
the minimum voltage to the damper (i.e. 0 V).

The nominal parameters used in this study are mso =
1500 kg, k = 75 000 N m−1 and +ms = −300 kg. The damp-
ing coefficient (cref ) of the reference model is 35 000 N sm−1.
λ, β and ϕ are chosen to be 4, 1.25 and 2, respectively, while
the values of G and B are set to be 0.021 and 1, respectively.
In figure 19, there are two controlled cases with the maxi-
mum voltage to the MR damper bounded by 1 or 2 V. In both
cases, it can be seen that the isolation performances of the
controlled systems are better than that of the system with no
voltage applied. This shows that the semi-active controller
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with the MR damper is quite effective for suppressing vibra-
tion for the whole frequency range shown. This is different
from the tradeoff phenomena of the passive systems, where
worse isolation was obtained for higher frequencies while in-
creasing the damping (see sections 4.1 and 4.2). Comparing
these two controlled cases, one should note that the displace-
ment transmissibility of the controlled system with maximum
2 V to the damper is lower than that with the maximum voltage
set to 1 V. Observing figure 19(b), the phase plot also shows
a key difference, where the semi-active controlled case with
larger maximum voltage to the MR damper has larger phase
angles for lower frequencies (frequency ratio < 1) but smaller
phase angles for higher frequencies (frequency ratio > 1).

5. Conclusion

The application of an MR fluid damper for the vibration control
of an SDOF system is studied. First, the characteristics of
the MR damper are investigated, and some experiments on
the damper are performed. Then, a mathematical model
of the MR fluid damper is adopted. The parameters for
the model are successfully estimated from experimental data.
The energy dissipated and equivalent damping coefficient
of the MR damper in terms of input voltage, displacement
amplitude and frequency are investigated. The SDOF isolation
system with the MR damper is analyzed by studying its
transmissibility. Also, the relative displacement with respect
to the base excitation is quantified and compared with that of
the conventional viscous damper by updating the equivalent
damping coefficient with changing driving frequency. Some
interesting observations are obtained and their physical
insights are explained. In addition, the performance of the
MR damper system with semi-active control is also discussed.
Compared with passive systems, the results of this study
show that the semi-active controlled MR damper can achieve
effective vibration suppression without the sacrifice of worse
isolation for higher frequencies of interest.

Acknowledgment

The work described in this paper was supported by a grant
from the Research Grants Council of Hong Kong Special
Administrative Region, China (project no CUHK4216/01E).

References

[1] Kim Y S, Wang K W and Lee H S 1992 Feedback control of
ER-fluid-based structures for vibration suppression Smart
Mater. Struct. 1 139–45

[2] Wang K W, Kim Y S and Shea D B 1994 Structural vibration
control via electrorheological-fluid-based actuators with
adaptive viscous and frictional damping J. Sound Vib. 177
227–37

[3] Taniwangsa W and Kelly J M 1997 Experimental testing of a
semi-active control scheme for vibration suppression Proc.
SPIE Conf. on Smart Structures and Materials: Passive
Damping and Isolation (SPIE vol 3045) (Bellingham, WA:
SPIE) pp 130–9

[4] Sadek F and Mohraz B 1998 Semiactive control algorithms
for structures with variable dampers J. Eng. Mech. 124
981–90

[5] Dyke S J, Spencer B F Jr, Sain M K and Carlson J D 1996
Modelling and control of magnetorheological dampers
for seismic response reduction Smart Mater. Struct. 5
565–75

[6] Dyke S J, Spencer B F Jr, Sain M K and Carlson J D 1998 An
experimental study of MR dampers for seismic protection
Smart Mater. Struct. 7 693–703

[7] Wereley N M, Pang L and Kamath G M 1998 Idealized
hysteresis modeling of electrorheological and
magnetorheological dampers J. Intell. Mater. Syst. Struct. 9
642–9

[8] Li W H, Yao G Z, Chen G, Yeo S H and Yap F F 2000
Testing and steady state modeling of a linear MR
damper under sinusoidal loading Smart Mater. Struct. 9
95–102

[9] Chang C C and Roschke P 1998 Neural network modeling of a
magnetorheological damper J. Intell. Mater. Syst. Struct. 9
755–64

[10] Choi S B, Nam M H and Lee B K 2000 Vibration control of a
MR seat damper for commercial vehicles J. Intell. Mater.
Syst. Struct. 11 936–44

[11] Spencer B F Jr, Dyke S J, Sain M K and Carlson J D 1997
Phenomenological model of a magnetorheological damper
J. Eng. Mech. 123 230–8

[12] Ahmadian M 1999 On the isolation properties of semiactive
dampers J. Vib. Control 5 217–32

[13] Lai C Y and Liao W H Vibration control of a suspension
system via a magnetorheological fluid damper J. Vib.
Control at press

[14] Sims N D, Stanway R, Peel D J, Bullough W A and
Johnson A R 1999 Controllable viscous damping: an
experimental study of an electrorheological long-stroke
damper under proportional feedback control Smart Mater.
Struct. 8 601–15

296


