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Abstract

Many algorithms in computer vision assume diffuse only reflections and deem specular reflections

to be outliers. However, in the real world, the presence of specular reflections is inevitable, since

there are many dielectric inhomogeneous objects which have both diffuse and specular reflections. To

resolve this problem, we present a method to separate the two reflection components. The method

is principally based on the distribution of specular and diffuse points in a two-dimensional maximum

chromaticity-intensity space. We found that, by utilizing the space and known illumination color, the

problem of reflection component separation can be simplified into the problem of identifying diffuse

maximum chromaticity. To be able to identify the diffuse maximum chromaticity correctly, an analysis

of the noise is required, since most real images suffer from it. Unlike existing methods, the proposed

method can separate the reflection components robustly for any kind of surface roughness and light

direction.

Index Terms: Reflection components separation, specular reflection, diffuse reflection, dichromatic

reflection model, noise analysis, chromaticity, specular-to-diffuse mechanism.

1 Introduction

Highlights reflected from inhomogeneous objects are linear combinations of diffuse and specular

reflection components. The presence of highlights causes many algorithms in computer vision to

produce erroneous results; since, most of the algorithms assume diffuse only reflections and deem

specular reflections as outliers. To properly acquire the diffuse only reflections, a method to separate
1This research was, in part, supported by Japan Science and Technology (JST) under CREST Ikeuchi Project.
∗Department of Computer Science, The University of Tokyo, Japan, E-mail: {robby,ki}@cvl.iis.u-tokyo.ac.jp
†Department of Science, Columbia University, USA, E-mail: kon@cs.columbia.edu

1



the two components robustly and accurately is required. Once this separation has been accomplished,

knowledge of the specular reflection component becomes advantageous, since it conveys useful infor-

mation about surface properties such as microscopic roughness.

Many methods have been developed to separate reflection components. Wolff et al. [15] and

Nayar et al. [11] used a polarizing filter to identify pixels that had a specular reflection component.

Generally, methods using polarizing filters are sufficiently accurate to separate reflection compo-

nents; however, using such additional devices is impractical in some circumstances. Sato et al. [12]

introduced a four-dimensional space – temporal-color space – to analyze the diffuse and specular

reflections based solely on color. While their method has the ability to separate the reflection com-

ponents locally, it requires dense input images with a variation of illuminant directions. Recently,

instead of using dense images, Lin et al. [10] used sparse images under different illumination po-

sitions to resolve the separation problem. They used an analytical method that combines the finite

dimensional basis model and dichromatic model to form a closed form equation by assuming that the

sensor sensitivity is narrowband. Other methods using multiple images can be found in the literature

[7, 9].

Shafer [13], who proposed the dichromatic reflection model, was one of the early researchers who

used a single uniformly colored image. He proposed a separation method based on parallelogram

distribution of colors in RGB space. Klinker et al. [4] then extended this method by introducing

a T-shaped color distribution, which was composed of reflectance and illumination color vectors.

Unfortunately, for most real images, this T shape is rarely extractable due to noise, etc. Bajscy et al.

[1] proposed a different approach that introduced a three dimensional space composed of lightness,

saturation and hue. In their method, the input image whose illumination color is known has to be

neutralized to pure-white illumination using a linear basis functions operation. Although this method

is more accurate than the method of Klinker et al. [4], it requires correct specular-diffuse pixel

segmentation, which is dependent on camera parameters.

In this paper, we describe our goal: to separate the reflection components of uniformly colored

surfaces from a single input image. To accomplish this, we base the method on chromaticity, par-

ticularly on the distribution of specular and diffuse points in maximum chromaticity-intensity space.

Briefly, the method is as follows. Given a single colored image taken under a uniformly colored

illumination, we first identify the diffuse pixel candidates based on color ratio and noise analysis,

particularly camera noise. We normalize both input image and diffuse pixel candidates simply by

dividing their pixels values with known illumination chromaticity. Color constancy algorithms (e.g.,

[14, 2]) can be employed to estimate the illumination chromaticity. From the normalized diffuse

candidates, we estimate the diffuse maximum chromaticity by using histogram analysis. Having ob-

tained the normalized image and the normalized diffuse maximum chromaticity, the separation can be

done straightforwardly using a specular-to-diffuse mechanism, a new mechanism which we introduce.
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Finally, we renormalize the reflection components to obtain the actual reflection components.

Although the method can be used to deal with multicolored surfaces by employing color seg-

mentation (e.g., region growing algorithms [8] based on hue), in this paper we focus the discussion

on uniformly colored surfaces, since we intend to underline the robustness and the accuracy of the

method. In our experiment the separation results will be evaluated by comparison with the results of

using polarizing filters. Considering the advantages of the method, it should be useful for color-based

object recognition, color indexing, or other computer vision algorithms as well. Such algorithms

usually require a consistent color descriptor of an object; however, highlights could cause the color

appearance of the object to be inconsistent with respect to the change of viewing and illumination

direction. Thus, by successfully acquiring diffuse only reflection, we become able to provide a consis-

tent color descriptor of an object. Note that, in this paper, we also introduce a novel two-dimensional

space: maximum chromaticity-intensity space. Previously, a number of researchers (e.g., [5]) have

utilized chromaticity space for color analysis; however, since the differences of specular and diffuse

reflections are not only due to color but also to intensity, we combine both of them in a single space.

The rest of the paper is organized as follows. In Section 2, we discuss the dichromatic model of

inhomogeneous materials and image color formation. In Section 3, we explain the method in detail,

describing the derivation of the theory and the algorithm for separating diffuse and specular reflection

components. We provide a brief description of the implementation of the method and experimental

results for real images in Section 4. Finally in Section 5, we offer our conclusions.

2 Reflection Models

Based on the dichromatic reflection model [13] and image formation of a digital camera, we can

describe camera response or image intensity as:

I(x) = wd(x)
∫
Ω

S(λ)E(λ)q(λ)dλ + ws(x)
∫
Ω

E(λ)q(λ)dλ (1)

where I = {Ir, Ig, Ib}, the color vector of camera response or image intensity; x = {x, y}, the two

dimensional image coordinates, and q = {qr, qg, qb} is the three-element-vector of sensor sensitivity.

wd(x) and ws(x) are the weighting factors for diffuse and specular reflection, respectively; their values

depend on the geometric structure at location x. S(λ) is the diffuse spectral reflectance function,

while E(λ) is the spectral energy distribution function of illumination. These two spectral functions

are independent of the spatial location (x) because we assume a uniform surface color as well as a

uniform illumination color. The integration is done over the visible spectrum (Ω). Note that we ignore

the camera gain and camera noise in the above model, and assume that the model follows the neutral

interface reflection (NIR) assumption [6], i.e., the color of specular reflection component equals the
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color of the illumination. For the sake of simplicity, Equation (1) can be written as:

I(x) = wd(x)B + ws(x)G (2)

where B =
∫
Ω Sd(λ)E(λ)q(λ)dλ, and G =

∫
Ω E(λ)q(λ)dλ. The first part of the right side of the

equation represents the diffuse reflection component, while the second part represents the specular

reflection component.

Chromaticity We define chromaticity or normalized rgb as:

σ(x) =
I(x)

Ir(x) + Ig(x) + Ib(x)
(3)

where σ = {σr, σg, σb}. Based on the equation, for diffuse only reflection component (ws = 0),

the chromaticity will be independent from the diffuse geometrical parameter wd. We call this diffuse

chromaticity (Λ) with definition:

Λ =
B

Br + Bg + Bb
(4)

where Λ = {Λr, Λg, Λb} and B = {Br, Bg, Bb}. On the other hand, for specular only reflection

component (wd = 0), the chromaticity will be independent from the specular geometrical parameter

(ws), and we call it specular chromaticity or illumination chromaticity (Γ):

Γ =
G

Gr + Gg + Gb
(5)

where Γ = {Γr, Γg , Γb} and G = {Gr, Gg, Gb}. Consequently, regarding to Equation (4) and (5),

Equation (2) becomes able to be written in term of chromaticity:

I(x) = md(x)Λ + ms(x)Γ (6)

where

md(x) = wd(x)(Br + Bg + Bb) (7)

ms(x) = ws(x)(Gr + Gg + Gb) (8)

As a result, we have three types of chromaticity: image chromaticity (σ), diffuse chromaticity (Λ) and

illumination chromaticity (Γ). The image chromaticity is directly obtained from the input image using

Equation (3). In addition, we can obtain that (σr +σg +σb) = (Λr +Λg +Λb) = (Γr +Γg +Γb) = 1.

Problem Definition and Constraints Given image intensities (I) whose illumination chromaticity

(Γ) is estimated using existing color constancy method, we intend to decompose them into their reflec-

tion components: md(x)Λ and ms(x)Γ, described in Equation (6). To accomplish the decomposition

or separation correctly, our proposed method requires two constraints: first, the surface chromaticity

should be chromatic (the distribution of S(λ) in Equation (1) is not flat); and second, the camera

responses are linear to the flux of incident intensities.
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(a) (b) (c)
Figure 1: (a) Synthetic image (b) the projection of the synthetic image pixels into the maximum chromaticity
intensity space (c) specular point distribution when the value of ms changes continually and the value of md is
constant.

3 Separation Method

In this section, we first deal with uniformly colored surfaces that have a pure-white specular compo-

nent (Γr = Γg = Γb). Then, we encounter more realistic images where Γr �= Γg �= Γb by utilizing a

normalization technique.

3.1 Specular-to-diffuse mechanism

To separate the reflection components, we basically rely on a specular-to-diffuse mechanism. This

mechanism is based on maximum chromaticity and intensity values of diffuse and specular pixels.

Following the chromaticity definition in Equation (3) we define maximum chromaticity as:

σ̃(x) =
Ĩ(x)

Ir(x) + Ig(x) + Ib(x)
(9)

where Ĩ(x) = max(Ir(x), Ig(x), Ib(x)). Unlike chromaticity (σ) which is a color vector, maximum

chromaticity (σ̃) is a scalar value. By assuming a uniformly colored surface lit with a single colored

illumination, in a two-dimensional space: maximum chromaticity-intensity space, where x-axis rep-

resenting σ̃ and y-axis representing Ĩ , the maximum chromaticities of diffuse points (points whose

md > 0 and ms = 0) will be always larger than those of specular points (points whose md > 0

and ms > 0) due to the maximum operator in the definition of Ĩ and due to the assumption that

the illumination is achromatic. Moreover, based on Equation (9), the maximum chromaticities of

diffuse points will be constant regardless of the variance of md. In contrast, the maximum chromatic-

ities of specular points will vary with regard to the variance of ms, as shown in Figure 1.b. From

these different characteristics of specular and diffuse points in the maximum chromaticity intensity

space, we devised the specular-to-diffuse mechanism. The details are as follows. When two pixels,

a specular pixel I(x1) and a diffuse pixel I(x2), with exactly the same diffuse chromaticity (Λ) are

projected into maximum chromaticity-intensity space, the maximum chromaticity (σ̃) of the diffuse

point will be larger than that of the specular point. If the color of the specular component is pure

white: Γr(x1) = Γg(x1) = Γb(x1), by subtracting all color channels of the specular pixel’s intensity
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with a small scalar number iteratively, and then projecting those subtracted image intensities into the

space, we will find that the points form a curved line, as shown in Figure 1.c. This curved line follows

the below Equation: (see the Appendix for complete derivation):

Ĩ(x) = md(x)(Λ̃− 1/3)(
σ̃(x)

σ̃(x) − 1/3
) (10)

where Λ̃ is the Λc of Ĩ , with index c is identical to the color channel of Ĩ . Note that this equation

also proves that the distribution of specular points in maximum chromaticity intensity space forms a

curved cluster if the values of md vary (Figure 1.b).

In Figure 1.c, we can observe that a certain point in the curved line intersects with a vertical

line representing the maximum chromaticity of the diffuse point. At this intersection, ms of the

specular pixel equals zero, since the maximum chromaticity of the subtracted specular pixel becomes

identical to that of the diffuse pixel. As a consequence, the intersection point becomes crucial (the

point indicates the diffuse component of the specular pixel). Mathematically, to obtain the diffuse

component, we first compute md(x1), which can be derived from Equation (10):

md(x1) =
Ĩ(x1)[3σ̃(x1) − 1]

σ̃(x1)[3Λ̃(x1) − 1]
(11)

To compute the value of md we need to know the value of Λ̃. This value can be obtained from the

diffuse pixel, since if the two pixels have the same diffuse chromaticity, then Λ̃(x1) = Λ̃(x2) = σ̃(x2).

Having known the value of md(x1), we can directly obtain the value of ms(x1), since:

ms(x1) = (Ir(x1) + Ib(x1) + Ig(x1)) − md(x1) (12)

Finally, the diffuse reflection component of the specular pixel can be computed as: md(x1)Λ =

I(x1) − ms(x1)
1
3
.

Based on the above mechanism, therefore, the problem of reflection components separation can

be simplified into the problem of finding diffuse maximum chromaticity (σ̃ of diffuse pixels). For syn-

thetic images, which have no noise, the diffuse maximum chromaticities are constant and thus trivial to

find. Figure 1.b, shows the distribution of synthetic image pixels in maximum chromaticity-intensity

space. By considering Equation (9), we can obtain the diffuse maximum chromaticity from the largest

maximum chromaticity value (the extreme right of the point cloud). Then, with regard to this diffuse

maximum chromaticity, we can accomplish the separation pixel by pixel in a straightforward manner

using the above mechanism. Figure 2.b∼c show the separation result. For real images, unfortunately,

instead of forming constant values, the diffuse maximum chromaticities vary within a considerably

wide range (Figure 2.e). This is due to imaging noises and surface non-uniformity (although human

perception perceives a uniform color, in fact in the real world, there is still surface non-uniformity

due to dust, imperfect painting, etc.). Therefore, to correctly and robustly obtain the diffuse maxi-

mum chromaticity, we should include those noises in our analysis. Note that the specular-to-diffuse
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(a) (b) (c) (d) (e)
Figure 2: (a) Synthetic input image (b) diffuse component (c) specular component (d) real input image (e) the
projection of the real image into maximum chromaticity-intensity space

mechanism requires linearity between the camera output and the flux of incoming light intensity, and

works only on chromatic surfaces.

3.2 Color Ratio and Noise Analysis

In this section, first we intend to show that in real images, noise can make the values of diffuse chro-

maticity (Λ) of the image vary, although human perception deems that the images contain uniformly

colored surfaces (constant Λ). Second, from the varied values of Λ, we will group the points that

have the same Λ, which ideally means points that have exactly the same surface color and noise. We

expect that by transforming each of these groups into maximum chromaticity-intensity space, we can

obtain a single diffuse maximum chromaticity as in synthetic images.

Color Ratio To accomplish the two tasks above we use color ratio, which we define as:

u =
Ir + Ib − 2Ig

Ig + Ib − 2Ir
(13)

where u is a scalar value. The location parameter (x) is removed, since we work on each pixel

independently. For a pure-white specular reflection component (Γr = Γg = Γb), the color ratio (u)

for both diffuse and specular pixels can be described as a function of Λ alone:

u =
Λr + Λb − 2Λg

Λg + Λb − 2Λr
(14)

The last equation means that, if two pixels have the same diffuse chromaticity (Λ), they will have

the identical value of u regardless of whether they are diffuse or specular pixels (specularity inde-

pendence). In addition, the value of u is also independent from shading and shadows; although,

the independence from shadow is fulfilled if the ambient illumination has the same spectral energy

distribution to the direct illumination.

Based on Equation (13), we create a two-dimensional space: u-intensity space, with u as x-axis

and Ĩ as y-axis. By projecting all pixels of a real image into this space, we obtain a cloud of points

as shown in Figure 3.a. Ideally, if the surface color is perfectly unique and there is no noise from the
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(a) (b)
Figure 3: (a) The projection of the pixels of Figure 2.d into u-intensity space (b) the projection of pixels that
correspond to points crossed by a vertical line in the left figure.

camera, we should observe only a single straight line in this space since the values of u are constant.

However, as can be seen in the figure, this does not hold true for real images. This is mainly due to

the slight variation of surface color and illumination color as well as to noise produced through the

camera sensing process, which are imperceptible to human eyes. In our analysis, we assume that the

variance of illumination color is small, and neglect it. Thus, the variance of the color ratio in the space

is caused by surface non-uniformity and camera noise.

According to Equation (14), the varying values of u implies the varying values of Λ. However,

as shown in Figure 3.a, not all values of u are completely varied, there are still a number of groups

of points that have the same value of u. If we select one of these groups, we can obtain a number of

pixels that most likely have identical Λ. For these pixels, we can expect that, by transforming them

into maximum chromaticity-intensity space, their distribution can be the same as the distribution of

synthetic image which is free from noise (since we have ensured that the values Λ are constant). If

this expectation holds true, then the diffuse maximum chromaticity can be obtained in a straightfor-

ward manner. Figure 3.a shows a vertical line at a certain value of u. Pixels that correspond to the

points crossed by the vertical line have identical values of u. Figure 3.b shows the transformation

of the pixels into maximum chromaticity-intensity space. While the distribution of specular points

forming curved lines fits our explanation (Equation (10)), the distribution of diffuse points is beyond

our expectation since, instead of forming a single vertical line, they form a number of curved lines.

Consequently, we cannot straightforwardly obtain the diffuse maximum chromaticity. Moreover, the

curved distribution of diffuse points also indicates that the dichromatic reflection model alone is insuf-

ficient to explain the behavior of diffuse points in maximum chromaticity-intensity space. We require

a model that covers camera noise.

Camera Noise Model We model camera noise for a diffuse pixel as:

I(x) = md(x)Λθ(x) + φ(x) (15)

where θ = {θr, θg, θb} and φ = {φr, φg, φb} are the first and second types of camera noise in the

three sensor channels, respectively. The two types of camera noise depend on the spatial location (x)

8



indicating that the noise varies throughout the image. The above model is a simplification of a more

complex model proposed by Healey et al. [3]. According to the model, there are two types of camera

noise, namely, noise that is dependent on incoming intensity (shot noise), and noise that is independent

of incoming intensity (dark noise). In our simplified model, θ is identical to the intensity-dependent

noise, implying θr(x) �= θg(x) �= θb(x). While, φ is identical to the intensity-independent noise,

implying φr(x) = φg(x) = φb(x), regardless of the color of incident light. Based on the noise model

in Equation (15), we can consider that the variance of u in Figure 3.a originates from non-constant

values of Λ and θ.

By plugging Equation (15) into Equation (13), u for diffuse pixels becomes:

u =
md(Λrθr + Λbθb − 2Λgθg) + (φr + φb − 2φg)

md(Λgθg + Λbθb − 2Λrθr) + (φg + φb − 2φr)
(16)

Based on the last equation, if we have two diffuse pixels, their u values will be the same if their

combination of Λ and θ are identical, since φr(x) = φg(x) = φb(x). However, for diffuse pixels

with noise, the same value of u does not always imply the same value of maximum chromaticity

(σ̃). Since, if their second noise values are different [φ(x1) �= φ(x2)], then the values of maximum

chromaticity (σ̃) are also different. This condition is the cause of curved lines distribution of diffuse

points in maximum chromaticity-intensity space; namely, the second type of noise in diffuse pixels

behaves like the specular reflection component (φ, where φr = φg = φb, behaves like ms, a scalar

value). Moreover, like specular points, the number of curved lines in the space is also determined by

the number of different md. The range of diffuse maximum chromaticities depends on camera noise

characteristics which could be different from camera to camera. Importantly, since φ behaves like

ms, the diffuse curved distribution can be detected by using Equation (10). This detection is crucial

since we intend to find the actual diffuse maximum chromaticity.

Having characterized the diffuse distribution and identified each of them by utilizing Equation

(10), we can determine the actual diffuse pixels (diffuse pixels that do not suffer from the second type

of noise) by choosing a certain point in every diffuse curved line. By assuming that φ contains iden-

tical positive numbers, then the actual diffuse pixels are pixels that have φ = {0, 0, 0}. Consequently,

the actual diffuse pixels correspond to diffuse points that have the smallest intensity (the points that

have the biggest chromaticity in each curved line). However, since several curved lines might have

no point whose φ = {0, 0, 0}, we cannot claim that all smallest points in the curved lines correspond

to the actual diffuse pixels; thus, we call the points diffuse point candidates and their corresponding

pixels diffuse pixel candidates.

Besides affecting diffuse pixels, the two types of noise also affect specular pixels, which can be

described as I(x) = md(x)θ(x)Λ + ms(x)
3

θ(x) + φ(x). If the difference of θ for each color channel

is considerably large (θr �= θg �= θb), the specular component (ms(x)
3

θ(x)) will be different for each

color channel (the specular components become non-scalar value), even if Γr = Γg = Γb. This

9



(a) (b)
Figure 4: (a) Darker points represent diffuse point candidates (b) darker cloud represents diffuse point can-
didates for all curved lines of all values of u. The vertical line represents estimated actual diffuse maximum
chromaticity.

makes specular points distribution not follow Equation (10), and as a result makes us fail to detect

the specular curved lines distribution. However, since our purpose is to acquire diffuse maximum

chromaticity, the failure to detect the specular curved lines can benefit us. In contrast, if θr ≈ θg ≈
θb and Γr ≈ Γg ≈ Γb, using Equation (10) we could possibly identify the specular curved lines

distribution when detecting diffuse curved lines, which consequently produces a potential problem

in estimating actual diffuse maximum chromaticity. Fortunately, our technique to choose the diffuse

point candidates from the lowest intensity of each curved line enables us to avoid this problem. The

reason is, most of the lowest intensity of every specular curved line whose specular component is

approximately scalar, also indicates the actual diffuse point. In cases where there are specular curved

lines that have no diffuse points, we deem them to be outliers whose number is usually smaller than

the number of diffuse point candidates. Figure 4.a shows the diffuse points that correspond to diffuse

pixel candidates for a single value of u. In this case, the specular points distribution follows Equation

(10). Figure 4.b shows the diffuse candidates from all curved lines of all groups of u.

Finally, to obtain a unique value of maximum chromaticity from diffuse point candidates, we

simply use histogram analysis. We count the number of diffuse point candidates for each value of

maximum chromaticity, and choose the largest count as the diffuse maximum chromaticity. Figure

4.b shows a vertical line that illustrates the candidates in maximum chromaticity-intensity space and

its single estimated diffuse maximum chromaticity. Note that the noise characteristics explained in

this section can be found if the camera output is linear to incoming light intensity and φr ≈ φg ≈ φb.

In addition, in case a camera does not have the second type of camera noise, the diffuse maximum

chromaticity identification becomes more straightforward as the diffuse points will form a vertical

line in maximum chromaticity intensity space.

3.3 Non-White Illumination and Normalization

In the real world, finding a pure-white specular component is almost impossible. Most light sources

are not wavelength-independent. Moreover, even if the light source is pure white, because of sensor

sensitivity and camera noise, the value of the specular component will be different for each color
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channel. With this condition, for identifying diffuse points candidates, non-white specular compo-

nents benefit us, since they make diffuse point candidates identification more robust. As explained

in the previous section (3.2), illumination color and sensor sensitivity do not affect the second type

of noise (φ). Thus, we can still identify diffuse maximum chromaticity whatever the illumination

color and sensor sensitivity function. In other words, the identification of diffuse candidates under

non-white and white illumination is exactly the same.

Reflection components separation using specular-to-diffuse mechanism requires that the specular

component be pure-white or identical for all color channels. Consequently, we have to make the spec-

ular component become a scalar value (normalization process). We propose a simple normalization

technique without using color basis functions, namely, dividing each pixel’s RGB with illumination

chromaticity. To estimate illumination chromaticity, we can use color constancy algorithms that can

handle uniformly colored surfaces such as [14, 2].

Having estimated the illumination chromaticity (Γest), the normalized image intensity becomes:

I(x)

Γest
=

md(x)Λθ(x) + φ(x)

Γest
+

ms(x)Γθ(x)

Γest
(17)

By assuming Γθ(x)
Γest = {t, t, t}, where t is a scalar value, we can obtain pure-white specular reflection

component. This assumption is reasonable, since the estimation value of Γest either using a color

constancy algorithm or white reference (taken by the same camera) also affected by the same noise.

Having normalized both input image pixels and diffuse pixel candidates, and then computing the

normalized diffuse maximum chromaticity, we can directly separate normalized diffuse and specular

components using the specular-to-diffuse mechanism. Finally, in order to obtain the actual diffuse

and specular components, we have to renormalize the separated reflection component by multiplying

them with Γest (the illumination chromaticity).

4 Experimental Results

In this section we first briefly describe the implementation of the proposed method, and then present

several experimental results on real input images.

Implementation Figure 5 shows the flowchart of our method. Given an input image of uniformly

colored surfaces, we first group the pixels of the image based on their color ratio (u) values. Then, for

every group of u, we identify the diffuse point candidates, which implies identifying the diffuse pixel

candidates. Using estimated illumination chromaticity, we normalize all diffuse pixels candidates as

well as the input image. Based on the normalized diffuse pixel candidates, using histogram analysis

we calculate a unique value of normalized diffuse maximum chromaticity. By knowing the normal-

ized diffuse chromaticity, we separate the normalized input image by using the specular-to-diffuse
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Figure 5: Flowchart of the proposed method

mechanism, producing normalized diffuse and specular components. Finally, to obtain the actual

components, we multiply both normalized components by the estimated illumination chromaticity.

The method can be implemented to handle multicolored surfaces by using color-ratio or hue-based

color segmentation; both color ratio (Equation 13) and hue value will be independent from specularity

if the specular reflection component is pure-white.

We have conducted several experiments on real images captured by using three different CCD

cameras: SONY DXC-9000 (a progressive 3 CCD digital camera), Victor KY-F70 (a progressive 3

CCD digital camera), and SONY XC-55 (a monochrome digital camera with external color filters).

To estimate illumination chromaticity, we used an existing illumination chromaticity estimation algo-

rithm [14]. In our experiments, we used convex objects to avoid interreflection.

(a) (b) (c) (d) (e) (f)
Figure 6: (a) Input image (b) estimated diffuse reflection component (c) diffuse reflection component by using
polarizing filters (d) error in red channel (e) error in green channel (f) error in blue channel.

Evaluation We evaluated the estimation results by comparing with the results of using two polar-

izing filters. We placed one of the two filters in front of camera and another filter in front of the

light source. Theoretically, if we change the polarization angle of one of the two filters into a certain

angle that is opposite to another filter, we will obtain diffuse only reflection. Figure 6.a, b and c show

the input image, the diffuse reflection component estimated using our method and the diffuse reflec-
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(a) (b) (c) (d) (e) (f)
Figure 7: (a) Input image (b) estimated diffuse reflection component (c) diffuse reflection component by using
polarizing filters (d) error in red channel (e) error in green channel (f) error in blue channel.

(a) (b) (c) (d)
Figure 8: (a) Diffuse maximum chromaticity estimation for an image taken by Victor KY-F70 (b) Input image
(c) diffuse reflection component (d) specular reflection component.

tion component obtained using the two polarizing filters, respectively. Figure 6.c, d and e shows the

difference of image intensity values in red, blue and green color channel. Blue pixels in the figures

represent 0 ∼ 5 pixel intensity difference. Green pixels represent 6 ∼ 10 pixel intensity difference,

while red pixels represent 11 − 20 pixel intensity difference. Green pixels occurred dominantly in

the comparison, particularly for red channel. This is due to various factors, such as, inaccurate illu-

mination chromaticity estimation, which implies inaccurate grouping of u and inaccurate separation

using specular-to-diffuse mechanism; the assumption that φr = φg = φb does not hold precisely;

and, the second type of noise (dark noise, φ) that also occurs in the results of using polarizing filters.

However, despite these factors, the estimation results are considerably accurate, since the maximum

value of second type of noise of the camera (Sony DXC-9000) is around 10. Figure 7 shows another

separation result using different object. Note that, in this evaluation we do not evaluate pixels whose

image intensity is below camera dark.

To examine the robustness of the proposed methods, we also conducted several experiments us-

ing three different cameras. Figure 8.a shows the estimation of actual diffuse maximum chromaticity

for Victor KY-F70. Although some points that, due to ambient light in shadow regions, produce un-

characterized distribution, the diffuse chromaticity was still correctly obtained. The separation result

using this camera is shown in Figure 8c−d. Figure 9 shows the separation results using SONY XC-55,
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(a) (b) (c) (d)
Figure 9: (a) Diffuse maximum chromaticity estimation for an image taken by SONY XC-55 (b) input image
(c) diffuse reflection component (d) specular reflection component.

Figure 10: Reflection components separation for images captured by SONY DXC-9000

a monochrome camera with external color filters. Figure 10 show the results using Sony DXC-9000.

For more results, please visit our website: www.cvl.iis.u-tokyo.ac.jp/∼robby/separation/results.html.

5 Conclusion

We have proposed a novel method to separate diffuse and specular reflection components. The main

insight of our method is to analyze specular and diffuse pixels distribution in maximum chromaticity-

intensity space, in addition to analyzing noise for more robust and accurate results. To identify diffuse

chromaticity and to separate reflection components, we introduced specular-to-diffuse mechanism.

This mechanism is accurate in separating the reflection components when given only the diffuse

chromaticity of the normalized image.

Appendix

Derivation of the correlation between illumination chromaticity and image chromaticity.

σ(x) =
md(x)Λ + ms(x)Γ

md(x)[Λr + Λg + Λb] + ms(x)[Γr + Γg + Γb]
(18)
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For local (pixel based) operation the location (x) can be removed. Then:

ms = md
(Λ −σ)

(σ − Γ)
(19)

Substituting ms in the definition of I with ms in the last equation:

I = md(Λ− Γ)(
σ

σ − Γ
) (20)

Since Γr + Γg + Γb = 1, and under the assumption of achromatic illumination, Γr = Γg = Γb then
Γ = {1/3, 1/3, 1/3}.
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